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Abstract  Given a prime p > 2, an integer h > 0, and a wide open disk U in the weight space W of

GL2, we construct a Hecke—Galois-equivariant morphism lI’I(Jh) from the space of analytic families of
overconvergent modular symbols over U with bounded slope < &, to the corresponding space of analytic
families of overconvergent modular forms, all with Cp-coefficients. We show that there is a finite subset
Z of U for which this morphism induces a p-adic analytic family of isomorphisms relating overconvergent
modular symbols of weight k and slope < & to overconvergent modular forms of weight k+2 and slope < A.
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1. Introduction

We start by fixing a prime integer p > 2, a complete discrete valuation field K
of characteristic 0, ring of integers Okx and residue field F, and a perfect field of
characteristic p.

Let us first recall the classical Eichler—Shimura isomorphism. We fix N > 3, an integer
not divisible by p, and let I" := I't (N) N I'p(p) C SL2(Z). Let us denote by X := X(N, p)
the modular curve over Spec(Z[1/(Np)]) which classifies generalized elliptic curves with
I'-level structure, E — X the universal semi-abelian scheme and w := wg/x = e*(.Qé /x)
the invertible sheaf on X of invariant 1-differentials, where e : X — E denotes the
zero-section. With this notation we have:
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Theorem 1.1 (See [7]). For every k € Z, k > 0, we have a natural isomorphism
compatible with the action of Hecke operators

HY(F. Vie) = H (Xc, %) @ HO (Xc, of ® 24c).

where Vi.c is the natural I'-representation Vi c = Symk((CQ) and the overline on the
second term on the right means ‘complex conjugation’.

The elements of H! (F, Vk,@) are called (classical) weight k modular symbols while
the elements appearing on the right hand side of the Eichler—-Shimura isomorphism are
(classical) modular, respectively cusp forms of weight k + 2.

There is a more arithmetic version of the above theorem, which we will also call a
classical Eichler—Shimura isomorphism. Namely let us consider now the modular curve
X over the p-adic field K and for k > 0 an integer, we let Vi := Symk(QIQ,) with its
natural action of I'. Then H! (1", Vk(l)) can be seen as an étale cohomology group over
Yz := (X — {cusps})g (see § 5 for more details); this Q,-vector space is endowed both with
a natural action of the Galois group Gk := Gal(K/K) and a commuting action of the
Hecke operators.

Theorem 1.2 ([9]). We have a natural, Gk and Hecke equivariant isomorphism
Fe: HY (M V(D) @k €, = (HO(X, 0f4?) @ €, ) @ (H! (X, 07*) @k Cylk+ 1)),

where C,, is the p-adic completion of K and the symbols (1) on the left hand side and
(k4 1) on the right hand side of the isomorphism denote Tate twists.

In this article we are mainly concerned with the p-adic variation of modular forms and
modular symbols, and in fact with the relationship between these two variations.

Let us recall that both modular forms and modular symbols have very interesting
p-adic properties; more precisely for (classical) weights k, k' congruent modulo
(p — Dp'~L, r>1 an integer, we have natural congruences modulo p’ between certain
modular symbols of weights k, k¥’ as well as between certain modular forms of weight
k+2, k' +2. This suggested (in the late 1980s) that they could be p-adically interpolated,
i.e., could be organized in p-adic analytic families of modular symbols, respectively
modular forms (at least the finite slope ones).

In the present article we would like to interpolate p-adically Faltings’ isomorphisms
Sk, i.e., construct p-adic families of such isomorphisms connecting the p-adic families of
modular symbols to p-adic families of modular forms (with C,-coefficients).

Let us first point out that there is no obvious indication in [9] that such p-adic families
should exist. Such an indication would be if when considering the natural integral
structures of the vector spaces on both left hand and right hand sides of Theorem 1.2,
the integral versions §7, &} of $k, Sx, respectively, defined in the above citation were to
be compatible with the congruences.

But let us recall from [9] that in fact §7 and §}, are only defined up to p-power
torsion of degree linear in k and &k’ kernel and cokernel, respectively, so the question of
the compatibility with congruences does not even make sense. One of the reasons for
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the p-power torsion appearing in the above mentioned definition is the fact that the
Hodge-Tate sequence associated with a family of elliptic curves E/R (see Lemma 4.2)
is in general not an exact sequence; it is only exact up to p-power torsion. We have
noticed in [4] (see also Lemma 4.3 of this article) that if the family of elliptic curves
E/R has a canonical subgroup over R[1/p] and all the sections of that canonical subgroup
are defined over R[1/p] then the Hodge-Tate sequence associated with E/R can be
‘corrected’, i.e., it can be functorially modified to become an exact sequence.

Using these corrected Hodge-Tate sequences, after a restriction to a strict
neighborhood of the infinity component of the ordinary locus in the modular curve
X one can find new integral structures of all the objects appearing in Theorem 1.2 which
are now compatible with congruences and therefore can be interpolated. Moreover, as is
the case with most objects obtained via p-adic interpolation, this new map is unique.

Let us now be more precise. First of all, the parameter space for the above mentioned
p-adic families, denoted as W and called the weight space, is the rigid analytic
space associated with the complete noetherian semilocal algebra A := Zpl[Z;j]]. We set
To := Z; X Zp, seen as a compact subset of ZIQ,, endowed with a natural action of the
compact group Z, and of the Iwahori subgroup of GL2(Zp). If k € W(K) is a weight,
we denote by Dy the K-Banach space of analytic distributions on Ty, homogeneous of
degree k for the action of Zlf. Then Dy is a I'-representation. The same construction can
be performed in a slightly more complicated situation: let U C W be a wide open disk
defined over K, let Ay denote the Og-algebra of bounded rigid analytic functions on U,
let By := Ay ®o, K and denote by ky: Z; —> A[; the associated universal character.
We denote by Dy the By-Banach module of By-valued compact analytic distributions on
To, homogeneous of degree ky for the action of Z;,(. Then Dy is also a I'-representation
and we denote by Df; the integral distributions, i.e., the ones with values in Ay. See § 3
for more details.

Of course if k € U(K), the two I'-representations above are connected by a
I'-equivariant specialization map Dy — Dy. We say that the classes in HI(I" \ Dk(l))
are overconvergent modular symbols and the ones in H! (F, DU(l)) are p-adic families of
overconvergent modular symbols.

We would like to point out that we have introduced a small modification to the
usual way in which p-adic families of modular symbols are defined; namely we have
used a wide open disk instead of an affinoid as the parameter space for the weights
of our family. As a result the (integral) family of modular symbols H! (F, D‘l’,(l))
is a Ay-module. Without wishing to be pedantic, we would like to stress that this
small modification is essential for the following interpretation: the integral distribution
module D, has a natural filtration {Fili(D‘l’])}i>0 which is I'-invariant and whose graded
quotients are artinian Og-modules (see § 3 for more details). This allows one to identify
naturally the p-adic family of modular symbols over U with the continuous cohomology

group

Hon (I (DY /FEDYD) ., © K),
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which then can be identified by GAGA with the étale cohomology group on Yo of the
associated ind-continuous étale sheaf.

Due to this identification, H! (F,DU(l)) has a natural Gg-action and at the same
time the completely continuous action of U, allows finite slope decompositions (at the
expense of maybe shrinking U).

Following up a remark of the referee of this article, if V is an affinoid subdomain
of W then using results in the literature (for example the fact that all the reduced
eigencurves for GLg,g known to mankind are isomorphic) one can see that there is a
natural Gg-action on H! (F, DV) but, unless V = {k}, we do not know how to show that
this Galois representation is the one associated with an étale cohomology group on Yo
and we suspect that this is not always the case.

Moreover, the above mentioned isomorphism of all eigenvarieties is not known in the
higher dimensional case while our method seems to work at least for all PEL Shimura
varieties.

We now continue and introduce the other main actors in this drama, namely
the overconvergent and p-adic families of modular forms. For each w € Q such that
0<w<p/(p+ 1) we denote by X(w) the strict neighborhood of the component
containing the cusp oo of the ordinary locus of width p" in the rigid analytic curve
(X/k)?" (see §2 for more details). For every k € W(K), in [4] we have shown that there
exist a w as above and an invertible, modular sheaf a)jv’k on X(w) such that if k € Z then
k= wf|x). We call the elements of HY (X(w), a)i,k) overconvergent modular forms of
weight k (and radius of overconvergence w). In [4] it is shown that after taking the limit
for w — 0 we obtain precisely the Hecke module of overconvergent modular forms of
weight k introduced by Robert Coleman [6]. Similarly, if U C W is a wide open disk and
ky its universal weight, there is a w and a modular sheaf of By-Banach modules a)fv’kU
such that the elements of HO (X w), a)j‘;kU ) are p-adic families of overconvergent modular
forms over U.

Here is the main result of this article.

Fix U C W*, a wide open disk defined over K of so called accessible weights, namely of
weights k such that |k(f)?~1 — 1] <p=1/®=D Let we Q, 0 <w < p/(p + 1), be such that
a)j'v’kU +2 is defined over X(w). We define a geometric (BU®(CP)—linear homomorphism

Wy : HY(T, Dy) @k Cy(1) —> HO (X(w), w0 +2) @k C,,

which is equivariant for the action of the Galois group Gx = Gal(K/K) and the action
of the Hecke operators Ty, for £ not dividing pN and U, for ¢ dividing pN, and most
importantly it is compatible with specializations. In other words, Wy interpolates
Faltings’ isomorphisms § composed with the projection on the H-component, for
classical weights k € U. It follows that ¥y is unique with this property; for a more precise
statement see Remark 2 of §6.1.

Let now & > 0 be an integer. We suppose that U is such that both H! (F, DU) and
HO (X w), a);ﬁ;kU ) have slope < h decompositions and that there is an integer kg > h — 1
such that kg € U(K).
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If N is a By[Up]-module which has a slope < h-decomposition we denote by N® the
slope < h submodule of N. All this being said, ¥y induces a morphism on slope < h
parts:

(OP

w1 1T, Dy) P @k Cy(1) — HO(X(w), 01 +2) P&k C,.

We prove the following:

Theorem 1.3. There is a finite subset of weights Z C U(C,) such that:

(a) For each k € UKK) — Z there exists a finite dimensional K-vector space S,(f_% on
which the Hecke operators Ty for (£,Np) =1 and U, for £ dividing pN act, on which
Uy acts with slope < h and such that we have natural, Gk and Hecke equivariant
isomorphisms

HY (1, D) ® @k C,p(1) = (HO (Xw), 01+2) ™ @ (C,,) ® (S,ﬁ’ig ®k Cplk + 1)).

Here the projection of H! (F, Dk)(h) ®k Cp(1) onto HO (X(W), wjv’k+2)(h) ®k C, s
determined by the geometric morphism lI/l(]h) above.

Moreover, the characteristic polynomial of Ty for £ not dividing Np and that of U, for
£ dividing Np acting on 51@2 are equal to the characteristic polynomials of Ty and Uy,
respectively, acting on the space of overconvergent cusp forms of weight k 4+ 2 and slope
less than or equal to h, HY (X(w), a);fv’k ® .Q}((W)/K)(i)

(b) We have a family version of (a) above: for every wide open disk V C U defined
over K such that V(C,) N Z = ¢, there is a finite free By-module Sg') on which the Hecke
operators Ty (for € not dividing pN) and Uy (for € dividing pN) act, on which U, acts
with slope less than or equal to h, and for which we have a natural isomorphism Gg and
Hecke equivariant

H! (I, D{?)&kCp(1) = (HO (X(w), a)j‘jkV+2)(h)®KCp) o (SvébKCp(x\‘}“iV : x)),

where X‘l}ni": Gk —> Ay, is the universal cyclotomic character of V. As in (a), the first
projection is determined by the geometric map lI/[(]h).
(c) If Vis as in (b) above, let k € V(K) and let us denote by ty a uniformizer of By at

k. Then we have natural isomorphisms as Hecke modules
h h) ~ o(h
SV /usy) = s,
where SIE?Q is the Hecke module appearing in (a).

Let us remark that the set of ‘bad weights’ denoted as Z in Theorem 1.3 contains at
least the arithmetic weights (k, x) in U such that 0 <k <h — 1.

The theorem above has as an immediate consequence the following geometric
interpretation of the global Galois representations attached to generic overconvergent
cuspidal eigenforms of finite slope. Let U, h, Z be as in Theorem 1.3 and k € U(K) — Z.
Let f be an overconvergent cuspidal eigenform of weight k and slope < &; in other words
f is an eigenform for all the Hecke operators T, for ¢ not dividing Np and for U, for
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£ dividing Np. We denote by Ky the finite extension of K generated by all the Hecke
eigenvalues of f.

Theorem 1.4. The Gg-representation H! (F, Dk(l))f(.h) is a two-dimensional Ky-vector
space and it is isomorphic to the p-adic Gg-representation attached to f by the theory of
pseudo-representations.

Remark 1.5. As we remarked above, the result of Theorem 1.4 could be also deduced
by the fact that the reduced eigencurve defined using modular symbols and the
one defined by the completed cohomology of a certain tower of modular curves are
isomorphic. The interest in giving a new proof consists in the fact that in higher
dimensions our proof seems to work, while the eigenvariety defined using the completed
cohomology of towers of Shimura varieties is not yet known to have the expected
dimension.

The main difficulty in proving these theorems is the definition of the geometric map
llfl(]h) having all the required properties. We see it as a map comparing a p-adic étale
cohomology group, H! (F, DU(l)), with a differential object, namely H? (X(w), a)jv’kUJrz).
We obtain it as a HodgeTate comparison map except that on the one hand the
étale cohomology group is global (on X), while the differential object only lives on
the affinoid X(w). Moreover, to make things worse the étale sheaf associated with the
I-representation Dy is not a Hodge-Tate sheaf, i.e., it does not define (locally on X)
Hodge-Tate representations in the sense of [12]. Its cohomology is not a Hodge-Tate
Gg-representation!

Let us explain the main new ideas in this article. We denote by X(N, p) and X(w) the
log Faltings’ sites associated with certain log formal models of X and X(w) respectively.
There is a continuous functor v: X(N, p) —> X(w) which allows us to move sheaves from
one site to another.

Let Dy denote the ind-continuous étale sheaf associated with Dy; it can be seen
as a sheaf on X(N,p). Then v*(Dy) is a sheaf on X(w). At this point something
remarkable happens, namely using the Hodge—Tate sequence one can construct a natural
636(w)[1 /pl-linear morphism of shaves on X(w):

8Y (W) : v (D) ROz ) — 0]V T2@0 %

This fact allows us to define the map El/l(]h) as the composition

H' (I, Dy) &k Cp(1) — HY (XWV., p), Du®Oxvp (1)) — H (X(w), v*(Dy)&@Ox0) (1))
— HY (X W), 0] &0x40) (1)) — HO (X(w), 00 2)&C,.
The theory developed in [4] plays a crucial role in the definition of the maps &, (w). It
was in fact the search for such maps which led us to discover the modular sheaves w;*.
Our finding was that the theory of the canonical subgroup can be used in order to
provide a new integral structure on the sheaf of invariant differentials of the universal

generalized elliptic curve making the Hodge-Tate sequence exact integrally (namely
without inverting p!). With this accomplished, a definition @ (e Katz provides the sought
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for sheaves a)fv’k for any k and the maps 8, (w). We believe that this application to the
problem of making the Hodge—Tate sequence integrally exact constitutes the essence of
the theory of the canonical subgroup. This intimate relation with the existence of the
canonical subgroup explains the fact that 8, (w) can be defined only over X(w) and not
over the whole X (N, p).

We believe that the ideas and techniques presented here could be applied
without much change in other settings to establish overconvergent Eichler—Shimura
isomorphisms (for example for Shimura curves, for Hilbert modular varieties etc.). We
realized that a very convenient concept to use in order to define Hecke operators on
Faltings’ cohomology groups is that of the localized (or induced) topos. We made a
careful study of various localized logarithmic Faltings’ sites and showed that trace maps
can be defined (see §2.4). This allows us to work in situations where we do not have
explicit descriptions of good integral models of the curves involved (for example X1 (Np")
for r > 1) and would allow extensions of these results to higher dimensional Shimura
varieties.

Let us finally remark that it would be possible to give geometric interpretations both
of the Hecke modules Sgi) and of the maps H! (F, DV)(h)®Cp(1) — S%}’@(C,,(X;niv - x)
appearing in Theorem 1.3 and we propose to provide these in a future article.

Notation. In what follows we will denote by calligraphic letters X', Y, Z, ... log formal
schemes over Ok and by X, ), Z respectively the formal schemes underlying X, V, Z.
We will denote by X, Y, Z, ... respectively the log rigid analytic generic fibers of X', ),
Z,...and by X, Y, Z, ... respectively the underlying rigid spaces.

2. Faltings’ topoi
2.1. The geometric setup

Let p > 2 be a prime integer, K a complete discrete valuation field of characteristic 0 and
perfect residue field F of characteristic p, and N > 3 a positive integer not divisible by
p. We fix once and for all an algebraic closure K of K and an embedding Q — K, where
Q is the algebraic closure of Q in C. We denote by C, the completion of K and by Gk
the Galois group of K over K. We denote by v the valuation on C,, normalized such that
v(p) =1.

Now we would like to recall the basic geometric setup from [4]. Let w € Q be such that
0<w<p/(p+1) and let us suppose that there is an element (which will be denoted as
p') in K whose valuation is v := w/(p — 1). We fix an integer r > 1 and we suppose that
w<2/(p"—1)if p> 3 and w < 1/3" if p = 3. The assumptions of p being odd and on the
bounds for w will be fundamental in the sequel (see § 4.1 for example) and are related to
the existence of the canonical subgroup.

We consider the following tower of rigid analytic modular curves over K (in this
section there are no log structures):

X1(Np") — X(N, p") — X1(N),
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where X1(Np") and Xi1(N), respectively, classify generalized elliptic curves with
I't(Np")-level and I1(N)-level structure, while X(N,p") classifies generalized elliptic
curves with I'1(N) N Iy(p")-level structure. The morphism X(N, p") — X1(N) is the
one which forgets the I'y(p")-level structure.

We denote by Ha a lift of the Hasse invariant (for example Ha = E,_1, the normalized
Eisenstein series of level 1 and weight p — 1, if p > 3) which we view as a modular form
on X1(N). We define the rigid analytic space

X(w):={xeXi(N) | Ha()| = p~"} C X1(N),

and remark that the morphism X(V, p") — X1(N) has a canonical section over X(w)
whose image we also denote by X(w). We define X(p")(w) := X1 (Np") xx; v pr)X (W) and
view X(w) (respectively X(p")(w)) as a connected affinoid subdomain of X1(N) and via
the above mentioned section of X(N, p”) (respectively of X1 (Np")).

We denote by X1(N), X(NV,p") and X1(Np") the p-adic formal schemes over Ok
obtained by completing the proper schemes over Ok classifying generalized elliptic
curves with I (N)-level, I''(N) N Ty(p")-level, and I'1 (Np")-level structures, respectively,
along their respective special fibers. Let X' (w) denote the open formal sub-scheme of the
formal blow-up of A7 (N) defined by the ideal sheaf of Oy, () generated by the sections
p” and Ha(€/X1(N), w) which is the complement of the section at oo of the exceptional
divisor of the blowing-up. Here £ — X1 (N) is the universal generalized elliptic curve
and w is a global invariant 1-differential form of £ over A7 (XN). Finally we let X (p”")(w)
denote the normalization of X' (w) in X1(Np)(w) (see § 3 of [4] for more details).

Let us remark that we have constructed a natural commutative diagram of formal
schemes, rigid analytic spaces and morphisms which is our basic geometric setup:

XpHhw —  XWw) = Xw)
ut ut ut

XpHw) —  Xw) = Xw
N N n

Xi\Np")  — XN, pH — Xi(V)

In the above diagram u denotes the various specialization (or reduction) morphisms.
Finally, we have the following basic commutative diagram of formal schemes and rigid
spaces:
Xw) — XWN.p)
() ut ut
X(w) C  XWV,p)

2.2. Log structures
In this section we will describe log structures on the formal schemes and rigid spaces
appearing in the commutative diagram (x) in §2.1.

Let us now fix N, r and w as above and denote by X (w), X(N, p) the formal schemes
denoted as X(w), X(N,p) in §2.1. We denote by m a fixed uniformizer of K. By its
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definition, if U = Spf(Ry) — X (w) is an open affine then U is either smooth over Ok, or,
if U contains a supersingular point, there is an a € N, which depends only on K and w,
and a formally étale morphism ¢/ —> Spf(R’) for which R’ := O {X, Y}/ (XY — 7%).

Let us consider on § := Spf(Ok) the log structure M given by the closed point and let
us denote by S := (S, M) the associated log formal scheme. Let us recall that it has a
local chart given by N — Ok sending 1 — x.

There exists a fine and saturated log structure Ny on X (w), with a morphism of log
formal schemes f: X(w) := (X(w), N) — § = (S, M) which can be described locally as
follows. Let U = Spf(R) be an open affine of X’ as above; then:

(i) If U is smooth over S let us denote by X4 the divisor of cusps of . Then N|y is
the log structure associated with the divisor Xy,. It has a local chart of the form N —> R
sending 1 to a uniformizer at all the cusps.

(ii) If U is not smooth over S we will suppose that it does not contain cusps; let R’ be
as above and let us denote by Wg: R' —> Ry the étale morphism of Og-algebras defined
above.

Let us consider the following commutative diagram of monoids and morphisms of
monoids (see [2], §2.1):

N2 &R
AT T
Va

N — OK

where Ygr(m, n) = X"Y", ¥,(n) = v and A(n) = (n, n) for all n, m € N.
Then the above diagram induces a natural isomorphism of Og-algebras

R = OK{Nz} QO (N} Ok.

Let P denote the amalgamated sum (or co-fibered product), P := N2 @y N, associated
with the diagram of monoids

N
T
N2 AN

where the vertical morphism sends n — an. By functoriality we obtain a canonical

"7
morphism of monoids P —> R’ —> Ry; which defines a local chart of X, i.e., Ny|y is the
log structure associated with the prelog structure P — Ry;. Let us consider the natural
diagram of monoids which defines P as the amalgamated sum N2 @y N:

h

P <«— N
0 0
N2 AN

The morphism h: N — P defined by the above diagram is a local chart of the
morphism f: X — (S, M).
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Lemma 2.1. The morphism f: X(w) —> S is log smooth.

Proof. Given the local description of X'(w) = (X(w),Ny), S=(§,M) and f in terms
of charts, it is enough to consider the case (ii) above, i.e., we have a local chart

PR Ry and Wy is étale. By the description in [14] § 5 of log smooth morphisms,
it is enough to show that the morphism % is injective and that the order of torsion of
the group P8P /h(N&P) is invertible in Ry,. For this it would be useful to have an explicit
description of P as amalgamated sum of monoids (see also [2] § 2.1).

Let us define the sequence of monoids

1 1
—AM) +N2c ;NQ c Q?

as follows: %NQ is the (additive) submonoid of Q? of pairs of rational numbers (2, m)

with n, m € N and %A(N) + N2 is its submonoid of pairs of rational numbers of the form
(’El +oa, 7 +ﬁ), where n, «, B € N.

We have natural morphisms of monoids N2 — %A(N) + N2 sending (o, B) — (a, B)
n n

and /': N — %A(N) + N2 given by n — (E f) such that the diagram is commutative:

’a

1 /
ZA+N2 N
a
0 0
NG AN

It is then easy to see that P = N? @y N = %A(N) + N2 by verifying that the latter
monoid satisfies the universal properties of the co-fibered product. It follows that the
above chart on R’ is explicitly given by %A(N) + N2 — R’ where (g +oa, 7+ ﬂ) —
XYPr". Of course one has to first verify that the association is well defined, which it
is. One sees immediately that the monoid P is fine and saturated (as claimed at the
beginning of this section) and moreover that the morphism A#: N — P is, under the
above identification of P with %A(N) + N2, equal to A'; therefore it is injective and
moreover it follows that the quotient group P&P/h(Z) is torsion free. This proves the

lemma. O

Recall that in the previous section we defined a morphism of formal schemes
XPHW) — X(w). We define X (w) := X(p")(w), and we also let N, —> OX(”(w)
denote the inverse image log structure via the above morphism and denote by
X (w) = (i(’)(w),Nr) the associated log formal scheme. We also denote by X(w) :=
X(W)"8 = X(w), XP) (w) := X (p")(w)'8 = X(p")(w) the rigid analytic generic fibers of the
two formal schemes. We recall that X (w) — X(w) is a finite, étale, Galois morphism
with Galois group G, := (Z/p’Z)* and as X®(w) is the normalization of X(w) in
X7 (w), we have that G, acts without fixed points on X (w) and X (w)/G, = X(w). In
what follows we denote by X(w) and X (w) the log rigid analytic generic fibers of the log
formal schemes X (w) and X (w) respectively. Their log structures are the horizontal
ones defined by the divisors of cusps.
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Moreover, as the formal scheme X (N, p) is semistable, its special fiber is a divisor
with normal crossings. We define the log structure on X(N, p) to be the one associated
with the divisor consisting in the union of the special fiber and the divisor of cusps and
denote by X'(N, p) the corresponding log formal scheme. Moreover we define on X(N, p)
the log structure associated with the cusps of this modular curve and by X(N, p) the
corresponding log rigid space. Let us remark that the diagram (%) of § 2.1, written there
for formal schemes and rigid spaces, in fact holds for log formal schemes and log rigid
spaces and it is commutative.

Corollary 2.2. The formal scheme X (w) is flat over Spf(Ok); it is Cohen—Macaulay
and so in particular normal. If a =1 then X (w) is a reqular formal scheme.

Proof. See [2] §2.1.1 (3), where we show how to reduce to [15] Theorem 4.1. O

In particular, if U = Spf(Ryy) — X is an open affine of X, then the Ok-algebra Ry,
satisfies the assumptions (1), (2), (3) (FORM) and (4) of §2.1 of [2].

2.3. Faltings’ topoi

Our main reference for the constructions in this section is [2] § 1.2.

We will define Faltings’ sites and topoi associated with the pairs of a log formal
schemes and log rigid spaces: (X w), X (w)) and (X (N, p), X(N, p)), respectively, which
will be denoted as X(w) and X(N, p), respectively.

We start by writing (X , X) for any one of the two pairs above. We will define Faltings’
site associated with this pair, which we denote by X. Namely we first let XXt be the
Kummer étale site of X', which is the full sub-category of the category of log schemes
7, endowed with a Kummer log étale morphism 7 — X’ (see [2] §1.2 or [13] §2.1). We
recall that the fiber product in this category is the fiber product of log formal schemes
in the category of fine and saturated log formal schemes, so in particular the underlying
formal scheme of the fiber product is not necessarily the fiber product of the underlying
formal schemes (see [14]).

If U is an object in XXt then we denote by L{%et the finite Kummer étale site attached
to U over K as defined in [2] §1.2.2. An object in this site is a pair (W, L) where L is a
finite extension of K contained in K and W is an object of the finite Kummer étale site
of Uy, which we denote by U{ket. Given two objects (W', L) and (W, L) of L[%‘et7 we define
the morphisms in the category as

Homu%ket (W, L),(W,L)) := lim Homy (WxpL", Wx L")
where the limit is over the finite extensions L” of K contained in K which contain both L

and L.
Now, to define X we denote by E X the category such that:

(i) the objects are pairs (U, W) such that U € Xket and W e Z/l%et;
(ii) a morphism U, W) — U, W) in Ex (v is a pair (a, B), where a: U —Uis a
morphism in U¥°t and f: W' —> Wxy Uy is a morphism in (U’)%ket.
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The pair (X, X) is a final object in E X and moreover in this category finite projective
limits are representable and, in particular, fiber products exist (see [2] §1.2.3 and [1]
Proposition 2.6 for an explicit description of the fiber product).

A family of morphisms {(U;, W;) —> (U, W)}es is a covering family if either

() {U; — U}ier is a covering family in Xket and w; = Wxy Ui, K for every i e I
or

(B) the morphism U; — U is an isomorphism for all i € I and {W; —> W};¢; defines a
covering in L{%et.

We endow Ex.. with the topology generated by the covering families defined above and
denote by X the associated site.
Finally, the basic commutative diagram of log formal schemes and log rigid spaces

Xw) — X(©N,p)

() ut uf
Xw) Cc  XW,p)

defines a natural functor v: X(V, p) — X(w) defined, say on objects, by v(U, W) :=
(Z/I X xWN,p)X (W), Wx X(N)p)X(w)). This functor sends covering families to covering
families and final objects to final objects; therefore it is a continuous functor of sites.

Remark 2.3. Due to the mild singularities of the special fiber of the formal scheme
X(w), the site X(w) and the sheaves on it were studied carefully and they were well
understood in [2]. In the present paper however we would need to study Faltings’ site
associated to X' (w), for various integers r. Unfortunately we do not understand the
geometry of X (w) well enough to be able to work with this site directly, so instead
we will use a trick. Let us observe that (X(w), X"’ (w)) is an object of Ex g for
all > 1 (while (X (w), X®) (w)) is not), so we define the induced (or localized) site

(r) . . . . .
XV (w) = X(w) / ( Xw) X0 (W)) and the sheaves on it and this will be our substitute for

Faltings’ site attached to X")(w). Everything will be defined and explained in the next
two sections.

2.4. Generalities on induced topoi

In this section we will recall some fundamental constructions and results from [19],
Exposé IV, §5 (‘Topos induit’), in the restricted generality that we need.

Let E denote a topos, namely the category of sheaves of sets on a site S, whose
underlying category will be henceforth denoted as C and let X be an object of C. We
denote by C,x the category of pairs (¥, u) where Y is an object of C and u: ¥ — X is
a morphism in C. A morphism (¥, u) — (Y, ') in C/x is a morphism y: ¥ — Y’ in C
such that ' oy = u.

Let ax: C/x —> C be the functor forgetting the morphism to X, i.e., for example,
on objects it is defined by ax(Y, u) =Y. We endow the category C,x with the topology
induced from C via axy and denote the site thus obtained as S,x. We denote by E/x
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the topos of sheaves on S/x and call S/x and E/x respectively the site and the topos
induced by X. We have natural functors ay: E)x — E, ax «: E —> E/x such that oy is
left adjoint to oy «.

Suppose that C has a final object f and that it has fiber products. Then we have
another functor jy: C —> C/x defined by jx(Z) := (Xfo, prl), i.e., jx is the base change
to the X-functor. Then jx defines a continuous functor of sites jx: § — S/x sending
final object to final object and so it defines a morphism of topoi jy: E — E/x and
Jx,x: E/x — E. In particular, j} is left adjoint to jx ». Moreover by the above citation we
have

JX(F) Y, u)= f(Y) =Flax(Y,u) =ax«(F)(Y,u) forevery FekE, (Y,u) e Cx.

Therefore we have a canonical isomorphism of functors jy = ay. which implies
that jy has a canonical left adjoint, namely ay. This left adjoint of j% is denoted
as jx, and we have an explicit description of it. Namely, for every F € E/x we
have that jx(F) = ax(F) is the sheaf associated with the presheaf on C given by
7Z —> h_rr)l}"(Y, u), where the limit is over the category of triples (Y, u,v) where (Y, u)
is an object of C/x and v: Z — Y is a morphism in C. As the limit is isomorphic to
Ueerome(z,x)F (Z, g) we conclude that jx (F) is the sheaf associated with the presheaf

Z— ngHUmC(Z,X)]:(Za g).

2.5. The site X,x,z)

Our main application of the theory in § 2.4 is the following. Let us recall that we denoted
in §2.3 by (X, X) any one of the two pairs (X(w),X(w)) and (X(N, D), X(N,p)) and let
Z —> X be a finite Kummer étale morphism of log rigid spaces, i.e., a morphism in the
category Xfﬂ{et. Therefore the pair (X, Z) is an object of E K We denote by (E XE)
the induced category and by 3 := X,.x,z) the associated induced site.

As pointed out in §2.4 we have a functor o := oy z: 3 — X and the associated

/(X.2)

adjoint functors a*, a. As in the category Ex. fiber products exist and the category
has a final element (X,X), we also have a base change functor j:=jx z: X — 3
defined by j(U4, W) := (L{ L ZxXxW, prl). This functor commutes with fiber products, final
elements and maps covering families to covering families so it induces a morphism of
topoi j*: Sh(X) — Sh(3) and j,: Sh(3) —> Sh(X) such that j* is left adjoint to j,. We
further have a left adjoint j: Sh(3) —> Sh(X) to j*. More precisely, for every sheaf of
abelian groups F on 3, the sheaf j(F) on X is the sheaf associated with the presheaf

u,w) — @gEH()mX(W)f}Ct(W,Z)‘F(ua W, ).
K
We have the following fundamental facts:

Proposition 2.4. For all Z as above there is a mnatural isomorphism of functors
J(X,2),! = J(X.,2),%-

Proof. We divide the proof into two steps. First we construct a natural transformation
of functors jx z)1 = jx.z),«- Then we prove that it is an isomorphism.
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Claim 1. Let (U, W) be an object of X and let g: W — Z be a morphism in X%‘et. Then

we have a canonical isomorphism: ZxyW = W LIZZZ, for some object Zg in X%ket, such that
this isomorphism composed with the morphism induced by g is the natural inclusion
W— Wl Zé.

Let us first point out that Claim 1 implies the existence of a canonical isomorphism
(%) ZxxW = (L. w—zW) U Zy,, for some object Zy of X%ket.
Thus for every sheaf F € Sh(3) we have a canonical morphism
IPYUW) =@g: wozF U, W, 8) — FU, WXXZ, pry) = jx (F)U, W).
Now let us prove Claim 1. We first prove the following:

Lemma 2.5. Suppose f: U —>V is a finite Kummer log étale map of log affinoid spaces
given by a chart of the form

P — B
1 T
0O — A

with P, Q fine saturated monoids. We also suppose that A, B are normal K-algebras, A
is an integral domain and the images of the elements of P in B are not zero divisors.
Then if g: V— U is a morphism of log affinoids over f, there are an object W and
an isomorphism U=V U W in the category viket guch that the following diagram is

commutative:
U = vuw
g1 )
vV = \%

where 1: V. <— VU W is the natural map.

Proof. Let s € A be the product of the images in A of a set of generators of Q and let
us remark that the image of s in B is not a zero divisor. Then f;: A[1/s] — B[1/s] is
a finite and étale morphism of K-algebras such that we have a morphism of K-algebras
gs: B[1/s] —> A[1/s] which is a section of f;. Then there is an A[1/s]-algebra C’, finite
and étale, and an isomorphism of K-algebras B[1/s] = A[1/s] x C’ such that the following
diagram is commutative:

B[l/s] = A[l/s]xC
fsd pri
All/s] = A[1/s]

This is a well known fact but let us briefly recall the idea. As B[1/s] is a finite
A[1/s]-algebra, it is a finite projective and separable A[1/s]-algebra. Then there is a
unique element e € B[1/s] such that gs(x) = Trp1/5/a11/51(ex), for every x € B[1/s]. Now
it is not difficult to prove that e is an idempotent which gives a decomposition first
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as A[1/s]-modules B[1/s] = A[1/s] x Ker(gy;). Now one proves that C' := Ker(gy) has a
natural structure of K-algebra and the isomorphism is as K-algebras.

Let as above e and 1 — e be the idempotents which give the decomposition
B[1/s] = A[1/s] x C'. Then e satisfies e?—e= 0, i.e., e is an element of B[1/s] integral over
A and therefore e € B. Therefore e, 1 — e give an isomorphism as K-algebras B= B’ x C,
where A C B’ C A[1/s]. But B’ is finite over A; therefore B = A as A was supposed
normal. Moreover C is a finite A-algebra, which is an affinoid algebra as it is a quotient
of B.

Now we endow C with the prelog structure: P — B Pry C, and notice that the log
rigid space W := (Spm(C), P“) satisfies U =V x W and makes the diagram of the lemma
commutative.

Moreover, U — V is a finite Kummer log étale map; therefore W — V is also
Kummer log étale, as this can be read on stalks of geometric points. (|

Now let, as in Claim 1, W — X,Z — X be morphisms in X%ket, i.e., there is a finite
extension L of K such that W and Z are both defined over L and we have finite Kummer
log étale morphisms W — X; and Z — X;. In fact it is enough to assume that Z and
W are both affinoids (if X = X(w) this is always the case: as X(w) is an affinoid and
both maps W — X(w) and Z — X(w) are finite it follows that W and Z are affinoids).
Moreover, as the morphism X — Spm(K) (with trivial log structure on Spm(K)) is log
smooth, it follows that Z — Spm(K) and W — Spm(K) are both log smooth and so X,
Z and W are all normal affinoids.

If g: W — Z is a morphism over X, we have a natural morphism g': W — ZxyW
which is a section of the projection ZxxW — W. We apply Lemma 2.5 and we get
Claim 1.

To conclude the proof of Proposition 2.4 we make the following claim:

Claim 2. For every (U, W) object of X, there is W — W, a surjective morphism in X%ket
with the property ZxxW’ = L. w—,zW’, i.e., in the formula (x) we have Zj,, = ¢.
Clearly, Claim 2 implies that for a sheaf F on X the natural morphism j(F) — j«(F) is
an isomorphism. So we are left with the task of proving Claim 2.

Here and elsewhere if W is a log rigid space or a log formal scheme, we denote by
WY the sub-space (or sub-formal scheme) on which the log structure is trivial. Given
our finite, Kummer étale morphism Z — X let degy x: 7™V 5 7 denote the degree
of Z"V over X"V, By restricting to a connected component of Z we may suppose that
degy/y is constant equal to n. We prove Claim 2 by induction on n = degy x.

If n =0 there is nothing to prove so let us suppose n > 0. As the morphism Z — X
is a morphism of normal affinoids, if we regard ZxxZ as a log rigid space over Z
via the second projection then the diagonal A:Z — ZxxZ provides a section as in
Lemma 2.5. Therefore there is an object Z’ in X%ket such that ZxxZ = Z 11 Z'. Tt follows
that degz,; =n — 1 and applying the induction hypothesis we find an object W — Z in
ztket guch that Z/x ;W = ", W;, where W; = W for all 1 <i < m. Then the composition
W —> Z' —> X makes W an object in X%ket and we have that ZxxW is isomorphic to a
disjoint union of objects isomorphic to W. (I
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Proposition 2.4 has the following immediate consequence.

Corollary 2.6. Suppose Z — X is a morphism in X%ket. Then we have:

(a) The functor jy is an exact functor.
(b) Rij. =0 forall i > 1.
Proof. For (a) we remark that j, = j; by Proposition 2.4 and j; = «*. It follows that j,

and so also ji, is right exact. As j, is left exact, it is exact. This immediately implies
(b). O

As j* admits a left adjoint ji, by adjunction we get a morphism
Sz:jx (5 (F) =j (*(F)) — F. (1)

functorial on the category of sheaves of abelian groups on the site E Xp- We call it the
trace map relative to Z. More explicitly, given a sheaf of abelian groups F on Ex, it is
the map of sheaves associated with the map of presheaves:

P U, W) = @geHamXﬁ(ct(W,Z)j*(j:)(ua W, g)
K
= OgcHom s W.2)F U, W) — F U, W),
K

given by the sum.

2.6. Sheaves on X
We continue, as in the previous section, to denote by X either one of the sites X(w) and

X(N, p) and we will describe certain sheaves on this site.
We denote by Ox the presheaf of Og-algebras on X defined by

Ox U, W) := the normalization of HY U, Oy) in HY W, Ow).

We also define by O}" the sub-presheaf of W(k)-algebras of Ox whose sections over
(U, W) consist of the elements x € Ox (U, W) such that there exist a finite unramified
extension M of K contained in K, a Kummer log étale morphism V — Ux @, Oy and a
morphism W —> Vg over Uy such that x, viewed as an element of HO(W, Ow), lies in the
image of HO(V, Oy).

We also have the fundamental functor vy: Xkt —s X, defined by vy (U) := U, Ux),
which induces a morphism of sites. We then have:

Proposition 2.7 ([2], Proposition 1.10). The presheaves Ox and O¥" are sheaves and
O™ is isomorphic to the sheaf v (O yiet).

We denote by (535 and (55‘5“ the continuous sheaves on X given by the projective
systems of sheaves {Ox/p"Ox},>0 and {OF"/p" O} =0 respectively.

In the notation of §2.5 choose r > 1 and w e Q with w adapted to r, and
Z =X (w) — X(w) if X denotes X(w) or Z := X" — X(N, p) if X denotes X(N, p),
and let us denote by X := X/x,z) the site induced by (X, Z) and by jy, jr«(Zj1) the
associated morphism of topoi. We have the functor

v ket o x®
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defined by v, := jr.ovx. More explicitly, v, () :=jU, Ux) = (Z/I, ZxxUg, prl). This functor
sends covering families to covering families, commutes with fiber products and sends
final objects to final objects. In particular it defines a morphism of topoi. Corollary 2.6
implies that the Leray spectral sequence for v, . = vx « o j,» degenerates and we have
Rin,* = RiV%,* O Jr k-

We define Oy :=j¥(Ox) and (/I)\x(r) =k ((535). Let us recall the morphism 6,: X —
X which is finite and defines X as the normalization of X in X® and let
G, = (Z/p"Z)* denote the Galois group of X)/X. Then G, acts naturally on X over X
and X = X"/G,.

Lemma 2.8. We have a natural isomorphism of sheaves on X%et:
(V2 (Ox)) ¥ = Oy and similarly (v «(Oxi)) " = Ox
Proof. Let i/ —> X be a morphism in XXt Then we have
V(00 U) = Ox U, X xxUi) =HUX T x xU, O ) = 6,.4(O 30 ).

From this the claim follows. O

2.7. The localization functors

As in the previous section, X denotes either one of the sites X(w) and X(N, p). We recall
here the localization of a sheaf or a continuous sheaf on X to a ‘small affine of XX’ (for
more details see [2] §1.2.6). Let U = (Spf(Ru), Nu) be a connected small affine object of
Xket and we denote by U := Uk the log rigid analytic generic fiber of . Let us recall
that under the above hypothesis, U is a log formal scheme whose log structure is given
by the sheaf of monoids denoted as Ny.

We write Ry ® K = [[/_; Ry; with Spf(Ry;) connected, we let Ny ; denote the
monoids which give the respective log structures and we let U; denote the respective
log rigid analytic generic fibers. Then each Ry ; is an integral domain, so we let
Cyy,; denote an algebraic closure of the fraction field of Ry ; for all 1 <i<n and let
(Czlf;% = Spec((Cu,,-), Nu,i) denote the log geometric point of U; := (Spf(Ru,i),NM,i)) over
Cyy.; (see [13] Definition 4.1 or [2] §1.2.5 for the definition of a log geometric point). We

denote by Gy, = niog(Ui, (Czl/?g;) the Kummer étale fundamental group of U;. We have

then that the category Uiﬂ‘et is equivalent to the category of finite sets with continuous
Gu j-action. We write (R, Nyg;) for the direct limit over all finite normal extensions
Ry € S C Cy;, and all log structures Ng on Spm(Sk) such that there are Kummer
étale morphisms Cy; — (Spm(SK),NS) —> U; compatible with the one between the
underlying formal schemes. Finally we define Ry := [[}_ Ry, Ny =11 Nyi and
Gue =121 Gu.i-

We denote by Rep(Gu,.) and Rep(gU?)N, respectively, the category of discrete abelian
groups with continuous action under Gy, and the category of projective systems of

these. It follows from [13] §4.5 that we have an equivalence of categories

Sh(Ug™") = Rep(Jus)
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sending F — li_r)n]-'(Spm(SK), Ns). Therefore composing with the restriction Sh(X) —

Sh(U%ket) defined by F — (W - FU, W)), we obtain a functor, called the localization
functor:

Sh(X) — Rep(gyf) denoted as F — F(Ry, Ny).

We consider the following variant. Let Z — X, with X = X(w) or X = X(N, p), be a
finite Kummer étale morphism in X%‘et. Consider the associated site 3 := X,x,z) as in
§2.5 and let jx z): X — 3 be the induced morphism of sites. Consider a sheaf 7 € Sh(3)
and fix a connected small affine object U = (Spf(Ru),Nu) of xXket as before. Denote
by Yy the set of homomorphisms of Ryy ® K-algebras I'(ZxxU, Ozxyu) — Ryl1/p]. For
any g € Yy we write F(Ry, Ny, g) := lim F (U, W), where the limit is taken over all
finite and Kummer étale maps Spm(Sx) = W — ZxxU with Sx C Ry[1/p] a F(ZXXU,
C’)ZXXU)—subalgebra (using g). Let Gugzg be the subgroup of Gy, fixing
F(ZXXU, C’)ZXXU). Then Sh((ZxXU)ﬂ‘et) = Rep(gz,{?,z,g) and we obtain as before a
localization functor:

Sh(3) — Rep(guf,zyg), F — F(Ru.Nu. g).

If {U;}; is a covering of XXt and for every i we choose g; € Yy;, it follows from the
definition of coverings in the site 3 that the map Sh(3) — [[; Rep (gyii,z,g,.) is faithful.
It also follows from Proposition 2.4 that

Jx.2).(F) (R, Nu) = @gery, F (R Nut, 8).- (2)

3. Analytic modular symbols

3.1. Analytic functions and distributions

In this section we recall a number of definitions and results from [5] and [11] and also
define some new objects. Let Tp := Z;,‘ x Zp, which we regard as a compact open subset
of the space of row vectors (Zp)z. We have the following structures on 7Tjy:

(a) anatural left action of Zy by scalar multiplication;

(b) a natural right action of the semigroup

b
E(Zy) = { (Z’ d) € M2(Z,) N GL2(Q))

(a, c) EZ;; pop}

and its subgroup
Iw(Zy) := & (Zp) N GL2(Z)y)
given by matrix multiplication on the right.

The two actions obviously commute.

Let us denote by W* the rigid subspace of W of accessible weights, i.e., weights k such
that |k()?~1 — 1| < p~V/@=D_ Let U c W* be a wide open disk which is an admissible
open of W*. Write Ay for the Og-algebra of rigid functions on U and denote by

Ay = {f rigid functions on U such that |f(x)| < 1 for every point x € U},
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the Og-algebra of bounded rigid functions on U. Then, as remarked in §4, Ay is
a complete, regular, local, noetherian Og-algebra; in fact Ay is (non-canonically)
isomorphic to the Ok-algebra Ok[[T]. The completeness refers to the my-adic topology
(called the weak topology of Ay), for my the maximal ideal of Ay. As remarked in §4,
Ay is also complete for the p-adic topology.

Let now B denote one of the complete, regular, local, noetherian rings: Og or Ay,
for U C W* a wide open disk as above. Let also k € W*(Bk) be as follows: if B = Ok,
ke W*(K) and if B= Ay, we set k=ky : Z;f —> A}, defined by *U(x) = ¢ for all
x e U(K).

Definition 3.1. We set
A} :={f:To —> B| (i) Ya € Z), t € Ty, we have f(at) = k(a)f ()
and

(ii) the function z — f(1, z) extends to a rigid analytic function on the closed unit disk
B[O, 11}.

Let us make (ii) of the above definition more precise. Let ord,: B — {0} — Z be
defined by ord;(a) = sup{n € Z | « € 7"B}. Then we say that the function z — f(1, z)
in the definition above is rigid analytic on B[0, 1] if there exists a power series
F(X) = Y% ya,X" € BIX]| with ord,(a,) "= oo and such that f(1,z) = F(z) for all
7z € Zp. Let us define Ay := A} ®o, K, which is naturally a Bg-module. As Bk is a
K-Banach space (for its p-adic topology) let us point out that Ay is an orthonormalizable
Banach Bg-module, where an orthonormal basis is given by: {f;},>0 where f, € A are the
unique elements such that f,(1, z) = z" for all z € Z,. In other words f,(x,y) = k(x)(y/x)"
for all (x,y) € Tp.

For every y € E(Zp) and function f: To — B we define (yf)(v) :=f(vy). We have:

Lemma 3.2. If f € A] and y € E(Zy) then yf € A}.

Proof. Let y = (f Z). Then for every v € Tg and a € Z; we have (yf)(av) =f((av)y) =

k(a)f vy k(@) (vf) ().
Moreover,
b+dz = b+ dz\n
VN2 =f(a+ ez, b+do) =ka+caf (1, — CZ) = k(@)k(1 + cax) z_joan(a - CZ) .

Using the fact that k is analytic and a, "% 0 we deduce that the function z — yHA,2)
extends to an analytic function on the closed unit disk B[O, 1]. O

Definition 3.3. (a) Let k € W*(K) be a weight. We define D{ := Homcont,0x (Az, OK),
i.e., the Og-module of continuous, Og-linear homomorphisms from A7 to Ok. We also
define Dy := D ®o, K.

(b) It U CW* is a wide open disk defined over K, we define A7, := A} and we set
D{, := Homy,, (A‘Z,, AU), i.e., the Ay-module of continuous (for the my-adic topology)
Ay-linear homomorphisms from A, to Ay. We define Dy := Df; @, K.
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Remark 3.4. (i) The (left) action of the semigroup Z(Z,) on A7 induces a (right)
action on D’ by (u|y)(f) := u(yf) for all y € E(Zy), f € A7 and u € D°.
(if) We have a natural, fundamental homomorphism of B-modules:

YD’ — H B, defined by u — (/,L(fn))neN.
neN

As the family (f,,)n is an orthonormal basis of Ay over Bk, the above morphism is
a B-linear isomorphism. Moreover, under this isomorphism, the weak topology on D’
corresponds to the weak topology (i.e., the product of the mp-adic topologies on the
product).

(iii) A more common definition in the literature (see [5]) would be

¢ = Hom P} (A%, Ay) C D,

ie., IND‘Z, consists of the continuous and compact (or completely continuous) in the p-adic
topology, Ay-linear homomorphisms. Then Dy := D{;, ® o, K is an orthonormalizable
Ay x-module.

Our D7, has a property very similar to being orthonormalizable, which will be
sufficient for defining Fredholm characteristic series of compact Ay-linear operators
on it. More precisely we have the following.

Lemma 3.5. Let (ei)l.el be a sequence of elements in DY, such that their image (Ei)iel mn
DY /myDY; is a basis of this vector space over F:= Ay/my = Og/nOk. Then for every
n € N the natural map

V. Diel (AU/mU)e, — D{,;/m};DY,
s an isomorphism of Ay-modules.

Proof. Let us first recall that we have a natural isomorphism of Ay-modules
% = [lien Av- In particular it follows that for every n > 0,

mn 0 n+1 HmU/mrH-l ~ mU/mn+1 QF D(il/mUD(il ~ Gaiel(ﬂ’b/mr[lj+l)ei-
ieN

The second isomorphism follows from the fact that m’b/ﬂ'{fl is a finite dimensional
F-vector space.

Now we prove the lemma by induction on n. The case n =1 is clear; therefore let
us suppose that the property is true for n > 1 and we will prove that ¥, ;1 is an
isomorphism. We have the following commutative diagram with exact rows:

0 — myDy /mn+1 — 7/ my; D — o /my — 0
0 — @e(mly/mie — @ier(Av/mie —  @ier(Av/ml)er — 0

By the inductive hypothesis, ¥, is an isomorphism and by the comment before the
diagram, ¢ is an isomorphism as well. Therefore ¥, 1 is an isomorphism. O
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Corollary 3.6. Let us fix a family (ei)l.el as in Lemma 3.5. Then for every x € D, there
is a unique sequence a; € Ay, i € I such that:

i) a; — 0 in the filter of complements of finite sets in I, in the my-topology, i.e., for
U
every h € N the subset i € I with the property a; & mé‘/ 1s finite.

(i) x =D i  qiei.

Proof. The corollary follows immediately from Lemma 3.5. |

Remark 3.7. (1) A family of elements (e,-)ie] as in Corollary 3.6 plays the role of an
orthonormal basis of a Banach Ay-module. In particular it can be used to define the
Fredholm series of a compact Ay-linear operator on H! (F, DU).

(2) If k € U(K) is a weight, the image of a family of elements (e,»)
above in Df is a true ON basis of Dy over K.

iy Of Dy as in (1)

Keeping the notation above, let V C U be an affinoid disk with affinoid algebra By and
let B, denote the rigid functions on V bounded by 1. We have:

Lemma 3.8. Dyly := DU®AUBV is an ON-able By-module with orthonormal basis
(€;®1)ie; and in fact coincides with the By-module of completely continuous By-linear
maps from Ay to By.

Proof. Let us first make precise the completed tensor product in the statement of the
lemma. We have Dyly = (D‘l’]|v) ®oy K where we define

Dyly = lim (DG @, BY/p"BY ).

Let us remark that for every n € N there is N := N(n) € N such that the image of mﬁ’, in
By, /p"BY, is 0. Therefore we may write

DYty = Jim (DG /m" © a, BY/P'BY).
Therefore the first claim follows from Lemma 3.5 and the second is clear. O

Let now (B, m) be either of the pairs (O, mg) and (Ay, my), for U C W* a wide open
disk defined over K and let A°, D° be either Ay, DY, for some k € W*(K), in the first case
or A{;, D{; in the second.

Definition 3.9. (i) We define for every n € N the following B/m"-submodule
Fil, (A?/m"A°) of A’ /m"A° by setting

Fil, (A /m"A°) := &} (! /m") ;.

where {f;j};en is the orthornormal basis of A° described above.
(ii) We define the following filtration Fil®*(D?) of D°. For n € N we set

Fil'(D°) := {;u € D° | u(f;) € mly ? for all 0 <j < n}.

Proposition 3.10. (i) D°/Fil*(D°) is a finite B/m"-module and consequently an
artinian Og-module. Moreover the image of Fil"(D°) in D°/m"D°, which we identify
with the B/m"™-dual of A°/m"A°, is the orthogonal complement of Fil,(A°/m"A°).
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(i) For every y € E(Zp) and p € Fil"(D?) we have ply € Fil*(D?). In particular
D?/Fil"(D°) is an artinian O and & (Z,) module for every n > 0.

(iii) The natural B-linear morphism D° —> limeo«p, D° /Fil"(D?) is an isomorphism.

Proof. Let us recall the B-linear map v : D° —> [],cyB of Remark 3.4 defined by
¥ () = (u(f), - Let us remark that

n—1
v (Fi'®”) = [ e < [ B
j=0

m>=n

and therefore i induces a B-linear isomorphism D’/Fil"(D?) = ]’:01 B/ m;;_j . This
proves the first statement in (i) and also (iii) because it shows that D° is separated
and complete in the topology given by Fil*(D?). For the second statement of (i) let us
remark that Anngp» (mi/m”) =m""/m" for all 0 <i < n.

In order to prove (ii) we could proceed as in the proof of Lemma 3.2, or better let us
recall that we have a natural decomposition &(Z,) = N°°PTTN where N is the subgroup
of GL2(Zp) of upper triangular matrices, N°PP is the subgroup of lower triangular
matrices which reduce to the identity modulo p and T* is the semigroup of matrices
(8 2) with a € Z;,‘ and d € Z, — {0}. In order to show that Fil"(D°) is preserved by the

matrices in N it is enough to do it for y := ((1) 1) (which is a topological generator of

N). Let u € Fil"(D?); then we have (u|y)(fj) = u(yf;) and moreover

i (n I (n
Vf)(x.) =ﬁ<x,y+x>=k<x>(1+y/x>f=2(k KOO =3 | | it y).
k=0 k=0
Therefore (uly)(fj) € Zjl;=0 mg_k - m;;_j )
To show that the matrices in 7T preserve Fil"(D°) it is enough to show it for

8= ((1) 2) e TT. We have (§f)(x,y) = fi(x, py) = k()p/ (v/xy :p’ﬁ(x, y). Therefore for
all 1 € Fil"(D?) we have (18)(f) = p/u(f) € pimly? € miy .

Finally we leave it to the reader to check that for e := (11, ?) € N°PP  (which

topologically generates this group), if u € Fil"(D?) then (ule)(f) € mg_j . O

We would now like to show that the formation of the above defined filtrations
commutes with base change. More precisely, let, as at the beginning of this section,
U C W* denote a wide open disk and Ay the Og-algebra of bounded rigid functions on
U. Let k € U(K). Then if we denote by # € Ay a uniformizer at k, i.e., an element which
vanishes with order 1 at k and nowhere else, then on the one hand (7, #) = my (let us
recall that we denoted by 7 a fixed uniformizer of K) and we have an exact sequence

0— Ay -5 Ay 25 O — 0

which we call the specialization exact sequence. Moreover the weak topology on Ay
induces the p-adic topology on Ox = Ay /i Ay
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We have natural specialization maps
Ay — A} and m: Dy — D}
f o— Ji T

3)

where fy(x,y) == f(x,y)(k) and ux € D} is given by wui: f € A} — u(fy)(k), where
fu € Ay is given by fu(x, y) := ky(0)f (1, y/x).

Proposition 3.11. Let U C W* be a wide open disk, let k € U(K), and let ty € Ay be a
uniformizer at k. Then we have canonical exact sequences of E(Zp)-modules

0 — 4% 5 A% — A > 0

0 — bpy 5% py B pe o oo

For the proof if Ay is replaced by an affinoid algebra, see [11], § 3. The arguments are
the same in this case.

Lemma 3.12. With the notation as above, we have ny (Fil”(D(l’])) = Fil"(D}).
Proof. Let us recall that we have two commutative diagrams:

"

vy

DY, = H Ay D} = H Ok
neN neN
U U and U U
n—1 ) n—1 )
Fil"(Dy)° = Hm’g,‘f x H Ay Fil"(D}) = Hm?{j x H Ok
j=0 m>=n j=0 m>=n
The lemma follows on observing that the diagram
Dy, 2 Dy
N 24
H AU Hﬂpk H OK
neN neN
is commutative and that for every n € N we have pr(mf,) = nik. O

Let us now suppose that k € W*(K) is a classical weight, i.e., k is associated with a
pair (k, k) with k € N. We define P C A7 as the subset of functions f: Ty — Ok which
are homogeneous polynomials of degree k. It is an Og-submodule invariant for the action
of the semigroup & (Z,) N GL2(Q),). Dualizing, we obtain a & (Z,) N GL2(Q,)-equivariant,
surjective, Og-linear map

pk: D — V7 := Homp, (77,?, (’)K).

Let us remark that we may identify V7 with SymX(T) ®z, Ok with its natural right action
of E(Zp) N GL2(Qp). For every n > 1 we set Fil"(V}) := pr(Fil"(D})). We get a filtration
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inducing the p-adic topology on V. We view V{ as the continuous representation
of I' defined by the projective system (V,‘C"m) with V7 = VZ/Fil"V} and we set
Vii= V¢ @0y K.

Therefore, if U C W* is a wide open disk which contains the classical weight k, we
have natural &(Z,) N GL2(Q))-equivariant maps

meN

Dy —> Dy 25 v, (4)

and the maps are compatible with the filtrations.

3.2. Overconvergent and p-adic families of modular symbols

Let us fix an integer N > 3 and let I" = I't(N) N Tp(p) C Iw C E(Zp). Let us also fix
a wide open disk U C W* and its associated universal character ky and let k € U(K)
be a weight. Let us also recall that we have natural orthonormalizable Ay g-Banach
modules Dy := Dy, with continuous action of the monoid &(Z,) and specialization
maps Dy —> Dy which are E(Zp)-equivariant. In particular we will be interested in
the Ay gx-module H! (F , DU), which we call the module of p-adic families of modular
symbols, the K-vector space H1 (F, Dk)7 which we call the overconvergent modular
symbols of weight k, and the specialization map H! (I", Dy) — H(I", D).

Moreover, if k € U(K) happens to be a classical weight, we also have the module
H! (F , Vk)7 which we call the module of classical modular symbols, and maps
or: HY (F, Dk) — H! (F, Vk) obtained from (4) in §3.1.

The relationship with continuous I" -cohomology.

In the notation above let D be any of the & (Z,)-modules D, D7, with k € U(K) and if
k e U(K) is a classical weight V7. We consider the pair (D, Fil® (D)) and wish to study
the relationship between H!(I", D) and Hgont (F, (D/Fil” (D))n€N>.

Let us recall that if we denote by Cont(I") the category of projective systems (My),eN
where each M, is a discrete, torsion I'-module, then Héom(f' , —) is defined as the ith
right derived functor of the functor

(My)peny — HO(T, lim M,).
oxXx<—n

The degeneration of the Leray spectral sequence for the composition of the two left
exact functors in the above definition gives for every object (M,),en € Cont(I") an exact
sequence of abelian groups

0 — LmMHO (", M) — HE i (1, (Mp)pen) — lim HY(I, M,) —> 0.
o0<—n

cont
For a pair (D, Fil'(D)) as above, we have the projective system of artinian Og and
I'-modules (Dp)nenN, where D, := D/Fil"(D) and the morphisms in the projective limit
are the natural projections. Therefore the projective system (HO(I" , D,,)) N satisfies the
ne

Mittag-Leffler condition and consequently we have a natural isomorphism

1
Hcont

(I (Dw)neny) = lim HY(I", Dy).

On the other hand we have:
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Lemma 3.13. The natural map
HYI, D) — lim HY(I", D)
oc0<—n
s an isomorphism.

Proof. If M is a I'-module we denote by BY(I", M) the group of l-coboundaries with
coefficients in M and by Z1(I", M) the group of 1-cocycles with values in M (no continuity
condition is involved in the definition of either coboundaries or cocycles). We have a
natural commutative diagram with exact rows:

wr.py < B'@r.pD) %  zZYw.p) — H'UI.D) — 0

If lg h b u

limd, . .
limHY(I, D,) < limBYI, D, =5 limzNYI, D, -2 limHYT,D,)
P P <~ .
We first claim that the map « in the above diagram is surjective. For this, let us recall
that for every n € N we have an exact sequence of abelian groups

0— BY(r,p,)/8%r, D,) — Z'(I", D,) — H'(I", D,) —> 0.

Then let us remark that Bl(F ,D,;) is an artinian Og-module and so is
BY(I", D,)/HO(I'", D). This implies that the projective system (BX(I", D,)/HO(I", Dy)),,
satisfies the Mittag-LefHler condition and so « is indeed surjective.

Moreover, let us remark that in the above diagram the maps f, g, h are all
isomorphisms. For f and g this follows immediately from the definition and the fact
that D = limeo«p Dy. The injectivity of h follows from the fact that N,>oFil"(D) = {0}.
On the other hand let us first remark that I" is a finitely generated group and moreover
that a 1-cocycle of I' is determined by its values on a family of generators. This implies
that h is surjective.

Now by the five lemma, u is then an isomorphism as well. |

Remark 3.14. In the notation of the proof of Lemma 3.13, let us remark that for every
neN, ZY(I', D,) is also an artinian Og-module. The reason is as follows: I' is a finitely
generated group and a l-cocycle is determined on its values on a set of generators
of I'. Tt follows that H(I", D,) is an artinian Og-module for all n € N and therefore
H(I", D) has a natural structure as a profinite Og-module. In particular it is compact.
Moreover, if D = Dy for a certain U C W*, then HY(I", Dy) is naturally a Ay-module
and its profinite topology is the same as its m-adic topology. In particular HY(I", Dy) is
complete and separated for the m-adic topology.

Let us remark that we have proved the following theorem.
Theorem 3.15. Let D be any one of D, D} and, if k is a classical weight, V(.
(a) We have canonical isomorphisms
Heone (I (Du)nen) = lim HY(I, D,) = HY(I", D).
o0<—n

cont

(b) The isomorphisms in (a) above are compatible with specializations.
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Proof. (a) follows from Lemma 3.13 and (b) from the discussion on specialization in the
previous section. O

Hecke operators.

Let M be any one of the modules H! (F, DU), H! (1", Dk), and H! (F, Vk). The action of
E(Zp) on the coefficients defines actions of Hecke operators Ty for £ not dividing pN
and Uy for ¢ dividing pN on the module M (see [5] and [11]). Moreover U, is completely
continuous on M. Let us now fix h € Q, h > 0, and denote by D one of Dy and Vi. Then
we have a natural direct sum decomposition

H'(r,p)=u'(r,p)” e u'(r, 0)>",
where the decomposition is characterized by the following properties:

(a) H! (F, D)(h) is a finite K-vector space and for every x € HI(I", D)(h) there 1is
a non-zero polynomial Q(f) € K[f] of slope smaller than or equal to h such that
Q*(U,) - x =0, where Q* (1) = 19820 (1 /1).

(b) For every polynomial Q(f) as in (a) above, the linear map Q*(U,): H!(T, D)(>h)
>t (F, D)(>h) is an isomorphism.

Moreover we have the following two results (see [5]).

Theorem 3.16. Suppose k = (ko, i) € W*(K), a classical weight, and h > 0 is a slope
such that h < kg — 1. Then py induces an isomorphism

H'(r, D)™ =1 (1, vi) ™.
and

Theorem 3.17. Let k € W*(K) be an accessible weight and h > 0 a slope. Then there is a
wide open disk defined over K, U C W*, containing k such that:
(i) We have a natural, By-linear slope < h-decomposition

Hl (I—v7 DU) >~ Hl (F, DU) (h) @ Hl (F, DU)(>]1)

satisfying analogue properties as in (a) and (b) above.

(ii) The slope decomposition in (1) above is compatible with specialization, i.e., the map

Yy HY (I, Dy) — H' (I, Dy)
satisfies yi (H' (I, Dy) ") ¢ HY(T, D), where (&) € ((h), (=)

Proof. Claim (ii) follows from the functoriality of the slope < h-decompositions proved
in [5].

To show (i) it suffices to produce a slope < h-decomposition at the level of cochains
C*(I', Dy) using a finite resolution of Z by finite and free Z[I"]-modules as explained in
[5] § 4.

We start by choosing a wide open disk U’ C W* defined over K such that
ke U(K). Let (e;)ie; be a By-orthonormal basis of Dy defined in Lemma 3.5 and let
V = Spm(K(T)) be a closed disk centered at k contained in U’. Thanks to Lemma 3.8 and
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the theory in [5] § 4, possibly after shrinking V to a smaller affinoid disk, we may assume
that the Fredholm determinant of the U,-operator Fy}, on the complex of group cochains
c* (F, DUr|V) admits a slope < h-decomposition. Let U be the wide open disk associated
with the noetherian local Og-algebra Ay := Og[[T]. Let us remark that the Fredholm
determinant of U, acting on C* (F \ DU/|V), Fy,, is the same as the Fredholm determinant
of U, acting on C*(I', Dy), Fy;, as they are computed using the same (weak) ON basis.
Because the Banach norm of Ay[1/p] = By restricts to the Gauss norm of By it follows
that the slope < h-decomposition of F}, determines a slope < h-decomposition of F7;.
Therefore we obtain the slope < h-decomposition of C*(I", Dyy). O

3.3. The geometric picture

Let us recall from the beginning of §2 the modular curves X(N, p) —> X1(N) and their
natural formal models X'(N,p) — X1(N), and if we Q, 0 <w < p/(p + 1), we also
had a rigid analytic space X(w) C X(N, p) and its formal model X' (w), with its natural
morphism X (w) — X(N, p). All these rigid spaces and formal schemes are in fact log
rigid spaces and log formal schemes respectively, which are all log smooth, and all the
maps described are maps of log formal schemes or log rigid spaces.

Sheaves on X(N, p)%et associated with modular symbols: Let £ — X(N,p) be the
universal generalized elliptic curve, and let us denote, as in §3.1, by 7 the p-adic
Tate module of £, seen as a continuous sheaf on the Kummer étale site of X(N, p),
denoted as X(N, p)ket. If n = Spec(K) denotes a geometric generic point of X(N, p), let
G denote the geometric Kummer étale fundamental group associated with (X (N, p), n)
and let T :=7,. One can easily see that T is a free Z,-module of rank 2 with continuous
action of G. Let us choose a Z,-basis {€1, €2} of T satisfying the following properties:
(€1, €2) =1 and €1( mod pT) € &,[p] does not belong to the universal level p-subgroup C.
We let Ty := {ae1 + bea |a € Z;’ b € Zy}. Then Ty is a compact subset of T preserved by
G which can be identified with Z; x Zp. Moreover the right action of G on the above
chosen basis defines a continuous group homomorphism

y: G —> Iw defined by (€10, €20) = (€1, €2)y (0) for o € G.
Therefore, if k€ U C W* and n > 1 as in §3.1 then via the homomorphism y above,

the Iw-modules Ay, Dy, Ak, Dy and, if k is classical, V, can be seen as ind-continuous

representations of G. More precisely, for example, Ay = li_n)l(limoo&n(A‘l’]/m’[’,A‘i,» and

Dy = li_n)l(limoo&n(D‘fj/Fil” (D‘{]))7 where the inductive limits are taken with respect to
the multiplication by a p-map. We denote by Ay, Dy, Ak, Dy and, if k is classical, V the
ind-continuous shaves on X(N, p)%et associated with these representations. Let us remark
that if the classical weight is associated with the pair (k, k(mod(p — 1)), forkeZ, k>0,
in fact we have V, = Symk (7) ®z, K, as ind-continuous sheaves on X(N, p)%t.

Notation: For later use, for A=Ay or A=A, we write A%:= (A})  for the
continuous sheaf on Faltings’ site X(N, p) associated with the continuous representation
of A? = (A"/m”A”)nGN of the Kummer étale fundamental group G of X(N,p). The
ind-continuous sheaf A is simply .A°[1/p].
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Analogously, for D = Dy or Dy, we write D° := (D")neN for the continuous sheaf
associated with D°/Fil*(D?). Then, D is the ind-continuous sheaf D°[1/p].

We proceed as in §5 in order to define Hecke operators on H! (X(N p)k‘Bt ) and
on H! (X(N p)ket Dk) and, if k is classical, on H! (X(N p)ket ) Let £ denote a prime
integer. Let X(N p)e be the modular curve classifying generahzed elliptic curves £/S
with a I'1(N)-level structure y¥n: Z/NZ C &€, a subgroup scheme C C £ defining a
Iy(p)-level structure and a subgroup scheme H C £ defining a Ip(€)-level structure
such that H does not intersect the image of ¢ and similarly C N H = {0}. We have
morphisms

X(N, p) &= X(N, p)e = X(N, p),

where 71 forgets H while w2 is defined by taking the quotient by H. They are finite and
Kummer log étale. The dual m,”: (8/H)v — &Y of the universal isogeny m¢: € — E/H
over X(N,p)¢ provides a map m): p5(T) — p4(T). Here we identify &= &Y and
E/H= (E/H)v via the principal polarizations. The condition H N C = {0} implies that =
restricts to a map pj (To) - pi (To) Proceeding as in §5 we get Hecke operators acting
on H! (X(N,p)ke‘D DU) and on H! (X(N p)ket )7 which commute with the action of Gg
and are compatible with specializations. As is customary, we denote them by Ty, for £
prime to pN, and U, for £ dividing pN.

Proposition 3.18. We have natural isomorphisms as Hecke modules, compatible with
specializations

H' (I, Dy) = H (XN, p)it, Dy)  and H' (I, D) = H (XN, p)&t, D).

Here on the left modules the Hecke operators are defined by the action of the monoid
E(Zp) on the coefficients.

Proof. We first prove that, given a finite representation F of G and considering
the associated locally constant sheaf F on X(N, p)ket, we have an isomorphism
H! (F, F) ~Hl (X(N, p)ket, ), functorial in F. First of all notice that restriction to the
open modular curve where the log structure is trivial, i.e., to Y(IV, p) C X(N, p), induces
an isomorphism H! (X(N, p)t, F) = H (Y (N, p)%, F) thanks to [13, Corollary 7.5]. As
Y(N,p)g is a smooth affine curve and for every embedding K C C the fundamental
group of Y(N, p)c is I', it is a classical result that H! (Y(N, e, F) ~ ! (Y(N, p)g“, J—') =
HY(I,F).

Therefore, if we denote by D any one of Dy, Dy and, if k is classical, V; and
by ((DZ),,GN) ®o, K, with D} := D?/Fil*(D°), the ind-continuous representation of G
associated with D, let D := ((DZ)neN) ®og K be the ind-continuous étale sheaf on
X(N, p)%et associated with it. By Theorem 3.15 and the discussion above we have natural
isomorphisms

H!(r,p) = Hcont( (DY), ®K> H (X(N, Pt ((D9),) ® K)
Hl (X(N )ket D)
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As the definition of the Hecke operators uses the Hecke correspondence X(N, p)¢,
it is clear that for D one of Dy, Dy and Vi the isomorphism H* (X(N, p)%et,D) =
! ( Y(N, p)%t, D) is Hecke equivariant and the claim follows. O

Sheaves on Faltings’ site associated with modular symbols: Let us now denote by
X(N, p), Faltings’ site associated with the pair (X(N,p),X(N,p)). The map of sites
u: X(N,p) — X%et, given by (U, W) — W, sends covering families to covering families,
commutes with fiber products and sends the final object to the final object. It defines a
morphism of topoi u,: Sh(X%et) —> Sh(X(N, p)) which extends to inductive systems of
continuous sheaves. In particular all the ind-continuous Kummer étale sheaves Dy, Dy
and, if k is a classical weight, V} can be seen as ind-continuous sheaves on X (N, p) by
applying u,. For simplicity we omit u, from the notation.

Proposition 3.19. The natural morphisms
H' (X(N. p), Dy) — H' (XN, p)&*. Dy)  and H'(XWN.p), D) — H' (XN, p)t, Dy)

are isomorphisms of Gg-modules, compatible with specializations and the action of the
Hecke operators.

Proof. As X(,p) is proper and log smooth over Spf(Og), it follows from
[10, Theorem 9] that for F a finite locally constant sheaf the natural maps
H! (%(N, P, .7—') — u! (X(N, p)@t, .7-') are isomorphisms. As Dy and Dy are inductive
limits of projective limits of finite locally constant sheaves obtained in a compatible way,
by 3.10, the maps in the proposition are isomorphisms. The Hecke operators are defined
in terms of the Hecke correspondence p1, po: X(N, p)¢ —> X(N, p) and the trace maps
D1, (p’{ (.7:)) — Fon X(N,p)%3t and on X(N, p) defined in (1). As they are compatible via
uy, the displayed isomorphisms are equivariant for the action of the Hecke operators. [

Let us fix 0 <w < p/(p+ 1) and let us recall that we have a natural morphism of
log formal schemes X' (w) — X(N, p) whose generic fiber is the inclusion of log rigid
spaces X(w) C X(N, p). Base change induces a natural functor v: X(V, p) —> X(w) which
sends final objects to final objects and respects the coverings. We obtain ind-continuous
sheaves Ay, Ay, Dy, Dy by applying v* to the sheaves Ay, Dy, Ak, Dr. Note that we
have a natural map of continuous sheaves of rings @X(N’p) — v, (@x(w)) inducing by
adjunction a morphism v* (@X(N,p)) — @%(W). As v* commutes with tensor products,
we deduce the following:

Lemma 3.20. We have natural morphisms of ind-continuous sheaves on X(w):
v (Dy&0xw.p) — Du®Oxqw
and

V¥ (Dk®(5x(/v,p)) — Dk®(53€(w)-
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4. Modular sheaves

Modular sheaves are only defined on the site X(w), 0 < w < p/(p + 1). Let W denote
the weight space for GLg,q, i.e., the rigid analytic space over Q, associated with
the noetherian Z,-algebra Zp[[Z;]], and let us fix (B, m), a complete, local, regular,
noetherian Og-algebra. Let us recall that B is complete and separated for its m-adic
topology (the weak topology) and therefore also for the p-adic topology. We define
Bx := B ®o, K and denote by | || the Gauss norm on the Banach K-algebra
Bg. Let k € W(Bg) be a Bg-valued weight, i.e., a continuous group homomorphism
k: Z;,‘ —> B*. We embed Z in W(Q)) by sending k € Z to the character a — a* and in
general, if k € W(Bg) as above and t € Z;j, we use the additive notation #* := k(7).
Once we have fixed B and k € W(Bg) we define

-1
r:=min{n e N|n>0and [[k(1 + p"Z,) — 1|| < pr~T},

and we fixwe Q,w>0,and w<2/(p" —1)if p>3and w <1/3" if p = 3. We say that w
is adapted to r (and to k). Let us also note that given B, k, r as above, there is a unique
a € Bk such that for all r € 1 + p"Z, we have * = exp(alog(1)).

There are two instances of the above general situation which will be relevant in what
follows:

(a) B= Ok, so Bx = K; in that case k € W(K) is a K-valued weight.

(b) We fix first r > 0, r € N, and define W, :={k | [|k(1 + p"Z,) — 1| <p~Ve=Dy 1t is
a wide open rigid subspace of W. Let now U C W, be a wide open disk of W,, let Ay be
the affinoid algebra of U and define

Ay =AY = {f € Ay such that |f(x)| < 1 for all points x € U},

the Og-algebra of the bounded rigid functions on U. Then Ay is a complete, local,
noetherian Og-algebra non-canonically isomorphic to Og[[T]. Let also ky: Z;; — Af
be the universal character, i.e., if t € pr and x € U, we have XU (x) = *.

Remark 4.1. Let (B, m) be as above and let R be a p-adically complete and separated
Ok-algebra in which p is not a zero divisor. We denote by R&B the ring

R®B:= lim (R/p"R ®o, B/m") = lim (R/p"R®0B/p"B),
oxXO<—n <~.,n

where we denoted by R/p”R®@KB/p”B the completion of the usual tensor product with
respect to the ideal generated by the image of R ®, m.
In particular, if B= Ok then R®B = R and if B = Ok[[T] then R®B = R[[T].

4.1. The sheaves Q;(w)
In this section we recall the main constructions of chapter 3 of [4] in a slightly different
context. Let w € Q be such that 0 <w <p/(p + 1).

Let f: £ — X(w) and fx: &k —> X(w) denote the universal semi-abelian scheme
over respectively X' (w) and its generic fiber and let 7 —> X(w) denote the p-adic Tate
module of & —> X(w) seen as a continuous sheaf on X (w)%et. Notice that £ admits a
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canonical subgroup C1 C €. Let 7o C 7 be the inverse image of Cy x \ {0} in 7 via the
natural map 7 — &EJ[p] — Ci” k- Then T and 7y are continuous, locéxlly constant sheaves
on X (w)%at and hence can be seen as a continuous sheaf on X(w). Notice that the sheaf
7T is a continuous sheaf of abelian groups, while 7 is a continuous sheaf of sets and it is
endowed with a natural action of Z;;.

Let e: X(w) — & denote the identity section of f and let wg/x ) := €* (.Qél./X(W)). It
is a locally free Oy )-module of rank 1 and we denote it by wg/xw) := v’;((w) (a)g/x(w)).
Then wg/x () is a continuous sheaf on X(w), a locally free A%I(lw)—module of rank 1.

We have a natural sequence of sheaves and morphisms of sheaves on X(w) called the
Hodge—-Tate sequence of sheaves for £/X (w):

-1 A -~ dlog ~
00— g 1% (w) ®@§?W) Ox(w)(l) — T R® Ox(w) —> WE/x(w) ®6;ﬁ3«u) O%(w) — 0.

Lemma 4.2. For every connected, small affine object U = (Spf(Ru),Nu) of X(wyket,
the localization of the Hodge—Tate sequence of sheaves at U is the Hodge—Tate sequence of
continuous Gy-representations which appears in [4]§ 2:

_ = = dlog =
0— wS/lX(W)(u) ®ry Ru() —> T, (&) ® Ry — wgxw)U) @ry Ryy —> 0

Proof. The proof is clear. (|

Lemma 4.3. Let F0 := Im(dlog) and F! := Ker(dlog). Then:

(i) FY, F are locally free sheaves of @x(w)—modules on X(w) of rank 1. We denote them
by Fi ) = j¥(F") for i =0, 1; they are locally free Ox) wy-modules of rank 1.

(ii) We set v:i=w/(p — 1) and let us suppose that w is adapted to r, for a certain
r=1, re N. We denote as C, C E[p"] the canonical subgroup of level p" of E[p"]
over X (w) (which exists by the assumption on w), we denote by CY its Cartier

dual and we also denote by C, and C; the groups of points of these group schemes

over X (w), and by the same symbols the constant abelian sheaves on (X(’) (w))ket.

We have natural isomorphisms as @x(w)—modules on X(w): .7-"0/1)(1_")’}"0 =C'®
Of{(w)/p(liv)rof(w) and fl/p(liv)r}—l =C® O%(w)/p(liv)rof(w)-

(iii) We have natural isomorphisms of Oy ,,-modules with G,-action:
V%(’)(w),*(fi’(r)) = -7:1'(r) ®OK O(C,,,

for i=0,1. Here F are the sheaves on XD (w) defined in § 2 of [4]. Moreover,

1
i\ (r) o Y @ ~
Fi () v;(,)(w) (F) ®au

n Ox(r) (W) .
() (w)

Proof. We consider a connected, small affine object U = (Spf(Ru),Nu) of Xket ag in
Lemma 4.2. Then the localizations of F' at U are F°(Ry, Nyy) = Im(dlogy,) = FV and
FY(Ry, Ny) = Ker(dlogy)) = F', and we apply Proposition 2.4 of [4]. This proves (i) and
(ii). Now we apply Proposition 2.6 of [4] and (iii) follows. O
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Let now B, k, r, w be as at the beginning of §4, i.e., B is a complete, regular, local,
noetherian Og-algebra, k € W(Bg) and r € N, and w € Q such that w is adapted to r and
k. Let us also recall that we defined v := w/(p - 1.

Let us define S%(V)(w) = ZX (1 + pU- ")rO%m(w))' it is a sheaf of abelian groups on

%" (w) which acts on Oxm(w)@B = limeop ((’)x(r)(w) /" O%(n(w)@@KB/m ) as follows: let
S =X € Sy U W, @) = Z (14 p1= Oy, W)) and y € Oty U, W, ) @B =
@x(w) (U, W)®B. Then we define

s *y:=exp(alog(x)) - ¢ -y, where a € By is such that ¢ = exp(alog(t),t € 1 + p'Z,.
Let us remark that s *xy e 635<’)(w) U, W,)®B. We denote by (63€(r)(w)®3) ® e

continuous sheaf @x(r) W) ®B with the above defined action of S (w)-
Thanks to Lemma 4.3(ii) that we have an isomorphism of sheaves

0 .7_—0,(r)/p(1—v)r_7:0,(r) ~ (Cr>v & Ox(r)(w)/p(l_v)r(?gg(r)(w)'

Let F®' denote the inverse image under the isomorphism ¢ above of the sheaf of sets
(€)Y — (C)VIp"" 1. Tt is endowed with an action of Sx) (-

Recall from § 2.6 that we have defined a morphism of sites j,: X(w) — X (w). It then
follows from the construction that dlog induces a map

dlog: ji(Tp) — F',
compatible with the actions of Z; on the two sides.

Lemma 4.4. The sheaf FO' s an Sxw ) -torsor and there exists a covering of X(w) by

small affine objects {U;} such that f(r),|(Ui,Ui x 18 the trivial torsor for every i.

XX (w)

Proof. We localize at a connected, small affine object U of (X (w))ket and apply
Lemma 4.3(iii) and [4] § 3. O

Let us now consider the Oy ) &B-module
M (w) = = $oms, (FT', Oz @B TP).

Thanks to Lemma 4.4, it is a locally free Oy (W)®B—m0dule of rank 1 and we have a
natural isomorphism of Ox(r)(w) &B-modules

. )
f)omox(r)(W)GA@B (Mk w), O%(')(w)®3) — M (W)

We also have the continuous sheaf of Ox) ®B-modules
AL = Homzy (7 (T0), (Ox ) &B) )
and a map of continuous sheaves of Oy w) ®B-modules
dlog™*: M,((r) w) — A,((r)

induced by dlog.
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For every element o € G, we denote also by o the functor (E X(W)?) S XDy
(EX(W)?)/(X(W),X(")(W)) defined on objects by (U, W,a) > (U, W, 0 o ) and by identity
on the morphisms. This functor induces a continuous functor on the site X (w).
If H is a sheaf (or continuous sheaf) on X’(w) we denote by H° the sheaf
HOU, W, ) :=H(cU,W,a)) =HU,W,0oa).

Lemma 4.5. (a) Let us suppose that G is a sheaf of abelian groups on X(w) and
H :=j5(G). Then H® =H for all o € G,.

(b) For H=F", (@xa)(W)@B)(_k), or ji(To) we have (H)” =H for every o € G,.
Hence, the same applies for ./\/l,(f) (w) and A,(:) compatibly with dlog”"*.

(c) Suppose that H is a sheaf on X0 (w) such that H® =M for all o € G,. Then each
element o € G, defines a canonical automorphism of the sheaf jr «(H), i.e., we have a
canonical action of the group G, on the sheaf j, (H).

Proof. (a) This follows immediately as j5(G)U, W, o) = GU, W).

(b) As Oxw) =J;(Oxaw) we only need to verify the property for the sheaf FO
which is clear from its definition.

(¢) Let us recall that j..(H)U, W) := H(U, Wxx(w)?X(’)(w)?, prl). We define the

automorphism
o jra (YU W) = H(U, Wxx X" (w)g. pri) —
— jra (YU, W) = H(U, Wxx() X" (W)g. 0~ o pry)
by the fact that o : X (w) — X (w) is an automorphism over X(w). O

Definition 4.6. We define the sheaves 'Qé(e(w) and a);(kw) on X(w) by

PN R G,
Dy = (j”*(ﬁomS (F, (anv)(w)@B)(_k))))

X (w)
and

_ S~ . G,
0ty = (jne(D0ms g, (FO'L O @B )11/p1)

The sheaves thus defined enjoy the following properties.

Lemma 4.7. For every B, k and w as above we have:
(i) w;(kw) is a locally free (@x(w)@)B)[l/p]-module of rank 1.
(ii) vx(w),*(a);’k) = a);fv’k ®k Cp,, where a):fv’k is the sheaf on X(w) given in Definition 3.2 of
[4].
(i) o}, = ol ®s

X (w) Ox(w) ’

Proof. (i) is a consequence of the fact that F ™ is a locally trivial Sxm(w)—torsor and

(ii) and (iii) follow by localization at a connected small affine U of X (w)*¢* using

Lemma 4.4. O
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As mentioned at the beginning of this section, we shall be most interested in two
instances of these constructions corresponding to choices of pairs (B, k) as above.

(1) The first is the simplest, i.e., when B = Ok and so an Bg = K-valued weight is
simply an element k € W(K).

(2) The second instance appears as follows. Let U C W* be a wide open disk. Let us
recall that Ay is a Og-algebra of bounded rigid functions on U and let us denote by || ||
the norm on the K-Banach algebra Ay k.

We denote by ky: Z;j —> AJ; the universal character of U defined by the relation
ky@)(x)=r"forte Zlf,x eU.

The constructions for the two instances above are connected as follows. Let U, Ay, ky
be as in (2) above. Let also k € U(K) be a K-valued weight and # a uniformizer at k, i.e.,
an element of Ay which vanishes with order 1 at k& and nowhere else. Then we have an
exact sequence of K-algebras

0— Ay -5 Ay —> Ox — 0

which induces an exact sequence of sheaves on X(w):

1.,k 173 T,k T,k
0 —> w3y = Ox(y — Oxy — 0

which will be called the specialization exact sequence.

4.2. The map dlog""*.

We start by fixing a triple B, k as in the previous section such that the associated
r=1, and let w be adapted to k. We have explained in §3.3 how to construct
a continuous sheaf Af(w) = ( z,n(w))neN = (V*(‘AZ,H))neN on Faltings’ site X(w)
associated with the continuous representation of A7 = (A7 /m"A) oy (see Definition 3.1)
of the Kummer étale fundamental group G of X(N, p). Similarly we have the sheaves
Di(w) = (DZ,n(W))neN = (V*(Dz,n))neN' By construction and Proposition 3.10, the sheaf
DL, (w) is a quotient of Homp (A7, (w), B/m™).

Write 7g as the continuous sheaf on X(w) obtained similarly from the G-representation
To. Then we have an inclusion of sheaves

2a(w) C Somz, (To, (B/m") )

on X(w), which for every r and n € N provides a map of sheaves of Oxw, ®
B/m"-modules

ﬂr(zr) : ]:( Z,n(w)) R0k (Ox(ﬂ(w)/pnox(r)(w)) —> f)ﬂmz; (]:< (%), (Ox(r)(w) ® B/mn)(_k)),
These maps are compatible for varying n and define a map of continuous sheaves

Proposition 4.8. (1) The map B is injective and G,-invariant.

(2) The map dlog”* is G,-invariant and factors via .
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Proof. The fact that ﬂ(r ) is G,-invariant is clear as it is defined already over X(w). The
G,-invariance of dlog""* follows from the G,-invariance of dlog which is clear from its
definition. We prove that ﬂ,(zr ) is injective for every n € N and that the map

$0ms, g, (F', (Oxr ) ® B/m™ ) — Homz (7 (T0), (Oxi0 ) @ B/mH )

factors via B{”. It suffices to show this on localizations after localizing at small affine
objects of X (w)ket covering X (w); see § 2.7. Let U = (Spf(Ry, Ni4) be any small affine.
The localization of A(w): From now until the end of this section we set r = 1.
Using the notation of §3.3 choose a Z,-basis {€gp,€1} of T such that (e, €1) =1
and e1(mod pT) € &[p] belongs to the canonical subgroup C = Cq of level p. Then
= {aeg + berla € Z}, b € Zy}. Let x be the Zy-dual of €g and y the Z,-dual of €1. We
deduce from the discussion after Definition 3.1 that

. - = h
71 (AL, 0) Re. Ny, ) i= ®nen (B/m™)x* (y/x)".
Thus, lf we let D= (Ox(l)(w) ® B/mn) (EL[’ N[/{, 8)7 then

(.I)‘l( (Az,n(w)) ®OK O_’{(l)(w)) (RZ/h NL{7 g) = @®nenD - xk (y/x)h

Similarly Homz (f{ ('Zf)), (@x(1)(w) ®B/m”)(_k))(§u, Ny, g) is the D-module of continuous
maps Homz; (Z;eo + Zpet, D(_k)). With an element f(x,y) := Zahxk(y/x)h we associate
the function Z;;eo + Zpe1 — D sending aeg + be1 — f(a, b) = Zahk(a)(b/a)h. If such a
function is zero then f(x, y) is zero, proving the first claim.

The localzzatwn of Mk (w): Using the notation of Lemma 4.2 we let eq, e; denote an
Ru -basis of T ® Ru such that e 1s a basis of F! over Ru reducing to €; modulo p!="
and dlogg,(ep) is a basis of F 0 over Ru reducing to eg modulo p' V. Let X, ¥ denote the
basis of T ® Ry which is Ry-dual to eq, e1(i.e., X(e1) = Y(eg) = 0 and X(eg) = Y(e1) = 1).
Then,

Homs,, . (FV', Oz, ® B/m ™) Ry, Ny, @) = D - X~.

As X =ux + vy with u € Ru congruent to 1 modulo p!~ ‘Ru and Ve Ru congruent to

0 modulo p' Ry, it follows that X* = xfy with y € 1 + p'~ "Ru((y/x)). Here, Ry (y/x)
denotes the p-adically convergent power series in the variable y/x. The second claim
follows. 0

In particular, dlog" " induces a Gi-invariant morphism of @x(l)(w) ®B-modules
1 . -~ A
M) — 5 (AL 0) 80, Oty

Taking Hom, , Oz W) ®B) and using the identification

2(1)(‘”@3(
Hom 5 (./\/l(l)(w) o ®B) = ML ()
O%(l)(w)®B k » VxM(w) —k ’

we get an induced Gp-invariant morphism of B-modules

§: 9omg (7 (A7), E) — M(_112(W)-
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Then:
Lemma 4.9. For every n € N there exists m > n such that the map
$Homp (jf (AL, ), B/m™) —> Somo_ ., an(ML ), (O, @ B/m"H ),
induced by 8, factors via ji (D,‘C”m(w)).

Proof. As X(w)Xet can be covered by finitely many small affines, it suffices to show the
claim on localizations at a small affine U = (Spf(Ry, Nyy) of X (w)ket (see §2.7). We use
the notation of the proof of Proposition 4.8. Thanks to Proposition 3.10, the quotient
map

Homp (75 (A7, w)), B/m™) Res, Ny, 8) = Snen(B/m™) - (F(v/x)")”
— J{ (DL ) Ret, N, 8)
identifies the latter with the B-module @Oghgm(B/mm_h) . (xk(y/x)h)v. Recall from the
proof of Proposition 3.10 that, setting D := (Ox(w) ® B/m") Ry, Nyy), we have defined a
generator X* of M(_r,)((w) (Ry, Ny, g) as D-module. We conclude that

1 1y (— 5. AT ~
Homo,,  wn (M,ﬁ "W). (Oxa1)(yy ® B/m™) k>) Ry, Ny, 9) =D - (xh.

Let N(n) be the degree of X* in @penD - xk(y/x)h7 i.e., the maximal N such that
the coordinate of X* with respect to xk(y/x)N is non-zero. If we take m so that
m — N > n, then the map § localized at U factors via ﬁom@x(l)w)@B (,/\/l](cl)(w), (Oxa ) ®
B/m") ) Ry, Ny, g) as wanted. O

It follows from Lemma 4.9 that we get a map of continuous sheaves of
Oxm(w)@B-modules

. G : 1 G :
DY) —> (1.4 (1 (D, m) T — (1.4 (MQ0)) " = 2,
Passing to ind-sheaves and using Lemma 4.7 we obtain a map
87 (w): v*(Dy) = DYwW)[1/p] —> wt, = j;"®@w Oxwy- (5)

In the next section we will calculate the cohomology of the ind-continuous sheaves
Tk~ ik

Oy = @) ®(5x<w) Oxw)-

4.3. The cohomology of the sheaves w;’fw)

Let t: Z — X(w) be a morphism in X(w)%et. Let 3 := X(W),x(w),z be the associated
induced site and j:= jxw),z: X(w) — 3 the map jld, W) := (Z/[,ZXX(W)W, prl); see
2.5. It induces a morphism of topoi. For i > 0 we shall calculate Hi(Z JF (a);(kw))) For

1 =id we get in particular the calculation of H! (%(w), a);’(kw)). We will need the following:
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Lemma 4.10. Let F be a locally free (@x(w)é)B)[l/p]—module of finite rank. The sheaf
R”vx(w),* (.7-") is the sheaf associated with the presheaf on X (w)ket :
U = (Spf(Ruy), Ny) = H”(Guy, F Req, Nuy))

where Gy is the Kummer étale geometric fundamental group of U, for a choice of a
geometric generic point, i.e., Gy = Gal(Ry[1/pl/(RyK)).

Proof. The lemma follows arguing as in [2, Proposition 2.12 and Lemma 2.24]. ([l

Theorem 4.11. We have isomorphisms as Gx-modules:

(a) HO(3./" (@x,y (1)) ZHO(Z. 0 (]")) ©xCp(D);

(b) HY (3. /* (wk(,, (D)) = HO(Z, 1*(w]+2)) &k C,;

(c) Hi(3,j* (wx’(w)(l))) =0fori>2

Proof. As Rlj, =0 for all i >1 by 2.6 we have H(3,/* (a)x(w)(l))) = H! (Xw),
( (a)x(w)(l)))). Set F _]*( (a)x(w)(l))). Recall that “)36() is isomorphic to
O @G, )Oaaw) by 4.7. Thus, j*(wkf, 1) = of 06, )03(1) as j*(Oxon) = O3

and F = a);ka®ox(w)]*((93)(1). Due to 2.4, the natural map Ox(w)®ox(w)t*(02) —

j*(@3)b)_1] is an isomorphism. Hence, F = wa’kééx(‘v)t*(@g)(l) is a locally free

(@x(w)@)B)[l/p]—module.
To prove the theorem we will first calculate the sheaves R VEW), (.7: ) using
Lemma 4.10 and then we will use the Leray spectral sequence (see [2]):

H¢ (X(w)ket, RPvxw (-7:)) = H'(X(w), F).
We compute the Galois cohomology of the localization of the ind-continuous sheaf F:
F Ry Nop) = o[ U B, 1+ O2) U)Or, Ruu (D).

for U = (Spf(Ry, Nyy) a small open affine of X (w)ket. Using that a);(kw) is a locally
free (@x(w)@)A)[l/p]—module of rank 1, it follows from the main result of [9] that
HO (G, R k) = Ru, k®kCp, 50

HO (Gu, F Ry, Nop)) = oK U By, 14(O2) U)K T (1).
Moreover H! (gu, ﬁu,K) = .QZ}{K/K@)K(CP(—1)7 SO
H' (Gu. FRu. Neg)) = (24 x®kCp(—1)) By 1+ (O2) U)oy  U) (1).

The Kodaira—Spencer isomorphism gives ‘QZ}{K /K®KBK = a)gu /MK®KBK = w (Ll)
Therefore we obtain

HY (G, F Ry, Nup)) = 0l 2 U@k, 1 (O2) Uk) Ok Cp.
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Finally H'(Gy, F (R, Nyy)) = 0 for i > 2 because Gy has cohomological dimension 1. It
follows that we have

RO+ F = 0l @y, 1:(02) Ur) QK Cy (1),
where the isomorphism is as sheaves on X (w)*¢t. Similarly we have
R o F = 02 ®py, (1:(02) Ux) &k Cp,

and vax(w),*]-' =0 for b > 2. Now let us observe that aﬁ’k@)RM’KL*(C’)z)(Z/[K)®K(Cp(1) is a
sheaf of K-Banach modules on X(w), as it is locally isomorphic to t, (OZ)®BK®C,,. As
X(w) is an affinoid we obtain that

H (X ()5, 05 @0 4y 16 (02 @K Cp(1)) = H X (W), 0 @0 4, 1+(O2)BCTp(1)) =0,

by Kiehl’s vanishing theorem. Therefore the Leray spectral sequence now gives the result
of the theorem. O

5. Hecke operators

Let £ denote a prime integer and w € Q be such that 0 <w < p/(p + 1). We assume that
w is adapted to some integer r > 1 (see the beginning of §3). We denote (see §3.1.1 of
[4]) by Xg) (w) the rigid analytic space over K which represents the functor associating
with a K-rigid space S a quadruple (8/S, Vs, H, Y), where £ — § is a semi-abelian
scheme of relative dimension 1 and Y is a global section of wé?éj such that Ya(E/S) =pY,
where we have denoted by 4 a lift to characteristic 0 of the Hasse invariant. Let us notice
that the existence of Y as above implies that there is a canonical subgroup C, C E[p’],
of order p" defined over S. We continue to describe the quadruple (£/S, ¥s, H, Y): g is
a I't (Np")-level structure of £/S, or more precisely s = ¥y - ¥r, where Yy: Z/NZ — &
is a closed immersion of group schemes over S and ¥, is a generator of C,. Furthermore
H C € is a locally free subgroup scheme, finite of order ¢, defining a I'y(€)-level structure
such that H has empty intersection with the image of ¥y (this condition is automatic if £
does not divide N) and HNC, = {0} (this condition is automatic if £ # p). We consider on
Xér) (w) the log structure given by the divisor of cusps and denote the resulting log rigid
space using the same notation: Xér) w).

We have natural morphisms pi: Xér)(w) — X" (w) and pa: Xér)(w) — X)),
where w' =w if £#p and w =p'w if £ =p, in which case we will assume that
0 < w < 2/p*. These morphisms are defined on points as follows: p1(E, v, H,Y) =
E. ¥, Y) e XD(w) and pa(E, ¥, H,Y) = (E/H, ¢, Y') € X (W) where ¢/, Y are the
induced level structure and global section associated with £/H. The morphism p; is
finite and Kummer log étale, and if £ = p then ps is an isomorphism of K-rigid spaces.

Let us recall that we have denoted as X(w) Faltings’ site associated with the log
formal scheme X (w), and as X (w) the site X(w) localized at its object (X (w), X" (w)).

Let us observe that (X (w),Xér)(w)) is also an object of X(w); therefore we will define

%?) w) = %(w)/(X(W)’X?)(W)), i.e., the localized site (see §§2.3 and 2.4).
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The morphisms p1, p2 defined above induce continuous morphisms of sites:

x (w)

/' r1 P2\
x( (w) x™ w)

We denote by ELE,’ ) the universal generalized elliptic curve over X" (w) and by
e € —> £/H the natural universal isogeny over Xér)(w). Let 7(&), T(E/H), ’T(é‘v({))
denote the p-adic Tate modules of £, £/H, Ev(v’ ) seen as continuous sheaves on .’{y) (w) and
X (w) respectively. Then we have maps

P5(TEDN) =T(E/m) <= pi(TED) =T (£).

which induce the following commutative diagram:

(r) A ~ ~ dlog ~
2 (T((gwr/ ) ® Ogg(r)(w/)) = T(€&/H)Y)® Ox;’)(w) — wg/H® an;’)(w)
»1«772/ ®Id $d(me) @ Id
"V -~ ~ Vi o dlog -~
pT (T((gwr ) ) X Oxér)(w)> = T(S ) ® O%E’)(w) — wg ® O%y)(w)

For the rest of this section, we suppose that r = 1.

Lemma 5.1. Let now k € W*(Bg) be a weight with associated integer r =1 such that w
as above is associated with k. Then the above diagram induces morphisms:

et ps (MU W) — pi(MB W), 7e: p (FFDLEW)) — P (FE DLW D)),

where M(_llg(w) is the sheaf $Homg (.7:(1)/, (@x(l)(w)®B)(7k)) on XMW (w) defined in

xlr)(w)
§ 4.1, such that the diagram

RO ,
Py ) S ps(MDw))
{7y {7y
O
Pi@L ) S pr(MDw)),

where 8 is the map defined in Lemma 4.9, is commutative.

Proof. Let FO&) := Im(dlog: TEY) ® (5%21)(W) — a)g/xél)(w)) as in Lemma 4.3 and

denote as FY(/H) the analogue object constructed with £/H instead of £. Then, if
C1 is the canonical subgroup of £ and C] is the canonical subgroup of £/H we have a
natural commutative diagram

Epl =5 (E/H)Ip]
U U
Cq = C/l

where the map on canonical subgroups is an isomorphism. It follows that the dual
isogeny m,”: (§/H)" — £ induces an isomorphism of torsors F’((E/H)V) — F(EY)

https://doi.org/10.1017/51474748013000364 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748013000364

260 F. Andreatta, A. lovita and G. Stevens

and, hence, an isomorphism
1 1
7 (M ) — p (M ).
Dualizing with respect to (535(1)(W)®B and identifying the dual of /\/l,(cl)(w) with /\/l(_l,z w)

we get the first map ¢, which is an isomorphism.
The map 7): T((E/H)Y) — T(£Y) induces a map To((£/H)Y) — To(£Y) and,

hence, a morphism 7,": p} (f{ (Akym(w))) — ps (f{ (Ak,m(w/))) for every m € N which,
dualized, induces the second morphism
7o p5 (75 (DL ) ) — pi (71 (DLu(m) ).
As the diagram
To(E/H)Y) — F(E/HY)
%24 Ly
ToEH —  FE
is commutative, the above maps ,” are compatible with the morphisms
1 . = A
P3 (M) — p5 (1 (AL))) B0 O
and
1 . = A
PE (M 0) — 3 (75 (AL0))) B Oy

defined using dlog"** (see Proposition 4.8 and the following discussion). Dualizing the
compatibility of the two maps, 7y in the statement via § follows. O

Now we define the Hecke operators T, for £ not dividing pN and U, for £ dividing pN
on modular forms and cohomology. More precisely Ty for £ not dividing pN and U, for £
dividing pN on overconvergent modular forms are respectively defined as the maps

Ty, Up: HO(XW). 0k(,)) — HOXW). 0}f,,)
» ik (s & G1 .
as follows. Recall that by the definition Ox ) = 1 (/\/l i (w)) [1/p]; see
Definition 4.6. Using the fact that R'j1 , = 0 for i > 1, by Corollary 2.6 we may identify
i . G1 ~ 171i G
H (X)), 0f,,) ZH (X0, j1a (MU o)) /) T 2 H (2D '), ME 0w)11/p1)

and similarly H(X(w), w}f,,)) = H (XD w), MDD wHI1/p1)* for every i € N. The maps
Ty, U, are defined using these identifications and takmg G1-invariants and inverting p in

H (x D), MOW)) — H (2D W), psMY o))
T w1 (X0 ), p MY ) L/pD) = H (XD (w), prept (ML w)))
— H (XD w), MY w)).

The equality H’ (%gl)(w) PiGi( ./\/l( (w)))) ( XD (w), p1, *pl(./\/l( (w))) follows from a
Leray spectral sequence argument using the vanishing of R" D1.x, for h > 1, proven in
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Corollary 2.6. The last map
H (2D w), prapi MY w)1/pD) — H (XD w), MB w)[1/p])

is the map on cohomology associated with the trace map p1 .pj(F) — F defined in (1)
and can be seen as the trace map for Faltings’ cohomology (H').
Now we assume that k € W*(Bk). We have a Gg-equivariant isomorphism

HO (X(w), 0}(,,)) = HO (X(w), 0 &xCp)

and that the latter is provided with Hecke operators given in [4] (strictly speaking only
the operators T¢, for £ not dividing pN, and U, have been defined in the above citation,
but the same approach provides also operators U, for ¢ dividing N). Recall that in (5) of
§4.2 we defined a map of sheaves on X(w)

8 w): v*(Dy) —> g,

for w adapted to k, and p" is a uniformizer of K. Moreover in § 4.3 we have calculated the
cohomology group

H (X(w), 0k, (1) ZHO (X(w), 0+2)&xC,).
Combining the remarks above we have an BK®KCp—linear map, which is Gg-equivariant:
Wi s H (X),v* (Do) (1) — B (X(w), 0*?) & C,.
We have:

Theorem 5.2. The isomorphism HY (X(w), a);(kw)) ~ HO (X(w), wL’k@)KCp) and the map
i commute with the Hecke operators Ty and Uy defined above.

Proof. Due to the compatibility proven in 5.1, the map on cohomology
induced by §)(w) is compatible with Hecke operators. It suffices to prove that
the isomorphisms Ho(ff(w),w;’(kw)) = HO(X(W),a)fV’k@K(C,,) and H! (f{(w),w;re’(kw)(l)) =
HO (X(w), 0{;**2)&kC, are compatible with the Hecke operators on '* defined in
[4] (considering also the variant for U, with ¢ dividing N not explicitly treated
in the above citation). By Theorem 4.11 this amounts to proving that the trace
map pi,x o pj (Ox(l)(w)> :pl’*<ox(1)(w)) — Ox(l)(w) is compatible with the trace map
[4
pl,*(O PG (W)) — O x) (- This follows, for example, from the explicit description of the
4

trace given after formula (1) in § 2.5. O

6. The Eichler—Shimura isomorphism

Let U C W* be a wide open disk with universal weight ky and ring of bounded analytic
functions Ay. We have described in Lemma 3.20 the following sequence of maps:

H' (I, Dy) &k C,(1) = H' (X(N, p), Dy)&xCp(1) —> H! (x(w), v*(DU(l))).

These maps are equivariant for the action of the Galois group Gg and the Hecke
operators and (1) denotes the usual Tate twist. Now let us recall that in (5) of §4.2 we
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defined a map of sheaves

82, (W) v (Dy) — kY

on X(w). Therefore, by Theorem 4.11 we have maps
HY (X(w), v* (Dy) @ K(1)) — H (X(w), 054 (1) =H (X(w). 00 72) & C,.

These maps are also equivariant for the action of Gx and the Hecke operators due to
Theorem 5.2. Putting everything together we have a map

Wy HY(I, Dy) @k Cp(1) — HO(X(w), 0¥ 2) &4C,.

This map is equivariant for the action of Gg and the Hecke operators and commutes
with specializations. In other words if k € U(K) is a weight, in similar way we obtain a
map

W: HY (I, Dy) ®k Cp(1) —> HO(X(w), )+2) @k C,,

such that the following diagram is commutative:

H! (I, Dy)&xCp(1) % HO(X(w), 0}*+?)&xC,

1 Pk b ok

HY (I, D) @k Cp(1) 25 HO(X(w), 03*+2) @k C,

The goal of this section is to study the maps ¥ using the map ¥y .

6.1. The main result

Let us fix a slope h € Q, h > 0 and an integer kg such that & < kg + 1 and think about kg

as a point in W*(K). We let U C W* be a wide open disk defined over K such that:

(a) ko € U(K).

(b) Both H! (F, DU) and HO (X(w), wjv’kl’+2) have slope h decompositions and
H (1, Dy) ™ #0.

We denote by ky the universal weight of U, denote by Ay the ring of bounded
rigid functions on U and define By := Ay ®, K. Then By is a K-Banach algebra and
moreover it is a principal ideal domain.

We let H! (F, DU) ) and HO (X(w), a)fv’kU)(h) be the parts corresponding to slopes
smaller than or equal to & of the respective cohomology groups. Both these modules are
free By-modules of finite rank and ¥y induces an (BU®KC,,)—Iinear map

v H' (I, Dy) " &xC,(1) — HO (X(w), 0l 2)P&C,

compatible with specializations and equivariant for the action of Gx and the Hecke
operators Ty, for (¢,Np) =1, and U, for ¢ dividing N. We denote by My the
kernel of ¥y and by Mgl) the kernel of lI/L(,h). Then My is a (BU®KCP)—submodu1e of
H! (F, DU) ®K(Cp(1), preserved by Gk and the Hecke operators Ty, for (¢, Np) =1, and
Uy, for ¢ dividing N, and Mgl) is a (BU®(CP)-subm0dule on which Up-acts by slopes
smaller than or equal to h. We have:
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Theorem 6.1. (a) There is a non-zero element b € B := (BU®(C,,) such that b
annihilates Coker(lI/l(]h)).

(b) Let Z C U(C,) be the (finite) set of zeros of b € B in (a) above and let V.C U be a
wide open disk defined over K satisfying: V(K) contains an integer k such that k > h — 1
and V(C,) NZ = ¢. Then restriction to V induces an exact sequence

e .
0— MY — HY(I", Dy) &k Cy(1) > HO (X(w), w);F2) & C,) —> 0.

(c) For a wide open disk V as in (b) above let us denote by x™V the following
composition:

Gx % v/ v, B} —> (Bv&®C,)*,

where y is the cyclotomic character of K. We call X\‘}ni" the universal cyclotomic
character attached to V. Then the semilinear action of Gg on the module Sy =
Mgl)()(_l(x‘l}niv)_l) is trivial. Moreover Sy is a finite, projective (BV®(C1,)—module with
trivial semilinear Gg-action. Obviously Mgl) =Sy(x - X‘l}niv) as semilinear Gg-modules.

(d) For each V as in (b) and (c) above there is a non-zero element 0 # B € By such
that the localized exact sequence

0— (SvOx x8™), — (H(T, Dv)"’)é;(cpa))ﬂ — (0 (xw), wL’kV)(")éz»Cp)ﬂ —0
1s naturally and uniquely split as a sequence of Gg-modules.

Before proving the theorem let us point out some of its consequences.

Corollary 6.2. Assume that we have U, kg, h as at the beginning of § 6.1.

(a) There exists a finite set of weights Z' C U(C,) such that for every k € UK) — Z' we
have a natural isomorphism as Cp-vector spaces equivariant for the semilinear Gg-action
and the action of the Hecke operators Ty for £ not dividing Np and U, for € dividing Np:

h ~ + h) ~
WIS HY (I, D) " @k Cp(1) Z Si(k + 1) @ HO (X(w), 0]42) P &4,
Here Sy is a finite Cy-vector space with trivial, semilinear action of Gk and an action of
the Hecke operators.
(b) The set Z' in (a) above contains the integers k € UNZ such that 0 <k <h—1.

Proof of Theorem 6.1. Let k € U(K) N Z such that k > 0.

We will first recall Faltings’ version of the classical Eichler—Shimura isomorphism; see
[9]. Let us recall the ind-continuous sheaf Vi = Sym*(7) ®z, K on X(N, p)ket which
can also be seen as an ind-continuous sheaf on X(N,p). Let k > 0 be an integer.
The main result of [9] is that there is a C,-linear, Gg-equivariant isomorphism (the
Eichler—Shimura isomorphism)

Dy Hl(X(N,p)%t, Vi) ®k Cp(1)
=HO(X(V, p), o*?) @k C, ® HY (XN, p), 0 ) @k Cplk + 1).
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We have a natural isomorphism H! (X(N, p)%et, Vk(l)) ~ H! (F, Vk(l)) compatible with
all structure and therefore we have a natural diagram

H'(I Dy)&xCp) ~%  HO(X(w). 0l *2)&C,

A \
H (I, D) @k Cp(1) 5 HO(X(w), 0]4+2) @k C,
A 0

p20oPx
—

HY(I, V(D)) ®% C, HY(X(N, p), *T2) @k C,

where the left vertical maps are induced by the specializations Dy —> Dy —> Vi (see
(4) in §3.1), as in the top right map. The lower right map is a restriction (let us recall
that if m > 0 is an integer, o™ |x ) = a)jv’")

Claim 1. The above diagram is commutative. In fact we know that the upper
rectangle is commutative so it would be enough to show that the lower rectangle is
also commutative.

Proof. For this we have to briefly recall (in a slightly different formulation) the proof of
Faltings’ result, namely the definition of the map pa o @;. We first notice that arguing as
in the proof of Proposition 3.19 we have a natural isomorphism (as X' (N, p) is proper and
semistable)

H' (XN, p)X V(1) @k Cp —> HY(XW, p). Sym" (1) &Ox v,y ®0, K(1)).
As in Definition 4.6 we define

©xN.p) = Vi (0)Oom,  Oxwp)-

We then have the Hodge—Tate sequence of sheaves of @x(N,p)—modules on X(N, p)
00— a);e(lN’p)(l) —> T®O:{(N’p) —> a):{(N,p) —> 0.

This sequence is not exact but it becomes exact if we invert p, or if we tensor with K. We
obtain

0 — (Wxly, ® K)(1) — T&O0xw.p) ®0x K — (@) ® K) — 0.

One shows by induction that for every m > 1 we have a surjective map of
(Oxw,p) ® K)-modules:

Sym“(M&Oxw.p) @0y K(1) —> oy, @ K(D),
which induces the morphism
H (X(N. p). Sym* (1) &Ox (v p) ®0, K(1)) — HY (X, p), oy, ® K(D)).

Adopting an approach similar to that of the calculations in the proof of Theorem 4.11,
we calculate H! (%(N,p), wé‘e(Nﬁp) ® K(l)) using the spectral sequence

H (X(N, P, ROy () © K(l))) — HM (XN, p), oy ® K(D)).
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For a + b =1 we have an edge morphism
H! (X, p), oxvp ® K1) —> B (XN ), RYvxon .o (0 @ KD) ).
As in the proof of Theorem 4.11 we have
R v py. s (0 py ® K(D) = SR Wy py.s (Oxvp) ® K(D)) = 0 2&C,.
Therefore we obtain a natural composition
H' (XN, p). Vi@ Ox (v py (1)) — H (XN, p). oy ) ® K(1))
— HY(X(N, p), o"1?) ®k Cp,

which is the map pa o @, appearing in [9].

Let us now see what happens on X(w). We define 7, := v*(7). We have a natural map
v* (’Dk) —> SymX(T;,) = v* (Vk) (associated with (4) in §3.1) and the composite with
Symm(’]’)@)@xw,p) QoK — a);‘e(N’m ®K is the morphism &, (w): v*(Dy) —> a)’a‘e(N’p) ®K
of (5) of § 4.2. Moreover we have the following natural commutative diagram of sites and
continuous functors, inducing morphisms of topoi:

XN, ket Ty, p)
s Jv
Xkt ZW o xw)

Here u, v are induced by the natural morphism of log formal schemes X (w) — X (N, p).
Let us recall from Theorem 4.11 that we have isomorphisms

HY (X(W), 0§y (D) = HO (X5, RNy 4 (@, (1) = HO(X(w), 0]52) @k C,.
We also have the following sequence of isomorphisms of sheaves on X(w):
RN, (v (@57 ) @ K(D) ) = Rz, (0657 (D)
o~ wjv,k+2 ® Cp ~ M* (Cl)k+2 ® Cp)
= /L* (Rl\/x(]\/,p),* (w.’kf—’(—lap) ® K(l))) .

Finally, putting together what we have done so far, we have the following commutative

diagram:
H' (X(V, p), Vi®Ox vy (1)) —>  H (X(w), Sym"(Z;,)&0x) ®0, K(1))
J l
HY (XN, p). oy, ®KD)  —> HY (X(w), 0§y (1)
l =
HO(X(N. p). 2 @ K) @ C, > HY (X(w), 0*"%) @k C,
where ¢ is the restriction map. This proves Claim 1. |

Remark 1. Let us suppose now that 4> 0, h € Q is a slope such that both H! (F, DU)
and H (X(w), a)jv*kUJrQ) have slope decompositions. Let k € U(K) N Z, k > 0. Then the
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diagram

- " v 0 F o2\ ()
(I'.Dy) " &kCp(1) —  H’(X(w), »); )V ®C,

v v
(h)
Hl (F, Dk) (h) ®k (Cp(].) L) HO (X(W), wjv,k+2)(h) Rk Cp
\ T

p20Py
—

H' (I, vi(1)) " ®k C, HO (XN, p), **2)? @k C,

is commutative.

Claim 2. Let U CW be a wide open disk, ky: Z; —> B, the universal weight,
w>0,we Q, adapted to ky and k € U(K). Let tx € By be a rigid analytic function
on U which vanishes with order 1 at k and nowhere else on U. The specialization maps
Dy — Dy and a);ﬁ;kU — a)j,;k induce the following exact sequences:

H'(I, Dy) = HY(T', Dy) — HY(I, D) — 0
and

0— HY (X(w), wfv’k‘/) l) HO (X(w), w;rv'k“) SN (X(w), a)jvk) — 0.

Proof. In fact the specialization maps are part of the following exact sequences:

T.ky k

3 — 0.

17e + 174 +
0— Dy —> Dy —> Dy — 0 and 0— o kv 5 ol — ol

It follows that we have an exact sequence of By-modules
H'(I, Dy) = HY(T', Dy) — HY(I", D) — H2(I, Dy).

Now let us recall that I' = I'T(N) N Ip(p) is a torsion free group; therefore it is the
fundamental group of the complement Y (N, p),c of a non-void, finite set of points in a
compact Riemann surface X(V, p),c and so it has cohomological dimension 1. It follows
that H2 (F, DU) = 0 and the first claim follows.

Let us also remark that we have an exact sequence of By-modules
0— HY (X(w), w*’kU) I 1O (X(W), a)'{"kU) o (X(w), w""k) - ut (X(w), a)T’kU).

As X(w) is an affinoid subdomain and a)jv’kU is a sheaf of By-Banach modules by the
Appendix of [3] it follows that H! (X(w), ®™*¢) =0 (note that we cannot appeal directly
to Tate’s acyclicity theorem as wjv’kU is not a coherent sheaf on X(w)). This proves
Claim 2. O

Remark 2. Let U C W be a wide open disk defined over K, ky: Z; —> By, the
universal character, w > 0, w € Q, adapted to ky and h > 0,h € Q a slope. We suppose
that both H! (F, DU) and H° (X(w), a)jv’kU) have slope decompositions. Let k € U(K) N Z,
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k > 0, and let us recall the commutative diagram of the previous remark:

(h)
Yu

HY (I, Dy) P &kCp(1) -5 HO(X(w), 0]} ) P&,
\ \:
v
H' (1, D))" @k Cp(1) = HO(X(w), 0]*2)" @k C,
2 o

o,
H (1, vi())" @ €, 25 HO(X(N, p), *2) " @k C,

First let us remark that the surjective map p2 o @, induces a surjective C,-linear map

o
denoted by the same symbols H! (F, Vk(l)) *) ®k Cp P20k 4o (X(N,p), a)k+2)(h) ®xk Cp.
Then, there are two cases:

(i) k4+1 > h. Then the classicity theorems both for overconvergent modular symbols and
for overconvergent modular forms imply that ¢ and ¢ are isomorphisms. It follows
that in this case 'J/k(h) is surjective.

(ii) k + 1 < h. In this case the commutativity of the lower rectangle implies that
the image of ¥ is contained in the image of the classical forms inside
Ho (X(w), wjv’k+2)(h)®(Cp. The relationship between & and k implies that in this case

llfk(h) is not surjective in general.

Now we prove (a) of Theorem 6.1. We assume that U, w, h are as at the beginning of

§6.1. Let k € U(K) N Z be such that & < k + 1 (there are infinitely many such weights k).
Let us recall that both H! (F, DU)(h)®KCP(1) and HO (X(w), wjv'kU)(h)@)K(Cp are finite

free B := (BU®KC,,)—m0dules of ranks n and m respectively. By choosing a basis, we can

(h)

write @ as a matrix q)l(?) = (@) 1<, L<jm With ajj € B for all i, j. By Claim 2 we have

1 (1, Dg)® @k C, = <H1 (r. DU)"”é;ch) /i (H1 (I, DU)(”)®K<C,,),
and
HO (X (), wjv,k+2)(h) &xC,
~ (HO (X(w), wfv’kU”)(h)éoKCp)/tk (HO (X(w), w;rv,ku+2)(h)®KCp)’

where let us recall that we have denoted by #; an element of B which vanishes with order
1 at k and nowhere else in U.

Moreover Wk(h) = (a,-j(k))i’j. The second remark above implies that n > m and the
matrix lI/k(h) has rank exactly m, i.e., there is an m x m-minor of 'lll(]h), 0, whose
determinant has the property det(Q)(k) # 0. Therefore b := det(Q) # 0, b € B has the
property that bCoker(lI/l(Jh)) =0.

Let us now prove (b) of Theorem 6.1. Let Z denote the set of zeros of b and let V.C U
be a connected affinoid subdomain defined over K such that V(C,) N Z = ¢ and such that

V(K) contains an integer k > h — 1. Then blyx,c, € (BV®K(CP)X; therefore the following
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sequence:

. l]/(h) . R
0— MY — H(I, Dy) P&k C,(1) 25 HO (X(w), 0} 7 +2) P& C, —> 0

is exact, where we have denoted by Mgl) the kernel of lll‘gh). As
HY (X(w), a)jv'kV+2)(h)®K(Cp is a free (BV®K(C[,)—module of finite rank the above exact
sequence is split (as a sequence of (BV®K(C[,)—modules ignoring for the moment

the Gg-action). Therefore Mgl ) is a finite projective (BV®K(CP)—m0dule and because
(BV®K(CP) is a PID, M%,h) is a finite and free (BV®K(CP)—m0dule of finite rank.

Remark 3. In fact we also have a localized exact sequence of By-modules (0 # b € B is
the element chosen in (a) above)

h) . h) A
0— (M), — (1" (1. Do) &xCp1)) — (H(x(m), 0}*2) VxC,) — 0.
As in general b is not invariant under Gg, the above exact sequence is not
Gk-equivariant.

Now we prove (c) of Theorem 6.1. Let V be as in the theorem and define Sy :=
Mgl) (X_l(-)((‘}niv)_l). It is a finite free (BV®K(C,,)—module of rank say ¢ =n — m endowed
with a continuous, semilinear action of Gg. Let us briefly recall the so called Sen’s theory
in families; see [17], [18] and also the § 2 of [16].

We assume (to simplify the exposition) that K contains a non-trivial pth root of 1.
Let R be an affinoid K-algebra, and M a finite free R®K(Cp—module of rank ¢ with a
continuous, semilinear action of Gg. The action of Gg on R®K(Cp is via its natural action

on C,.

Let K’ C C, be a finite extension; we define Hg' := Ker(x: Gk — (1 + pZ,)) and
Iy = GK//HK“ Also K(;o = FHK/ and I?éo = [I;IK,'

We define

Wi (M) := M.

Then, if K’ is large enough (but still a finite extension of K) then WK&) (M) is a
free IA{éO@KR—module of rank ¢ and the natural map CP®1?/OOVAVKAO (M) —> M is an
isomorphism.

There is a finite extension K’ of K (possibly larger than in the previous step) such
that WK&; (M) has a basis {e1, e, ..., e4} over IA{’OOQAZ)KR such that the K’ @ R-submodule
W, generated by this basis in VAVKAC (M) is stable by I'ks. If we denote by y a topological
generator of Iy, we define the linear endomorphism ¢ € EndKr®KR(W*) by

_log(y”)
- log(x(y?))

We extend ¢ by linearity to VAVKéO (M), where it is independent of all the choices and
whose characteristic polynomial has coefficients in R. It is called the Sen operator

for some r > 0.

associated with M. Its importance consists in its formation commuting with base change
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and for r large enough the action of y”" on W, being determined by

7" lw. = exp (10g(x (7)) .

We will apply the theory above as follows. Let Z C U(C,) be the finite set of zeros of the
function b € B above and let V C U be a wide open disk defined over K which contains an
integer kK > h — 1 and such that V(C,) NZ = ¢. Let By := Ay ®o, K, where as usual Ay
denotes the algebra of bounded rigid functions on V. Let

Sy = My (x - ™).

Let us recall that Sy is a free (BV®K(CP)-module of rank g with continuous, semilinear
action of Gg.

Let ¢y denote the Sen operator attached to Sy and let K’ be a finite, Galois extension
of K in C, such that:

(1) WK&; (Sy) is a free (AVQAZ)KIA(éO)—module of rank g,

(ii) there is a basis {e1, e2,, ¢4} of VAVK/oc (SV) over (AV®KIA({>O) such that W, := (K’
By)e1 + -+ + (K’ ®k By)e, is stable under I,

and

(iii) the action of y on this basis is given by

y(ei) =exp (IOg(x (y))qb) (e;) forevery.1<i<gq,
where y is a topological generator of I'k:.

Let us write the matrix of ¢y in the basis {e1,e2,...,e;} as (O‘U)Ki,qu €
Mqu(Kéo‘é’KBV)'

Let now k € V(K) be an integer such that k > h — 1 (there are infinitely many such
weights). We have an exact sequence of (BV®K(CP)—modules, with Gx and Hecke actions

0 — Sy — HY(I, Dy) P&k C, (1) (x T (™)) —

(O

—_ HO (X(W), w;f"),kv+2) ®K(Cp (X_l(x‘l}niv)_l) — 0.

We now specialize the sequence at the weight k, i.e., tensor over By with K, for the
map By —> K sending o — a(k). As usual we denote by #; a generator of the kernel of
the above map which does not vanish anywhere else in V. Because in the above exact
sequence all modules are free (BV®(Cp)—modules, specialization gives an exact sequence.
Comparing with Faltings’ result above we obtain the following commutative diagram
with exact rows:

l[/(h) R
H' (1, D) ? @k Cp(—k—1) = HO (X(w), F2)P&C,(~k—=1)  — 0
= pa
1 ) (202" g ENG!
H' (I, V(D))" @k Cp(—k—1) ~— = HY(XWN,p), o)V @ Cp(—k—1) — 0
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Therefore we have a natural isomorphism, which is Gg and Hecke equivariant:
Sk = Sy/uSy = Ker (W) = Ker((p2 0 #)) = H' (XN, p), 0 )" @ C,.
The exact sequence 0 —> Sy BN Sy —> Sy —> 0 induces the exact sequence
0— WK&; (Sv) N WK&) (Sy) — WK’OQ (Sk) — H' (Hg, Sv).

The theory of almost étale extensions implies that H! (HK/,SV) =0 and therefore if
we denote by ¢kA the Sen operator attached to Sk, then the image of {61,/\6’2, S eg)
is a basis of W/ (Sk) in which ¢, has matrix (aij(k))lgi,qu' But Wk, (Sk) =
IA{(’X,QAZ)KHl (X(N, ), a)_k); therefore ¢y = 0. It follows that a;j(k) =0 for infinitely many
k € V(K); therefore a; =0 for all 1 <i,j <gq. It follows that ¢y (e;) =0 which implies
that y(e;) = e; for all 1 <i < g. Therefore the free K’ ® By-module of rank g, Wi, is
equal to (Sy)%K, ie., Sy is a trivial Gg-module. We supposed that K'/K was a finite
Galois extension; therefore by étale descent, Sy is trivial as a Gg-module. It follows that
Mgl) = V()( . X‘Bm") as Gg-modules, where Sy is a free (BV®K(CP)—m0dule of rank g with
trivial Gg-action.
Finally let us prove (d) of Theorem 6.1. We define

H:=Homg,gc ) (HO (X(w), wj‘;kV+2)®KCp, Sy (x - X“}niv)).

Then H is a free (BV®(C[,)—module of finite rank with continuous, semilinear action
of Gkg. Moreover, the extension class of the exact sequence in (b) corresponds to a
cohomology class in H! (GK, H). If we denote by ¢ the Sen operator of H, a result of [17]
implies that det(¢) € By annihilates this cohomology group. Moreover det(¢) # 0; so if
we localize the sequence at this element it will split naturally as a short exact sequence
of Gg-modules. This finally ends the proof of Theorem 6.1. O

Proof of Corollary 6.2. Let us assume the hypothesis of the corollary, i.e., we have
U, h satisfying the assumption there. Let Z C U(C,) be the finite set defined in
Theorem 6.1(b) and let first k € U(K) — Z. Then there exists a wide open disk V C U,
defined over K such that V(C,) N Z=¢ and k € V(K). By Theorem 6.1(c) we have an
exact sequence of (BV®K(CP)—modules with continuous semilinear Gg-action

0 —> Sy (x - xi™V) — HY(I", D{P) &k C, (1) — HO(X(w), 0} ¥ T2) P&k C, —> 0.
As k € V(K) we may specialize this sequence and we obtain an exact sequence of

Cp-vector spaces with continuous, semilinear action of G:

0 —> Si(k+ 1) — H'(T, D) P& C, (1) — HO(X(w), 0]:*+2)&xC, —> 0.
Now k € V(K) C UK) C W*(K) so k is an accessible weight associated with a pair
(s, ). Then it follows that if s # —1, the character x**! is a character of infinite order;
therefore by the main result of [20], the above sequence is naturally and uniquely split as
a sequence of Gg-modules. Therefore we choose Z' :=ZU{k e UK)—Z | k= (s, i), s # —1}.
Then Z’ is finite and the corollary follows. O
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Finally, in this article we do not give a precise geometric interpretation of the
By-module Sy of Theorem 6.1, but we prove the following lemma. With U, h, Z' and
V as in Theorem 6.1, we denote by

Sv :=H" (X(w), 0" ® 2x(,/x) C H (X(w), 0} F2),

the Ay-module of families of overconvergent cusp forms over V. It is a Hecke
submodule of the By-module of families of overconvergent modular forms over V,
My := HO (X(w), wjv’kv+2), and we have:

Lemma 6.3. Let ¢ be a positive prime integer. Then the characteristic polynomials of
Te, if € does not divide Np, and of Uy, if £ divides Np, acting on ng) and on Sgl) are
equal.

Proof. Let us first consider an integer weight k € V such that k > 2 — 1 and let us recall
([9]) that the natural Poincaré pairing between H! (F, Vk(l)) and Hcl, (1", Vk(l)) induces
Serre duality between H! (X(N, D), a)’k) and HY (X(N, D), o ® .Q}%(N,p)/,(). Therefore we
can identify H! (X(N, D), a)_k) with the K-dual of H° (X(N, p), of ® .Q)%(NJ,)/K% and so
the characteristic polynomials of Ty and Uy respectively acting on H' (X (N, p), a)_k) and
HO (X(N, p),o*® .Q)l((N’p)/K) are equal.

Now let Py (T) € BylT], for i =1, 2, be the characteristic polynomials of Ty if £ does
not divide Np and of U, if ¢ divides Np, respectively, acting on Sg,h) and S(‘fl). IfkeVis
an integer weight such that k > & — 1, then the characteristic polynomials of T, and Uy
acting on

h h) ~ i\ (h h h) ~ h
S /Sy = HY (XN, p), ™)™ and on S /S = HO (XN, p), o @ 23y )"

are Py 1(k) and Pg2(k) respectively. By the above argument, P¢ 1(T)(k) = P o(T)(k)
for infinitely many k € V; therefore Py 1(T) = Py o(T). Here by P¢ 1(T)(k) we mean the
polynomial obtained by evaluating the coefficients of P, 1(T) at k. O

6.2. On the global Galois representations attached to overconvergent
eigenforms

In this section we give a geometric interpretation of the Gg = Gal(Q/Q)-representation
attached to a generic overconvergent cuspidal eigenform.

Let us start by fixing a slope h > 0, h € Q, and a wide open disk U C W* as in the
statement of Theorem 6.1.

Let us recall (see §5) that we may think of I' as the fundamental group of Y(N, p)c
for a choice of a geometric generic point; therefore we have canonical isomorphisms of
topological By-modules

H' (I Dy) =H' (XN, p)E*, Dy) =H' (XN, p)§*, D).

Let us remark that the last By-module has a natural, continuous, By-linear action
of Gg with the property that its restriction to Gg (seen as an open subgroup of a
decomposition group of Gg at p) is what we denoted in §5 by H! (X(N, p)%gt,D).
Moreover, as the Gg-action commutes with the action of the Hecke operators, and
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in particular with the action of U,, it induces a Gg-module structure on the finite
free By-module Hl(F, D)™ . We also denote by HI} (F, DU) the image of the natural
map HC1 (F, DU) — H! (F, DU). Then the cohomology group HC1 (I', Dy) has a natural
interpretation as étale cohomology with compact supports and thus inherits a natural
structure as Gg and Hecke module. Moreover, since the map HC1 (I', Dy) — HY(I", Dy)
is both Gg and Hecke equivariant the group H[} (I', Dy) also inherits a natural
structure of Hecke—Galois module for which the above map is Hecke-Galois equivariant.
Moreover, U will now be chosen such that both H! (F, DU) and HI} (F, DU) have slope
< h-decompositions.
We have:

Theorem 6.4. (a) For every positive prime integer £ with (£,Np) = 1, the
Gg-representations H! (1", DU(I)) and H;(F, Dy (1)) are unramified at £.

(b) Let us fix £ as in (a) above and denote by ¢g a geometric Frobenius at £ and by Ty the
Hecke operator, both acting on HI} (F, DU(l))(h). Then the characteristic polynomials
of @¢ and Ty are equal.

Proof. (a) is clear as X(N, p)g, has a smooth proper model over Spec(Z¢). For (b),
let us denote by P;(T) € By[T],i = 1,2, the characteristic polynomials of ¢, and T,
respectively. For every k € UNZ with k > h+1 we have natural isomorphisms, equivariant
for the Gg and Hecke actions:

H} (I, D))" /1y (1. Dy)® = 1} (1, D) = HL (1 i) ™.

Moreover the characteristic polynomials of ¢, and T, on the last group are P1(T)(k) and
P2(T)(k) and by Theorem 4.9 of [7] they are equal: P1(T)(k) = P2(T)(k). As there are
infinitely many weights k as above in U, it follows that P1(T) = Po(T). O

Let now Z' C U(C)) be the finite set of weights of Corollary 6.2.

Corollary 6.5. Let k € U(Cy)—Z" and let f be an overconvergent cuspidal eigenform (for
all the Hecke operators) of weight k+2 and slope smaller than or equal to h. Let Ky denote
the finite extension of K generated by the eigenvalues of f for all the Hecke operators.
Then HY (F, Dk(l));h) is a Kr-vector space of dimension 2 with a continuous action of the
absolute Galois group of Q, Gg, isomorphic to the p-adic Gg-representation attached to
f by the theory of pseudo-representations.

Before starting the proof of this corollary, let us explain its notation: we denote by
T the K subalgebra of the K-endomorphism algebra of H! (1", Dk(l))(h) generated by the
images of T, for all positive prime integers £ such that (¢, Np) =1 and the images of
U, for ¢ dividing Np. The overconvergent cuspidal eigenform f determines a surjective
K-algebra homomorphism T —> K sending T; and U, to their respective f eigenvalues.

Then we define H! (I, Dk(1))]£’” =H (I, Dy(1)) " ®r K;.

~

Proof. As f is an overconvergent cusp form, we have W; := H! (F , Dk(l));h)
1 (h)
H, (F,Dk(l))f )
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In order to prove that Wy is isomorphic to the p-adic Gg-representation associated
with f by the theory of pseudo-representations, it would be enough to show that Wy has
dimension 2 as a Ky-vector space and that for all the primes £ not dividing Np, at which
Wr is unramified (see Theorem 6.4), the characteristic polynomials of the geometric
Frobenius ¢ at £ and of the Hecke operator Ty, acting on Wy, are equal.

The statement on characteristic polynomials follows from Theorem 6.4 by
specialization at weight k.

For the statement referring to the dimension of Wy, we consider Wy ®k C, and forget
the global Galois action. Let us recall that the Hecke eigenvalues of f determine its
g-expansion up to multiplication by a constant (in K) and therefore by the g-expansion
principle for overconvergent modular forms, the eigenspace for T in H° (X (w), wj'v'k+2)(h)
determined by the eigenvalues of f is one dimensional. Corollary 6.2 and Lemma 6.3
imply that Wy ®k C, is a free two-dimensional Kf ®x C,-module which means that Wy is
two dimensional over Kr. This ends the argument. (]

Remark 6.6. As pointed out in the introduction, Corollary 6.5 can be proved using
different methods. For example it follows from the isomorphism between the various
reduced eigencurves. The interest in this new approach is that it seems to work in higher
dimensions while the isomorphism between the relevant eigenvarieties is not known
beyond curves.
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