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Abstract Given a prime p > 2, an integer h > 0, and a wide open disk U in the weight space W of

GL2, we construct a Hecke–Galois-equivariant morphism Ψ
(h)
U from the space of analytic families of

overconvergent modular symbols over U with bounded slope 6 h, to the corresponding space of analytic

families of overconvergent modular forms, all with Cp-coefficients. We show that there is a finite subset
Z of U for which this morphism induces a p-adic analytic family of isomorphisms relating overconvergent
modular symbols of weight k and slope 6 h to overconvergent modular forms of weight k+2 and slope 6 h.
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1. Introduction

We start by fixing a prime integer p > 2, a complete discrete valuation field K
of characteristic 0, ring of integers OK and residue field F, and a perfect field of
characteristic p.

Let us first recall the classical Eichler–Shimura isomorphism. We fix N > 3, an integer
not divisible by p, and let Γ := Γ1(N) ∩ Γ0(p) ⊂ SL2(Z). Let us denote by X := X(N, p)
the modular curve over Spec(Z[1/(Np)]) which classifies generalized elliptic curves with
Γ -level structure, E→ X the universal semi-abelian scheme and ω := ωE/X = e∗(Ω1

E/X)

the invertible sheaf on X of invariant 1-differentials, where e : X → E denotes the
zero-section. With this notation we have:
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Theorem 1.1 (See [7]). For every k ∈ Z, k > 0, we have a natural isomorphism
compatible with the action of Hecke operators

H1(Γ,Vk,C
)∼=H0(XC, ω

k+2)⊕H0
(
XC, ωk ⊗Ω1

X/C
)
,

where Vk,C is the natural Γ -representation Vk,C := Symk(C2) and the overline on the
second term on the right means ‘complex conjugation’.

The elements of H1
(
Γ,Vk,C

)
are called (classical) weight k modular symbols while

the elements appearing on the right hand side of the Eichler–Shimura isomorphism are
(classical) modular, respectively cusp forms of weight k + 2.

There is a more arithmetic version of the above theorem, which we will also call a
classical Eichler–Shimura isomorphism. Namely let us consider now the modular curve
X over the p-adic field K and for k > 0 an integer, we let Vk := Symk(Q2

p) with its
natural action of Γ . Then H1

(
Γ,Vk(1)

)
can be seen as an étale cohomology group over

YK := (X−{cusps})K (see ğ 5 for more details); this Qp-vector space is endowed both with
a natural action of the Galois group GK := Gal(K/K) and a commuting action of the
Hecke operators.

Theorem 1.2 ([9]). We have a natural, GK and Hecke equivariant isomorphism

Fk :H1(Γ,Vk(1)
)⊗K Cp ∼=

(
H0(X, ωk+2)⊗K Cp

)
⊕
(

H1(X, ω−k)⊗K Cp(k + 1)
)
,

where Cp is the p-adic completion of K and the symbols (1) on the left hand side and
(k + 1) on the right hand side of the isomorphism denote Tate twists.

In this article we are mainly concerned with the p-adic variation of modular forms and
modular symbols, and in fact with the relationship between these two variations.

Let us recall that both modular forms and modular symbols have very interesting
p-adic properties; more precisely for (classical) weights k, k′ congruent modulo
(p − 1)pr−1, r > 1 an integer, we have natural congruences modulo pr between certain
modular symbols of weights k, k′ as well as between certain modular forms of weight
k+2, k′+2. This suggested (in the late 1980s) that they could be p-adically interpolated,
i.e., could be organized in p-adic analytic families of modular symbols, respectively
modular forms (at least the finite slope ones).

In the present article we would like to interpolate p-adically Faltings’ isomorphisms
Fk, i.e., construct p-adic families of such isomorphisms connecting the p-adic families of
modular symbols to p-adic families of modular forms (with Cp-coefficients).

Let us first point out that there is no obvious indication in [9] that such p-adic families
should exist. Such an indication would be if when considering the natural integral
structures of the vector spaces on both left hand and right hand sides of Theorem 1.2,
the integral versions Fo

k , Fo
k′ of Fk, Fk′ , respectively, defined in the above citation were to

be compatible with the congruences.
But let us recall from [9] that in fact Fo

k and Fo
k′ are only defined up to p-power

torsion of degree linear in k and k′ kernel and cokernel, respectively, so the question of
the compatibility with congruences does not even make sense. One of the reasons for

222

https://doi.org/10.1017/S1474748013000364 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748013000364


Overconvergent Eichler–Shimura isomorphisms

the p-power torsion appearing in the above mentioned definition is the fact that the
Hodge–Tate sequence associated with a family of elliptic curves E/R (see Lemma 4.2)
is in general not an exact sequence; it is only exact up to p-power torsion. We have
noticed in [4] (see also Lemma 4.3 of this article) that if the family of elliptic curves
E/R has a canonical subgroup over R[1/p] and all the sections of that canonical subgroup
are defined over R[1/p] then the Hodge–Tate sequence associated with E/R can be
‘corrected’, i.e., it can be functorially modified to become an exact sequence.

Using these corrected Hodge–Tate sequences, after a restriction to a strict
neighborhood of the infinity component of the ordinary locus in the modular curve
X one can find new integral structures of all the objects appearing in Theorem 1.2 which
are now compatible with congruences and therefore can be interpolated. Moreover, as is
the case with most objects obtained via p-adic interpolation, this new map is unique.

Let us now be more precise. First of all, the parameter space for the above mentioned
p-adic families, denoted as W and called the weight space, is the rigid analytic
space associated with the complete noetherian semilocal algebra Λ := Zp[[Z×p ]]. We set
T0 := Z×p × Zp, seen as a compact subset of Z2

p , endowed with a natural action of the
compact group Z×p and of the Iwahori subgroup of GL2(Zp). If k ∈W(K) is a weight,
we denote by Dk the K-Banach space of analytic distributions on T0, homogeneous of
degree k for the action of Z×p . Then Dk is a Γ -representation. The same construction can
be performed in a slightly more complicated situation: let U ⊂W be a wide open disk
defined over K, let ΛU denote the OK-algebra of bounded rigid analytic functions on U,
let BU := ΛU ⊗OK K and denote by kU : Z×p −→ Λ×U the associated universal character.
We denote by DU the BU-Banach module of BU-valued compact analytic distributions on
T0, homogeneous of degree kU for the action of Z×p . Then DU is also a Γ -representation
and we denote by Do

U the integral distributions, i.e., the ones with values in ΛU. See ğ 3
for more details.

Of course if k ∈ U(K), the two Γ -representations above are connected by a
Γ -equivariant specialization map DU → Dk. We say that the classes in H1

(
Γ,Dk(1)

)
are overconvergent modular symbols and the ones in H1

(
Γ,DU(1)

)
are p-adic families of

overconvergent modular symbols.
We would like to point out that we have introduced a small modification to the

usual way in which p-adic families of modular symbols are defined; namely we have
used a wide open disk instead of an affinoid as the parameter space for the weights
of our family. As a result the (integral) family of modular symbols H1

(
Γ,Do

U(1)
)

is a ΛU-module. Without wishing to be pedantic, we would like to stress that this
small modification is essential for the following interpretation: the integral distribution
module Do

U has a natural filtration {Fili(Do
U)}i>0 which is Γ -invariant and whose graded

quotients are artinian OK-modules (see ğ 3 for more details). This allows one to identify
naturally the p-adic family of modular symbols over U with the continuous cohomology
group

H1
cont

(
Γ,
(
Do

U/Fili(Do
U)(1)

)
i>0 ⊗ K

)
,
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which then can be identified by GAGA with the étale cohomology group on YQ of the
associated ind-continuous étale sheaf.

Due to this identification, H1
(
Γ,DU(1)

)
has a natural GQ-action and at the same

time the completely continuous action of Up allows finite slope decompositions (at the
expense of maybe shrinking U).

Following up a remark of the referee of this article, if V is an affinoid subdomain
of W then using results in the literature (for example the fact that all the reduced
eigencurves for GL2/Q known to mankind are isomorphic) one can see that there is a
natural GQ-action on H1

(
Γ,DV

)
but, unless V = {k}, we do not know how to show that

this Galois representation is the one associated with an étale cohomology group on YQ
and we suspect that this is not always the case.

Moreover, the above mentioned isomorphism of all eigenvarieties is not known in the
higher dimensional case while our method seems to work at least for all PEL Shimura
varieties.

We now continue and introduce the other main actors in this drama, namely
the overconvergent and p-adic families of modular forms. For each w ∈ Q such that
0 < w < p/(p + 1) we denote by X(w) the strict neighborhood of the component
containing the cusp ∞ of the ordinary locus of width pw in the rigid analytic curve
(X/K)an(see ğ 2 for more details). For every k ∈W(K), in [4] we have shown that there
exist a w as above and an invertible, modular sheaf ω†,k

w on X(w) such that if k ∈ Z then
ω†,k

w
∼= ωk|X(w). We call the elements of H0

(
X(w), ω†,k

w

)
overconvergent modular forms of

weight k (and radius of overconvergence w). In [4] it is shown that after taking the limit
for w→ 0 we obtain precisely the Hecke module of overconvergent modular forms of
weight k introduced by Robert Coleman [6]. Similarly, if U ⊂W is a wide open disk and
kU its universal weight, there is a w and a modular sheaf of BU-Banach modules ω†,kU

w
such that the elements of H0

(
X(w), ω†,kU

w

)
are p-adic families of overconvergent modular

forms over U.
Here is the main result of this article.
Fix U ⊂W∗, a wide open disk defined over K of so called accessible weights, namely of

weights k such that |k(t)p−1 − 1| < p−1/(p−1). Let w ∈ Q, 0 < w < p/(p + 1), be such that
ω†,kU+2

w is defined over X(w). We define a geometric (BU⊗̂Cp)-linear homomorphism

ΨU : H1(Γ,DU
)⊗̂KCp(1)−→H0(X(w), ω†,kU+2

w

)⊗̂KCp,

which is equivariant for the action of the Galois group GK = Gal(K/K) and the action
of the Hecke operators T`, for ` not dividing pN and U` for ` dividing pN, and most
importantly it is compatible with specializations. In other words, ΨU interpolates
Faltings’ isomorphisms Fk composed with the projection on the H0-component, for
classical weights k ∈ U. It follows that ΨU is unique with this property; for a more precise
statement see Remark 2 of ğ 6.1.

Let now h > 0 be an integer. We suppose that U is such that both H1
(
Γ,DU

)
and

H0
(
X(w), ω†,kU

w

)
have slope 6 h decompositions and that there is an integer k0 > h − 1

such that k0 ∈ U(K).
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If N is a BU[Up]-module which has a slope 6 h-decomposition we denote by N(h) the
slope 6 h submodule of N. All this being said, ΨU induces a morphism on slope 6 h
parts:

Ψ
(h)
U : H1(Γ,DU

)(h)⊗̂KCp(1)−→H0(X(w), ω†,kU+2
w

)(h)⊗̂KCp.

We prove the following:

Theorem 1.3. There is a finite subset of weights Z ⊂ U(Cp) such that:
(a) For each k ∈ U(K) − Z there exists a finite dimensional K-vector space S(h)k+2 on

which the Hecke operators T` for (`,Np) = 1 and U` for ` dividing pN act, on which
Up acts with slope 6 h and such that we have natural, GK and Hecke equivariant
isomorphisms

H1(Γ,Dk
)(h) ⊗K Cp(1)∼=

(
H0(X(w), ω†,k+2

w

)(h) ⊗K Cp

)
⊕
(

S(h)k+2 ⊗K Cp(k + 1)
)
.

Here the projection of H1
(
Γ,Dk

)(h) ⊗K Cp(1) onto H0
(
X(w), ω†,k+2

w

)(h) ⊗K Cp is
determined by the geometric morphism Ψ

(h)
U above.

Moreover, the characteristic polynomial of T` for ` not dividing Np and that of U` for
` dividing Np acting on S(h)k+2 are equal to the characteristic polynomials of T` and U`,
respectively, acting on the space of overconvergent cusp forms of weight k + 2 and slope
less than or equal to h, H0

(
X(w), ω†,k

w ⊗Ω1
X(w)/K

)(h).
(b) We have a family version of (a) above: for every wide open disk V ⊂ U defined

over K such that V(Cp) ∩ Z = φ, there is a finite free BV -module S(h)V on which the Hecke
operators T` (for ` not dividing pN) and U` (for ` dividing pN) act, on which Up acts
with slope less than or equal to h, and for which we have a natural isomorphism GK and
Hecke equivariant

H1(Γ,D(h)V

)⊗̂KCp(1)∼=
(

H0(X(w), ω†,kV+2
w

)(h)⊗̂KCp

)
⊕
(

SV⊗̂KCp(χ
univ
V · χ)

)
,

where χuniv
V : GK −→ Λ×V is the universal cyclotomic character of V. As in (a), the first

projection is determined by the geometric map Ψ (h)
U .

(c) If V is as in (b) above, let k ∈ V(K) and let us denote by tk a uniformizer of BV at
k. Then we have natural isomorphisms as Hecke modules

S(h)V /tkS(h)V
∼= S(h)k+2,

where S(h)k+2 is the Hecke module appearing in (a).

Let us remark that the set of ‘bad weights’ denoted as Z in Theorem 1.3 contains at
least the arithmetic weights (k, χ) in U such that 06 k < h− 1.

The theorem above has as an immediate consequence the following geometric
interpretation of the global Galois representations attached to generic overconvergent
cuspidal eigenforms of finite slope. Let U, h,Z be as in Theorem 1.3 and k ∈ U(K) − Z.
Let f be an overconvergent cuspidal eigenform of weight k and slope 6 h; in other words
f is an eigenform for all the Hecke operators T` for ` not dividing Np and for U` for
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` dividing Np. We denote by Kf the finite extension of K generated by all the Hecke
eigenvalues of f .

Theorem 1.4. The GQ-representation H1
(
Γ,Dk(1)

)(h)
f is a two-dimensional Kf -vector

space and it is isomorphic to the p-adic GQ-representation attached to f by the theory of
pseudo-representations.

Remark 1.5. As we remarked above, the result of Theorem 1.4 could be also deduced
by the fact that the reduced eigencurve defined using modular symbols and the
one defined by the completed cohomology of a certain tower of modular curves are
isomorphic. The interest in giving a new proof consists in the fact that in higher
dimensions our proof seems to work, while the eigenvariety defined using the completed
cohomology of towers of Shimura varieties is not yet known to have the expected
dimension.

The main difficulty in proving these theorems is the definition of the geometric map
Ψ
(h)
U having all the required properties. We see it as a map comparing a p-adic étale

cohomology group, H1
(
Γ,DU(1)

)
, with a differential object, namely H0

(
X(w), ω†,kU+2

w

)
.

We obtain it as a Hodge–Tate comparison map except that on the one hand the
étale cohomology group is global (on X), while the differential object only lives on
the affinoid X(w). Moreover, to make things worse the étale sheaf associated with the
Γ -representation DU is not a Hodge–Tate sheaf, i.e., it does not define (locally on X)
Hodge–Tate representations in the sense of [12]. Its cohomology is not a Hodge–Tate
GK-representation!

Let us explain the main new ideas in this article. We denote by X(N, p) and X(w) the
log Faltings’ sites associated with certain log formal models of X and X(w) respectively.
There is a continuous functor ν : X(N, p)−→ X(w) which allows us to move sheaves from
one site to another.

Let DU denote the ind-continuous étale sheaf associated with DU; it can be seen
as a sheaf on X(N, p). Then ν∗(DU) is a sheaf on X(w). At this point something
remarkable happens, namely using the Hodge–Tate sequence one can construct a natural
ÔX(w)[1/p]-linear morphism of shaves on X(w):

δ∨k (w) : ν∗(DU)⊗̂ÔX(w) −→ ω†,kU+2
w ⊗̂ÔX(w).

This fact allows us to define the map Ψ (h)
U as the composition

H1(Γ,DU
)⊗̂KCp(1) −→ H1(X(N, p),DU⊗̂ÔX(N,p)(1)

)−→H1(X(w), ν∗(DU)⊗̂ÔX(w)(1)
)

−→ H1(X(w), ω†,kU
w ⊗̂ÔX(w)(1)

)−→H0(X(w), ω†,kU+2
w

)⊗̂Cp.

The theory developed in [4] plays a crucial role in the definition of the maps δ∨k (w). It
was in fact the search for such maps which led us to discover the modular sheaves ω†,k

w .
Our finding was that the theory of the canonical subgroup can be used in order to

provide a new integral structure on the sheaf of invariant differentials of the universal
generalized elliptic curve making the Hodge–Tate sequence exact integrally (namely
without inverting p!). With this accomplished, a definition à la Katz provides the sought
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for sheaves ω†,k
w for any k and the maps δ∨k (w). We believe that this application to the

problem of making the Hodge–Tate sequence integrally exact constitutes the essence of
the theory of the canonical subgroup. This intimate relation with the existence of the
canonical subgroup explains the fact that δ∨k (w) can be defined only over X(w) and not
over the whole X(N, p).

We believe that the ideas and techniques presented here could be applied
without much change in other settings to establish overconvergent Eichler–Shimura
isomorphisms (for example for Shimura curves, for Hilbert modular varieties etc.). We
realized that a very convenient concept to use in order to define Hecke operators on
Faltings’ cohomology groups is that of the localized (or induced) topos. We made a
careful study of various localized logarithmic Faltings’ sites and showed that trace maps
can be defined (see ğ 2.4). This allows us to work in situations where we do not have
explicit descriptions of good integral models of the curves involved (for example X1(Npr)

for r > 1) and would allow extensions of these results to higher dimensional Shimura
varieties.

Let us finally remark that it would be possible to give geometric interpretations both
of the Hecke modules S(h)V and of the maps H1

(
Γ,DV

)(h)⊗̂Cp(1) −→ S(h)V ⊗̂Cp(χ
univ
V · χ)

appearing in Theorem 1.3 and we propose to provide these in a future article.

Notation. In what follows we will denote by calligraphic letters X ,Y,Z, . . . log formal
schemes over OK and by X , Y , Z respectively the formal schemes underlying X , Y , Z .
We will denote by X, Y, Z, . . . respectively the log rigid analytic generic fibers of X , Y ,
Z, . . . and by X, Y, Z, . . . respectively the underlying rigid spaces.

2. Faltings’ topoi

2.1. The geometric setup

Let p> 2 be a prime integer, K a complete discrete valuation field of characteristic 0 and
perfect residue field F of characteristic p, and N > 3 a positive integer not divisible by
p. We fix once and for all an algebraic closure K of K and an embedding Q ↪→ K, where
Q is the algebraic closure of Q in C. We denote by Cp the completion of K and by GK

the Galois group of K over K. We denote by v the valuation on Cp, normalized such that
v(p)= 1.

Now we would like to recall the basic geometric setup from [4]. Let w ∈Q be such that
0 6 w 6 p/(p + 1) and let us suppose that there is an element (which will be denoted as
pv) in K whose valuation is v := w/(p − 1). We fix an integer r > 1 and we suppose that
w< 2/(pr − 1) if p> 3 and w< 1/3r if p= 3. The assumptions of p being odd and on the
bounds for w will be fundamental in the sequel (see ğ 4.1 for example) and are related to
the existence of the canonical subgroup.

We consider the following tower of rigid analytic modular curves over K (in this
section there are no log structures):

X1(Npr)−→ X(N, pr)−→ X1(N),
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where X1(Npr) and X1(N), respectively, classify generalized elliptic curves with
Γ1(Npr)-level and Γ1(N)-level structure, while X(N, pr) classifies generalized elliptic
curves with Γ1(N) ∩ Γ0(pr)-level structure. The morphism X(N, pr) −→ X1(N) is the
one which forgets the Γ0(pr)-level structure.

We denote by Ha a lift of the Hasse invariant (for example Ha= Ep−1, the normalized
Eisenstein series of level 1 and weight p − 1, if p > 3) which we view as a modular form
on X1(N). We define the rigid analytic space

X(w) := {x ∈ X1(N) | |Ha(x)|> p−w} ⊂ X1(N),

and remark that the morphism X(N, pr) −→ X1(N) has a canonical section over X(w)
whose image we also denote by X(w). We define X(pr)(w) := X1(Npr)×X1(N,pr)X(w) and
view X(w) (respectively X(pr)(w)) as a connected affinoid subdomain of X1(N) and via
the above mentioned section of X(N, pr) (respectively of X1(Npr)).

We denote by X1(N), X (N, pr) and X1(Npr) the p-adic formal schemes over OK

obtained by completing the proper schemes over OK classifying generalized elliptic
curves with Γ1(N)-level, Γ1(N) ∩ Γ0(pr)-level, and Γ1(Npr)-level structures, respectively,
along their respective special fibers. Let X (w) denote the open formal sub-scheme of the
formal blow-up of X1(N) defined by the ideal sheaf of OX1(N) generated by the sections
pw and Ha(E/X1(N), ω) which is the complement of the section at ∞ of the exceptional
divisor of the blowing-up. Here E −→ X1(N) is the universal generalized elliptic curve
and ω is a global invariant 1-differential form of E over X1(N). Finally we let X (pr)(w)
denote the normalization of X (w) in X1(Np)(w) (see ğ 3 of [4] for more details).

Let us remark that we have constructed a natural commutative diagram of formal
schemes, rigid analytic spaces and morphisms which is our basic geometric setup:

X (pr)(w) −→ X (w) = X (w)
u ↑ u ↑ u ↑

X(pr)(w) −→ X(w) = X(w)

∩ ∩ ∩
X1(Npr) −→ X(N, pr) −→ X1(N)

In the above diagram u denotes the various specialization (or reduction) morphisms.
Finally, we have the following basic commutative diagram of formal schemes and rigid

spaces:

X (w) ν−→ X (N, p)

(∗) u ↑ u ↑
X(w) ⊂ X(N, p)

2.2. Log structures
In this section we will describe log structures on the formal schemes and rigid spaces
appearing in the commutative diagram (∗) in ğ 2.1.

Let us now fix N, r and w as above and denote by X (w),X (N, p) the formal schemes
denoted as X (w),X (N, p) in ğ 2.1. We denote by π a fixed uniformizer of K. By its
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definition, if U = Spf(RU) ↪→ X (w) is an open affine then U is either smooth over OK , or,
if U contains a supersingular point, there is an a ∈ N, which depends only on K and w,
and a formally étale morphism U −→ Spf(R′) for which R′ :=OK{X,Y}/(XY − πa).

Let us consider on S := Spf(OK) the log structure M given by the closed point and let
us denote by S := (S,M) the associated log formal scheme. Let us recall that it has a
local chart given by N−→OK sending 1→ π .

There exists a fine and saturated log structure NX on X (w), with a morphism of log
formal schemes f : X (w) := (X (w),N) −→ S = (S,M) which can be described locally as
follows. Let U = Spf(R) be an open affine of X as above; then:

(i) If U is smooth over S let us denote by ΣU the divisor of cusps of U . Then N|U is
the log structure associated with the divisor ΣU . It has a local chart of the form N−→ R
sending 1 to a uniformizer at all the cusps.

(ii) If U is not smooth over S we will suppose that it does not contain cusps; let R′ be
as above and let us denote by ΨR : R′ −→ RU the étale morphism of OK-algebras defined
above.

Let us consider the following commutative diagram of monoids and morphisms of
monoids (see [2], ğ 2.1):

N2 ψR−→ R′

∆ ↑ ↑
N ψa−→ OK

where ψR(m, n)= XmYn, ψa(n)= πan and ∆(n)= (n, n) for all n,m ∈ N.
Then the above diagram induces a natural isomorphism of OK-algebras

R′ ∼=OK{N2} ⊗OK{N} OK .

Let P denote the amalgamated sum (or co-fibered product), P := N2 ⊕N N, associated
with the diagram of monoids

N
↑

N2 1←− N

where the vertical morphism sends n→ an. By functoriality we obtain a canonical

morphism of monoids P−→ R′ ΨR−→ RU which defines a local chart of X , i.e., NX |U is the
log structure associated with the prelog structure P −→ RU . Let us consider the natural
diagram of monoids which defines P as the amalgamated sum N2 ⊕N N:

P
h←− N

↑ ↑
N2 1←− N

The morphism h : N −→ P defined by the above diagram is a local chart of the
morphism f : X −→ (S,M).
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Lemma 2.1. The morphism f : X (w)−→ S is log smooth.

Proof. Given the local description of X (w) = (X (w),NX ), S = (S,M) and f in terms
of charts, it is enough to consider the case (ii) above, i.e., we have a local chart

P−→ R′ ΨR−→ RU and ΨR is étale. By the description in [14] § 5 of log smooth morphisms,
it is enough to show that the morphism h is injective and that the order of torsion of
the group Pgp/h(Ngp) is invertible in RU . For this it would be useful to have an explicit
description of P as amalgamated sum of monoids (see also [2] § 2.1).

Let us define the sequence of monoids

1
a
∆(N)+ N2 ⊂ 1

a
N2 ⊂Q2

as follows: 1
a N2 is the (additive) submonoid of Q2 of pairs of rational numbers

( n
a ,

m
a

)
with n,m ∈ N and 1

a∆(N) + N2 is its submonoid of pairs of rational numbers of the form( n
a + α, n

a + β
)
, where n, α, β ∈ N.

We have natural morphisms of monoids N2 −→ 1
a∆(N) + N2 sending (α, β)→ (α, β)

and h′ : N−→ 1
a∆(N)+ N2 given by n→ ( n

a ,
n
a

)
such that the diagram is commutative:

1
a
∆+ N2 h′←− N

↑ ↑
N2 1←− N

It is then easy to see that P = N2 ⊕N N ∼= 1
a∆(N) + N2 by verifying that the latter

monoid satisfies the universal properties of the co-fibered product. It follows that the
above chart on R′ is explicitly given by 1

a∆(N) + N2 −→ R′ where
( n

a + α, n
a + β

) −→
XαYβπn. Of course one has to first verify that the association is well defined, which it
is. One sees immediately that the monoid P is fine and saturated (as claimed at the
beginning of this section) and moreover that the morphism h : N −→ P is, under the
above identification of P with 1

a∆(N) + N2, equal to h′; therefore it is injective and
moreover it follows that the quotient group Pgp/h(Z) is torsion free. This proves the
lemma. �

Recall that in the previous section we defined a morphism of formal schemes
X (pr)(w) −→ X (w). We define X (r)(w) := X (pr)(w), and we also let Nr −→ OX (r)(w)
denote the inverse image log structure via the above morphism and denote by
X (r)(w) := (X (r)(w),Nr

)
the associated log formal scheme. We also denote by X(w) :=

X (w)rig = X(w),X(r)(w) := X (pr)(w)rig = X(pr)(w) the rigid analytic generic fibers of the
two formal schemes. We recall that X(r)(w) −→ X(w) is a finite, étale, Galois morphism
with Galois group Gr := (Z/prZ)× and as X (r)(w) is the normalization of X (w) in
X(r)(w), we have that Gr acts without fixed points on X (r)(w) and X (r)(w)/Gr ∼= X (w). In
what follows we denote by X(w) and X(r)(w) the log rigid analytic generic fibers of the log
formal schemes X (w) and X (r)(w) respectively. Their log structures are the horizontal
ones defined by the divisors of cusps.

230

https://doi.org/10.1017/S1474748013000364 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748013000364


Overconvergent Eichler–Shimura isomorphisms

Moreover, as the formal scheme X (N, p) is semistable, its special fiber is a divisor
with normal crossings. We define the log structure on X (N, p) to be the one associated
with the divisor consisting in the union of the special fiber and the divisor of cusps and
denote by X (N, p) the corresponding log formal scheme. Moreover we define on X(N, p)
the log structure associated with the cusps of this modular curve and by X(N, p) the
corresponding log rigid space. Let us remark that the diagram (∗) of ğ 2.1, written there
for formal schemes and rigid spaces, in fact holds for log formal schemes and log rigid
spaces and it is commutative.

Corollary 2.2. The formal scheme X (w) is flat over Spf(OK); it is Cohen–Macaulay
and so in particular normal. If a= 1 then X (w) is a regular formal scheme.

Proof. See [2] § 2.1.1 (3), where we show how to reduce to [15] Theorem 4.1. �

In particular, if U = Spf(RU ) ↪→ X is an open affine of X , then the OK-algebra RU
satisfies the assumptions (1), (2), (3) (FORM) and (4) of ğ 2.1 of [2].

2.3. Faltings’ topoi

Our main reference for the constructions in this section is [2] ğ 1.2.
We will define Faltings’ sites and topoi associated with the pairs of a log formal

schemes and log rigid spaces:
(

X (w),X(w)
)

and
(

X (N, p),X(N, p)
)
, respectively, which

will be denoted as X(w) and X(N, p), respectively.
We start by writing

(
X ,X

)
for any one of the two pairs above. We will define Faltings’

site associated with this pair, which we denote by X. Namely we first let X ket be the
Kummer étale site of X , which is the full sub-category of the category of log schemes
T , endowed with a Kummer log étale morphism T −→ X (see [2] ğ 1.2 or [13] ğ 2.1). We
recall that the fiber product in this category is the fiber product of log formal schemes
in the category of fine and saturated log formal schemes, so in particular the underlying
formal scheme of the fiber product is not necessarily the fiber product of the underlying
formal schemes (see [14]).

If U is an object in X ket then we denote by U fket
K

the finite Kummer étale site attached
to U over K as defined in [2] ğ 1.2.2. An object in this site is a pair (W,L) where L is a
finite extension of K contained in K and W is an object of the finite Kummer étale site
of UL which we denote by U fket

L . Given two objects (W ′,L′) and (W,L) of U fket
K

, we define
the morphisms in the category as

HomU fket
K

(
(W ′,L′), (W,L)

) := lim−→HomL′′
(
W ′×L′L

′′,W×LL′′
)

where the limit is over the finite extensions L′′ of K contained in K which contain both L
and L′.

Now, to define X we denote by EXK
the category such that:

(i) the objects are pairs (U ,W) such that U ∈ X ket and W ∈ U fket
K

;
(ii) a morphism (U ′,W ′) −→ (U ,W) in EX (w)K

is a pair (α, β), where α : U ′ −→ U is a

morphism in U ket and β : W ′ −→W×UK U ′K is a morphism in
(

U ′
)fket

K .
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The pair (X ,X) is a final object in EXK
and moreover in this category finite projective

limits are representable and, in particular, fiber products exist (see [2] ğ 1.2.3 and [1]
Proposition 2.6 for an explicit description of the fiber product).

A family of morphisms {(Ui,Wi)−→ (U ,W)}i∈I is a covering family if either

(α) {Ui −→ U}i∈I is a covering family in X ket and Wi ∼=W×UK U i,K for every i ∈ I

or

(β) the morphism Ui→ U is an isomorphism for all i ∈ I and {Wi −→W}i∈I defines a
covering in U fket

K
.

We endow EXK
with the topology generated by the covering families defined above and

denote by X the associated site.
Finally, the basic commutative diagram of log formal schemes and log rigid spaces

X (w) ν−→ X (N, p)

(∗) u ↑ u ↑
X(w) ⊂ X(N, p)

defines a natural functor ν : X(N, p) −→ X(w) defined, say on objects, by ν(U ,W) :=(
U×X (N,p)X (w),W×X(N,p)X(w)

)
. This functor sends covering families to covering

families and final objects to final objects; therefore it is a continuous functor of sites.

Remark 2.3. Due to the mild singularities of the special fiber of the formal scheme
X (w), the site X(w) and the sheaves on it were studied carefully and they were well
understood in [2]. In the present paper however we would need to study Faltings’ site
associated to X (r)(w), for various integers r. Unfortunately we do not understand the
geometry of X (r)(w) well enough to be able to work with this site directly, so instead
we will use a trick. Let us observe that (X (w),X(r)(w)) is an object of EX (w)K

, for
all r > 1 (while (X (r)(w),X(r)(w)) is not), so we define the induced (or localized) site
X(r)(w) := X(w)

/
(

X (w),X(r)(w)
) and the sheaves on it and this will be our substitute for

Faltings’ site attached to X (r)(w). Everything will be defined and explained in the next
two sections.

2.4. Generalities on induced topoi

In this section we will recall some fundamental constructions and results from [19],
Exposé IV, ğ 5 (‘Topos induit’), in the restricted generality that we need.

Let E denote a topos, namely the category of sheaves of sets on a site S, whose
underlying category will be henceforth denoted as C and let X be an object of C. We
denote by C/X the category of pairs (Y, u) where Y is an object of C and u : Y −→ X is
a morphism in C. A morphism (Y, u) −→ (Y ′, u′) in C/X is a morphism γ : Y −→ Y ′ in C
such that u′ ◦ γ = u.

Let αX : C/X −→ C be the functor forgetting the morphism to X, i.e., for example,
on objects it is defined by αX(Y, u) = Y. We endow the category C/X with the topology
induced from C via αX and denote the site thus obtained as S/X . We denote by E/X
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the topos of sheaves on S/X and call S/X and E/X respectively the site and the topos
induced by X. We have natural functors α∗X : E/X −→ E, αX,∗ : E −→ E/X such that α∗X is
left adjoint to αX,∗.

Suppose that C has a final object f and that it has fiber products. Then we have
another functor jX : C −→ C/X defined by jX(Z) :=

(
X×f Z,pr1

)
, i.e., jX is the base change

to the X-functor. Then jX defines a continuous functor of sites jX : S −→ S/X sending
final object to final object and so it defines a morphism of topoi j∗X : E −→ E/X and
jX,∗ : E/X −→ E. In particular, j∗X is left adjoint to jX,∗. Moreover by the above citation we
have

j∗X(F)(Y, u)= F
(
Y)= F(αX(Y, u))= αX,∗(F)(Y, u) for every F ∈ E, (Y, u) ∈ C/X .

Therefore we have a canonical isomorphism of functors j∗X ∼= αX,∗ which implies
that j∗X has a canonical left adjoint, namely α∗X . This left adjoint of j∗X is denoted
as jX,! and we have an explicit description of it. Namely, for every F ∈ E/X we
have that jX,!(F) = α∗X(F) is the sheaf associated with the presheaf on C given by
Z −→ lim−→F(Y, u), where the limit is over the category of triples (Y, u, v) where (Y, u)
is an object of C/X and v : Z −→ Y is a morphism in C. As the limit is isomorphic to
qg∈HomC(Z,X)F(Z, g) we conclude that jX,!(F) is the sheaf associated with the presheaf

Z −→qg∈HomC(Z,X)F(Z, g).

2.5. The site X/(X ,Z)

Our main application of the theory in ğ 2.4 is the following. Let us recall that we denoted
in ğ 2.3 by (X ,X) any one of the two pairs

(
X (w),X(w)

)
and

(
X (N, p),X(N, p)

)
and let

Z −→ X be a finite Kummer étale morphism of log rigid spaces, i.e., a morphism in the
category X fket

K
. Therefore the pair (X ,Z) is an object of EXK

. We denote by
(
EXK

)
/(X ,Z)

the induced category and by Z := X/(X ,Z) the associated induced site.
As pointed out in ğ 2.4 we have a functor α := α(X ,Z) : Z −→ X and the associated

adjoint functors α∗, α∗. As in the category EXK
fiber products exist and the category

has a final element (X ,X), we also have a base change functor j := j(X ,Z) : X −→ Z

defined by j(U ,W) := (U ,Z×XW,pr1

)
. This functor commutes with fiber products, final

elements and maps covering families to covering families so it induces a morphism of
topoi j∗ : Sh(X) −→ Sh(Z) and j∗ : Sh(Z) −→ Sh(X) such that j∗ is left adjoint to j∗. We
further have a left adjoint j! : Sh(Z) −→ Sh(X) to j∗. More precisely, for every sheaf of
abelian groups F on Z, the sheaf j!(F) on X is the sheaf associated with the presheaf

(U ,W)−→⊕g∈HomX (w)fket
K

(W,Z)F(U ,W, g).

We have the following fundamental facts:

Proposition 2.4. For all Z as above there is a natural isomorphism of functors
j(X ,Z),!→ j(X ,Z),∗.

Proof. We divide the proof into two steps. First we construct a natural transformation
of functors j(X ,Z),!→ j(X ,Z),∗. Then we prove that it is an isomorphism.

233

https://doi.org/10.1017/S1474748013000364 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748013000364


F. Andreatta, A. Iovita and G. Stevens

Claim 1. Let (U ,W) be an object of X and let g : W −→ Z be a morphism in X fket
K

. Then
we have a canonical isomorphism: Z×XW ∼=W q Z′g for some object Z′g in X fket

K
, such that

this isomorphism composed with the morphism induced by g is the natural inclusion
W ↪→W q Z′g.

Let us first point out that Claim 1 implies the existence of a canonical isomorphism

(∗) Z×XW ∼= (qg : W→ZW
)q Z′W , for some object Z′W of X fket

K .

Thus for every sheaf F ∈ Sh(Z) we have a canonical morphism

j!(F)(U ,W)=⊕g : W→Z F(U ,W, g)−→ F(U ,W×XZ,pr1)=: j∗(F)(U ,W).

Now let us prove Claim 1. We first prove the following:

Lemma 2.5. Suppose f : U −→ V is a finite Kummer log étale map of log affinoid spaces
given by a chart of the form

P −→ B

↑ ↑ f

Q −→ A

with P,Q fine saturated monoids. We also suppose that A,B are normal K-algebras, A
is an integral domain and the images of the elements of P in B are not zero divisors.
Then if g : V −→ U is a morphism of log affinoids over f , there are an object W and
an isomorphism U ∼= V q W in the category Vfket such that the following diagram is
commutative:

U ∼= V qW

g ↑ ι ↑
V = V

where ι : V ↪→ V qW is the natural map.

Proof. Let s ∈ A be the product of the images in A of a set of generators of Q and let
us remark that the image of s in B is not a zero divisor. Then fs : A[1/s] −→ B[1/s] is
a finite and étale morphism of K-algebras such that we have a morphism of K-algebras
gs : B[1/s] −→ A[1/s] which is a section of fs. Then there is an A[1/s]-algebra C′, finite
and étale, and an isomorphism of K-algebras B[1/s] ∼= A[1/s] × C′ such that the following
diagram is commutative:

B[1/s] ∼= A[1/s] × C′

fs ↓ pr1 ↓
A[1/s] = A[1/s]

This is a well known fact but let us briefly recall the idea. As B[1/s] is a finite
A[1/s]-algebra, it is a finite projective and separable A[1/s]-algebra. Then there is a
unique element e ∈ B[1/s] such that gs(x) = TrB[1/s]/A[1/s](ex), for every x ∈ B[1/s]. Now
it is not difficult to prove that e is an idempotent which gives a decomposition first
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as A[1/s]-modules B[1/s] ∼= A[1/s] × Ker(gs). Now one proves that C′ := Ker(gs) has a
natural structure of K-algebra and the isomorphism is as K-algebras.

Let as above e and 1 − e be the idempotents which give the decomposition
B[1/s] ∼= A[1/s]×C′. Then e satisfies e2−e= 0, i.e., e is an element of B[1/s] integral over
A and therefore e ∈ B. Therefore e, 1 − e give an isomorphism as K-algebras B ∼= B′ × C,
where A ⊂ B′ ⊂ A[1/s]. But B′ is finite over A; therefore B′ = A as A was supposed
normal. Moreover C is a finite A-algebra, which is an affinoid algebra as it is a quotient
of B.

Now we endow C with the prelog structure: P −→ B
pr2−→ C, and notice that the log

rigid space W := (Spm(C),Pa
)

satisfies U ∼= V ×W and makes the diagram of the lemma
commutative.

Moreover, U −→ V is a finite Kummer log étale map; therefore W −→ V is also
Kummer log étale, as this can be read on stalks of geometric points. �

Now let, as in Claim 1, W → X,Z→ X be morphisms in X fket
K

, i.e., there is a finite
extension L of K such that W and Z are both defined over L and we have finite Kummer
log étale morphisms W −→ XL and Z −→ XL. In fact it is enough to assume that Z and
W are both affinoids (if X = X(w) this is always the case: as X(w) is an affinoid and
both maps W → X(w) and Z→ X(w) are finite it follows that W and Z are affinoids).
Moreover, as the morphism X −→ Spm(K) (with trivial log structure on Spm(K)) is log
smooth, it follows that Z −→ Spm(K) and W −→ Spm(K) are both log smooth and so X,
Z and W are all normal affinoids.

If g : W −→ Z is a morphism over X, we have a natural morphism g′ : W −→ Z×XW
which is a section of the projection Z×XW −→ W. We apply Lemma 2.5 and we get
Claim 1.

To conclude the proof of Proposition 2.4 we make the following claim:

Claim 2. For every (U ,W) object of X, there is W ′ −→W, a surjective morphism in X fket
K

with the property Z×XW ′ ∼=qg : W ′−→ZW ′, i.e., in the formula (∗) we have Z′W ′ = φ.

Clearly, Claim 2 implies that for a sheaf F on X the natural morphism j!(F)−→ j∗(F) is
an isomorphism. So we are left with the task of proving Claim 2.

Here and elsewhere if W is a log rigid space or a log formal scheme, we denote by
Wtriv the sub-space (or sub-formal scheme) on which the log structure is trivial. Given
our finite, Kummer étale morphism Z −→ X let degZ/X : Ztriv −→ Z denote the degree
of Ztriv over Xtriv. By restricting to a connected component of Z we may suppose that
degZ/X is constant equal to n. We prove Claim 2 by induction on n= degZ/X .

If n = 0 there is nothing to prove so let us suppose n > 0. As the morphism Z −→ X
is a morphism of normal affinoids, if we regard Z×XZ as a log rigid space over Z
via the second projection then the diagonal ∆ : Z −→ Z×XZ provides a section as in
Lemma 2.5. Therefore there is an object Z′ in X fket

K
such that Z×XZ ∼= Z q Z′. It follows

that degZ′/Z = n− 1 and applying the induction hypothesis we find an object W −→ Z in
Zfket such that Z′×ZW = qm

i=1Wi, where Wi =W for all 1 6 i 6 m. Then the composition
W −→ Z′ −→ X makes W an object in X fket

K
and we have that Z×XW is isomorphic to a

disjoint union of objects isomorphic to W. �
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Proposition 2.4 has the following immediate consequence.

Corollary 2.6. Suppose Z −→ X is a morphism in X fket
K

. Then we have:

(a) The functor j∗ is an exact functor.
(b) Rij∗ = 0 for all i> 1.

Proof. For (a) we remark that j∗ ∼= j! by Proposition 2.4 and j! ∼= α∗. It follows that j!,
and so also j∗, is right exact. As j∗ is left exact, it is exact. This immediately implies
(b). �

As j∗ admits a left adjoint j!, by adjunction we get a morphism

SZ : j∗
(
j∗(F)

)∼= j!
(
j∗(F)

)−→ F , (1)

functorial on the category of sheaves of abelian groups on the site EXK
. We call it the

trace map relative to Z. More explicitly, given a sheaf of abelian groups F on EXK
it is

the map of sheaves associated with the map of presheaves:

j!
(
j∗(F)

)
(U ,W) = ⊕g∈HomX fket

K
(W,Z)j

∗(F)(U ,W, g)

= ⊕g∈HomX fket
K

(W,Z)F(U ,W)−→ F(U ,W),

given by the sum.

2.6. Sheaves on X

We continue, as in the previous section, to denote by X either one of the sites X(w) and
X(N, p) and we will describe certain sheaves on this site.

We denote by OX the presheaf of OK-algebras on X defined by

OX(U ,W) := the normalization of H0(U ,OU ) in H0(W,OW).

We also define by Oun
X the sub-presheaf of W(k)-algebras of OX whose sections over

(U ,W) consist of the elements x ∈ OX(U ,W) such that there exist a finite unramified
extension M of K contained in K, a Kummer log étale morphism V −→ U×OK OM and a
morphism W −→ VK over UK such that x, viewed as an element of H0(W,OW), lies in the
image of H0(V,OV ).

We also have the fundamental functor vX : X ket −→ X, defined by vX(U) := (U ,UK),
which induces a morphism of sites. We then have:

Proposition 2.7 ([2], Proposition 1.10). The presheaves OX and Oun
X are sheaves and

Oun
X is isomorphic to the sheaf v∗X

(
OX ket

)
.

We denote by ÔX and Ôun
X the continuous sheaves on X given by the projective

systems of sheaves {OX/pn OX}n>0 and {Oun
X /pn Oun

X }n>0 respectively.
In the notation of ğ 2.5 choose r > 1 and w ∈ Q with w adapted to r, and

Z := X(r)(w) −→ X(w) if X denotes X(w) or Z := X(r) −→ X(N, p) if X denotes X(N, p),
and let us denote by X(r) := X/(X ,Z) the site induced by (X ,Z) and by j∗r , jr,∗(∼= jr,!) the
associated morphism of topoi. We have the functor

vr : X ket −→ X(r)

236

https://doi.org/10.1017/S1474748013000364 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748013000364


Overconvergent Eichler–Shimura isomorphisms

defined by vr := jr◦vX. More explicitly, vr(U) := j(U ,UK)=
(

U ,Z×X UK,pr1

)
. This functor

sends covering families to covering families, commutes with fiber products and sends
final objects to final objects. In particular it defines a morphism of topoi. Corollary 2.6
implies that the Leray spectral sequence for vr,∗ = vX,∗ ◦ jr,∗ degenerates and we have
Rivr,∗ ∼= RivX,∗ ◦ jr,∗.

We define OX(r) := j∗r (OX) and ÔX(r) := j∗r (ÔX). Let us recall the morphism θr : X (r) −→
X which is finite and defines X (r) as the normalization of X in X(r) and let
Gr ∼= (Z/prZ)× denote the Galois group of X(r)/X. Then Gr acts naturally on X (r) over X
and X ∼= X (r)/Gr.

Lemma 2.8. We have a natural isomorphism of sheaves on X ket:(
vr,∗(OX(r))

)Gr ∼=OX and similarly
(
vr,∗(ÔX(r))

)Gr ∼= ÔX .

Proof. Let U −→ X be a morphism in X ket. Then we have

vr,∗(OX(r))(U)=OX(U ,X(r)×X UK)=H0(X (r)×X U ,OX (r))= θr,∗(OX (r))(U).

From this the claim follows. �

2.7. The localization functors

As in the previous section, X denotes either one of the sites X(w) and X(N, p). We recall
here the localization of a sheaf or a continuous sheaf on X to a ‘small affine of X ket’ (for
more details see [2] ğ 1.2.6). Let U = (Spf(RU ),NU

)
be a connected small affine object of

X ket and we denote by U := UK the log rigid analytic generic fiber of U . Let us recall
that under the above hypothesis, U is a log formal scheme whose log structure is given
by the sheaf of monoids denoted as NU .

We write RU ⊗ K = ∏n
i=1 RU ,i with Spf(RU ,i) connected, we let NU ,i denote the

monoids which give the respective log structures and we let Ui denote the respective
log rigid analytic generic fibers. Then each RU ,i is an integral domain, so we let
CU ,i denote an algebraic closure of the fraction field of RU ,i for all 1 6 i 6 n and let
Clog

U ,i := Spec
(
CU ,i),NU ,i

)
denote the log geometric point of Ui :=

(
Spf(RU ,i),NU ,i)

)
over

CU ,i (see [13] Definition 4.1 or [2] ğ 1.2.5 for the definition of a log geometric point). We
denote by GU,i := π log

1

(
Ui,C

log
U ,i
)

the Kummer étale fundamental group of Ui. We have
then that the category Ufket

i is equivalent to the category of finite sets with continuous
GU,i-action. We write (RU ,i,NU ,i) for the direct limit over all finite normal extensions
RU ,i ⊂ S ⊂ CU ,i, and all log structures NS on Spm(SK) such that there are Kummer
étale morphisms CU ,i −→

(
Spm(SK),NS

) −→ Ui compatible with the one between the
underlying formal schemes. Finally we define RU :=

∏n
i=1 RU ,i, NU :=

∏n
i=1 NU ,i and

GUK
:=∏n

i=1 GU,i.

We denote by Rep
(

GUK

)
and Rep

(
GUK

)N, respectively, the category of discrete abelian
groups with continuous action under GUK

and the category of projective systems of
these. It follows from [13] ğ 4.5 that we have an equivalence of categories

Sh(Ufket
K )∼= Rep

(
GUK

)
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sending F → lim−→F(Spm(SK),NS). Therefore composing with the restriction Sh(X) −→
Sh(Ufket

K
) defined by F → (

W→ F(U ,W)
)
, we obtain a functor, called the localization

functor:

Sh(X)−→ Rep
(

GUK

)
denoted as F → F(RU ,NU ).

We consider the following variant. Let Z→ X, with X = X(w) or X = X(N, p), be a
finite Kummer étale morphism in Xfket

K
. Consider the associated site Z := X/(X ,Z) as in

ğ 2.5 and let j(X ,Z) : X→ Z be the induced morphism of sites. Consider a sheaf F ∈ Sh(Z)
and fix a connected small affine object U = (Spf(RU ),NU

)
of X ket as before. Denote

by ΥU the set of homomorphisms of RU ⊗ K-algebras Γ
(
Z×XU,OZ×XU

)→ RU [1/p]. For
any g ∈ ΥU we write F

(
RU ,NU , g

) := lim F
(

U ,W
)
, where the limit is taken over all

finite and Kummer étale maps Spm(SK) = W→ Z×XU with SK ⊂ RU [1/p] a Γ
(
Z×XU,

OZ×XU
)
-subalgebra (using g). Let GUK ,Z,g be the subgroup of GUK

fixing
Γ
(
Z×XU,OZ×XU

)
. Then Sh

(
(Z×XU)fket

) ∼= Rep
(

GUK ,Z,g
)

and we obtain as before a
localization functor:

Sh(Z)−→ Rep
(

GUK ,Z,g
)
, F → F

(
RU ,NU , g

)
.

If {Ui}i is a covering of X ket and for every i we choose gi ∈ ΥUi , it follows from the
definition of coverings in the site Z that the map Sh(Z)−→∏

i Rep
(

GUi,K ,Z,gi

)
is faithful.

It also follows from Proposition 2.4 that

j(X ,Z),∗(F)
(
RU ,NU

)∼=⊕g∈ΥU F
(
RU ,NU , g

)
. (2)

3. Analytic modular symbols

3.1. Analytic functions and distributions
In this section we recall a number of definitions and results from [5] and [11] and also
define some new objects. Let T0 := Z×p × Zp, which we regard as a compact open subset
of the space of row vectors (Zp)

2. We have the following structures on T0:

(a) a natural left action of Z×p by scalar multiplication;
(b) a natural right action of the semigroup

Ξ(Zp)=
{(

a b

c d

)
∈M2(Zp) ∩GL2(Qp)

∣∣∣∣∣ (a, c) ∈ Z×p × pZp

}
and its subgroup

Iw(Zp) :=Ξ(Zp) ∩GL2(Zp)

given by matrix multiplication on the right.

The two actions obviously commute.
Let us denote by W∗ the rigid subspace of W of accessible weights, i.e., weights k such

that |k(t)p−1 − 1| < p−1/(p−1). Let U ⊂W∗ be a wide open disk which is an admissible
open of W∗. Write AU for the OK-algebra of rigid functions on U and denote by

ΛU = {f rigid functions on U such that |f (x)|6 1 for every point x ∈ U},
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the OK-algebra of bounded rigid functions on U. Then, as remarked in ğ 4, ΛU is
a complete, regular, local, noetherian OK-algebra; in fact ΛU is (non-canonically)
isomorphic to the OK-algebra OK[[T]]. The completeness refers to the mU-adic topology
(called the weak topology of ΛU), for mU the maximal ideal of ΛU. As remarked in ğ 4,
ΛU is also complete for the p-adic topology.

Let now B denote one of the complete, regular, local, noetherian rings: OK or ΛU,
for U ⊂W∗ a wide open disk as above. Let also k ∈W∗(BK) be as follows: if B = OK ,
k ∈ W∗(K) and if B = ΛU, we set k = kU : Z×p −→ Λ×U defined by tkU (x) = tx for all
x ∈ U(K).

Definition 3.1. We set

Ao
k :=

{
f : T0 −→ B | (i) ∀a ∈ Z×p , t ∈ T0,we have f (at)= k(a)f (t)

and

(ii) the function z→ f (1, z) extends to a rigid analytic function on the closed unit disk

B[0, 1]}.
Let us make (ii) of the above definition more precise. Let ordp : B − {0} −→ Z be

defined by ordπ (α) = sup{n ∈ Z | α ∈ πnB}. Then we say that the function z→ f (1, z)
in the definition above is rigid analytic on B[0, 1] if there exists a power series
F(X) =∑∞n=0 anXn ∈ B[[X]] with ordπ (an)

n→∞−→ ∞ and such that f (1, z) = F(z) for all
z ∈ Zp. Let us define Ak := Ao

k ⊗OK K, which is naturally a BK-module. As BK is a
K-Banach space (for its p-adic topology) let us point out that Ak is an orthonormalizable
Banach BK-module, where an orthonormal basis is given by: {fn}n>0 where fn ∈ Ao

k are the
unique elements such that fn(1, z) = zn for all z ∈ Zp. In other words fn(x, y) = k(x)(y/x)n

for all (x, y) ∈ T0.
For every γ ∈Ξ(Zp) and function f : T0 −→ B we define (γ f )(v) := f (vγ ). We have:

Lemma 3.2. If f ∈ Ao
k and γ ∈Ξ(Zp) then γ f ∈ Ao

k .

Proof. Let γ =
(

a b
c d

)
. Then for every v ∈ T0 and a ∈ Z×p we have (γ f )(av)= f

(
(av)γ

)=
k(a)f (vγ )k(a)(γ f )(v).

Moreover,

(γ f )(1, z)= f (a+ cz, b+ dz)= k(a+ cz)f
(

1,
b+ dz

a+ cz

)
= k(a)k(1+ ca−1x)

∞∑
n=0

an

(b+ dz

a+ cz

)n
.

Using the fact that k is analytic and an
n→∞−→ 0 we deduce that the function z→ (γ f )(1, z)

extends to an analytic function on the closed unit disk B[0, 1]. �

Definition 3.3. (a) Let k ∈W∗(K) be a weight. We define Do
k := Homcont,OK

(
Ao

k,OK
)
,

i.e., the OK-module of continuous, OK-linear homomorphisms from Ao
k to OK . We also

define Dk := Do
k ⊗OK K.

(b) If U ⊂W∗ is a wide open disk defined over K, we define Ao
U := Ao

kU
and we set

Do
U := HomΛU

(
Ao

U,ΛU
)
, i.e., the ΛU-module of continuous (for the mU-adic topology)

λU-linear homomorphisms from Ao
U to ΛU. We define DU := Do

U ⊗OK K.
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Remark 3.4. (i) The (left) action of the semigroup Ξ(Zp) on Ao
k induces a (right)

action on Do by (µ|γ )(f ) := µ(γ f ) for all γ ∈Ξ(Zp), f ∈ Ao
k and µ ∈ Do.

(ii) We have a natural, fundamental homomorphism of B-modules:

ψ : Do −→
∏
n∈N

B, defined by µ→ (
µ(fn)

)
n∈N.

As the family
(
fn
)

n is an orthonormal basis of Ak over BK , the above morphism is
a B-linear isomorphism. Moreover, under this isomorphism, the weak topology on Do

corresponds to the weak topology (i.e., the product of the mB-adic topologies on the
product).

(iii) A more common definition in the literature (see [5]) would be

D̃o
U =Homcpt

p,ΛU
(Ao

U,ΛU)⊂ Do
U,

i.e., D̃o
U consists of the continuous and compact (or completely continuous) in the p-adic

topology, ΛU-linear homomorphisms. Then D̃U := D̃o
U ⊗OK K is an orthonormalizable

ΛU,K-module.

Our Do
U has a property very similar to being orthonormalizable, which will be

sufficient for defining Fredholm characteristic series of compact ΛU-linear operators
on it. More precisely we have the following.

Lemma 3.5. Let
(
ei
)

i∈I be a sequence of elements in Do
U such that their image

(
ei
)

i∈I in
Do

U/mUDo
U is a basis of this vector space over F := ΛU/mU

∼= OK/πOK. Then for every
n ∈ N the natural map

Ψn : ⊕i∈I

(
ΛU/m

n
U

)
ei −→ Do

U/m
n
UDo

U

is an isomorphism of ΛU-modules.

Proof. Let us first recall that we have a natural isomorphism of ΛU-modules
Do

U
∼=∏i∈NΛU. In particular it follows that for every n> 0,

mnDo
U/m

n+1
U Do

U
∼=
∏
i∈N

mn
U/m

n+1
U
∼= mn

U/m
n+1
U ⊗F Do

U/mUDo
U
∼=⊕i∈I

(
mn

U/m
n+1
U

)
ei.

The second isomorphism follows from the fact that mn
U/m

n+1
U is a finite dimensional

F-vector space.
Now we prove the lemma by induction on n. The case n = 1 is clear; therefore let

us suppose that the property is true for n > 1 and we will prove that Ψn+1 is an
isomorphism. We have the following commutative diagram with exact rows:

0 −→ mn
UDo

U/m
n+1
U Do

U −→ Do
U/m

n+1
U Do

U −→ Do
U/m

n
U −→ 0

↑ ϕ ↑ Ψn+1 ↑ Ψn

0 −→ ⊕i∈I
(
mn

U/m
n+1
U

)
ei −→ ⊕i∈I

(
ΛU/m

n+1
U

)
ei −→ ⊕i∈I

(
ΛU/m

n
U

)
ei −→ 0

By the inductive hypothesis, Ψn is an isomorphism and by the comment before the
diagram, ϕ is an isomorphism as well. Therefore Ψn+1 is an isomorphism. �
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Corollary 3.6. Let us fix a family
(
ei
)

i∈I as in Lemma 3.5. Then for every x ∈ Do
U there

is a unique sequence ai ∈ΛU, i ∈ I such that:

(i) ai→ 0 in the filter of complements of finite sets in I, in the mU-topology, i.e., for
every h ∈ N the subset i ∈ I with the property ai 6∈ mh

U is finite.
(ii) x=∑i∈I aiei.

Proof. The corollary follows immediately from Lemma 3.5. �

Remark 3.7. (1) A family of elements
(
ei
)

i∈I as in Corollary 3.6 plays the role of an
orthonormal basis of a Banach ΛU-module. In particular it can be used to define the
Fredholm series of a compact ΛU-linear operator on H1

(
Γ,DU

)
.

(2) If k ∈ U(K) is a weight, the image of a family of elements
(
ei
)

i∈I of Do
U as in (1)

above in Do
k is a true ON basis of Dk over K.

Keeping the notation above, let V ⊂ U be an affinoid disk with affinoid algebra BV and
let Bo

V denote the rigid functions on V bounded by 1. We have:

Lemma 3.8. DU|V := DU⊗̂ΛU BV is an ON-able BV -module with orthonormal basis
(ei⊗̂1)i∈I and in fact coincides with the BV -module of completely continuous BV -linear
maps from AV to BV .

Proof. Let us first make precise the completed tensor product in the statement of the
lemma. We have DU|V =

(
Do

U|V
)⊗OK K where we define

Do
U|V := lim∞←n

(
Do

U ⊗ΛU Bo
V/p

nBo
V

)
.

Let us remark that for every n ∈ N there is N := N(n) ∈ N such that the image of mN
U in

Bo
V/p

nBo
V is 0. Therefore we may write

Do
U|V = lim∞←n

(
Do

U/m
N(n)
U ⊗ΛU Bo

V/p
nBo

V

)
.

Therefore the first claim follows from Lemma 3.5 and the second is clear. �

Let now (B,m) be either of the pairs (OK,mK) and (ΛU,mU), for U ⊂W∗ a wide open
disk defined over K and let Ao, Do be either Ao

k , Do
k , for some k ∈W∗(K), in the first case

or Ao
U, Do

U in the second.

Definition 3.9. (i) We define for every n ∈ N the following B/mn-submodule
Filn(Ao/mnAo) of Ao/mnAo by setting

Filn(Ao/mnAo) := ⊕n
j=0

(
mj/mn)fj,

where {fi}i∈N is the orthornormal basis of Ao described above.
(ii) We define the following filtration Fil•(Do) of Do. For n ∈ N we set

Filn(Do) := {µ ∈ Do | µ(fj) ∈ mn−j
B for all 06 j6 n}.

Proposition 3.10. (i) Do/Filn(Do) is a finite B/mn-module and consequently an
artinian OK-module. Moreover the image of Filn(Do) in Do/mnDo, which we identify
with the B/mn-dual of Ao/mnAo, is the orthogonal complement of Filn(Ao/mnAo).
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(ii) For every γ ∈ Ξ(Zp) and µ ∈ Filn(Do) we have µ|γ ∈ Filn(Do). In particular
Do/Filn(Do) is an artinian OK and Ξ(Zp) module for every n> 0.

(iii) The natural B-linear morphism Do −→ lim∞←n Do/Filn(Do) is an isomorphism.

Proof. Let us recall the B-linear map ψ : Do −→ ∏
n∈N B of Remark 3.4 defined by

ψ(µ)= (µ(fn))n∈N. Let us remark that

ψ
(
Filn(Do)

)= n−1∏
j=0

mn−j
B ×

∏
m>n

B,

and therefore ψ induces a B-linear isomorphism Do/Filn(Do) ∼= ∏n−1
j=0 B/mn−j

B . This
proves the first statement in (i) and also (iii) because it shows that Do is separated
and complete in the topology given by Fil•(Do). For the second statement of (i) let us
remark that AnnB/mn

(
mi/mn

)= mn−i/mn for all 06 i6 n.
In order to prove (ii) we could proceed as in the proof of Lemma 3.2, or better let us

recall that we have a natural decomposition Ξ(Zp)= NoppT+N where N is the subgroup
of GL2(Zp) of upper triangular matrices, Nopp is the subgroup of lower triangular
matrices which reduce to the identity modulo p and T+ is the semigroup of matrices(

a 0
0 d

)
with a ∈ Z×p and d ∈ Zp − {0}. In order to show that Filn(Do) is preserved by the

matrices in N it is enough to do it for γ :=
(

1 1
0 1

)
(which is a topological generator of

N). Let µ ∈ Filn(Do); then we have (µ|γ )(fj)= µ(γ fj) and moreover

(γ fj)(x, y)= fj(x, y+ x)= k(x)(1+ y/x)j =
j∑

k=0

(
n

k

)
k(x)(y/x)k =

j∑
k=0

(
n

k

)
fk(x, y).

Therefore (µ|γ )(fj) ∈
∑j

k=0 mn−k
B ⊂ mn−j

B .

To show that the matrices in T+ preserve Filn(Do) it is enough to show it for
δ :=

(
1 0
0 p

)
∈ T+. We have (δfj)(x, y) = fj(x, py) = k(x)pj(y/x)j = pjfj(x, y). Therefore for

all µ ∈ Filn(Do) we have (µ|δ)(fj)= pjµ(fj) ∈ pjmn−j
B ⊂ mn−j

B .

Finally we leave it to the reader to check that for ε :=
(

1 0
p 1

)
∈ Nopp (which

topologically generates this group), if µ ∈ Filn(Do) then (µ|ε)(fj) ∈ mn−j
B . �

We would now like to show that the formation of the above defined filtrations
commutes with base change. More precisely, let, as at the beginning of this section,
U ⊂W∗ denote a wide open disk and ΛU the OK-algebra of bounded rigid functions on
U. Let k ∈ U(K). Then if we denote by tk ∈ΛU a uniformizer at k, i.e., an element which
vanishes with order 1 at k and nowhere else, then on the one hand (π, tk) = mU (let us
recall that we denoted by π a fixed uniformizer of K) and we have an exact sequence

0−→ΛU
tk−→ΛU

ρk−→OK −→ 0

which we call the specialization exact sequence. Moreover the weak topology on ΛU

induces the p-adic topology on OK ∼=ΛU/tkΛU.
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We have natural specialization maps

Ao
U −→ Ao

k and ηk : Do
U −→ Do

k

f 7−→ fk µ 7−→ µκ
(3)

where fU(x, y) := f (x, y)(k) and µk ∈ Do
k is given by µk : f ∈ Ao

k 7−→ µ(fU)(k), where
fU ∈ Ao

U is given by fU(x, y) := kU(x)f (1, y/x).

Proposition 3.11. Let U ⊆W∗ be a wide open disk, let k ∈ U(K), and let tk ∈ ΛU be a
uniformizer at k. Then we have canonical exact sequences of Ξ(Zp)-modules

0 −→ Ao
U

tk−→ Ao
U −→ Ao

k → 0

0 −→ Do
U

tk−→ Do
U

ηk−→ Do
k → 0.

For the proof if ΛU is replaced by an affinoid algebra, see [11], ğ 3. The arguments are
the same in this case.

Lemma 3.12. With the notation as above, we have ηk
(
Filn(Do

U)
)= Filn(Do

k).

Proof. Let us recall that we have two commutative diagrams:

Do
U

ψU∼=
∏
n∈N

ΛU Do
k

ψk∼=
∏
n∈N

OK

∪ ∪ and ∪ ∪

Filn(DU)
o ∼=

n−1∏
j=0

mn−j
U ×

∏
m>n

ΛU Filn(Do
k)
∼=

n−1∏
j=0

mn−j
K ×

∏
m>n

OK

The lemma follows on observing that the diagram

Do
U

ηk−→ Do
k

↓ ψkU ↓ ψk∏
n∈N

ΛU

∏
n∈N ρk−→

∏
n∈N

OK

is commutative and that for every n ∈ N we have ρk(mn
U)= mn

K . �

Let us now suppose that k ∈W∗(K) is a classical weight, i.e., k is associated with a
pair (k, k) with k ∈ N. We define P o

k ⊂ Ao
k as the subset of functions f : T0→ OK which

are homogeneous polynomials of degree k. It is an OK-submodule invariant for the action
of the semigroup Ξ(Zp)∩GL2(Qp). Dualizing, we obtain a Ξ(Zp)∩GL2(Qp)-equivariant,
surjective, OK-linear map

ρk : Do
k −→ Vo

k :=HomOK

(
P o

k ,OK
)
.

Let us remark that we may identify Vo
k with Symk(T)⊗Zp OK with its natural right action

of Ξ(Zp) ∩ GL2(Qp). For every n > 1 we set Filn(Vo
k ) := ρk(Filn(Do

k)). We get a filtration
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inducing the p-adic topology on Vo
k . We view Vo

k as the continuous representation
of Γ defined by the projective system

(
Vo

k,m

)
m∈N with Vo

k,m := Vo
k /FilmVo

k and we set
Vk := Vo

k ⊗OK K.
Therefore, if U ⊂W∗ is a wide open disk which contains the classical weight k, we

have natural Ξ(Zp) ∩GL2(Qp)-equivariant maps

DU −→ Dk
ρk−→ Vk, (4)

and the maps are compatible with the filtrations.

3.2. Overconvergent and p-adic families of modular symbols

Let us fix an integer N > 3 and let Γ = Γ1(N) ∩ Γ0(p) ⊂ Iw ⊂ Ξ(Zp). Let us also fix
a wide open disk U ⊂W∗ and its associated universal character kU and let k ∈ U(K)
be a weight. Let us also recall that we have natural orthonormalizable ΛU,K-Banach
modules DU := DkU with continuous action of the monoid Ξ(Zp) and specialization
maps DU −→ Dk which are Ξ(Zp)-equivariant. In particular we will be interested in
the ΛU,K-module H1

(
Γ,DU

)
, which we call the module of p-adic families of modular

symbols, the K-vector space H1
(
Γ,Dk

)
, which we call the overconvergent modular

symbols of weight k, and the specialization map H1
(
Γ,DU

)−→H1
(
Γ,Dk

)
.

Moreover, if k ∈ U(K) happens to be a classical weight, we also have the module
H1
(
Γ,Vk

)
, which we call the module of classical modular symbols, and maps

ρk : H1
(
Γ,Dk

)−→H1
(
Γ,Vk

)
obtained from (4) in ğ 3.1.

The relationship with continuous Γ -cohomology.

In the notation above let D be any of the Ξ(Zp)-modules Do
U,Do

k , with k ∈ U(K) and if
k ∈ U(K) is a classical weight Vo

k . We consider the pair
(
D,Fil•(D)

)
and wish to study

the relationship between H1(Γ,D) and H1
cont

(
Γ,
(
D/Filn(D)

)
n∈N
)

.
Let us recall that if we denote by Cont(Γ ) the category of projective systems (Mn)n∈N

where each Mn is a discrete, torsion Γ -module, then Hi
cont(Γ,−) is defined as the ith

right derived functor of the functor

(Mn)n∈N −→H0(Γ, lim∞←n
Mn
)
.

The degeneration of the Leray spectral sequence for the composition of the two left
exact functors in the above definition gives for every object (Mn)n∈N ∈ Cont(Γ ) an exact
sequence of abelian groups

0−→ lim(1)H0(Γ,Mn)−→H1
cont

(
Γ, (Mn)n∈N

)−→ lim∞←n
H1(Γ,Mn)−→ 0.

For a pair
(
D,Fil•(D)

)
as above, we have the projective system of artinian OK and

Γ -modules (Dn)n∈N, where Dn := D/Filn(D) and the morphisms in the projective limit
are the natural projections. Therefore the projective system

(
H0(Γ,Dn)

)
n∈N

satisfies the
Mittag-Leffler condition and consequently we have a natural isomorphism

H1
cont

(
Γ, (Dn)n∈N

)∼= lim∞←n
H1(Γ,Dn).

On the other hand we have:
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Lemma 3.13. The natural map

H1(Γ,D)−→ lim∞←n
H1(Γ,Dn)

is an isomorphism.

Proof. If M is a Γ -module we denote by B1(Γ,M) the group of 1-coboundaries with
coefficients in M and by Z1(Γ,M) the group of 1-cocycles with values in M (no continuity
condition is involved in the definition of either coboundaries or cocycles). We have a
natural commutative diagram with exact rows:

H0(Γ,D) ↪→ B1(Γ,D)
d−→ Z1(Γ,D) −→ H1(Γ,D) −→ 0

↓ f ↓ g ↓ h ↓ u

lim← H0(Γ,Dn) ↪→ lim← B1(Γ,Dn)
lim← dn−→ lim← Z1(Γ,Dn)

α−→ lim← H1(Γ,Dn)

We first claim that the map α in the above diagram is surjective. For this, let us recall
that for every n ∈ N we have an exact sequence of abelian groups

0−→ B1(Γ,Dn)/H0(Γ,Dn)−→ Z1(Γ,Dn)−→H1(Γ,Dn)−→ 0.

Then let us remark that B1(Γ,Dn) is an artinian OK-module and so is
B1(Γ,Dn)/H0(Γ,Dn). This implies that the projective system

(
B1(Γ,Dn)/H0(Γ,Dn)

)
n∈N

satisfies the Mittag-Leffler condition and so α is indeed surjective.
Moreover, let us remark that in the above diagram the maps f , g, h are all

isomorphisms. For f and g this follows immediately from the definition and the fact
that D = lim∞←n Dn. The injectivity of h follows from the fact that ∩n>0Filn(D) = {0}.
On the other hand let us first remark that Γ is a finitely generated group and moreover
that a 1-cocycle of Γ is determined by its values on a family of generators. This implies
that h is surjective.

Now by the five lemma, u is then an isomorphism as well. �

Remark 3.14. In the notation of the proof of Lemma 3.13, let us remark that for every
n ∈ N, Z1(Γ,Dn) is also an artinian OK-module. The reason is as follows: Γ is a finitely
generated group and a 1-cocycle is determined on its values on a set of generators
of Γ . It follows that H1(Γ,Dn) is an artinian OK-module for all n ∈ N and therefore
H1(Γ,D) has a natural structure as a profinite OK-module. In particular it is compact.
Moreover, if D = DU for a certain U ⊂W∗, then H1(Γ,DU) is naturally a ΛU-module
and its profinite topology is the same as its mU-adic topology. In particular H1(Γ,DU) is
complete and separated for the mU-adic topology.

Let us remark that we have proved the following theorem.

Theorem 3.15. Let D be any one of Do
U, Do

k and, if k is a classical weight, Vo
k .

(a) We have canonical isomorphisms

H1
cont

(
Γ, (Dn)n∈N

)∼= lim∞←n
H1(Γ,Dn)∼=H1(Γ,D).

(b) The isomorphisms in (a) above are compatible with specializations.
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Proof. (a) follows from Lemma 3.13 and (b) from the discussion on specialization in the
previous section. �

Hecke operators.

Let M be any one of the modules H1
(
Γ,DU

)
, H1

(
Γ,Dk

)
, and H1

(
Γ,Vk

)
. The action of

Ξ(Zp) on the coefficients defines actions of Hecke operators T` for ` not dividing pN
and U` for ` dividing pN on the module M (see [5] and [11]). Moreover Up is completely
continuous on M. Let us now fix h ∈ Q, h > 0, and denote by D one of Dk and Vk. Then
we have a natural direct sum decomposition

H1(Γ,D
)∼=H1(Γ,D

)(h) ⊕H1(Γ,D
)(>h)

,

where the decomposition is characterized by the following properties:
(a) H1

(
Γ,D

)(h) is a finite K-vector space and for every x ∈ H1
(
Γ,D

)(h) there is
a non-zero polynomial Q(t) ∈ K[t] of slope smaller than or equal to h such that
Q∗(Up) · x= 0, where Q∗(t)= tdegQQ(1/t).

(b) For every polynomial Q(t) as in (a) above, the linear map Q∗(Up) : H1
(
Γ,D

)(>h)

−→H1
(
Γ,D

)(>h) is an isomorphism.
Moreover we have the following two results (see [5]).

Theorem 3.16. Suppose k = (k0, i) ∈ W∗(K), a classical weight, and h > 0 is a slope
such that h< k0 − 1. Then ρk induces an isomorphism

H1(Γ,Dk
)(h) ∼=H1(Γ,Vk

)(h)
.

and

Theorem 3.17. Let k ∈W∗(K) be an accessible weight and h> 0 a slope. Then there is a
wide open disk defined over K, U ⊂W∗, containing k such that:

(i) We have a natural, BU-linear slope 6 h-decomposition

H1(Γ,DU
)∼=H1(Γ,DU

)(h) ⊕H1(Γ,DU
)(>h)

satisfying analogue properties as in (a) and (b) above.
(ii) The slope decomposition in (i) above is compatible with specialization, i.e., the map

ψk : H1(Γ,DU
)−→H1(Γ,Dk

)
satisfies ψk

(
H1
(
Γ,DU

)(&))⊂H1
(
Γ,Dk

)(&), where (&) ∈ {(h), (>h)}
Proof. Claim (ii) follows from the functoriality of the slope 6 h-decompositions proved
in [5].

To show (i) it suffices to produce a slope 6 h-decomposition at the level of cochains
C•(Γ,DU) using a finite resolution of Z by finite and free Z[Γ ]-modules as explained in
[5] § 4.

We start by choosing a wide open disk U′ ⊂ W∗ defined over K such that
k ∈ U′(K). Let (ei)i∈I be a BU′-orthonormal basis of DU′ defined in Lemma 3.5 and let
V = Spm(K〈T〉) be a closed disk centered at k contained in U′. Thanks to Lemma 3.8 and
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the theory in [5] § 4, possibly after shrinking V to a smaller affinoid disk, we may assume
that the Fredholm determinant of the Up-operator F•V on the complex of group cochains
C•
(
Γ,DU′ |V

)
admits a slope 6 h-decomposition. Let U be the wide open disk associated

with the noetherian local OK-algebra ΛU := OK[[T]]. Let us remark that the Fredholm
determinant of Up acting on C•

(
Γ,DU′ |V

)
, F•V , is the same as the Fredholm determinant

of Up acting on C•
(
Γ,DU

)
, F•U, as they are computed using the same (weak) ON basis.

Because the Banach norm of ΛU[1/p] = BU restricts to the Gauss norm of BV it follows
that the slope 6 h-decomposition of F•V determines a slope 6 h-decomposition of F•U.
Therefore we obtain the slope 6 h-decomposition of C•(Γ,DU). �

3.3. The geometric picture

Let us recall from the beginning of ğ 2 the modular curves X(N, p) −→ X1(N) and their
natural formal models X (N, p) −→ X1(N), and if w ∈ Q, 0 6 w 6 p/(p + 1), we also
had a rigid analytic space X(w) ⊂ X(N, p) and its formal model X (w), with its natural
morphism X (w) −→ X (N, p). All these rigid spaces and formal schemes are in fact log
rigid spaces and log formal schemes respectively, which are all log smooth, and all the
maps described are maps of log formal schemes or log rigid spaces.

Sheaves on X(N, p)ket
K

associated with modular symbols: Let E −→ X(N, p) be the
universal generalized elliptic curve, and let us denote, as in ğ 3.1, by T the p-adic
Tate module of E , seen as a continuous sheaf on the Kummer étale site of X(N, p),
denoted as X(N, p)ket. If η = Spec(K) denotes a geometric generic point of X(N, p), let
G denote the geometric Kummer étale fundamental group associated with

(
X(N, p), η

)
and let T := Tη. One can easily see that T is a free Zp-module of rank 2 with continuous
action of G. Let us choose a Zp-basis {ε1, ε2} of T satisfying the following properties:
〈ε1, ε2〉 = 1 and ε1( mod pT) ∈ Eη[p] does not belong to the universal level p-subgroup C.
We let T0 := {aε1 + bε2 | a ∈ Z∗p, b ∈ Zp}. Then T0 is a compact subset of T preserved by
G which can be identified with Z×p × Zp. Moreover the right action of G on the above
chosen basis defines a continuous group homomorphism

γ : G −→ Iw defined by (ε1σ, ε2σ)= (ε1, ε2)γ (σ ) for σ ∈ G.

Therefore, if k ∈ U ⊂W∗ and n > 1 as in ğ 3.1 then via the homomorphism γ above,
the Iw-modules AU, DU, Ak, Dk and, if k is classical, Vk, can be seen as ind-continuous
representations of G. More precisely, for example, AU = lim−→

(
lim∞←n(Ao

U/m
n
UAo

U)
)

and

DU = lim−→
(

lim∞←n(Do
U/Filn(Do

U)
)

, where the inductive limits are taken with respect to
the multiplication by a p-map. We denote by AU, DU, Ak, Dk and, if k is classical, Vk the
ind-continuous shaves on X(N, p)ket

K
associated with these representations. Let us remark

that if the classical weight is associated with the pair
(
k, k(mod(p − 1)

)
, for k ∈ Z, k > 0,

in fact we have Vk ∼= Symk(T )⊗Zp K, as ind-continuous sheaves on X(N, p)ket
K

.

Notation: For later use, for A = AU or A = Ak we write Ao := (Ao
n

)
n∈N for the

continuous sheaf on Faltings’ site X(N, p) associated with the continuous representation
of Ao = (Ao/mnAo

)
n∈N of the Kummer étale fundamental group G of X(N, p). The

ind-continuous sheaf A is simply Ao[1/p].
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Analogously, for D = DU or Dk, we write Do := (Dn
)

n∈N for the continuous sheaf
associated with Do/Filn(Do). Then, D is the ind-continuous sheaf Do[1/p].

We proceed as in ğ 5 in order to define Hecke operators on H1
(
X(N, p)ket

K
,DU

)
and

on H1
(
X(N, p)ket

K
,Dk

)
and, if k is classical, on H1

(
X(N, p)ket

K
,Vk
)
. Let ` denote a prime

integer. Let X(N, p)` be the modular curve classifying generalized elliptic curves E/S
with a Γ1(N)-level structure ψN : Z/NZ ⊂ E , a subgroup scheme C ⊂ E defining a
Γ0(p)-level structure and a subgroup scheme H ⊂ E defining a Γ0(`)-level structure
such that H does not intersect the image of ψN and similarly C ∩ H = {0}. We have
morphisms

X(N, p)
π1←− X(N, p)`

π2−→ X(N, p),

where π1 forgets H while π2 is defined by taking the quotient by H. They are finite and
Kummer log étale. The dual π ∨̀ : (E/H

)∨→ E∨ of the universal isogeny π` : E → E/H
over X(N, p)` provides a map π ∨̀ : p∗2(T) → p∗2

(
T
)
. Here we identify E ∼= E∨ and

E/H ∼= (E/H
)∨ via the principal polarizations. The condition H ∩C = {0} implies that π ∗̀

restricts to a map p∗2
(
T0
)→ p∗1

(
T0
)
. Proceeding as in ğ 5 we get Hecke operators acting

on H1
(
X(N, p)ket

K
,DU

)
and on H1

(
X(N, p)ket

K
,Dk

)
, which commute with the action of GK

and are compatible with specializations. As is customary, we denote them by T`, for `
prime to pN, and U` for ` dividing pN.

Proposition 3.18. We have natural isomorphisms as Hecke modules, compatible with
specializations

H1(Γ,DU
)∼=H1(X(N, p)ket

K ,DU
)

and H1(Γ,Dk
)∼=H1(X(N, p)ket

K ,Dk
)
.

Here on the left modules the Hecke operators are defined by the action of the monoid
Ξ(Zp) on the coefficients.

Proof. We first prove that, given a finite representation F of G and considering
the associated locally constant sheaf F on X(N, p)ket

K
, we have an isomorphism

H1
(
Γ,F

) ∼= H1
(
X(N, p)ket

K
,F
)
, functorial in F. First of all notice that restriction to the

open modular curve where the log structure is trivial, i.e., to Y(N, p) ⊂ X(N, p), induces
an isomorphism H1

(
X(N, p)ket

K
,F
) ∼= H1

(
Y(N, p)et

K
,F
)

thanks to [13, Corollary 7.5]. As
Y(N, p)K is a smooth affine curve and for every embedding K ⊂ C the fundamental
group of Y(N, p)C is Γ , it is a classical result that H1

(
Y(N, p)et

K
,F
)∼=H1

(
Y(N, p)et

C ,F
)∼=

H1
(
Γ,F

)
.

Therefore, if we denote by D any one of DU, Dk and, if k is classical, Vk and
by
(
(Do

n)n∈N
) ⊗OK K, with Do

n := Do/Filn(Do), the ind-continuous representation of G
associated with D, let D := ((Do

n)n∈N
) ⊗OK K be the ind-continuous étale sheaf on

X(N, p)ket
K

associated with it. By Theorem 3.15 and the discussion above we have natural
isomorphisms

H1(Γ,D
) ∼= H1

cont

(
Γ,
(
(Do

n)n ⊗ K
)∼=H1

cont

(
X(N, p)ket

K ,
(
(Do

n)n
)⊗ K

)
=: H1(X(N, p)ket

K ,D
)
.
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As the definition of the Hecke operators uses the Hecke correspondence X(N, p)`,
it is clear that for D one of DU, Dk and Vk the isomorphism H1

(
X(N, p)ket

K
,D
) ∼=

H1
(
Y(N, p)et

C ,D
)

is Hecke equivariant and the claim follows. �

Sheaves on Faltings’ site associated with modular symbols: Let us now denote by
X(N, p), Faltings’ site associated with the pair

(
X (N, p),X(N, p)

)
. The map of sites

u : X(N, p) −→ Xket
K

, given by (U,W) 7→W, sends covering families to covering families,
commutes with fiber products and sends the final object to the final object. It defines a
morphism of topoi u∗ : Sh(Xket

K
) −→ Sh(X(N, p)) which extends to inductive systems of

continuous sheaves. In particular all the ind-continuous Kummer étale sheaves DU, Dk

and, if k is a classical weight, Vk can be seen as ind-continuous sheaves on X(N, p) by
applying u∗. For simplicity we omit u∗ from the notation.

Proposition 3.19. The natural morphisms

H1(X(N, p),DU
)−→H1(X(N, p)ket

K ,DU
)

and H1(X(N, p),Dk
)−→H1(X(N, p)ket

K ,Dk
)

are isomorphisms of GK-modules, compatible with specializations and the action of the
Hecke operators.

Proof. As X (N, p) is proper and log smooth over Spf(OK), it follows from
[10, Theorem 9] that for F a finite locally constant sheaf the natural maps
H1
(
X(N, p),F

) −→ H1
(
X(N, p)ket

K
,F
)

are isomorphisms. As DU and Dk are inductive
limits of projective limits of finite locally constant sheaves obtained in a compatible way,
by 3.10, the maps in the proposition are isomorphisms. The Hecke operators are defined
in terms of the Hecke correspondence p1, p2 : X(N, p)` −→ X(N, p) and the trace maps
p1,∗

(
p∗1(F)

)→ F on X(N, p)ket
K

and on X(N, p) defined in (1). As they are compatible via
u∗, the displayed isomorphisms are equivariant for the action of the Hecke operators. �

Let us fix 0 6 w < p/(p + 1) and let us recall that we have a natural morphism of
log formal schemes X (w) −→ X (N, p) whose generic fiber is the inclusion of log rigid
spaces X(w)⊂ X(N, p). Base change induces a natural functor ν : X(N, p)−→ X(w) which
sends final objects to final objects and respects the coverings. We obtain ind-continuous
sheaves AU, Ak, DU, Dk by applying ν∗ to the sheaves AU, DU, Ak, Dk. Note that we
have a natural map of continuous sheaves of rings ÔX(N,p) −→ ν∗

(
ÔX(w)

)
inducing by

adjunction a morphism ν∗
(

ÔX(N,p)
) −→ ÔX(w). As ν∗ commutes with tensor products,

we deduce the following:

Lemma 3.20. We have natural morphisms of ind-continuous sheaves on X(w):

ν∗
(

DU⊗̂ÔX(N,p)
)−→ DU⊗̂ÔX(w)

and

ν∗
(

Dk⊗̂ÔX(N,p)
)−→ Dk⊗̂ÔX(w).
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4. Modular sheaves

Modular sheaves are only defined on the site X(w), 0 6 w < p/(p + 1). Let W denote
the weight space for GL2/Q, i.e., the rigid analytic space over Qp associated with
the noetherian Zp-algebra Zp[[Z×p ]], and let us fix (B,m), a complete, local, regular,
noetherian OK-algebra. Let us recall that B is complete and separated for its m-adic
topology (the weak topology) and therefore also for the p-adic topology. We define
BK := B ⊗OK K and denote by ‖ ‖ the Gauss norm on the Banach K-algebra
BK . Let k ∈ W(BK) be a BK-valued weight, i.e., a continuous group homomorphism
k : Z×p −→ B×. We embed Z in W(Qp) by sending k ∈ Z to the character a→ ak and in
general, if k ∈W(BK) as above and t ∈ Z×p , we use the additive notation tk := k(t).

Once we have fixed B and k ∈W(BK) we define

r :=min{n ∈ N | n> 0 and ‖k(1+ pnZp)− 1‖< p
−1

p−1 },
and we fix w ∈Q, w> 0, and w< 2/(pr − 1) if p> 3 and w< 1/3r if p= 3. We say that w
is adapted to r (and to k). Let us also note that given B, k, r as above, there is a unique
a ∈ BK such that for all t ∈ 1+ prZp we have tk = exp(a log(t)).

There are two instances of the above general situation which will be relevant in what
follows:

(a) B=OK , so BK = K; in that case k ∈W(K) is a K-valued weight.
(b) We fix first r > 0, r ∈ N, and define Wr := {k | ‖k(1 + prZp) − 1‖ < p−1/(p−1)}. It is

a wide open rigid subspace of W . Let now U ⊂Wr be a wide open disk of Wr, let AU be
the affinoid algebra of U and define

ΛU = Ab
U := {f ∈ AU such that |f (x)|6 1 for all points x ∈ U},

the OK-algebra of the bounded rigid functions on U. Then ΛU is a complete, local,
noetherian OK-algebra non-canonically isomorphic to OK[[T]]. Let also kU : Z×p −→ Λ×U
be the universal character, i.e., if t ∈ Z×p and x ∈ U, we have tkU (x)= tx.

Remark 4.1. Let (B,m) be as above and let R be a p-adically complete and separated
OK-algebra in which p is not a zero divisor. We denote by R⊗̂B the ring

R⊗̂B := lim∞←n

(
R/pnR⊗OK B/mn)∼= lim←,n

(
R/pnR⊗̂OK B/pnB

)
,

where we denoted by R/pnR⊗̂OK B/pnB the completion of the usual tensor product with
respect to the ideal generated by the image of R⊗OK m.

In particular, if B=OK then R⊗̂B= R and if B∼=OK[[T]] then R⊗̂B∼= R[[T]].

4.1. The sheaves Ωk
X(w)

In this section we recall the main constructions of chapter 3 of [4] in a slightly different
context. Let w ∈Q be such that 06 w< p/(p+ 1).

Let f : E −→ X (w) and fK : EK −→ X(w) denote the universal semi-abelian scheme
over respectively X (w) and its generic fiber and let T −→ X(w) denote the p-adic Tate
module of E∨K −→ X(w) seen as a continuous sheaf on X (w)ket

K
. Notice that E admits a
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canonical subgroup C1 ⊂ E . Let T0 ⊂ T be the inverse image of C∨1,K \ {0} in T via the
natural map T → E∨K [p] → C∨1,K . Then T and T0 are continuous, locally constant sheaves
on X (w)ket

K
and hence can be seen as a continuous sheaf on X(w). Notice that the sheaf

T is a continuous sheaf of abelian groups, while T0 is a continuous sheaf of sets and it is
endowed with a natural action of Z∗p.

Let e : X (w) −→ E denote the identity section of f and let ωE/X (w) := e∗
(
Ω1

E/X (w)

)
. It

is a locally free OX (w)-module of rank 1 and we denote it by ωE/X(w) := v∗X (w)

(
ωE/X (w)

)
.

Then ωE/X(w) is a continuous sheaf on X(w), a locally free Ôun
X(w)-module of rank 1.

We have a natural sequence of sheaves and morphisms of sheaves on X(w) called the
Hodge–Tate sequence of sheaves for E/X (w):

0−→ ω−1
E/X(w) ⊗Ôun

X(w)
ÔX(w)(1)−→ T ⊗ ÔX(w)

dlog−→ ωE/X(w) ⊗Ôun
X(w)

ÔX(w) −→ 0.

Lemma 4.2. For every connected, small affine object U = (Spf(RU ),NU
)

of X (w)ket,
the localization of the Hodge–Tate sequence of sheaves at U is the Hodge–Tate sequence of
continuous GU -representations which appears in [4]§ 2:

0−→ ω−1
E/X (w)(U)⊗RU R̂U (1)−→ Tp

(
E∨U
)⊗ R̂U

dlogU−→ ωE/X (w)(U)⊗RU R̂U −→ 0

Proof. The proof is clear. �

Lemma 4.3. Let F 0 := Im(dlog) and F 1 :=Ker(dlog). Then:

(i) F 0,F 1 are locally free sheaves of ÔX(w)-modules on X(w) of rank 1. We denote them
by F i,(r) := j∗r (F i) for i= 0, 1; they are locally free ÔX(r)(w)-modules of rank 1.

(ii) We set v := w/(p − 1) and let us suppose that w is adapted to r, for a certain
r > 1, r ∈ N. We denote as Cr ⊂ E[pr] the canonical subgroup of level pr of E[pr]
over X(r)(w) (which exists by the assumption on w), we denote by C∨r its Cartier
dual and we also denote by Cr and C∨r the groups of points of these group schemes
over X(r)(w), and by the same symbols the constant abelian sheaves on

(
X(r)(w)

)ket.
We have natural isomorphisms as ÔX(w)-modules on X(w): F 0/p(1−v)r F 0 ∼= C∨r ⊗
OX(w)/p(1−v)r OX(w) and F 1/p(1−v)r F 1 ∼= Cr ⊗OX(w)/p(1−v)r OX(w).

(iii) We have natural isomorphisms of OX (r)(w)-modules with Gr-action:

vX(r)(w),∗
(

F i,(r))∼= F (r)
i ⊗OK OCp ,

for i = 0, 1. Here F (r)
i are the sheaves on X (r)(w) defined in § 2 of [4]. Moreover,

F i,(r) ∼= v∗
X(r)(w)(F (r)

i )⊗Ôun
X(r)(w)

ÔX(r)(w).

Proof. We consider a connected, small affine object U = (Spf(RU ),NU
)

of X ket as in
Lemma 4.2. Then the localizations of F i at U are F 0

(
RU ,NU

) = Im(dlogU ) = F0 and
F 1
(
RU ,NU

)=Ker(dlogU )= F1, and we apply Proposition 2.4 of [4]. This proves (i) and
(ii). Now we apply Proposition 2.6 of [4] and (iii) follows. �
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Let now B, k, r, w be as at the beginning of ğ 4, i.e., B is a complete, regular, local,
noetherian OK-algebra, k ∈W(BK) and r ∈ N, and w ∈Q such that w is adapted to r and
k. Let us also recall that we defined v := w/(p− 1).

Let us define SX(r)(w) := Z×p
(
1 + p(1−v)r ÔX(r)(w)

)
; it is a sheaf of abelian groups on

X(r)(w) which acts on ÔX(r)(w)⊗̂B := lim∞←n
(

ÔX(r)(w)/π
n ÔX(r)(w)⊗OK B/mn

)
as follows: let

s = c · x ∈ SX(r)(w)(U ,W, α) = Z×p
(
1 + p(1−v)r ÔX(w)(U ,W)

)
and y ∈ ÔX(r)(w)(U ,W, α)⊗̂B =

ÔX(w)(U ,W)⊗̂B. Then we define

s ∗ y := exp(a log(x)) · ck · y, where a ∈ BK is such that tk = exp(a log(t)), t ∈ 1+ prZp.

Let us remark that s ∗ y ∈ ÔX(r)(w)(U ,W, α)⊗̂B. We denote by
(

ÔX(r)(w)⊗̂B
)(k) the

continuous sheaf ÔX(r)(w)⊗̂B with the above defined action of SX(r)(w).
Thanks to Lemma 4.3(ii) that we have an isomorphism of sheaves

ϕ : F 0,(r)/p(1−v)r F 0,(r) ∼= (Cr
)∨ ⊗ ÔX(r)(w)/p

(1−v)r ÔX(r)(w).

Let F (r)′ denote the inverse image under the isomorphism ϕ above of the sheaf of sets
(Cr)
∨ − (Cr)

∨[pr−1]. It is endowed with an action of SX(r)(w).
Recall from ğ 2.6 that we have defined a morphism of sites jr : X(w)→ X(r)(w). It then

follows from the construction that dlog induces a map

dlog : j∗r (T0)−→ F (r)′ ,

compatible with the actions of Z∗p on the two sides.

Lemma 4.4. The sheaf F (r)′ is an SX(r)(w)-torsor and there exists a covering of X (w) by
small affine objects {Ui} such that F (r)′ |(Ui,Ui×X (w)X(r) is the trivial torsor for every i.

Proof. We localize at a connected, small affine object U of (X (r)(w))ket and apply
Lemma 4.3(iii) and [4] § 3. �

Let us now consider the OX(r)(w)⊗̂B-module

M(r)
k (w) := HomS

X(r)(w)

(
F (r)′ , (ÔX(r)(w)⊗̂B)(−k)).

Thanks to Lemma 4.4, it is a locally free OX(r)(w)⊗̂B-module of rank 1 and we have a
natural isomorphism of OX(r)(w)⊗̂B-modules

HomÔ
X(r)(w)⊗̂B

(
M(r)

k (w), ÔX(r)(w)⊗̂B
)
−→M(r)

−k(w).

We also have the continuous sheaf of OX(r)(w)⊗̂B-modules

A(r)k := HomZ∗p
(
j∗r (T0), (ÔX(r)(w)⊗̂B)(−k))

and a map of continuous sheaves of OX(r)(w)⊗̂B-modules

dlog∨,k : M(r)
k (w)−→ A(r)k

induced by dlog.
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For every element σ ∈ Gr we denote also by σ the functor
(
EX (w)K

)
/(X (w),X(r)(w)) −→(

EX (w)K

)
/(X (w),X(r)(w)) defined on objects by (U ,W, α)→ (U ,W, σ ◦ α) and by identity

on the morphisms. This functor induces a continuous functor on the site X(r)(w).
If H is a sheaf (or continuous sheaf) on X(r)(w) we denote by Hσ the sheaf
Hσ (U ,W, α) :=H

(
σ(U ,W, α)

)=H(U ,W, σ ◦ α).

Lemma 4.5. (a) Let us suppose that G is a sheaf of abelian groups on X(w) and
H := j∗r (G). Then Hσ =H for all σ ∈ Gr.

(b) For H = F (r)′ , (ÔX(r)(w)⊗̂B)(−k), or j∗r (T0) we have
(

H
)σ = H for every σ ∈ Gr.

Hence, the same applies for M(r)
k (w) and A(r)k compatibly with dlog∨,k.

(c) Suppose that H is a sheaf on X(r)(w) such that Hσ = H for all σ ∈ Gr. Then each
element σ ∈ Gr defines a canonical automorphism of the sheaf jr,∗(H), i.e., we have a
canonical action of the group Gr on the sheaf jr,∗(H).

Proof. (a) This follows immediately as j∗r (G)(U ,W, α)= G(U ,W).
(b) As OX(r)(w) = j∗r (OX(w)) we only need to verify the property for the sheaf F (r)′

which is clear from its definition.
(c) Let us recall that jr,∗(H)(U ,W) := H

(
U ,W×X(w)K X(r)(w)K,pr1

)
. We define the

automorphism

σ : jr,∗(H)(U ,W) =H
(

U ,W×X(w)K X(r)(w)K,pr1

)−→
−→ jr,∗(H)(U ,W) =H

(
U ,W×X(w)K X(r)(w)K, σ

−1 ◦ pr1

)
by the fact that σ : X(r)(w)−→ X(r)(w) is an automorphism over X(w). �

Definition 4.6. We define the sheaves Ωk
X(w) and ω†,k

X(w) on X(w) by

Ωk
X(w) :=

(
jr,∗
(
HomS

X(r)(w)
(F (r)′ , (ÔX(r)(w)⊗̂B)(−k))

))Gr

and

ω
†,k
X(w) :=

(
jr,∗
(
HomS

X(r)(w)
(F (r)′ , (ÔX(r)(w)⊗̂B)(−k))

)[1/p])Gr
.

The sheaves thus defined enjoy the following properties.

Lemma 4.7. For every B, k and w as above we have:

(i) ω†,k
X(w) is a locally free (ÔX(w)⊗̂B)[1/p]-module of rank 1.

(ii) vX(w),∗
(
ω

†,k
X

)∼= ω†,k
w ⊗K Cp, where ω†,k

w is the sheaf on X(w) given in Definition 3.2 of
[4].

(iii) ω†,k
X(w)
∼= ω†,k

w ⊗̂ÔX (w)
ÔX(w).

Proof. (i) is a consequence of the fact that F (r)′ is a locally trivial SX(r)(w)-torsor and
(ii) and (iii) follow by localization at a connected small affine U of X (w)ket using
Lemma 4.4. �
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As mentioned at the beginning of this section, we shall be most interested in two
instances of these constructions corresponding to choices of pairs (B, k) as above.

(1) The first is the simplest, i.e., when B = OK and so an BK = K-valued weight is
simply an element k ∈W(K).

(2) The second instance appears as follows. Let U ⊂W∗ be a wide open disk. Let us
recall that ΛU is a OK-algebra of bounded rigid functions on U and let us denote by ‖ ‖
the norm on the K-Banach algebra ΛU,K .

We denote by kU : Z×p −→ Λ×U the universal character of U defined by the relation
kU(t)(x)= tx for t ∈ Z×p , x ∈ U.

The constructions for the two instances above are connected as follows. Let U,ΛU, kU

be as in (2) above. Let also k ∈ U(K) be a K-valued weight and tk a uniformizer at k, i.e.,
an element of ΛU which vanishes with order 1 at k and nowhere else. Then we have an
exact sequence of K-algebras

0−→ΛU
tk−→ΛU −→OK −→ 0

which induces an exact sequence of sheaves on X(w):

0−→ ω
†,kU
X(w)

tk−→ ω
†,kU
X(w) −→ ω

†,k
X(w) −→ 0

which will be called the specialization exact sequence.

4.2. The map dlog∨,k.

We start by fixing a triple B, k as in the previous section such that the associated
r = 1, and let w be adapted to k. We have explained in ğ 3.3 how to construct
a continuous sheaf Ao

k(w) =
(

Ao
k,n(w)

)
n∈N :=

(
ν∗(Ao

k,n)
)

n∈N on Faltings’ site X(w)
associated with the continuous representation of Ao

k =
(
Ao

k/m
nAo

k

)
n∈N (see Definition 3.1)

of the Kummer étale fundamental group G of X(N, p). Similarly we have the sheaves
Do

k (w) =
(

Do
k,n(w)

)
n∈N :=

(
ν∗(Do

k,n)
)

n∈N. By construction and Proposition 3.10, the sheaf
Do

k,n(w) is a quotient of HomB
(

Ao
k,n(w),B/mm

)
.

Write T0 as the continuous sheaf on X(w) obtained similarly from the G-representation
T0. Then we have an inclusion of sheaves

Ao
k,n(w)⊂ HomZ∗p

(
T0,
(
B/mn)(k))

on X(w), which for every r and n ∈ N provides a map of sheaves of OX(r)(w) ⊗
B/mn-modules

β(r)n : j∗r
(

Ao
k,n(w)

)⊗OK

(
OX(r)(w)/p

n OX(r)(w)

)−→ HomZ∗p
(
j∗r
(

T0
)
, (OX(r)(w) ⊗ B/mn)(−k)).

These maps are compatible for varying n and define a map of continuous sheaves

β(r) : j∗r
(

Ao
k(w)

)⊗̂OK ÔX(r)(w) −→ A(r)k .

Proposition 4.8. (1) The map β(r) is injective and Gr-invariant.

(2) The map dlog∨,k is Gr-invariant and factors via β(r).

254

https://doi.org/10.1017/S1474748013000364 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748013000364


Overconvergent Eichler–Shimura isomorphisms

Proof. The fact that β(r) is Gr-invariant is clear as it is defined already over X(w). The
Gr-invariance of dlog∨,k follows from the Gr-invariance of dlog which is clear from its
definition. We prove that β(r)n is injective for every n ∈ N and that the map

HomS
X(r)(w)

(
F (r)′ , (OX(r)(w) ⊗ B/mn)(−k))−→ HomZ∗p

(
j∗r (T0), (OX(r)(w) ⊗ B/mn)(−k))

factors via β(r)n . It suffices to show this on localizations after localizing at small affine
objects of X (w)ket covering X (w); see § 2.7. Let U = (Spf(RU ,NU ) be any small affine.

The localization of Ao
k(w): From now until the end of this section we set r = 1.

Using the notation of § 3.3 choose a Zp-basis {ε0, ε1} of T such that 〈ε0, ε1〉 = 1
and ε1(mod pT) ∈ Eη[p] belongs to the canonical subgroup C = C1 of level p. Then
T0 := {aε0 + bε1|a ∈ Z∗p, b ∈ Zp}. Let x be the Zp-dual of ε0 and y the Zp-dual of ε1. We
deduce from the discussion after Definition 3.1 that

j∗1
(

Ao
k,n(w)

)
(RU ,NU , g) := ⊕h∈N(B/mn)xk(y/x)h

.

Thus, if we let D := (OX(1)(w) ⊗ B/mn
)
(RU ,NU , g), then(

j∗1
(

Ao
k,n(w)

)⊗OK OX(1)(w)

)
(RU ,NU , g)=⊕h∈ND · xk(y/x)h

.

Similarly HomZ∗p
(
j∗1
(

T0
)
, (ÔX(1)(w)⊗̂B/mn)(−k)

)
(RU ,NU , g) is the D-module of continuous

maps HomZ∗p
(
Z∗pε0 + Zpε1,D(−k)

)
. With an element f (x, y) :=∑αhxk(y/x)h we associate

the function Z∗pε0 + Zpε1→ D sending aε0 + bε1 7→ f (a, b) =∑αhk(a)(b/a)h. If such a
function is zero then f (x, y) is zero, proving the first claim.

The localization of M(1)
k (w): Using the notation of Lemma 4.2 we let e0, e1 denote an

R̂U -basis of T ⊗ R̂U such that e1 is a basis of F1 over R̂U reducing to ε1 modulo p1−v

and dlogU (e0) is a basis of F0 over R̂U reducing to ε0 modulo p1−v. Let X, Y denote the
basis of T ⊗ R̂U which is R̂U -dual to e0, e1(i.e., X(e1)= Y(e0)= 0 and X(e0)= Y(e1)= 1).
Then,

HomS
X(1)(w)

(
F (1)′ , (OX(1)(w) ⊗ B/mn)(−k))(RU ,NU , g)= D · Xk.

As X = ux + vy with u ∈ R̂U congruent to 1 modulo p1−vR̂U and v ∈ R̂U congruent to
0 modulo p1−vR̂U , it follows that Xk = xkγ with γ ∈ 1 + p1−vR̂U 〈(y/x)〉. Here, R̂U 〈y/x〉
denotes the p-adically convergent power series in the variable y/x. The second claim
follows. �

In particular, dlog∨,k induces a G1-invariant morphism of ÔX(1)(w)⊗̂B-modules

M(1)
k (w)−→ j∗1

(
Ao

k(w)
)⊗̂OK ÔX(1)(w).

Taking HomO
X(1)(w)⊗̂B

( − ,OX(1)(w)⊗̂B
)

and using the identification

HomO
X(1)(w)⊗̂B

(
M(1)

k (w),OX(1)(w)⊗̂B
)∼=M(1)

−k(w),

we get an induced G1-invariant morphism of B̂-modules

δ : HomB̂

(
j∗1
(

Ao
k(w)

)
, B̂
)−→M(1)

−k(w).
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Then:

Lemma 4.9. For every n ∈ N there exists m> n such that the map

HomB
(
j∗1
(

Ao
k,m(w)

)
,B/mm)−→ HomO

X(1)(w)⊗B
(

M(1)
k (w), (OX(1)(w) ⊗ B/mn)(−k)),

induced by δ, factors via j∗1
(

Do
k,m(w)

)
.

Proof. As X (w)ket can be covered by finitely many small affines, it suffices to show the
claim on localizations at a small affine U = (Spf(RU ,NU ) of X (w)ket (see § 2.7). We use
the notation of the proof of Proposition 4.8. Thanks to Proposition 3.10, the quotient
map

HomB
(
j∗1
(

Ao
k,m(w)

)
,B/mm)(RU ,NU , g)=⊕h∈N(B/mm) · (xk(y/x)h

)∨
−→ j∗r

(
Do

k,m(w)
)
(RU ,NU , g)

identifies the latter with the B-module ⊕06h6m(B/mm−h) · (xk(y/x)h
)∨. Recall from the

proof of Proposition 3.10 that, setting D := (OX(w) ⊗ B/mn
)
(RU ,NU ), we have defined a

generator Xk of M(r)
−k(w)(RU ,NU , g) as D-module. We conclude that

HomO
X(1)(w)⊗B

(
M(1)

k (w), (OX(1)(w) ⊗ B/mn)(−k)
)
(RU ,NU , g)∼= D · (Xk)∨.

Let N(n) be the degree of Xk in ⊕h∈ND · xk
(
y/x
)h, i.e., the maximal N such that

the coordinate of Xk with respect to xk
(
y/x
)N is non-zero. If we take m so that

m− N > n, then the map δ localized at U factors via HomO
X(1)(w)⊗B

(
M(1)

k (w), (OX(1)(w) ⊗
B/mn)(−k)

)
(RU ,NU , g) as wanted. �

It follows from Lemma 4.9 that we get a map of continuous sheaves of
ÔX(r)(w)⊗̂B-modules

Do
k (w)−→

(
j1,∗
(
j∗1
(

Do
k,m(w)

)))G1 −→
(

j1,∗
(

M(1)
−k(w)

))G1 =Ω†,k
X(w).

Passing to ind-sheaves and using Lemma 4.7 we obtain a map

δ∨k (w) : ν∗(Dk)=Do
k (w)[1/p] −→ ω

†,k
X(w)
∼= ω†,k

w ⊗̂ÔX (w)
ÔX(w). (5)

In the next section we will calculate the cohomology of the ind-continuous sheaves
ω

†,k
X(w)
∼= ω†,k

w ⊗̂ÔX (w)
ÔX(w).

4.3. The cohomology of the sheaves ω†,k
X(w)

Let ι : Z −→ X(w) be a morphism in X (w)fket
K

. Let Z := X(w)/(X (w),Z) be the associated
induced site and j := j(X (w),Z) : X(w) −→ Z the map j(U ,W) := (U ,Z×X(w)W,pr1

)
; see

2.5. It induces a morphism of topoi. For i > 0 we shall calculate Hi
(

Z, j∗
(
ω

†,k
X(w)

))
. For

ι= id we get in particular the calculation of Hi
(
X(w), ω†,k

X(w)

)
. We will need the following:
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Lemma 4.10. Let F be a locally free (ÔX(w)⊗̂B)[1/p]-module of finite rank. The sheaf
RbvX(w),∗

(
F
)

is the sheaf associated with the presheaf on X (w)ket:

U = (Spf(RU ),NU )→Hb(GU ,F(RU ,NU )
)
,

where GU is the Kummer étale geometric fundamental group of U , for a choice of a
geometric generic point, i.e., GU =Gal

(
RU [1/p]/(RU K)

)
.

Proof. The lemma follows arguing as in [2, Proposition 2.12 and Lemma 2.24]. �

Theorem 4.11. We have isomorphisms as GK-modules:

(a) H0
(
Z, j∗

(
ω

†,k
X(w)(1)

))∼=H0
(
Z, ι∗

(
ω†,k

w

))⊗̂KCp(1);

(b) H1
(
Z, j∗

(
ω

†,k
X(w)(1)

))∼=H0
(
Z, ι∗

(
ω†,k+2

w

))⊗̂KCp;

(c) Hi
(
Z, j∗

(
ω

†,k
X(w)(1)

))= 0 for i> 2.

Proof. As Rij∗ = 0 for all i > 1 by 2.6 we have Hi
(
Z, j∗

(
ω

†,k
X(w)(1)

)) ∼= H1
(
X(w),

j∗
(
j∗(ω†,k

X(w)(1))
))

. Set F := j∗
(
j∗
(
ω

†,k
X(w)(1)

))
. Recall that ω

†,k
X(w) is isomorphic to

ω†,k
w ⊗̂ÔX (w)

ÔX(w) by 4.7. Thus, j∗
(
ω

†,k
X(w)(1)

) ∼= ω†,k
w ⊗̂ÔX (w)

ÔZ(1) as j∗
(

ÔX(w)
) ∼= ÔZ

and F ∼= ω†,k
w ⊗̂ÔX (w)

j∗
(

ÔZ

)
(1). Due to 2.4, the natural map ÔX(w)⊗̂ÔX (w)

ι∗(ÔZ) −→
j∗
(

ÔZ

)
[p−1] is an isomorphism. Hence, F ∼= ω†,k

w ⊗̂ÔX (w)
ι∗(ÔZ )(1) is a locally free

(ÔX(w)⊗̂B)[1/p]-module.
To prove the theorem we will first calculate the sheaves RbvX(w),∗

(
F
)

using
Lemma 4.10 and then we will use the Leray spectral sequence (see [2]):

Ha
(

X (w)ket,RbvX(w),∗
(

F
))=⇒Hi(X(w),F

)
.

We compute the Galois cohomology of the localization of the ind-continuous sheaf F :

F(RU ,NU )= ω†,k
w (U)⊗̂RU ,K ι∗(OZ)(UK)⊗̂RU R̂U (1).

for U = (Spf(RU ,NU ) a small open affine of X (w)ket. Using that ω†,k
X(w) is a locally

free (ÔX(w)⊗̂A)[1/p]-module of rank 1, it follows from the main result of [9] that

H0
(

GU , R̂U ,K
)= RU ,K⊗̂KCp, so

H0(GU ,F(RU ,NU )
)= ω†,k

w (U)⊗̂RU ,K ι∗(OZ)(UK)⊗̂KCp(1).

Moreover H1
(

GU , R̂U ,K
)∼=Ω1

UK/K
⊗̂KCp(−1), so

H1(GU ,F(RU ,NU )
)∼= (Ω1

UK/K⊗̂KCp(−1)
)⊗̂RU ,K ι∗(OZ)(UK)⊗̂Kω

†,k
w (U)(1).

The Kodaira–Spencer isomorphism gives Ω1
UK/K
⊗̂KBK ∼= ω⊗2

EUK /UK
⊗̂KBK ∼= ω†,2

w (U).
Therefore we obtain

H1(GU ,F(RU ,NU )
)∼= ω†,k+2

w (U)⊗̂RU ,K ι∗(OZ)(UK)⊗̂KCp.
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Finally Hi
(

GU ,F(RU ,NU )
) = 0 for i > 2 because GU has cohomological dimension 1. It

follows that we have

R0vX(w),∗F ∼= ω†,k
w ⊗̂RU ,K ι∗(OZ)(UK)⊗̂KCp(1),

where the isomorphism is as sheaves on X (w)ket. Similarly we have

R1vX(w),∗F = ω†,k+2
w ⊗̂RU ,K ι∗(OZ)(UK)⊗̂KCp,

and RbvX(w),∗F = 0 for b > 2. Now let us observe that ω†,k⊗̂RU ,K ι∗(OZ)(UK)⊗̂KCp(1) is a
sheaf of K-Banach modules on X(w), as it is locally isomorphic to ι∗(OZ)⊗̂BK⊗̂Cp. As
X(w) is an affinoid we obtain that

H1(X (w)ket, ω†,k
w ⊗̂OX (w) ι∗(OZ)⊗̂KCp(1)

)=H1(X(w), ω†,k
w ⊗̂OX (w) ι∗(OZ)⊗̂Cp(1)

)= 0,

by Kiehl’s vanishing theorem. Therefore the Leray spectral sequence now gives the result
of the theorem. �

5. Hecke operators

Let ` denote a prime integer and w ∈Q be such that 06 w< p/(p + 1). We assume that
w is adapted to some integer r > 1 (see the beginning of ğ 3). We denote (see ğ 3.1.1 of
[4]) by X(r)` (w) the rigid analytic space over K which represents the functor associating
with a K-rigid space S a quadruple

(
E/S, ψS,H,Y

)
, where E −→ S is a semi-abelian

scheme of relative dimension 1 and Y is a global section of ω1−p
E/S such that Yh(E/S)= pw,

where we have denoted by h a lift to characteristic 0 of the Hasse invariant. Let us notice
that the existence of Y as above implies that there is a canonical subgroup Cr ⊂ E[pr],
of order pr defined over S. We continue to describe the quadruple (E/S, ψS,H,Y): ψS is
a Γ1(Npr)-level structure of E/S, or more precisely ψS = ψN · ψpr , where ψN : Z/NZ→ E
is a closed immersion of group schemes over S and ψpr is a generator of Cr. Furthermore
H ⊂ E is a locally free subgroup scheme, finite of order `, defining a Γ0(`)-level structure
such that H has empty intersection with the image of ψN (this condition is automatic if `
does not divide N) and H∩Cr = {0} (this condition is automatic if ` 6= p). We consider on
X(r)` (w) the log structure given by the divisor of cusps and denote the resulting log rigid
space using the same notation: X(r)` (w).

We have natural morphisms p1 : X(r)` (w) −→ X(r)(w) and p2 : X(r)` (w) −→ X(r)(w′),
where w′ = w if ` 6= p and w′ = prw if ` = p, in which case we will assume that
0 6 w 6 2/p2r. These morphisms are defined on points as follows: p1(E, ψ,H,Y) :=
(E, ψ,Y) ∈ X(r)(w) and p2(E, ψ,H,Y) = (E/H, ψ ′,Y ′

) ∈ X(r)(w′) where ψ ′, Y ′ are the
induced level structure and global section associated with E/H. The morphism p1 is
finite and Kummer log étale, and if `= p then p2 is an isomorphism of K-rigid spaces.

Let us recall that we have denoted as X(w) Faltings’ site associated with the log
formal scheme X (w), and as X(r)(w) the site X(w) localized at its object

(
X (w),X(r)(w)

)
.

Let us observe that
(

X (w),X(r)` (w)
)

is also an object of X(w); therefore we will define
X
(r)
` (w) := X(w)

/(X (w),X(r)` (w))
, i.e., the localized site (see ğğ 2.3 and 2.4).
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The morphisms p1, p2 defined above induce continuous morphisms of sites:

X
(r)
` (w)

↗ p1 p2↖
X(r)(w) X(r)(w′)

We denote by E (r)w the universal generalized elliptic curve over X(r)(w) and by
π` : E −→ E/H the natural universal isogeny over X(r)` (w). Let T (E), T (E/H), T (E (r)w )

denote the p-adic Tate modules of E, E/H, E (r)w seen as continuous sheaves on X
(r)
` (w) and

X(r)(w) respectively. Then we have maps

p∗2
(

T (E (r)w′ )
)= T

(
(E/H)

) π`←− p∗1
(

T (E (r)w )
)= T

(
E
)
.

which induce the following commutative diagram:

p∗2
(

T ((E (r)w′ )
∨)⊗ ÔX(r)(w′)

) ∼= T
(
(E/H)∨

)⊗ Ô
X
(r)
` (w)

dlog−→ ωE/H ⊗ Ô
X
(r)
` (w)

↓ π ∨̀ ⊗ Id ↓ d(π`)⊗ Id

p∗1
(

T
(
(E (r)w )∨

)⊗ Ô
X
(r)
` (w)

) ∼= T
(

E∨
)⊗ Ô

X
(r)
` (w)

dlog−→ ωE ⊗ Ô
X
(r)
` (w)

For the rest of this section, we suppose that r = 1.

Lemma 5.1. Let now k ∈W∗(BK) be a weight with associated integer r = 1 such that w
as above is associated with k. Then the above diagram induces morphisms:

π` : p∗2
(

M(1)
−k(w

′)
)−→ p∗1

(
M(1)
−k(w)

)
, π` : p∗2

(
j∗1(Do

k (w
′))
)−→ p∗1

(
j∗1(Do

k (w
′))
)
,

where M(1)
−k(w) is the sheaf HomS

X1r)(w)

(
F (1)′ , (ÔX(1)(w)⊗̂B)(−k)

)
on X(1)(w) defined in

§ 4.1, such that the diagram

p∗2
(
j∗1(Do

k (w
′))
) p∗2(δ)−→ p∗2

(
M(1)
−k(w

′)
)

↓ π` ↓ π`
p∗1
(
j∗1(Do

k (w
′))
) p∗1(δ)−→ p∗1

(
M(1)
−k(w)

)
,

where δ is the map defined in Lemma 4.9, is commutative.

Proof. Let F 0(E) := Im
(

dlog : T (E∨) ⊗ Ô
X
(1)
` (w)

−→ ωE/X(1)` (w)

)
as in Lemma 4.3 and

denote as F 0(E/H) the analogue object constructed with E/H instead of E . Then, if
C1 is the canonical subgroup of E and C′1 is the canonical subgroup of E/H we have a
natural commutative diagram

E[p] π`−→ (E/H)[p]
∪ ∪
C1

∼= C′1
where the map on canonical subgroups is an isomorphism. It follows that the dual
isogeny π ∨̀ : (E/H)∨→ E∨ induces an isomorphism of torsors F ′

(
(E/H)∨

) −→ F ′(E∨)
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and, hence, an isomorphism

π ∨̀ : p∗1
(

M(1)
k (w)

)−→ p∗2
(

M(1)
k (w′)

)
.

Dualizing with respect to ÔX(1)(w)⊗̂B and identifying the dual of M(1)
k (w) with M(1)

−k(w)
we get the first map π`, which is an isomorphism.

The map π ∨̀ : T
(
(E/H)∨

) −→ T (E∨) induces a map T0
(
(E/H)∨

) −→ T0(E∨) and,

hence, a morphism π ∨̀ : p∗1
(

j∗1
(
Ak,m(w)

)) −→ p∗2
(

j∗1
(
Ak,m(w′)

))
for every m ∈ N which,

dualized, induces the second morphism

π` : p∗2
(

j∗1
(

Do
k,m(w

′)
))−→ p∗1

(
j∗1
(

Do
k,m(w)

))
.

As the diagram

T0
(
(E/H)∨

) −→ F ′
(
(E/H)∨

)
↓ π ∨̀ ↓ π ∨̀

T0(E∨) −→ F ′(E∨)

is commutative, the above maps π ∨̀ are compatible with the morphisms

p∗2
(

M(1)
k (w′)

)−→ p∗2
(
j∗1
(

Ao
k(w
′)
))⊗̂OK ÔX(1)(w′)

and

p∗1
(

M(1)
k (w)

)−→ p∗1
(
j∗1
(

Ao
k(w
′)
))⊗̂OK ÔX(1)(w)

defined using dlog∨,k (see Proposition 4.8 and the following discussion). Dualizing the
compatibility of the two maps, π` in the statement via δ follows. �

Now we define the Hecke operators T` for ` not dividing pN and U` for ` dividing pN
on modular forms and cohomology. More precisely T` for ` not dividing pN and U` for `
dividing pN on overconvergent modular forms are respectively defined as the maps

T`, U` : H0(X(w′), ω†,k
X(w′)

)−→H0(X(w), ω†,k
X(w)

)
as follows. Recall that by the definition ω

†,k
X(w) :=

(
j1,∗
(

M(1)
−k(w)

))G1 [1/p]; see

Definition 4.6. Using the fact that Rij1,∗ = 0 for i> 1, by Corollary 2.6 we may identify

Hi(X(w′), ω†,k
X(w′)

)∼=Hi(X(w′), j1,∗
(

M(1)
−k(w

′)
)[1/p])G1 ∼=Hi(X(1)(w′),M(1)

−k(w
′)[1/p])G1

and similarly Hi
(
X(w), ω†,k

X(w)

) ∼= Hi
(
X(1)(w),M(1)

−k(w
′)[1/p])G1 for every i ∈ N. The maps

T`, U` are defined using these identifications and taking G1-invariants and inverting p in

Hi(X(1)(w′),M(1)
−k(w

′)
)−→Hi(X(1)` (w), p∗2(M(1)

−k(w
′))
) π`−→

π`−→Hi(X(1)` (w), p∗1(M(1)
−k(w)[1/p])

)=H0(X(1)(w), p1,∗p∗1(M(1)
−k(w))

)
−→Hi(X(1)(w),M(1)

−k(w)
)
.

The equality Hi
(
X
(1)
` (w), p∗1(j∗1(M(1)

−k(w)))
)=Hi

(
X(1)(w), p1,∗p∗1(M(1)

−k(w))
)

follows from a
Leray spectral sequence argument using the vanishing of Rhp1,∗, for h > 1, proven in
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Corollary 2.6. The last map

Hi(X(1)(w), p1,∗p∗1(M(1)
−k(w)[1/p])

)−→Hi(X(1)(w),M(1)
−k(w)[1/p]

)
is the map on cohomology associated with the trace map p1,∗p∗1(F)→ F defined in (1)
and can be seen as the trace map for Faltings’ cohomology (Hi).

Now we assume that k ∈W∗(BK). We have a GK-equivariant isomorphism

H0(X(w), ω†,k
X(w)

)∼=H0(X(w), ω†,k
w ⊗̂KCp

)
and that the latter is provided with Hecke operators given in [4] (strictly speaking only
the operators T`, for ` not dividing pN, and Up have been defined in the above citation,
but the same approach provides also operators U` for ` dividing N). Recall that in (5) of
ğ 4.2 we defined a map of sheaves on X(w)

δ∨k (w) : ν∗(Dk)−→ ω
†,k
X(w),

for w adapted to k, and pw is a uniformizer of K. Moreover in ğ 4.3 we have calculated the
cohomology group

H1(X(w), ω†,k
X(w)(1)

)∼=H0(X(w), ω†,k+2
w

)⊗̂KCp.

Combining the remarks above we have an BK⊗̂KCp-linear map, which is GK-equivariant:

Ψk,w : H1(X(w), ν∗(Dk)(1)
)−→H0(X(w), ω†,k+2

w

)⊗̂KCp.

We have:

Theorem 5.2. The isomorphism H0
(
X(w), ω†,k

X(w)

) ∼= H0
(
X(w), ω†,k

w ⊗̂KCp
)

and the map
Ψk,w commute with the Hecke operators T` and U` defined above.

Proof. Due to the compatibility proven in 5.1, the map on cohomology
induced by δ∨k (w) is compatible with Hecke operators. It suffices to prove that
the isomorphisms H0

(
X(w), ω†,k

X(w)

) ∼= H0
(
X(w), ω†,k

w ⊗̂KCp
)

and H1
(
X(w), ω†,k

X(w)(1)
) ∼=

H0
(
X(w), ω†,k+2

w

)⊗̂KCp are compatible with the Hecke operators on ω†,k defined in
[4] (considering also the variant for U` with ` dividing N not explicitly treated
in the above citation). By Theorem 4.11 this amounts to proving that the trace
map p1,∗ ◦ p∗1

(
ÔX(1)(w)

) = p1,∗
(

Ô
X
(1)
` (w)

)→ ÔX(1)(w) is compatible with the trace map

p1,∗
(

OX (r)
` (w)

)→OX (1)(w). This follows, for example, from the explicit description of the

trace given after formula (1) in § 2.5. �

6. The Eichler–Shimura isomorphism

Let U ⊂W∗ be a wide open disk with universal weight kU and ring of bounded analytic
functions ΛU. We have described in Lemma 3.20 the following sequence of maps:

H1(Γ,DU
)⊗̂KCp(1)∼=H1(X(N, p),DU

)⊗̂KCp(1)−→H1
(
X(w), ν∗

(
DU(1)

))
.

These maps are equivariant for the action of the Galois group GK and the Hecke
operators and (1) denotes the usual Tate twist. Now let us recall that in (5) of ğ 4.2 we
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defined a map of sheaves

δ∨kU
(w) : ν∗(DU)−→ ω

†,kU
X(w)

on X(w). Therefore, by Theorem 4.11 we have maps

H1(X(w), ν∗(DU
)⊗ K(1)

)−→H1(X(w), ω†,kU
X(w)(1)

)∼=H0(X(w), ω†,kU+2
w

)⊗̂KCp.

These maps are also equivariant for the action of GK and the Hecke operators due to
Theorem 5.2. Putting everything together we have a map

ΨU : H1(Γ,DU
)⊗̂KCp(1)−→H0(X(w), ω†,kU+2

w

)⊗̂KCp.

This map is equivariant for the action of GK and the Hecke operators and commutes
with specializations. In other words if k ∈ U(K) is a weight, in similar way we obtain a
map

Ψk : H1(Γ,Dk
)⊗K Cp(1)−→H0(X(w), ω†,k+2

w

)⊗K Cp,

such that the following diagram is commutative:

H1(Γ,DU
)⊗̂KCp(1)

ΨU−→ H0(X(w), ω†,kU+2
w

)⊗̂KCp

↓ ρk ↓ ρk

H1(Γ,Dk
)⊗K Cp(1)

Ψk−→ H0(X(w), ω†,k+2
w

)⊗K Cp

The goal of this section is to study the maps Ψk using the map ΨU.

6.1. The main result

Let us fix a slope h ∈Q, h> 0 and an integer k0 such that h< k0 + 1 and think about k0

as a point in W∗(K). We let U ⊂W∗ be a wide open disk defined over K such that:

(a) k0 ∈ U(K).
(b) Both H1

(
Γ,DU

)
and H0

(
X(w), ω†,kU+2

w

)
have slope h decompositions and

H1
(
Γ,DU

)(h) 6= 0.

We denote by kU the universal weight of U, denote by ΛU the ring of bounded
rigid functions on U and define BU := ΛU ⊗OK K. Then BU is a K-Banach algebra and
moreover it is a principal ideal domain.

We let H1
(
Γ,DU

)(h) and H0
(
X(w), ω†,kU

w

)(h) be the parts corresponding to slopes
smaller than or equal to h of the respective cohomology groups. Both these modules are
free BU-modules of finite rank and ΨU induces an (BU⊗̂KCp)-linear map

Ψ
(h)
U : H1(Γ,DU

)(h)⊗̂KCp(1)−→H0(X(w), ω†,kU+2
w

)(h)⊗̂Cp

compatible with specializations and equivariant for the action of GK and the Hecke
operators T`, for (`,Np) = 1, and U`, for ` dividing N. We denote by MU the
kernel of ΨU and by M(h)

U the kernel of Ψ (h)
U . Then MU is a (BU⊗̂KCp)-submodule of

H1
(
Γ,DU

)⊗̂KCp(1), preserved by GK and the Hecke operators T`, for (`,Np) = 1, and
U`, for ` dividing N, and M(h)

U is a (BU⊗̂Cp)-submodule on which Up-acts by slopes
smaller than or equal to h. We have:

262

https://doi.org/10.1017/S1474748013000364 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748013000364


Overconvergent Eichler–Shimura isomorphisms

Theorem 6.1. (a) There is a non-zero element b ∈ B := (BU⊗̂Cp) such that b

annihilates Coker(Ψ (h)
U ).

(b) Let Z ⊂ U(Cp) be the (finite) set of zeros of b ∈ B in (a) above and let V ⊂ U be a
wide open disk defined over K satisfying: V(K) contains an integer k such that k > h − 1
and V(Cp) ∩ Z = φ. Then restriction to V induces an exact sequence

0−→M(h)
V −→H1(Γ,DV

)⊗̂KCp(1)
Ψ
(h)
V−→H0(X(w), ω†,kV+2

w

)⊗̂KCp −→ 0.

(c) For a wide open disk V as in (b) above let us denote by χuniv
V the following

composition:

GK
χ−→ Z×p

kV−→ B×V −→ (BV⊗̂Cp)
×,

where χ is the cyclotomic character of K. We call χuniv
V the universal cyclotomic

character attached to V. Then the semilinear action of GK on the module SV :=
M(h)

V

(
χ−1(χuniv

V )−1
)

is trivial. Moreover SV is a finite, projective (BV⊗̂Cp)-module with
trivial semilinear GK-action. Obviously M(h)

V = SV(χ · χuniv
V ) as semilinear GK-modules.

(d) For each V as in (b) and (c) above there is a non-zero element 0 6= β ∈ BV such
that the localized exact sequence

0−→ (
SV(χ · χuniv

U )
)
β
−→

(
H1(Γ,DV

)(h)⊗̂Cp(1)
)
β
−→

(
H0(X(w), ω†,kV

w

)(h)⊗̂Cp

)
β
−→ 0

is naturally and uniquely split as a sequence of GK-modules.

Before proving the theorem let us point out some of its consequences.

Corollary 6.2. Assume that we have U, k0, h as at the beginning of § 6.1.
(a) There exists a finite set of weights Z′ ⊂ U(Cp) such that for every k ∈ U(K)− Z′ we

have a natural isomorphism as Cp-vector spaces equivariant for the semilinear GK-action
and the action of the Hecke operators T` for ` not dividing Np and U` for ` dividing Np:

ΨES
k : H1(Γ,Dk

)(h) ⊗K Cp(1)∼= Sk(k + 1)⊕H0(X(w), ω†,k+2
w

)(h)⊗̂KCp.

Here Sk is a finite Cp-vector space with trivial, semilinear action of GK and an action of
the Hecke operators.

(b) The set Z′ in (a) above contains the integers κ ∈ U ∩ Z such that 06 κ 6 h− 1.

Proof of Theorem 6.1. Let k ∈ U(K) ∩ Z such that k > 0.
We will first recall Faltings’ version of the classical Eichler–Shimura isomorphism; see

[9]. Let us recall the ind-continuous sheaf Vk ∼= Symk(T ) ⊗Zp K on X(N, p)ket, which
can also be seen as an ind-continuous sheaf on X(N, p). Let k > 0 be an integer.
The main result of [9] is that there is a Cp-linear, GK-equivariant isomorphism (the
Eichler–Shimura isomorphism)

Φk : H1(X(N, p)ket
K ,Vk

)⊗K Cp(1)
∼=H0(X(N, p), ωk+2)⊗K Cp ⊕H1(X(N, p), ω−k)⊗K Cp(k + 1).

263

https://doi.org/10.1017/S1474748013000364 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748013000364


F. Andreatta, A. Iovita and G. Stevens

We have a natural isomorphism H1
(
X(N, p)ket

K
,Vk(1)

) ∼= H1
(
Γ,Vk(1)

)
compatible with

all structure and therefore we have a natural diagram

H1(Γ,DU
)⊗̂KCp(1)

ΨU−→ H0(X(w), ω†,kU+2
w

)⊗̂Cp

↓ ↓
H1(Γ,Dk

)⊗K Cp(1)
Ψk−→ H0(X(w), ω†,k+2

w

)⊗K Cp

↓ ↑
H1(Γ,Vk(1)

)⊗K Cp
p2◦Φk−→ H0(X(N, p), ωk+2)⊗K Cp

where the left vertical maps are induced by the specializations DU −→ Dk −→ Vk (see
(4) in § 3.1), as in the top right map. The lower right map is a restriction (let us recall
that if m> 0 is an integer, ωm|X(w) ∼= ω†,m

w ).

Claim 1. The above diagram is commutative. In fact we know that the upper
rectangle is commutative so it would be enough to show that the lower rectangle is
also commutative.

Proof. For this we have to briefly recall (in a slightly different formulation) the proof of
Faltings’ result, namely the definition of the map p2 ◦Φk. We first notice that arguing as
in the proof of Proposition 3.19 we have a natural isomorphism (as X (N, p) is proper and
semistable)

H1(X(N, p)ket
K ,Vk(1)

)⊗K Cp −→H1(X(N, p),Symk(T )⊗̂ÔX(N,p) ⊗OK K(1)
)
.

As in Definition 4.6 we define

ωX(N,p) := v∗X(N,p)
(
ω
)⊗̂Ôun

X(N,p)
ÔX(N,p).

We then have the Hodge–Tate sequence of sheaves of ÔX(N,p)-modules on X(N, p)

0−→ ω−1
X(N,p)(1)−→ T ⊗̂ÔX(N,p) −→ ωX(N,p) −→ 0.

This sequence is not exact but it becomes exact if we invert p, or if we tensor with K. We
obtain

0−→ (ω−1
X(N,p) ⊗ K)(1)−→ T ⊗̂ÔX(N,p) ⊗OK K −→ (ωX(N,p) ⊗ K)−→ 0.

One shows by induction that for every m > 1 we have a surjective map of
(ÔX(N,p) ⊗ K)-modules:

Symk(T )⊗̂ÔX(N,p) ⊗OK K(1)−→ ωk
X(N,p) ⊗ K(1),

which induces the morphism

H1(X(N, p),Symk(T )⊗̂ÔX(N,p) ⊗OK K(1)
)−→H1(X(N, p), ωk

X(N,p) ⊗ K(1)
)
.

Adopting an approach similar to that of the calculations in the proof of Theorem 4.11,
we calculate H1

(
X(N, p), ωk

X(N,p) ⊗ K(1)
)

using the spectral sequence

Ha
(

X (N, p)ket,RbvX(N,p),∗
(
ωk

X(N,p) ⊗ K(1)
))=⇒Ha+b(X(N, p), ωk

X(N,p) ⊗ K(1)
)
.
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For a+ b= 1 we have an edge morphism

H1(X(N, p), ωX(N,p) ⊗ K(1)
)−→H0

(
X (N, p)ket,R1vX(N,p),∗

(
ωk

X(N,p) ⊗ K(1)
))
.

As in the proof of Theorem 4.11 we have

R1vX(N,p),∗
(
ωk

X(N,p) ⊗ K(1)
)∼= ωk⊗̂R1vX(N,p),∗

(
ÔX(N,p) ⊗ K(1)

)∼= ωk+2⊗̂Cp.

Therefore we obtain a natural composition

H1(X(N, p),Vk⊗̂ÔX(N,p)(1)
) −→ H1(X(N, p), ωk

X(N,p) ⊗ K(1)
)

−→ H0(X(N, p), ωk+2)⊗K Cp,

which is the map p2 ◦Φk appearing in [9].
Let us now see what happens on X(w). We define Tw := ν∗(T ). We have a natural map

ν∗
(

Dk
) −→ Symk(Tw) = ν∗

(
Vk
)

(associated with (4) in § 3.1) and the composite with
Symm(T )⊗̂ÔX(N,p)⊗OK K −→ ωk

X(N,p)⊗K is the morphism δ∨k (w) : ν∗(Dk)−→ ωk
X(N,p)⊗K

of (5) of § 4.2. Moreover we have the following natural commutative diagram of sites and
continuous functors, inducing morphisms of topoi:

X (N, p)ket vX(N,p)−→ X(N, p)

↓ µ ↓ ν
X (w)ket vX(w)−→ X(w)

Here µ, ν are induced by the natural morphism of log formal schemes X (w)−→ X (N, p).
Let us recall from Theorem 4.11 that we have isomorphisms

H1(X(w), ω†,k
X(w)(1)

)∼=H0(X (w)ket,R1vX(w),∗(ω†,k
X(w)(1))

)∼=H0(X(w), ω†,k+2
w

)⊗K Cp.

We also have the following sequence of isomorphisms of sheaves on X(w):

R1vX(w),∗
(
ν∗
(
ωk+2

X(N,p) ⊗ K(1)
)) ∼= R1vX(w),∗

(
ω

†,k+2
X(w) (1)

)
∼= ω†,k+2

w ⊗ Cp ∼= µ∗
(
ωk+2 ⊗ Cp

)
∼= µ∗

(
R1vX(N,p),∗

(
ωk+2

X(N,p) ⊗ K(1)
))
.

Finally, putting together what we have done so far, we have the following commutative
diagram:

H1(X(N, p),Vk⊗̂ÔX(N,p)(1)
) −→ H1(X(w),Symk(Tw)⊗̂ÔX(w) ⊗OK K(1)

)
↓ ↓

H1(X(N, p), ωk
X(N,p) ⊗ K(1)

) −→ H1(X(w), ω†,k
X(w)(1)

)
↓ ↓∼=

H0(X(N, p), ωk+2 ⊗ K
)⊗K Cp

ϕ−→ H0(X(w), ω†,k+2
w

)⊗K Cp

where ϕ is the restriction map. This proves Claim 1. �

Remark 1. Let us suppose now that h > 0, h ∈ Q is a slope such that both H1
(
Γ,DU

)
and H0

(
X(w), ω†,kU+2

w

)
have slope decompositions. Let k ∈ U(K) ∩ Z, k > 0. Then the
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diagram

H1(Γ,DU
)(h)⊗̂KCp(1)

Ψ
(h)
U−→ H0(X(w), ω†,kU+2

w

)(h)⊗̂Cp

↓ ↓
H1(Γ,Dk

)(h) ⊗K Cp(1)
Ψ
(h)
k−→ H0(X(w), ω†,k+2

w

)(h) ⊗K Cp

↓ ↑ ϕ
H1(Γ,Vk(1)

)(h) ⊗K Cp
p2◦Φk−→ H0(X(N, p), ωk+2)(h) ⊗K Cp

is commutative.

Claim 2. Let U ⊂ W be a wide open disk, kU : Z×p −→ B×U the universal weight,
w > 0,w ∈ Q, adapted to kU and k ∈ U(K). Let tk ∈ BU be a rigid analytic function
on U which vanishes with order 1 at k and nowhere else on U. The specialization maps
DU −→ Dk and ω†,kU

w −→ ω†,k
w induce the following exact sequences:

H1(Γ,DU
) tk−→H1(Γ,DU

)−→H1(Γ,Dk
)−→ 0

and

0−→H0(X(w), ω†,kU
w

) tk−→H0(X(w), ω†,kU
w

)−→H0(X(w), ω†,k
w

)−→ 0.

Proof. In fact the specialization maps are part of the following exact sequences:

0−→ DU
tk−→ DU −→ Dk −→ 0 and 0−→ ω†,kU

w
tk−→ ω†,kU

w −→ ω†,k
w −→ 0.

It follows that we have an exact sequence of BU-modules

H1(Γ,DU
) tk−→H1(Γ,DU

)−→H1(Γ,Dk
)−→H2(Γ,DU

)
.

Now let us recall that Γ = Γ1(N) ∩ Γ0(p) is a torsion free group; therefore it is the
fundamental group of the complement Y(N, p)/C of a non-void, finite set of points in a
compact Riemann surface X(N, p)/C and so it has cohomological dimension 1. It follows
that H2

(
Γ,DU

)= 0 and the first claim follows.
Let us also remark that we have an exact sequence of BU-modules

0−→H0(X(w), ω†,kU
) tk−→H0(X(w), ω†,kU

)−→H0(X(w), ω†,k)−→H1(X(w), ω†,kU
)
.

As X(w) is an affinoid subdomain and ω†,kU
w is a sheaf of BU-Banach modules by the

Appendix of [3] it follows that H1
(
X(w), ω†,kU

)= 0 (note that we cannot appeal directly
to Tate’s acyclicity theorem as ω†,kU

w is not a coherent sheaf on X(w)). This proves
Claim 2. �

Remark 2. Let U ⊂ W be a wide open disk defined over K, kU : Z×p −→ B×U the
universal character, w > 0,w ∈ Q, adapted to kU and h > 0, h ∈ Q a slope. We suppose
that both H1

(
Γ,DU

)
and H0

(
X(w), ω†,kU

w

)
have slope decompositions. Let k ∈ U(K) ∩ Z,
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k > 0, and let us recall the commutative diagram of the previous remark:

H1(Γ,DU
)(h)⊗̂KCp(1)

Ψ
(h)
U−→ H0(X(w), ω†,kU+2

w

)(h)⊗̂Cp

↓ ↓
H1(Γ,Dk

)(h) ⊗K Cp(1)
Ψ
(h)
k−→ H0(X(w), ω†,k+2

w

)(h) ⊗K Cp

↓ ψ ↑ ϕ
H1(Γ,Vk(1)

)(h) ⊗K Cp
p2◦Φk−→ H0(X(N, p), ωk+2)(h) ⊗K Cp

First let us remark that the surjective map p2 ◦ Φk induces a surjective Cp-linear map

denoted by the same symbols H1
(
Γ,Vk(1)

)(h) ⊗K Cp
p2◦Φk−→ H0

(
X(N, p), ωk+2

)(h) ⊗K Cp.
Then, there are two cases:

(i) k+1> h. Then the classicity theorems both for overconvergent modular symbols and
for overconvergent modular forms imply that ψ and ϕ are isomorphisms. It follows
that in this case Ψ (h)

k is surjective.

(ii) k + 1 < h. In this case the commutativity of the lower rectangle implies that
the image of Ψk is contained in the image of the classical forms inside
H0
(
X(w), ω†,k+2

w

)(h)⊗̂Cp. The relationship between h and k implies that in this case
Ψ
(h)
k is not surjective in general.

Now we prove (a) of Theorem 6.1. We assume that U,w, h are as at the beginning of
ğ 6.1. Let k ∈ U(K) ∩ Z be such that h< k + 1 (there are infinitely many such weights k).

Let us recall that both H1
(
Γ,DU

)(h)⊗̂KCp(1) and H0
(
X(w), ω†,kU

w

)(h)⊗̂KCp are finite
free B := (BU⊗̂KCp)-modules of ranks n and m respectively. By choosing a basis, we can
write Φ(h)U as a matrix Φ(h)U =

(
aij
)
16i6n,16j6m with aij ∈ B for all i, j. By Claim 2 we have

H1(Γ,Dk
)(h) ⊗K Cp ∼=

(
H1(Γ,DU

)(h)⊗̂KCp

)
/tk
(

H1(Γ,DU
)(h)⊗̂KCp

)
,

and

H0(X(w), ω†,k+2
w

)(h)⊗̂KCp

∼=
(

H0(X(w), ω†,kU+2
w

)(h)⊗̂KCp

)
/tk
(

H0(X(w), ω†,kU+2
w

)(h)⊗̂KCp

)
,

where let us recall that we have denoted by tk an element of B which vanishes with order
1 at k and nowhere else in U.

Moreover Ψ (h)
k = (aij(k)

)
i,j. The second remark above implies that n > m and the

matrix Ψ
(h)
k has rank exactly m, i.e., there is an m × m-minor of Ψ (h)

U , Q, whose
determinant has the property det(Q)(k) 6= 0. Therefore b := det(Q) 6= 0, b ∈ B has the
property that bCoker

(
Ψ
(h)
U

)= 0.
Let us now prove (b) of Theorem 6.1. Let Z denote the set of zeros of b and let V ⊂ U

be a connected affinoid subdomain defined over K such that V(Cp) ∩ Z = φ and such that
V(K) contains an integer k > h − 1. Then b|V×KCp ∈ (BV⊗̂KCp)

×; therefore the following
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sequence:

0−→M(h)
V −→H1(Γ,DV

)(h)⊗̂KCp(1)
Ψ
(h)
V−→H0(X(w), ω†,kV+2

w

)(h)⊗̂KCp −→ 0

is exact, where we have denoted by M(h)
V the kernel of Ψ

(h)
V . As

H0
(
X(w), ω†,kV+2

w

)(h)⊗̂KCp is a free (BV⊗̂KCp)-module of finite rank the above exact
sequence is split (as a sequence of (BV⊗̂KCp)-modules ignoring for the moment
the GK-action). Therefore M(h)

V is a finite projective (BV⊗̂KCp)-module and because
(BV⊗̂KCp) is a PID, M(h)

V is a finite and free (BV⊗̂KCp)-module of finite rank.

Remark 3. In fact we also have a localized exact sequence of Bb-modules (0 6= b ∈ B is
the element chosen in (a) above)

0−→ (
M(h)

U

)
b −→

(
H1(Γ,DU

)(h)⊗̂KCp(1)
)

b
−→

(
H0(X(w), ω†,kU+2

w

)(h)⊗̂KCp

)
b
−→ 0.

As in general b is not invariant under GK , the above exact sequence is not
GK-equivariant.

Now we prove (c) of Theorem 6.1. Let V be as in the theorem and define SV :=
M(h)

V

(
χ−1(·χuniv

U )−1
)
. It is a finite free (BV⊗̂KCp)-module of rank say q= n− m endowed

with a continuous, semilinear action of GK . Let us briefly recall the so called Sen’s theory
in families; see [17], [18] and also the ğ 2 of [16].

We assume (to simplify the exposition) that K contains a non-trivial pth root of 1.
Let R be an affinoid K-algebra, and M a finite free R⊗̂KCp-module of rank q with a
continuous, semilinear action of GK . The action of GK on R⊗̂KCp is via its natural action
on Cp.

Let K′ ⊂ Cp be a finite extension; we define HK′ := Ker
(
χ : GK −→ (1 + pZp)

)
and

ΓK′ := GK′/HK′ . Also K′∞ := KHK′ and K̂′∞ := CHK′
p .

We define

ŴK′∞
(
M
) :=MHK′ .

Then, if K′ is large enough (but still a finite extension of K) then ŴK′∞
(
M
)

is a
free K̂′∞⊗̂KR-module of rank q and the natural map Cp⊗̂K̂′∞

ŴK′∞
(
M
) −→ M is an

isomorphism.
There is a finite extension K′ of K (possibly larger than in the previous step) such

that ŴK′∞
(
M
)

has a basis {e1, e2, . . . , eq} over K̂′∞⊗̂KR such that the K′ ⊗K R-submodule
W∗ generated by this basis in ŴK′∞

(
M
)

is stable by ΓK′ . If we denote by γ a topological
generator of ΓK′ , we define the linear endomorphism φ ∈ EndK′⊗KR

(
W∗
)

by

φ := log(γ pr
)

log
(
χ(γ pr

)
) for some r� 0.

We extend φ by linearity to ŴK′∞
(
M
)
, where it is independent of all the choices and

whose characteristic polynomial has coefficients in R. It is called the Sen operator

associated with M. Its importance consists in its formation commuting with base change
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and for r large enough the action of γ pr
on W∗ being determined by

γ pr |W∗ = exp
(

log
(
χ(γ pr

)
)
φ
)
.

We will apply the theory above as follows. Let Z ⊂ U(Cp) be the finite set of zeros of the
function b ∈ B above and let V ⊂ U be a wide open disk defined over K which contains an
integer k > h − 1 and such that V(Cp) ∩ Z = φ. Let BV :=ΛV ⊗OK K, where as usual ΛV

denotes the algebra of bounded rigid functions on V. Let

SV :=
(
M(h)

V

(
χ−1 · (χuniv

U )−1)).
Let us recall that SV is a free (BV⊗̂KCp)-module of rank q with continuous, semilinear
action of GK .

Let φV denote the Sen operator attached to SV and let K′ be a finite, Galois extension
of K in Cp such that:

(i) ŴK′∞
(
SV
)

is a free (AV⊗̂KK̂′∞)-module of rank q,

(ii) there is a basis {e1, e2, , eq} of ŴK′∞
(
SV
)

over (AV⊗̂KK̂′∞) such that W∗ := (K′ ⊗K

BV)e1 + · · · + (K′ ⊗K BV)eq is stable under ΓK′ ,

and

(iii) the action of γ on this basis is given by

γ (ei)= exp
(

log
(
χ(γ )

)
φ
)
(ei) for every .16 i6 q,

where γ is a topological generator of ΓK′ .

Let us write the matrix of φV in the basis {e1, e2, . . . , eq} as
(
αij
)
16i,j6q ∈

Mq×q
(
K̂′∞⊗̂KBV

)
.

Let now k ∈ V(K) be an integer such that k > h − 1 (there are infinitely many such
weights). We have an exact sequence of (BV⊗̂KCp)-modules, with GK and Hecke actions

0 −→ SV −→H1(Γ,DV
)(h)⊗̂KCp(1)

(
χ−1(χuniv

V )−1)−→
−→ H0(X(w), ω†,kV+2

w

)(h)⊗̂KCp
(
χ−1(χuniv

V )−1)−→ 0.

We now specialize the sequence at the weight k, i.e., tensor over BV with K, for the
map BV −→ K sending α→ α(k). As usual we denote by tk a generator of the kernel of
the above map which does not vanish anywhere else in V. Because in the above exact
sequence all modules are free (BV⊗̂Cp)-modules, specialization gives an exact sequence.
Comparing with Faltings’ result above we obtain the following commutative diagram
with exact rows:

H1(Γ,Dk(1)
)(h) ⊗K Cp(−k − 1)

Ψ
(h)
k−→ H0(X(w), ωk+2

w

)(h)⊗̂Cp(−k − 1) −→ 0

↓∼= ↑∼=
H1(Γ,Vk(1)

)(h) ⊗K Cp(−k − 1)
(p2◦Φ(h)k )−→ H0(X(N, p), ωk+2)(h) ⊗K Cp(−k − 1) −→ 0
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Therefore we have a natural isomorphism, which is GK and Hecke equivariant:

Sk = SV/tkSV =Ker
(
Ψ
(h)
k

)∼=Ker
(
(p2 ◦Φk)

)=H1(X(N, p), ω−k)(h) ⊗ Cp.

The exact sequence 0−→ SV
tk−→ SV −→ Sk −→ 0 induces the exact sequence

0−→ ŴK′∞
(
SV
) tk−→ ŴK′∞

(
SV
)−→ ŴK′∞

(
Sk
)−→H1(HK′ , SV

)
.

The theory of almost étale extensions implies that H1
(
HK′ , SV

) = 0 and therefore if
we denote by φk the Sen operator attached to Sk, then the image of {e1, e2, . . . , eq}
is a basis of ŴK′∞

(
Sk
)

in which φk has matrix
(
αij(k)

)
16i,j6q. But ŴK′∞

(
Sk
) ∼=

K̂′∞⊗̂KH1
(
X(N, p), ω−k

)
; therefore φk = 0. It follows that αij(k) = 0 for infinitely many

k ∈ V(K); therefore αij = 0 for all 1 6 i, j 6 q. It follows that φV(ei) = 0 which implies
that γ (ei) = ei for all 1 6 i 6 q. Therefore the free K′ ⊗K BV -module of rank q, W∗, is
equal to (SV)

GK′ , i.e., SV is a trivial GK′ -module. We supposed that K′/K was a finite
Galois extension; therefore by étale descent, SV is trivial as a GK-module. It follows that
M(h)

V
∼= SV

(
χ · χuniv

V

)
as GK-modules, where SV is a free (BV⊗̂KCp)-module of rank q with

trivial GK-action.
Finally let us prove (d) of Theorem 6.1. We define

H :=Hom(BV ⊗̂Cp)

(
H0(X(w), ω†,kV+2

w

)⊗̂KCp, SV
(
χ · χuniv

V

))
.

Then H is a free (BV⊗̂Cp)-module of finite rank with continuous, semilinear action
of GK . Moreover, the extension class of the exact sequence in (b) corresponds to a
cohomology class in H1

(
GK,H

)
. If we denote by φ the Sen operator of H, a result of [17]

implies that det(φ) ∈ BV annihilates this cohomology group. Moreover det(φ) 6= 0; so if
we localize the sequence at this element it will split naturally as a short exact sequence
of GK-modules. This finally ends the proof of Theorem 6.1. �

Proof of Corollary 6.2. Let us assume the hypothesis of the corollary, i.e., we have
U, h satisfying the assumption there. Let Z ⊂ U(Cp) be the finite set defined in
Theorem 6.1(b) and let first k ∈ U(K) − Z. Then there exists a wide open disk V ⊂ U,
defined over K such that V(Cp) ∩ Z = φ and k ∈ V(K). By Theorem 6.1(c) we have an
exact sequence of (BV⊗̂KCp)-modules with continuous semilinear GK-action

0−→ SV
(
χ · χuniv

V

)−→H1(Γ,D(h)U

)⊗̂KCp(1)−→H0(X(w), ω†,kV+2
w

)(h)⊗̂KCp −→ 0.

As k ∈ V(K) we may specialize this sequence and we obtain an exact sequence of
Cp-vector spaces with continuous, semilinear action of GK :

0−→ Sk(k + 1)−→H1(Γ,Dk
)(h)⊗̂KCp(1)−→H0(X(w), ω†,k+2

w

)⊗̂KCp −→ 0.

Now k ∈ V(K) ⊂ U(K) ⊂ W∗(K) so k is an accessible weight associated with a pair
(s, i). Then it follows that if s 6= −1, the character χ s+1 is a character of infinite order;
therefore by the main result of [20], the above sequence is naturally and uniquely split as
a sequence of GK-modules. Therefore we choose Z′ := Z∪{k ∈ U(K)−Z | k = (s, i), s 6= −1}.
Then Z′ is finite and the corollary follows. �
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Finally, in this article we do not give a precise geometric interpretation of the
BV -module SV of Theorem 6.1, but we prove the following lemma. With U, h,Z′ and
V as in Theorem 6.1, we denote by

SV := H0(X(w), ω†,kV
w ⊗Ω1

X(w)/K

)⊂ H0(X(w), ω†,kV+2
w

)
,

the AV -module of families of overconvergent cusp forms over V. It is a Hecke
submodule of the BV -module of families of overconvergent modular forms over V,
MV := H0

(
X(w), ω†,kV+2

w

)
, and we have:

Lemma 6.3. Let ` be a positive prime integer. Then the characteristic polynomials of
T`, if ` does not divide Np, and of U`, if ` divides Np, acting on S(h)V and on S(h)V are
equal.

Proof. Let us first consider an integer weight k ∈ V such that k > h − 1 and let us recall
([9]) that the natural Poincaré pairing between H1

(
Γ,Vk(1)

)
and H1

c

(
Γ,Vk(1)

)
induces

Serre duality between H1
(
X(N, p), ω−k

)
and H0

(
X(N, p), ωk ⊗ Ω1

X(N,p)/K

)
. Therefore we

can identify H1
(
X(N, p), ω−k

)
with the K-dual of H0

(
X(N, p), ωk ⊗ Ω1

X(N,p)/K

)
, and so

the characteristic polynomials of T` and U` respectively acting on H1
(
X(N, p), ω−k

)
and

H0
(
X(N, p), ωk ⊗Ω1

X(N,p)/K

)
are equal.

Now let P`,i(T) ∈ BU[T], for i = 1, 2, be the characteristic polynomials of T` if ` does
not divide Np and of U` if ` divides Np, respectively, acting on S(h)V and S(h)V . If k ∈ V is
an integer weight such that k > h − 1, then the characteristic polynomials of T` and U`
acting on

S(h)V /tkS(h)V
∼= H1(X(N, p), ω−k)(h) and on S(h)V /tkS(h)V

∼= H0(X(N, p), ωk ⊗Ω1
X(N,p)/K

)(h)
are P`,1(k) and P`,2(k) respectively. By the above argument, P`,1(T)(k) = P`,2(T)(k)
for infinitely many k ∈ V; therefore P`,1(T) = P`,2(T). Here by P`,1(T)(k) we mean the
polynomial obtained by evaluating the coefficients of P`,1(T) at k. �

6.2. On the global Galois representations attached to overconvergent
eigenforms

In this section we give a geometric interpretation of the GQ = Gal(Q̄/Q)-representation
attached to a generic overconvergent cuspidal eigenform.

Let us start by fixing a slope h > 0, h ∈ Q, and a wide open disk U ⊂W∗ as in the
statement of Theorem 6.1.

Let us recall (see ğ 5) that we may think of Γ as the fundamental group of Y(N, p)C
for a choice of a geometric generic point; therefore we have canonical isomorphisms of
topological BU-modules

H1(Γ,DU
)∼= H1(X(N, p)ket

C ,DU
)∼= H1(X(N, p)ket

Q̄ ,D
)
.

Let us remark that the last BU-module has a natural, continuous, BU-linear action
of GQ with the property that its restriction to GK (seen as an open subgroup of a
decomposition group of GQ at p) is what we denoted in ğ 5 by H1

(
X(N, p)ket

K
,D
)
.

Moreover, as the GQ-action commutes with the action of the Hecke operators, and
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in particular with the action of Up, it induces a GQ-module structure on the finite
free BU-module H1(Γ,DU)

(h). We also denote by H1
p

(
Γ,DU

)
the image of the natural

map H1
c

(
Γ,DU

) −→ H1
(
Γ,DU

)
. Then the cohomology group H1

c (Γ,DU) has a natural
interpretation as étale cohomology with compact supports and thus inherits a natural
structure as GQ and Hecke module. Moreover, since the map H1

c (Γ,DU) −→ H1(Γ,DU)

is both GQ and Hecke equivariant the group H1
p (Γ,DU) also inherits a natural

structure of Hecke–Galois module for which the above map is Hecke–Galois equivariant.
Moreover, U will now be chosen such that both H1

(
Γ,DU

)
and H1

p

(
Γ,DU

)
have slope

6 h-decompositions.
We have:

Theorem 6.4. (a) For every positive prime integer ` with (`,Np) = 1, the
GQ-representations H1

(
Γ,DU(1)

)
and H1

p (Γ,DU(1)) are unramified at `.
(b) Let us fix ` as in (a) above and denote by ϕ` a geometric Frobenius at ` and by T` the

Hecke operator, both acting on H1
p

(
Γ,DU(1)

)(h). Then the characteristic polynomials
of ϕ` and T` are equal.

Proof. (a) is clear as X(N, p)Q`
has a smooth proper model over Spec(Z`). For (b),

let us denote by Pi(T) ∈ BU[T], i = 1, 2, the characteristic polynomials of ϕ` and T`
respectively. For every k ∈ U∩Z with k > h+1 we have natural isomorphisms, equivariant
for the GQ and Hecke actions:

H1
p

(
Γ,DU(1)

)(h)
/tkH1

p

(
Γ,DU(1)

)(h) ∼= H1
p

(
Γ,Dk(1)

)(h) ∼= H1
p (Γ,Vk(1)

)(h)
.

Moreover the characteristic polynomials of ϕ` and T` on the last group are P1(T)(k) and
P2(T)(k) and by Theorem 4.9 of [7] they are equal: P1(T)(k) = P2(T)(k). As there are
infinitely many weights k as above in U, it follows that P1(T)= P2(T). �

Let now Z′ ⊂ U(Cp) be the finite set of weights of Corollary 6.2.

Corollary 6.5. Let k ∈ U(Cp)−Z′ and let f be an overconvergent cuspidal eigenform (for
all the Hecke operators) of weight k+2 and slope smaller than or equal to h. Let Kf denote
the finite extension of K generated by the eigenvalues of f for all the Hecke operators.
Then H1

(
Γ,Dk(1)

)(h)
f is a Kf -vector space of dimension 2 with a continuous action of the

absolute Galois group of Q, GQ, isomorphic to the p-adic GQ-representation attached to
f by the theory of pseudo-representations.

Before starting the proof of this corollary, let us explain its notation: we denote by
T the K subalgebra of the K-endomorphism algebra of H1

(
Γ,Dk(1)

)(h) generated by the
images of T` for all positive prime integers ` such that (`,Np) = 1 and the images of
U` for ` dividing Np. The overconvergent cuspidal eigenform f determines a surjective
K-algebra homomorphism T −→ Kf sending T` and U` to their respective f eigenvalues.
Then we define H1

(
Γ,Dk(1)

)(h)
f := H1

(
Γ,Dk(1)

)(h) ⊗T Kf .

Proof. As f is an overconvergent cusp form, we have Wf := H1
(
Γ,Dk(1)

)(h)
f
∼=

H1
p

(
Γ,Dk(1)

)(h)
f .

272

https://doi.org/10.1017/S1474748013000364 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748013000364


Overconvergent Eichler–Shimura isomorphisms

In order to prove that Wf is isomorphic to the p-adic GQ-representation associated
with f by the theory of pseudo-representations, it would be enough to show that Wf has
dimension 2 as a Kf -vector space and that for all the primes ` not dividing Np, at which
Wf is unramified (see Theorem 6.4), the characteristic polynomials of the geometric
Frobenius ϕ` at ` and of the Hecke operator T`, acting on Wf , are equal.

The statement on characteristic polynomials follows from Theorem 6.4 by
specialization at weight k.

For the statement referring to the dimension of Wf , we consider Wf ⊗K Cp and forget
the global Galois action. Let us recall that the Hecke eigenvalues of f determine its
q-expansion up to multiplication by a constant (in K) and therefore by the q-expansion
principle for overconvergent modular forms, the eigenspace for T in H0

(
X(w), ω†,k+2

w

)(h)
determined by the eigenvalues of f is one dimensional. Corollary 6.2 and Lemma 6.3
imply that Wf ⊗K Cp is a free two-dimensional Kf ⊗K Cp-module which means that Wf is
two dimensional over Kf . This ends the argument. �

Remark 6.6. As pointed out in the introduction, Corollary 6.5 can be proved using
different methods. For example it follows from the isomorphism between the various
reduced eigencurves. The interest in this new approach is that it seems to work in higher
dimensions while the isomorphism between the relevant eigenvarieties is not known
beyond curves.
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