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Transition to chaos in a two-sided collapsible
channel flow
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The nonlinear dynamics of a two-sided collapsible channel flow is investigated by using
an immersed boundary-lattice Boltzmann method. The stability of the hydrodynamic flow
and collapsible channel walls is examined over a wide range of Reynolds numbers Re,
structure-to-fluid mass ratios M and external pressures Pe. Based on extensive simulations,
we first characterise the chaotic behaviours of the collapsible channel flow and explore
possible routes to chaos. We then explore the physical mechanisms responsible for the
onset of self-excited oscillations. Nonlinear and rich dynamic behaviours of the collapsible
system are discovered. Specifically, the system experiences a supercritical Hopf bifurcation
leading to a period-1 limit cycle oscillation. The existence of chaotic behaviours of the
collapsible channel walls is confirmed by a positive dominant Lyapunov exponent and
a chaotic attractor in the velocity-displacement phase portrait of the mid-point of the
collapsible channel wall. Chaos in the system can be reached via period-doubling and
quasi-periodic bifurcations. It is also found that symmetry breaking is not a prerequisite
for the onset of self-excited oscillations. However, symmetry breaking induced by mass
ratio and external pressure may lead to a chaotic state. Unbalanced transmural pressure,
wall inertia and shear layer instabilities in the vorticity waves contribute to the onset of
self-excited oscillations of the collapsible system. The period-doubling, quasi-periodic
and chaotic oscillations are closely associated with vortex pairing and merging of adjacent
vortices, and interactions between the vortices on the upper and lower walls downstream
of the throat.

Key words: flow–vessel interactions, blood flow

1. Introduction

Fluid–structure interaction (FSI) problems of collapsible tubes produce rich physiologically
significant phenomena in many biological systems (Hazel & Heil 2003; Grotberg &
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Jensen 2004; Heil & Hazel 2011). For example, the airway of the respiratory system
may experience flow-induced instabilities when the deformed airway limits the air being
expelled from the lungs. A significant collapse of the upper airway can lead to an
obstruction that induces sleep apnoea and flow-induced instabilities that generate snoring
noises. Blood vessels may collapse and experience self-excited oscillations as part of their
biological function or due to dysfunction. The coronary arteries can be compressed by
the surrounding muscular wall of the heart as the heart contracts, and significant collapse
may occur (Guiot et al. 1990). The brachial arteries will collapse during blood-pressure
measurements and generate ‘Korotkoff sounds’ due to flow-induced instabilities (Bertram,
Raymond & Butcher 1989). Leg veins could collapse when subjected to muscular
compression to pump blood against gravity up to the heart during exercise, or therapeutic
compression for the treatment of deep-vein thrombosis (Dai, Gertler & Kamm 1999).

Though flow-induced vibrations of collapsible vessels are ubiquitous and important in
many biological systems, it remains a challenge to study the flow-induced vibrations of
collapsible vessels due to nonlinear FSIs involving large deformations, three-dimensional
motion, unsteady flows and low-Reynolds-number turbulence (Jensen & Heil 2003).
A simplified and classical bench-top experimental model to study the collapsible system
is the Starling resistor, in which the flow is driven through a segment of an elastic
tube, mounted between two rigid tubes and contained in a pressure-adjustable chamber
(e.g. Bertram, Raymond & Pedley 1990, 1991; Bertram & Tscherry 2006). Self-excited
oscillations are frequently observed in experiments, and the physical mechanisms for
the onset of such oscillations have attracted great interest from the research community.
A variety of simplified theoretical and numerical models have been developed to study the
self-excited oscillations in the Starling resistor, dating back to lumped-parameter models
and one-dimensional (1-D) models (Shapiro 1977; Jensen 1990) and a two-dimensional
(2-D) theoretical model introduced by Pedley (1992). A 2-D ‘fluid-membrane model’
was numerically investigated by Luo & Pedley (1995, 1996), followed by Bernoulli-Euler
or Timoshenko ‘fluid-beam models’ (Cai & Luo 2003; Luo et al. 2007, 2008; Liu
et al. 2009; Liu, Luo & Cai 2012; Tang et al. 2015). Such studies have also been
extended to three-dimensional (3-D) modelling (Hazel & Heil 2003; Marzo, Luo &
Bertram 2005; Heil & Boyle 2010; Zhang, Luo & Cai 2018), which is useful for
providing direct comparisons with experiments (Bertram et al. 1990; Wang, Chew &
Low 2009). Three-dimensional FSI modelling based on experimental data is more helpful
in understanding the complex flow mechanisms for the self-excited oscillations of this
system. That said, it is believed that 1-D and 2-D models can exhibit most important flow
features of this dynamic system with much lower computational costs.

Studies have shown that 1-D models are able to capture some key flow features,
including flow separation and wave propagation (Cancelli & Pedley 1985; Jensen 1990).
However, the 1-D models are unable to quantitatively agree with experiments or capture
the unsteady flow separation.

A simplified 2-D model, first proposed by Pedley (1992) to simulate the Starling resistor,
is the flow through an asymmetric collapsible channel (one-sided collapsible channel, as
shown in figure 1a). Studies of a 2-D fluid-membrane model where the fluid and solid
solvers are fully coupled indicate that self-excited oscillations can occur at sufficiently
high Re (e.g. 100–500) or sufficiently low membrane tension (e.g. dimensionless tension
T < 6.5 for Re = 300) (Luo & Pedley 1996). Flow separation downstream of the narrowest
point and propagating waves possibly generated by the membrane oscillation are also
observed. Meanwhile, Luo & Pedley (1996) found that most energy is dissipated in the
viscous boundary layers on the upstream elastic channel wall of the indentation. By
introducing wall inertia in the 2-D fluid-membrane model, Luo & Pedley (1998) found
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Figure 1. Schematic diagram of fluid flow through collapsible channels. (a) One-sided collapsible channel
model. (b) Two-sided collapsible channel model.

an additional high-frequency flutter mode. Jensen & Heil (2003) studied a pressure-driven
asymmetric collapsible channel flow at large tension (dimensionless initial longitudinal
tension T = 103 − 105) and moderate Reynolds number flows (Re = 300 − 500) by
using asymptotic analysis and numerical computation. They found that high-frequency
self-excited oscillations occur when the kinetic energy extracted from the mean flow
exceeds that dissipated by viscosity. Luo et al. (2008) used a combination of a linearized
eigenvalue approach and full unsteady numerical simulations to explore the physical
mechanisms of large-amplitude self-excited oscillations in a flow-driven asymmetric
collapsible channel. A cascade of instabilities was discovered as the wall stiffness was
reduced in the wall stiffness-Re space. They further demonstrated that the large-amplitude
self-excited oscillations consist of mode 2 and higher modes (modes 3 to 4) and the onset
of such oscillations is initiated by the linear instabilities of the system (here mode i means
that the perturbation to the elastic channel wall contains i half-wavelengths). Furthermore,
small-amplitude flow-induced vibrations of a modulated base flow between two infinitely
long compliant walls have also been extensively studied (Lucey & Carpenter 1992, 1995;
Davies & Carpenter 1997a,b; Tsigklifis & Lucey 2017). These studies have revealed
various possible modes of instabilities such as Tollmien–Schlichting waves, flow-induced
wall-based travelling-wave flutter, divergence instability and modal interactions.

Previous research is mainly focused on one-sided collapsible channels at Re <= 650
(Luo & Pedley 1996; Jensen & Heil 2003; Luo et al. 2007, 2008; Stewart et al. 2010; Tang
et al. 2015). The biological systems, such as the airway of the respiratory system and blood
vessels, are 3-D tubes which can be more reasonably modelled with two-sided collapsible
channels, as shown in figure 1(b). In addition, as an important application, the typical
Reynolds numbers of blood flow range from much less than 1 in venules and capillaries,
to 1 in small arterioles to as high as 4000 in large arteries (Ku 1997). The current challenge
of the theoretical studies is to extend the combined approach of asymptotics and numerical
simulations into flow regimes in the Starling resistor and its physiological applications
(Jensen & Heil 2003). Therefore, modelling two-sided collapsible channel flows for a
wider range of Reynolds numbers would be more relevant to the real physiological
phenomenon and enable comparisons with measurements made in the Starling resistor.
While the wall inertia has been neglected in many studies due to the low structure-to-fluid
mass ratio in arteries (Jensen 1990; Pedley 1992; Luo & Pedley 1995; Shapiro 1977; Luo
et al. 2007, 2008; Liu et al. 2009; Stewart et al. 2010), it may have a significant effect on the
stability of this collapsible system even for small values. For some biological systems, the
wall inertia is not negligibly small, for example, for airways (e.g. in expiratory wheezing or
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the generation of speech) or a diseased blood vessel with intimal hyperplasia. Therefore,
here we investigate two-sided collapsible channel flows at higher Reynolds numbers (up to
3000) and a range of mass ratios from 0.3 to 100.

The flow-induced collapse of a flexible tube is a highly nonlinear system. Specifically,
Bertram (1986) found that the self-excited oscillations in a thick-walled silicone rubber
collapsible tube are highly nonlinear and appear in four discrete frequency bands: 2.7 Hz,
3.8 Hz, 12–16 Hz and 60–63 Hz. Bertram et al. (1991) analysed their experimental
data by using dynamical system methods and indicated the possible presence of chaotic
oscillations. Unfortunately, chaos could not be accurately identified because of the limited
lengths of recordings made in the experiments. Jensen (1992) numerically studied 1-D
model of unsteady flow in a collapsible tube and demonstrated that the nonlinear
interaction between different modes gives rise to quasi-periodic and aperiodic (i.e.
irregular or non-repetitive) oscillations. The dependence of the long-time wall motions
on the error tolerance level was found as evidence for chaos in the numerical study of a
one-sided collapsible channel flow of Luo & Pedley (1996).

Routes to chaos generally include period-doubling bifurcations (Feigenbaum 1978,
1979), quasi-periodic bifurcations (Ruelle & Takens 1971; Newhouse, Ruelle & Takens
1978) and intermittency (Manneville & Pomeau 1980; Miozzi, Querzoli & Romano 1998).
The routes of transition from laminar to chaotic motion of collapsible channel flow play an
important role in understanding the instability mechanisms in such a system. Zhang, Liu &
Lu (2009) conducted a nonlinear dynamic analysis of fluid flow past an inclined flat plate
and revealed that the chaotic flow regime could be reached by period-doubling bifurcations
and incommensurate bifurcations. Goza, Colonius & Sader (2018) conducted a nonlinear
analysis of a flapping inverted flag and characterised the chaotic flapping regime. Kheiri
(2020) investigated the nonlinear dynamics of a flexible pipe conveying fluid and identified
a quasi-periodicity route to chaos. Still, there is no study on the route to chaos in a
collapsible channel flow which is of crucial importance to gain a full understanding of
the flow physics in a collapsible channel flow. This is the motivation for this work.

In this work the complex FSI of a two-sided collapsible channel flow is studied by using
an immersed boundary-lattice Boltzmann method (IB-LBM). We extend the one-sided
collapsible wall channel flow (figure 1a) to a two-sided collapsible wall channel (figure 1b)
with flow regimes more relevant to the Starling resistor and its physiological applications.

The IB-LBM is a relatively new FSI method, which has high capability in modelling
large-deformation FSI and remarkable scalability for parallel processing. Feng &
Michaelides (2004) first proposed the IB-LBM in simulating rigid moving particles. After
that, the IB-LBM has been successfully extended to modelling elastic moving boundaries
(Sui et al. 2008; Tian et al. 2010, 2011a,b; Krüger, Varnik & Raabe 2011; Zhu et al. 2011;
Favier, Revell & Pinelli 2014; Hua, Zhu & Lu 2014; Wang & Tian 2018; Xu et al. 2018;
Feng et al. 2019).

The remainder of this paper is organized as follows. In § 2 the 2-D model formulation
and governing parameters are described. The numerical method is given in § 3. Numerical
results by varying the Reynolds number, structure-to-fluid mass ratio and external pressure
are presented in § 4. Finally, conclusions are given in § 5.

2. Model description

We consider a 2-D incompressible flow in a collapsible channel. A segment of the channel
wall is replaced by an elastic beam as illustrated by figure 1. The elastic beam has length
L and is subjected to an external pressure pe. The width of the rigid channel is D. A steady
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Poiseuille flow with average velocity U0 is imposed at the initial flow filed, and a constant
pressure pd is specified at the downstream outlet.

The governing equations for the incompressible fluid flow are

∇ · u = 0, (2.1)

∂u
∂t

+ u · ∇u = − 1
ρ0

∇p + ν∇2u + f , (2.2)

where u is the fluid velocity, ρ0 is the fluid density, p is the pressure, ν is the kinematic
viscosity and f is the body force.

The nonlinear dynamics of the elastic wall is described by Connell & Yue (2007),
Huang, Shin & Sung (2007) and Tang et al. (2015),

ρs
∂2X
∂t2

= ∂

∂s

[
T(s)

∂X
∂s

]
− EI

∂4X
∂s4 + F , (2.3)

where s is the arc length along the elastic wall, X is the position vector of the elastic wall,
ρs is the linear density of the elastic wall, T(s) is the longitudinal tension, EI is the bending
stiffness (where E is the Young’s modulus, I = h3/12 is the moment of inertia of the wall
cross-section and h is the wall thickness), and F is the force exerted by the fluid and the
external pressure.

The averaged flow velocity at the inlet U0, channel width D, fluid density ρ0 are used
to non-dimensionalize this system, giving five non-dimensional parameters governing this
FSI system: the Reynolds number (Re), the structure-to-fluid mass ratio (M), the stretching
stiffness (Ks), the bending stiffness (Kb) and the external pressure (Pe),

Re = U0D
ν

, M = ρs

ρ0D
, Ks = Eh

ρ0U2
0D

, Kb = EI

ρ0U2
0D3

, Pe = pe − pd

ρ0U2
0

.

(2.4a–e)
A no-slip boundary condition is applied along the channel walls, including the elastic
segment. The elastic walls are flat initially, and they are clamped at the upstream and
downstream rigid walls. Following previous studies of the one-sided collapsible channel
flow (Luo et al. 2008; Liu et al. 2009; Tang et al. 2015), the lengths of the upstream and
downstream rigid parts of the channel are set as Lu = 5D and Ld = 30D, and the length
of the elastic wall is L = 5D. Kb/Ks = (h2/12D2) ≈ 10−5 for a wall thickness h of 1 % of
the channel height.

3. Numerical method

The coupled nonlinear system is solved by using an IB-LBM FSI solver. The numerical
algorithm consists of three main parts: the fluid solver, the structure solver and the coupling
of fluid and structure dynamics. We adopt the D2Q9 lattice Boltzmann method (LBM)
with a multi-relaxation-time (MRT) model for the fluid dynamics. The structural equation
(i.e. (2.3)) is solved by the finite difference method, according to Huang et al. (2007). The
immersed boundary method (IBM) is adopted for the fluid and structural coupling.

3.1. Lattice Boltzmann method
The LBM is an alternative and promising numerical scheme for fluid flow simulations
due to its advantages of simplicity, explicit calculation and intrinsic parallel nature (Chen
& Doolen 1998; Aidun & Clausen 2010; Krüger et al. 2017). In the MRT-based LBM,
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the fluid state is updated by solving the discrete Boltzmann equation with an MRT collision
operator (Lallemand & Luo 2000; Luo et al. 2011),

gi(x + ei�t, t + �t) − gi(x, t) = Ωi(x, t) + �tGi, (3.1)

where gi(x, t) is the distribution function for particles with velocity ei at position x and
time t. It can be taken as a special probability density function of particles in the Boltzmann
equation, but with finite discrete phase spaces and the corresponding collision function
(Aidun & Clausen 2010; Krüger et al. 2017). Here �t is the time increment, Ωi(x, t) is
the collision operator and Gi is the forcing term accounting for the body force f . The
D2Q9 model is used on a square lattice, of which the discrete velocity components can be
represented as

e0 = (0, 0),

ei = (cos[π(i − 1)/2], sin[π(i − 1)/2])�x/�t, i = 1 − 4,

ei =
√

2(cos[π(i − 9/2)/2], sin[π(i − 9/2)/2])�x/�t, i = 5 − 8,

⎫⎪⎬
⎪⎭ (3.2)

where �x is the lattice spacing.
The collision operator Ωi(x, t) in the D2Q9 model is derived by Lallemand & Luo

(2000),

Ωi = −(M−1SM)ij[gi(x, t) − geq
i (x, t)], (3.3)

where M is a 9 × 9 transform matrix for the D2Q9 model and S = diag(τ0, τ1, . . . , τ8)
−1

is a non-negative diagonal relaxation matrix. The determination of S can be found in Luo
et al. (2011). The equilibrium distribution function geq

i is defined as

geq
i = ρωi

[
1 + ei · u

c2
s

+ uu : (eiei − c2
s I)

2c4
s

]
, (3.4)

where cs = �x/(
√

3�t) is the speed of sound, I is the unit tensor, and the weighting factors
ωi are given by ω0 = 4/9, ω1−4 = 1/9 and ω5−8 = 1/36. The velocity u, density ρ and
pressure p can be obtained according to

ρ =
∑

i

gi, p = ρc2
s + pref , u =

(∑
i

eigi + 1
2

f �t

)/
ρ, (3.5a–c)

where pref is the reference pressure and ρ = ρ0 at the outlet of the channel. The force
scheme proposed by Guo, Zheng & Shi (2002) is adopted to determine Gi,

Gi = [M−1(I − S/2)M]ijFi, (3.6)

Fi =
(

1 − 1
2τ

)
ωi

[
ei − u

c2
s

+ e · u
c4

s
ei

]
· f , (3.7)

where τ is the non-dimensional relaxation time.

3.2. Immersed boundary method for FSI
The IBM, first developed by Peskin (1972) to model blood flow in the heart, has been
extended to many variants owing to its versatility in handling complex geometries and
arbitrarily large deformations (Peskin 2002; Mittal & Iaccarino 2005; Sotiropoulos & Yang
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Collapsible channel flow

2014; Huang & Tian 2019; Griffith & Patankar 2020). In numerical practice, when fluid
flows over a solid body it feels the presence of this body through the forces of pressure
and shear force (if the surface of the body is no-slip) along the body surface. Peskin’s idea
(Peskin 2002) was to represent the immersed solid boundary by applying local body forces
in the Navier–Stokes equations. In the IBM the body force f is added in the Navier–Stokes
equation to mimic a boundary condition according to,

f (x, t) = −
∫

F ib(s, t)δ(x − X (s, t)) ds, (3.8)

F ib(s, t) = αρ(x, t)(U ib(s, t) − U(s, t)), (3.9)

U ib(s, t) =
∫

u(x, t)δ(x − X (s, t)) dx, (3.10)

where F ib(s, t) is the Lagrangian force density, ds is the arc length of the immersed
boundary, δ(x − X (s, t)) is the Dirac delta function, x is the coordinate of the fluid lattice
nodes, α is the feedback coefficient and α = 2s in LBM simulations. In dimensionless
form α∗ = α/(U0/D) = 40, and α∗ ranges from 20 to 104. Extensive testing simulations
have been conducted to ensure α = 2s is large enough to provide accurate simulations but
small enough for numerical stability. Here U ib(s, t) is the immersed boundary velocity
obtained by interpolation at the immersed boundary, and U(s, t) represents the velocity of
the walls.

The following discrete delta function δh(x) is used to approximate the Dirac delta
function (Peskin 2002),

δh(x) = 1
�x�y

φ
( x
�x

)
φ

(
y

�y

)
, (3.11)

φ(r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
8

(
3 − 2|r| +

√
1 + 4|r| − 4r2

)
, 0 ≤ |r| ≤ 1,

1
8

(
5 − 2|r| +

√
−7 + 12|r| − 4r2

)
, 1 ≤ |r| ≤ 2,

0, |r| > 2.

(3.12)

In this study an iterative feedback IBM (Kang & Hassan 2011) is adopted to handle the
interactions between the elastic walls and the fluid. Note that this iterative IBM does not
show significant advantages for external flows, but does bring benefits in terms of reducing
velocity slip on the walls and enhancing the mass conservation for confined flows.

3.3. Fluid-solid interface boundary conditions
Figure 2 shows the schematic of the IB-LBM used in the present solver. The fluid domain
is discretized by a fixed uniform Cartesian grid (e.g. Eulerian point x), and the immersed
boundary is represented by a set of Lagrangian marker points X s

ib(s = 1, 2, . . . , N). The
solid mesh size is half of the lattice spacing. The red shaded area shows the extent of
interface where the transfer of forcing F ib(s, t) from Lagrangian boundary point X (s, t) to
surrounding fluid nodes and the velocity interpolation for U ib(s, t) from the surrounding
fluid nodes.

The Lagrangian force density F ib(s, t) in (3.9) reflects the interaction between the fluid
and the structure. It is approximately equivalent to the stress jump at the fluid–structure
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Immersed boundary: channel wall

E

B C

A D

d = 2.5 dx

dx

X(s, t): Lagrangian point

x: Eulerian point

1

2

3

4

56

7 8

0 D2Q9

Figure 2. Schematic of the IB-LBM used in the present solver. Red shaded area shows the extent of interface
where the transfer of forcing F ib(s, t) from Lagrangian boundary point X (s, t) to surrounding fluid nodes and
the velocity interpolation for U ib(s, t) from the surrounding fluid nodes. Here ‘+’ and ‘−’ denote the outward
and inward side of the immersed boundary, respectively. The fluid stress at the Lagrangian point X (s, t) is
evaluated at 2.5 grid points (d = 2.5dx) inward of the moving boundary (i.e. at lattice E). The letters A, B, C
and D are four Eulerian grid points of the lattice E. The fluid stress at the lattice E is evaluated by the inverse
distance weighting of the fluid stress at A, B, C and D.

interface, i.e. (Williams, Fauci & Gaver III 2009; Gilmanov, Le & Sotiropoulos 2015)

F ib(s, t) ≈ −(σ+ − σ−) · n, (3.13)

where σ = −pI + μ(∇u + (∇u)T) is the fluid stress tensor, ‘+’ and ‘−’ denote two sides
along the immersed boundary (as marked in figure 2), and n is the unit outward normal
vector point from ‘−’ side to ‘+’ side. In the FSI of external flows, such as a flapping
filament in a uniform flow (Tian et al. 2011b), the fluid stress exerted on the filament can
be directly evaluated by (3.13). For internal flows, such as the case considered here, the
elastic wall is only subjected to the internal fluid stress (i.e. σ−). Williams et al. (2009)
discussed two ways of accurately evaluating the fluid stress in a rigid channel flow and
confirmed that it is reasonable to directly evaluate the fluid stress tensor at one grid point
inward of the boundary. Here we extend this method to the FSI of a collapsible channel
flow (moving boundary case), and find that interpolating the fluid stress tensor at 2.5 grid
points inward of the moving boundary (at lattice E in figure 2) can accurately evaluate
the fluid stress exerted on the elastic wall. The fluid stress at lattice E is evaluated by the
inverse distance weighting of the fluid stress at the four nodes of lattice E: A, B, C and D.

The boundary conditions at the fluid–solid interface X = X (s, t) are the no-slip,
no-penetration and traction conditions,

u(x, t) = U(s, t), ft = σ− · n, (3.14a,b)

where ft is the hydrodynamic traction on the solid boundary. The resultant force exerted
on the elastic wall by the fluid and the external pressure in (2.3) is evaluated by

F = σ− · n + Pen. (3.15)
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3.4. Summary of the numerical method
The fluid and structure solvers are coupled through a partitioned and weekly coupling
approach, i.e. the flow and the structure solvers are solved sequentially only once at each
time step. As a result, the boundary conditions at the fluid–solid interface mismatch by
one half-step at the end of each time step. This coupling approach is computationally
efficient, but it may cause numerical instability at low mass ratio due to the added mass
effects (Borazjani, Ge & Sotiropoulos 2008; Tian et al. 2014). In this work, to enhance the
numerical stability, an iterative feedback version of the IBM is applied at the fluid–solid
interface, which allows for local flow reconstruction in the vicinity of the solid boundary.
The iteration ensures that the displacement, velocity and traction boundary conditions at
the fluid–solid interface are matched between the fluid and the solid boundary at each time
step. The implementation of the weakly coupled FSI for the iterative IB-LBM algorithm
is shown in the flowchart of figure 3 and is summarized as follows.

(1) Initialize the computation parameters.
(2) Stream the distribution function to obtain gi.
(3) Compute the macroscopic variables: density ρ and the uncorrected velocity u using

ρ =
∑

i

gi, u = 1
ρ

∑
i

eigi. (3.16a,b)

(4) Set iteration number (m) of IBM to 0.
(5) Interpolate the immersed boundary velocity Um

ib using (3.10).
(6) Compute the Lagrangian force density F m

ib(s, t) using (3.9).
(7) Spread F m

ib(s, t) to the Eulerian fluid nodes around the immersed boundary to obtain
f m(x).

(8) Correct the Eulerian velocity near to the immersed boundary according to

um+1(x) = um(x) + f m(x) dt
2ρ(x)

. (3.17)

(9) Increment iteration number m by 1.
(10) Repeat steps 5–9 until the velocity error at the immersed boundary is less than a

pre-set criterion

Error =
max

(√(
Um

ib − U(s, t)
)2)

U0
≤ 5 × 10−3. (3.18)

(11) Interpolate the internal fluid stress and evaluate the total external force exerted on
the elastic wall using (3.15).

(12) Solve the structure (2.3) and then update the coordinate X (s, t) and velocity U(s, t)
of the elastic wall.

(13) Calculate geq
i using (3.4).

(14) Perform the collision step with the total Eulerian body force,

f (x) =
mmax∑
m=1

f m(x). (3.19)

(15) Go to step 2 for next time-step.
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Perform collision by LBM

Start

Initialize the computation parameters

m = 0 m = m + 1

Stream by LBM: gi

Compute ρ and u by LBM

Interpolate Um
ib by IBM 

Compute Fm
ib(s, t) by IBM

Spread Fm
ib(s, t) by IBM: f m(x)

Correct Eulerian velocity: um+1(x)

Converge?
No

Yes

Interpolate fluid stress

Solve structure equation: X (s, t) and U(s, t) Calculate gi
eq by LBM

t = tmax? No

End

Yes

Figure 3. Flowchart of the iterative IB-LBM FSI algorithm.

To enhance the numerical stability, in step 12, 100 sub-steps are used in the structure
solver at each time step (Tian et al. 2014; Tian 2014; Tian et al. 2015). The iterative IBM
(from step 5 to step 9) may not show significant improvement for external flows. However,
for confined FSIs such as the collapsible channel flow considered in this work, it does
show significant improvement in results as the accuracy of the velocity near the immersed
boundary has significant effect on the dynamics of the flexible wall (Huang & Tian 2019).

3.5. Validation of the numerical method
The IB-LBM FSI coupling strategy used here has been validated and successfully applied
to many external flows in our previous publications (Tian et al. 2010, 2011a,b; Xu et al.
2018; Huang & Tian 2019; Ma et al. 2020). Further validations are conducted here focusing
on the FSI in confined flows.

Steady flow in a one-sided collapsible channel is used to validate the current IB-LBM
FSI solver for large-deformation FSI in a confined flow. An open multi-processing
(OpenMP) parallel computing strategy has been incorporated into the code to accelerate
the computation. Most computations are performed on an Intel Xeon CPU E5-2650
2.3 GHz workstation. Each time step of the unsteady simulation using the FSI solver
requires 0.0014 CPU min (approximately 3.5 CPU min for t/T = 1, T = D/U0 is the
reference time). For the nonlinear dynamic analysis, approximately 4–7 days are required
to advance the calculation to t/T = 1000.

3.5.1. Steady collapsible channel flow
To validate the IB-LBM FSI solver, we consider a one-sided collapsible channel flow (see
figure 1a) and compare the results with those reported by Liu et al. (2009) who used an
ALE FSI solver for this case. Three steady cases (labelled A, B and C) have been chosen
with non-dimensional governing parameters given in table 1. Figure 4 shows the steady
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Collapsible channel flow

Cases Re Ks Pe

A 300 139 4.73
B 300 250 1.95
C 500 2400 1.95

Table 1. Non-dimensional parameters of the steady collapsible channel flow.
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Case A
Case B
Case C
Liu et al. (2009)

(b)(a)

Figure 4. Comparison of steady solutions from current IB-LBM method and the fluid-beam model (FBM) of
Liu et al. (2009). (a) Wall shape. (b) Pressure distribution.

shape of the elastic wall and the pressure distribution along the wall. It shows that the
present results agree well with the numerical solutions of Liu et al. (2009).

3.5.2. Flow-induced vibration of a highly flexible filament in a uniform flow
In this section a flow-induced vibration of a highly flexible filament in a uniform flow
has been simulated to validate the case in which the densities of the fluid and solid are
very different. The filament has thickness h and length L with the leading edge fixed in a
uniform incoming flow. The computational domain is a rectangular box (x ∈ [−5L, 10L]
and y ∈ [−3L, 3L]), and the grid size for the fluid and the filament are 0.02L and 0.01L,
respectively. The non-dimensional parameters for this case are

Re = ρfluidU0L
μ

, M = ρsolidh
ρfluidL

, Ks = Eh

ρU2
0L2

, Kb = EI

ρU2
0L3

. (3.20a–d)

Here Re = 100, M = 1, Ks = 500, Kb = 0.0001, h/L = 1.29 × 10−4 and ρsolid/ρfluid =
7751.94. The simulated time history of the y-coordinate at the free end of the filament
is shown in figure 5. Result shows good agreement with the numerical solutions of Wang
et al. (2017).

3.5.3. Mesh independence study
In the mesh independence study four cases are chosen, and three lattice spacings are used:
dx = 0.02, dx = 0.01 and dx = 0.005. The solid mesh size is maintained at half of the
lattice spacing. Simulation parameters for the four cases are given in table 2.

Figure 6 shows the y-coordinate time history of the mid-point of the upper elastic
wall for the three mesh refinements. The solutions are converged. The difference between
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t/T
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0.8
Present IB-LBM

Wang et al. (2017)

Figure 5. The y-coordinate time history of a flapping filament in a uniform flow.

Cases Re M Ks Pe

1 3000 10 2400 1.95
2 500 10 2400 1.95
3 500 20 2400 1.95
4 500 1 2400 10.0

Table 2. Simulation parameters of the grid independence study.

dx = 0.02 and dx = 0.01 is much larger than that between dx = 0.01 and 0.005.
Therefore, dx = 0.01 with a total mesh size of 4000 × 140 is used in the rest of this work.

4. Results and discussion

Here the effects of governing parameters on the flow physics in a two-sided collapsible
channel flow are studied. These parameters are the Reynolds number Re, structure-to-fluid
mass ratio M and external pressure Pe. Extensive simulations are conducted by varying
the parameters as follows: 100 ≤ Re ≤ 3000, 0.3 ≤ M ≤100, and 1 ≤ Pe ≤ 10.

4.1. Flow bifurcation: symmetry breaking
Although the experimental study by Kounanis & Mathioulakis (1999) revealed that
symmetry breaking of the flow downstream of the throat might be a potential mechanism
for the onset of self-excited oscillations, the role of symmetry breaking in the instability of
this collapsible system needs to be further explored. In this section, therefore, we will
identify the critical Reynolds number for symmetry breaking of the flow and explore
the role of symmetry breaking in the instability of the collapsible system. The Reynolds
number is increased from 220 to 540 with an increment of 20, and other non-dimensional
governing parameters are M = 1, Ks = 2400 and Pe = 1.95. In order to demonstrate
where the qualitative change of the flow field occurs, the streamlines of eight typical
cases are shown in figure 7. It is found that, from Re = 220 to Re = 300, the flow is
stable and symmetric with a single jet downstream of the collapsible walls, and the size
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Figure 6. Mesh independence study: the y-coordinate time history of the mid-point (x = 2.5 initially) of the
upper elastic wall. (a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4.

of recirculation regions is equal on both sides of the jet flow, which is consistent with
the experimental observation by Ohba, Skurai & Oka (1997). Even if 2-D channels and
3-D tubes are different in the geometry, 2-D simulations and 3-D collapsible tubes in
experiments share some similarities in the basic physical explanation of the instabilities
(Luo et al. 2008). Luo & Pedley (1996) confirmed that some features of the oscillation
found in a numerical 2-D collapsible channel are qualitatively similar to the experimental
observation in a 3-D collapsible tube.

The symmetry breaking occurs at Re = 320 with a corner recirculation region on the
upper wall much larger than that on the lower wall. The flow reaches a new stable
asymmetric state, and the jet is attached to either side of the channel depending on
the initial perturbation in the simulation. Previous studies of a 2-D indented rigid
channel attributed the occurrence of a symmetry breaking bifurcation to a supercritical
pitchfork bifurcation in solving the Navier–Stokes equations (Sobey & Drazin 1986).
Above a certain critical Reynolds number for a specific geometry, two stable solutions
co-exist which are confirmed by Battaglia et al. (1997) in the numerical study of 2-D
sudden expansion channel flow. At Re = 440, the asymmetry is strengthened, and a third
recirculation region appears on the lower wall. Such asymmetry is sustained, and the size
of the recirculation regions increases with Re. At Re = 520, there is still a stable jet flow
attaching to the lower wall. Finally, the flow becomes unstable at Re = 540.

In order to discuss the critical Reynolds number, the lengths of recirculation zones
are shown in figure 8. Figure 8(a) defines how the lengths of these zones are measured,
and figure 8(b) is the bifurcation diagram which shows the effect of Re on the length
of the recirculation zones formed downstream of the throat. Similar bifurcation analysis
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Re = 220

Re = 300 

Re  = 320 

Re = 440 

Re  = 460 

Re = 500 

Re = 520 

Re = 540

0 5 15 25 35

1

0
–5

Figure 7. Streamlines for different Reynolds numbers Re with M = 1, Ks = 2400 and Pe = 1.95.

can be found in the study of flow through a symmetric rigid channel featuring a sudden
contraction-expansion (Rocha, Poole & Oliveira 2007; Oliveira et al. 2008). It is clear
that the system experiences the supercritical pitchfork bifurcation as the Reynolds number
increases. At Re = 320, a new static equilibrium is established, and for Re > 400, a third
recirculation region appears on either channel wall. The symmetry breaking of the jet flow
in the parameter space investigated here (i.e. Re = 220–540 with M = 1, Ks = 2400 and
Pe = 1.95) does not induce any oscillation of the elastic channel walls.

4.2. Dynamic behaviours in M-Re plane and routes to chaos
Here the dynamic behaviours in M–Re plane and possible routes to chaos are discussed.
Simulations are conducted by varying the Reynolds number from 100 to 3000 with an
increment of 50 and the mass ratio M from 0.3 to 100. Other dimensionless parameters are
Ks = 2400 and Pe = 1.95.

Figure 9 shows the motion states of the collapsible system over M ∈ (0.3, 100) and Re ∈
(100, 1000), where the motion states are divided into steady, periodic, period-doubling,
quasi-periodic and chaotic states which are determined by using the time history of wall
motion trajectory, power spectral density (PSD), phase portrait and estimated dominant
Lyapunov exponent. Here non-dimensional time of t/T = 400 − 1000 is used for the
nonlinear dynamics analysis, to exclude the influence from the initial transient behaviour.
At M = 0.3, only four cases are run as the simulations suffer from numerical instabilities
for Re > 400. Figure 9 demonstrates that the dynamic behaviours of the system are
very complex. Specifically, the chaotic motion occurs mainly at high Re and low mass
ratios M or low Re and high mass ratios M. The continuity of the chaotic distribution
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Figure 8. Quantitative results of the symmetry-broken solutions as the Reynolds number is increased:
(a) schematic diagram of how the lengths of recirculation zones are measured; L1 and L2 are defined as the
horizontal distance from the start point of the downstream rigid part of the channel to the right edge point of
the pair of recirculation zones that appear first, and L3 and L4 are the horizontal distance from the start point of
the downstream rigid part of the channel to the left and right edge of the third recirculation zone, respectively.
(b) Bifurcation diagram.

Re

M

100 200 300 400 500 600 700 800 900 1000
10–1

100

101

102

Figure 9. Motion state diagram in the Re − M parameter space with Ks = 2400, Pe = 1.95: �, green -
steady; �, blue - periodic; ♦, yellow – period-doubling; ©, orange – quasi-periodic; �, red – chaotic.

is interrupted at Re = 250, M = 6 and M = 7, which will be discussed in § 4.2.2. The
steady motion occurs at low mass ratios (M ≤ 3). Taking the case of fixed mass ratio
M = 1 with varying Re as an example, the system is steady at Re = 100. An increase
of the Reynolds number results in the loss of static equilibrium via supercritical Hopf
bifurcation, leading to a periodic limit cycle oscillation at Re = 150 and Re = 200. For
250 ≤ Re ≤ 500, the system is steady. The system becomes chaotic at Re = 550. However,
a period-doubling state is observed at Re = 600. The system reaches chaotic motion again
via a quasi-periodicity route if the Reynolds number is further increased, similar to the
Ruelle–Takens–Newhouse scenario (Ruelle & Takens 1971; Newhouse et al. 1978).

At M = 3, the system is in a periodic state at Re = 100 and then reaches a chaotic
state at Re = 200 via the period-doubling route. This process is similar to the classical
Feigenbaum scenario (Feigenbaum 1978, 1979) of the route to chaos. For 6 ≤ M ≤
10, most of the motion states switch back and forth between periodic and chaotic as
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Re is increased. A similar phenomenon can also be observed for 650 ≤ Re ≤ 1000
as M is increased. For high mass ratio at M = 50 and 100, only chaotic states are
observed.

In order to discuss the flow physics associated with the states shown in figure 9, the
transition process from steady to chaotic motion by fixing M = 1 and varying Re is
discussed in § 4.2.1 and that by fixing Re = 250 and varying M is presented in § 4.2.2.

4.2.1. Effects of Re
Here we first discuss M = 1, Re = 100, 200, 500, 550, 600, 650, 800, 1000, 2000 and
3000, and then discuss M = 10, Re = 1000, 2000 and 3000.

Figure 10 shows the y-coordinate time history, the PSD and phase portrait consisting of
the y-velocity vs y-coordinate of the mid-point of the upper collapsible channel wall for
M = 1 and different values of Re. Figure 11 displays the corresponding vorticity contours
to discuss the physical mechanisms associated with these motion states.

At Re = 100 and Re = 500, as shown in figures 10(a) and 10(g), the channel wall
remains at its equilibrium position. A fixed point in the phase portrait (see figures 10c
and 10i) indicates that the system is in a steady state at these Re. This is also revealed
by a very low energy level of the PSD in figures 10(b) and 10(h). At Re = 200, the
time series in figure 10(d) displays periodic oscillations. In figures 10(e) and 10( f ) the
appearance of a fundamental frequency f1 and its harmonics (i.e. 2f1, 3f1 etc) and a single
limit cycle in the phase portrait indicate that the system undergoes a period-1 limit cycle
oscillation.

At Re = 550, the system experiences a chaotic motion, which is reflected by the
broadband PSD in figure 10(k) and the chaotic attractor of the phase portrait in figure 10(l).
Similar nonlinear dynamic characteristics can also be found at Re = 800 in figures 10(t)
and 10(u). Figures 10(j) and 10(s) show that the chaotic oscillations involve small
non-repetitive noise-like fluctuations. To further examine the chaotic motion, the dominant
Lyapunov exponents λ are estimated by using the time-delay method of Wolf et al. (1985).
An open source MATLAB code (Wolf 2021) is used to calculate λ based on a time series of
y velocity-displacement data. See Wolf et al. (1985) for more details. This method has been
adopted by Connell & Yue (2007) and Goza et al. (2018) to identify the chaotic motion of
flapping flags. Note that a zero or near-zero value of λ corresponds to a non-chaotic motion
state, while a positive value of λ indicates a chaotic motion state, and a negative value of
λ represents a steady state. As the time-delay method of Wolf et al. (1985) only allows
the estimation of non-negative Lyapunov exponents, the dominant Lyapunov exponents
for steady state are not estimated here. The time series of the y velocity-displacement data
is used in the phase space reconstruction. The computed results of λ for M = 1 at typical
Re values are shown in table 3. The estimated dominant Lyapunov exponents at Re = 550
and Re = 800 are λ = 0.0385 and λ = 0.0417, respectively. These relatively large positive
values of λ (∼ of order 10−2) support that the motion type at Re = 550 and Re = 800 is
chaotic.

At Re = 600, the appearance of a subharmonic frequency 0.5f1 in the PSD (see
figure 10n) and multiple limit cycles in the phase space (see figure 10o) indicate that
the system experiences a period-doubling bifurcation. Figure 10(m) shows the regular
oscillations for the period-doubling motion state. When the Reynolds number is further
increased to Re = 650, a quasi-periodic motion state is identified, which is confirmed
by the appearance of second- and third-fundamental frequencies (i.e. incommensurate
frequencies f2 and f3, f2/f1 and f3/f1 are irrational) in the PSD of figure 10(q) and the
limit torus in the phase space of figure 10(r).
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Figure 10. (a–r). For caption see on next page.

With the introduction of two new incommensurate frequencies, the multiple limit cycles
at Re = 600 turn into a dense toroidal structure (see figure 10r). Figure 10(p) shows the
quasi-periodic oscillations of the mid-point of the upper elastic channel wall at Re = 650.

From figure 11, it is found that the elastic channel walls bulge outward at Re = 100. At
Re = 200, the walls undergo a mode-2 shaped deformation (i.e. with two half-wavelengths
along the elastic wall). The walls indent inward of the channel with a further increase of
Re. Whether the collapsible walls bulge outward or indent inward is determined by the
resultant force acting on the elastic walls, which consists of the external pressure Pe and
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Figure 10 (cntd). The time history of the y-coordinate of the mid-point (x = 2.5 initially) at the upper elastic
channel wall at various Reynolds numbers Re with M = 1, Ks = 2400, Pe = 1.95. Power spectral density and
phase portrait in displacement-velocity (y–v) space. The frequency in the PSD is normalized by U0/D. Here
Re = 100: steady state; Re = 200: periodic state; Re = 500: steady state; Re = 550: chaotic state; Re = 600:
period-doubling state; Re = 800: chaotic state. Plot parameters: (a) Re = 100: steady state; (b) Re = 100: low
energy; (c) Re = 100: fixed point; (d) Re = 200: periodic state; (e) Re = 200: fundamental frequency f1 and its
harmonic frequencies, 2f1, 3f1; ( f ) Re = 200: single limit cycle; (g) Re = 500: steady state; (h) Re = 500: low
energy; (i) Re = 500: fixed point; (j) Re = 550: chaotic state; (k) Re = 550: broadband continuous spectrum;
(l) Re = 550: chaotic attractor; (m) Re = 600: period-doubling state; (n) Re = 600: the arise of subharmonic
frequencies 0.5f1, 1.5f1; (o) Re = 600: multiple limit cycles; (p) Re = 650: quasi-periodic state; (q) Re = 650:
the arise of second- and third fundamental frequencies, f2, f3; (r) Re = 650: limit torus; (s) Re = 800: chaotic
state; (t) Re = 800: broadband continuous spectrum; (u) Re = 800: chaotic attractor.

M Re Lyapunov exponent (λ) Motion state

1 100 NA steady
1 200 0.0021 periodic
1 500 NA steady
1 550 0.0385 chaotic
1 600 0.0076 period-doubling
1 650 0.0124 quasi-periodic
1 800 0.0417 chaotic

Table 3. Estimated dominant Lyapunov exponents and corresponding motion states of the system: Ks = 2400,
Pe = 1.95. Here NA means not applicable as only the estimation of non-negative Lyapunov exponents are
allowed for the time-delay method of Wolf et al. (1985).

the fluid stress. The normal component of the external force is the transmural pressure
p − Pe (i.e. internal minus external pressure), which is affected by the pressure loss in the
channel. As seen from figure 12, the pressure inside the channel is large at Re = 100 due to
higher pressure loss, so that a positive transmural pressure (i.e. p − Pe > 0) is developed
and pushes the elastic walls outward. For Re > 200, the pressure inside the channel is
small enough as the pressure loss becomes smaller, so that a negative transmural pressure
(p − Pe < 0) causes the elastic walls to move inward. This phenomenon is consistent with
the finding of Luo et al. (2008) that the wall curvature is determined by the transmural
pressure.

In addition, the physical mechanisms that lead to the different motion states are varied.
For Re = 100, the viscosity is strong enough to damp out any small disturbance. The very
positive transmural pressure (i.e. p − Pe ∼ 2) along the whole elastic channel walls and the
relatively small wall inertia (i.e. M = 1) lead to a steady state at Re = 100. The transmural
pressure decreases as the Reynolds number increases. At Re = 200, the configuration of
the elastic walls contains two half-wavelengths. The system is unstable to this mode 2
perturbation due to a mode 2 transmural pressure distribution formed where a positive
transmural pressure at the anterior segment of the collapsible walls (i.e. x ≤ 1) pushes the
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Re = 800

1

0
–5 0 5 15 25 35
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Re = 200
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Re = 600
A B C D E

Re = 650

Figure 11. Instantaneous vorticity contours at t/T = 100 for various Re with M = 1, Ks = 2400 and Pe =
1.95. The vorticity ranges from −10 (blue) to 10 (red). Note: the aspect ratio (length/width) is set to 0.3 for an
overview of the whole flow field. Here A(5, 0.5), B(7, 0.5), C(9, 0.5), D(11, 0.5) and E(13, 0.5) are five probe
points. Animations of the vorticity contours for Re = 200, Re = 550, Re = 600, Re = 650 and Re = 800 are
provided in supplementary movies 1 to 5 available at https://doi.org/10.1017/jfm.2021.710.
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Figure 12. The transmural pressure distributions along the upper elastic channel walls for different Re with
M = 1, Ks = 2400 and Pe = 1.95.

walls outward and a negative transmural pressure at the remaining part of the collapsible
walls (i.e. 1 < x ≤ 5) causes the walls to move inward. As a result, this unbalanced
transmural pressure along the collapsible walls causes the self-excited oscillations of the
walls. The self-excited oscillations at Re = 200 can be explained as follows which has been
recognized as one of the main mechanisms for the oscillations of collapsible tubes (Luo
et al. 2008). The flow accelerates to higher speed at the downstream end of the elastic walls
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as the channel becomes more constricted. Then the pressure decreases due to conservation
of mass, which enhances the constriction further. This in turn causes the increase of
viscous resistance in the vicinity of the constriction, either through viscous dissipation
in the boundary layers, or through flow separation. As a result, upstream pressure will rise
due to a higher pressure drop required to maintain the flow rate, causing the upstream half
of the elastic walls to bulge out further, and then forcing the reopening of the constriction.
At Re = 500, a very negative transmural pressure is observed in figure 12, which causes
the channel walls to collapse and indent inward. Furthermore, as shown in figure 11, at
Re = 500, flow separation occurs slightly downstream of the narrowest point, and a stable
but asymmetric jet is developed with the jet attaching to the lower wall. Owing to the
Coanda effect, such asymmetry can be maintained, resulting in an increase in the velocity
and a decrease in the pressure near the lower wall. The very negative transmural pressure,
a stable jet flow without vortex shedding and the weak effect of the wall inertia lead to
a steady configuration at Re = 500. The flow becomes unsteady if the Reynolds number
further increases. As seen in figure 11, at Re = 550, the jet flow between the recirculation
zones loses its stability and breaks into small vortices that are transported downstream.
Then the flow becomes time dependent, and the channel walls enter a chaotic motion
state.

At Re = 600, figure 11 shows that there is vortex shedding downstream of the
throat. To trace the PSD of the streamwise velocity, five probe points (i.e. A(5, 0.5),
B(7, 0.5), C(9, 0.5), D(11, 0.5) and E(13, 0.5) as shown in figure 11 at Re = 600) are
monitored. Figure 13 shows that the streamwise velocities at five probe points are all in
period-doubling oscillations as indicated by the subharmonic frequencies 0.5f1 and 1.5f1
in the PSD. The periodic component is attributed to the periodic shedding of vortices
downstream of the throat that feeds back periodic perturbations on the elastic walls.
The partial pairing of two adjacent vortices (as marked in figure 11) downstream of the
elastic walls further feeds back subharmonic perturbations on the elastic walls that trigger
period-doubling oscillations of the elastic walls. This process is further demonstrated by
supplementary movie 3. A similar vortex pairing process can be found in the coherent
structure interactions in a mixing layer (Hussain 1986) and in the vortex shedding in an
arterial stenosis (Bluestein et al. 1999). Results in figure 13 show that the PSD of the
subharmonic frequency 0.5f1 increases in the streamwise direction and reaches its peak
value at D(11, 0.5) indicating that a partial pairing process occurs between C(9, 0.5) and
D(11, 0.5), which further supports the conclusion that the period-doubling oscillations
at Re = 600 are caused by the periodic vortex shedding and the partial pairing of two
adjacent vortices.

As the Reynolds number is further increased to Re = 650, periodic vortex shedding
downstream of the throat is also observed. Apart from that, there is a merging of adjacent
three vortices at x ≈ 10 (as marked in figure 11) that feeds back additional perturbations on
the elastic walls leading to quasi-periodic oscillations in the channel walls. The merging
process is further demonstrated by supplementary movie 4.

At Re = 800, the vortex merging at x ≈ 10 and the interactions between the vortices
on the upper and lower walls downstream at x ≈ 14 cause the walls to settle into chaotic
oscillations featuring small noise-like fluctuations as shown in supplementary movie 5.
Further simulations have been conducted for a single-sided collapsible channel. There is
no vortex shedding downstream of the throat due to mild stenoses (e.g. 28 % diameter
reduction at Re = 1000) formed with only one collapsed wall. Therefore, the system is
steady for Re > 300, and the period-doubling, quasi-periodic and chaotic motion states
caused by the interactions between the collapsed wall and the vortices are not observed.
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Figure 13. The PSD of the streamwise velocity u at five probe points: A(5, 0.5), B(7, 0.5), C(9, 0.5),
D(11, 0.5) and E(13, 0.5) for Re = 600.

The motion of flexible walls is chaotic at high Reynolds number for mass ratios of 1
and 10 between which there are periodic and period-doubling states. In order to compare
the chaotic behaviours at high Reynolds numbers at different mass ratios, two mass ratios
(M = 1 and 10) are considered at Ks = 2400, Pe = 1.95 and Re = 1000, 2000 and 3000.
Figure 14 shows the time history of the y-coordinate of the mid-point (x = 2.5 initially) of
the upper and lower elastic walls. For M = 1 and Re = 1000, as seen in figure 14(a), there
is no obvious oscillation of the elastic walls after collapse. When the mass ratio increases to
M = 10, the elastic walls gradually start to develop self-excited oscillations after collapse
(see figure 14b). When the Reynolds number increases to Re = 2000 for M = 1, the elastic
walls experience irregular small-amplitude oscillations (approximately 0.02D as shown
in figure 14c), and such oscillations are more evident and irregular at Re = 3000 (see
figure 14e). Figures 14(d) and 14( f ) show that, for M = 10 at Re = 2000 and Re = 3000,
the elastic walls undergo much larger-amplitude oscillations (approximately 0.1D) because
of the higher inertia.

Instantaneous vorticity contours for various Re at M = 1 and M = 10 are presented
in figure 15. Overall, the diffusion of vortices decreases with the increase of Reynolds
number due to the reduced viscosity. As a result, stronger vortices and thinner boundary
layers are observed as the Reynolds number increases. As seen from figure 15(a) for
M = 1, a streaming jet flow attaches to the lower wall at Re = 1000. The jet flow
between the recirculation zones loses its stability and breaks up into small vortices that
are transported downstream. At Re = 2000, the region of shed vortices is closer to the
upstream end of the elastic walls when compared with Re = 1000. Moreover, for x ≥ 10 at
Re = 2000, a clear reverse Kármán vortex street (indication of a jet flow) is observed
with two staggered rows of vortices being transported downstream. The vortices are
counterclockwise (positive vorticity) in the upper row and clockwise (negative vorticity)
in the lower row. It is interesting to note that the instantaneous vorticity contours at
Re = 3000 show two non-staggered rows of vortex street right at the end of the elastic
walls, but they lose stability and interact with each other from x = 8. In addition, the
system loses stability at Re = 2000 and Re = 3000, and the elastic walls move up and
down alternately, generating vorticity waves downstream. Such instability at Re = 2000
and Re = 3000 can also be explained by the shear layer instabilities as demonstrated in
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Figure 14. The y-coordinate time history of the mid-point (x = 2.5 initially) at the collapsible channel walls at
various Reynolds numbers Re with M = 1 and M = 10. Other dimensionless parameters are Ks = 2400, Pe =
1.95. The red line and blue line represent the y-coordinate of the upper and lower elastic wall, respectively. Plot
parameters: (a) M = 1, Re = 1000; (b) M = 10, Re = 1000; (c) M = 1, Re = 2000; (d) M = 10, Re = 2000;
(e) M = 1, Re = 3000; ( f ) M = 10, Re = 3000.

§ 4.2.1. As can be seen from figure 15(a), at M = 1 and Re = 1000, the shed vortices
are far downstream from the elastic walls and, thus, have a weak impact on their motion.
However, at Re ≥ 2000, the shed vortices, which are close to the mid-point of the elastic
walls, feeds back perturbations on the elastic walls to produce small-amplitude self-excited
oscillations in the elastic walls.

From the above analysis, it is found that the vortex shedding caused by shear layer
instabilities at Re = 2000 and Re = 3000 are responsible for the onset of self-excited
oscillations. As seen from figure 15(b) for M = 10, at Re = 1000, a series of vortex pairs
dissipating quickly downstream are observed, while an asymmetric jet flow is observed
at M = 1. The higher amplitude of the self-excited oscillations at M = 10 than at M = 1
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Figure 15. Instantaneous vorticity contours under different Re at t/T = 200 with M = 1 and M = 10, Ks =
2400 and Pe = 1.95. The vorticity ranges from −10 (blue) to 10 (red). Note: the aspect ratio (length/width)
is set to 0.3 for an overview of the whole flow field. Plot parameters: (a) M = 1 with Re = 1000, 2000 and
Re = 3000; (b) M = 10 with Re = 1000, 2000 and 3000.

indicates stronger FSIs between the jet and the elastic walls at the higher mass ratio. In
this situation, the whole of the elastic walls undergo large-amplitude oscillations (see
figure 15(b) at Re = 1000 and M = 10). The oscillations become regular at Re = 1000
when the mass ratio increases from M = 1 to M = 10 (see figure 14).

For M = 10, the large-amplitude and irregular oscillations at Re = 2000 and Re = 3000
are the results of interactions between different instability modes (i.e. the instabilities
induced by the shedding of vortices at high Re and the travelling-wave flutter induced
by the wall elasticity at high M).

4.2.2. Effects of M
At Re = 250, there are no vorticity waves convecting downstream of the elastic walls when
M varies from 1 to 8. Therefore, the wall inertia plays an important role in inducing the
different motion states of the elastic walls. Six cases (M = 1, 4, 5, 6, 7 and 8) are analysed
in detail. Figure 16 shows the corresponding y-coordinate time history, the PSD and phase
portrait of y-velocity vs y-coordinate of the mid-point at the upper collapsible wall. The
travelling-wave flutter of M = 5 is shown in figure 17. Figure 18 displays the corresponding
instantaneous vorticity contours of the flow field.

Similar to Re = 200 and M = 1 in figure 10, a steady motion is observed at Re =
250 and M = 1, as demonstrated by the wall remaining at its equilibrium position in
figure 16(a), the low energy level in figure 16(b) and the fixed point in the phase portrait
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Figure 16. The time history of the y-coordinate of the mid-point (x = 2.5 initially) of the upper elastic wall
under different mass ratios M with Re = 250, Ks = 2400, Pe = 1.95. Power spectrum density (PSD) and phase
portrait in displacement-velocity (y-v) space. The frequency in the PSD is normalized by U0/D. Here M = 1:
steady state; M = 4: periodic state; M = 5: period-doubling state; M = 6: periodic state; M = 7: quasi-periodic
state; M = 8: chaotic state. Plot parameters: (a) M = 1: steady state; (b) M = 1: low energy; (c) M = 1: fixed
point; (d) M = 4: periodic state; (e) M = 4: fundamental frequency f1 and its harmonic frequencies 2f1, 3f1;
( f ) M = 4: limit cycle; (g) M = 5: period-doubling state; (h) M = 5: the arise of subharmonic frequencies
0.5f1, 1.5f1; (i) M = 5: multiple limit cycles; (j) M = 6: periodic state; (k) M = 6: fundamental frequency f1
and its harmonic frequencies 2f1, 3f1; (l) M = 6: limit cycle; (m) M = 7: quasi-periodic state; (n) M = 7: the
arise of second- and third fundamental frequencies, f2, f3; (o) M = 7: limit torus; (p) M = 8: chaotic state;
(q) M = 8: broadband continuous spectrum; (r) M = 8: chaotic attractor.
926 A15-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

71
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.710


Collapsible channel flow

Re M Lyapunov exponent (λ) Motion state

250 1 NA steady
250 4 0.0073 periodic
250 5 0.014 period-doubling
250 6 0.0035 periodic
250 7 0.01 quasi-periodic
250 8 0.5705 chaotic

Table 4. Estimated dominant Lyapunov exponent and corresponding motion state of the system: Ks = 2400,
Pe = 1.95. Here NA means not applicable.
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Figure 17. Travelling-wave flutter at Re = 250, M = 5, Pe = 1.95 and Ks = 2400: (a) the time histories of
pressure and y-coordinate for the mid-point (x = 2.5 initially) on the upper elastic wall; (b) the spatial wave
of the wall shapes at four different instants shown in (a). (a) The p and y-coordinate time histories, (b) wall
shapes.

shown in figure 16(c). When M increases to 4, the wall motion is periodic (see figure 16d)
with a fundamental frequency f1 and its harmonics (i.e. 2f1, 3f1 etc) (see figure 16e). This
is supported by the limit cycle in figure 16( f ). When the mass ratio increases to M = 5,
the system settles into a period-doubling state, which is confirmed by the appearance
of subharmonic frequencies 0.5f1 and 1.5f1 in figure 16(h) and multiple limit cycles in
figure 16(i). Figure 16(g) shows the corresponding motion state. At M = 6, the system
experiences a period-1 limit cycle oscillation, as demonstrated by the periodic oscillations
in figure 16(j), the PSD in figure 16(k) and a single limit cycle in figure 16(l). The system
then enters a quasi-periodic motion at M = 7 as evidenced by the quasi-periodic wave
shapes in figure 16(m), the PSD in figure 16(n) and the limit torus in figure 16(o). At
M = 8, the broadband continuous spectrum in figure 16(q) and the chaotic attractor in
figure 16(r) indicate that the system enters a chaotic motion. The estimated dominant
Lyapunov exponents λ for these cases listed in table 4, support the identification of
chaotic motion at M = 8 (λ = 0.5705 (∼ of order 10−1)). Figure 16(p) shows that the
corresponding chaotic motion involves non-repetitive irregular oscillations, which is quite
different from the chaotic oscillations observed in figures 10(j) and 10(s) where the
dynamic behaviours of the elastic walls feature small noise-like fluctuations.

The changes in behaviour with the increase of mass ratio are now explored by analysing
the vortex structures shown in figure 18. Compared with the vortex structure in figure 11,
the vortices in figure 18 are more apparent in the collapsible section of the channel
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M = 1

M = 4

M = 5

M = 6

M = 7

M = 8

1

0
–5 0 5 15 25 35

Figure 18. Instantaneous vorticity contours under different mass ratios at t/T = 100 with Re = 250, Ks =
2400 and Pe = 1.95. The vorticity ranges from −10 (blue) to 10 (red). Note: the aspect ratio (length/width)
is set to 0.3 for an overview of the whole flow field. Animations of the vorticity contours for M = 5–8 are
provided in supplementary movies 6 to 9.

compared with other regions. This difference is caused by the effects of Reynolds number.
In figure 11 the Reynolds number for most cases are Re ≥ 500, which causes a longer
jet flow between the recirculation zones. Therefore, the vortices are less apparent in the
collapsible section of the channel. As for the vortices in figure 18, a shorter jet flow is
formed due to the low Reynolds number (Re = 250), leading to more apparent vortices in
the collapsible section. At Re = 250, a negative transmural pressure causes the channel
walls to indent inward. The relatively weak wall inertia at M = 1 enables the system to be
steady with the formation of a stable jet flow. As the mass ratio increases to M = 4, the
relatively heavy elastic walls periodically produce a jet flow, independent of the generation
of vorticity waves downstream. This result indicates that the periodic oscillations of the
elastic walls can be induced by increasing the wall inertia. The flow and wall shapes
are still symmetric, indicating that symmetry breaking is not necessary for the onset of
self-excited oscillations.

The effect of wall inertia becomes more evident at M = 5 with a pair of small vortices
shedding downstream of the elastic walls. Due to the relatively strong diffusion of vortices
at Re = 250, these vortices dissipate quickly. Figure 17(a) shows the time histories of
pressure and y-coordinate for the mid-point on the upper elastic wall. The oscillations of
the wall y-coordinate and wall pressure are slightly out of phase, indicating that energy has
been irreversibly transferred to the elastic walls, leading to flutter of the walls. Figure 17(b)
shows the spatial wave of the wall shapes at four instants shown in figure 17(a). The
wall has one wave at t1 and t2, moving to two waves at t3 and t4 which implies that
travelling-wave flutter is formed at M = 5. The travelling-wave flutter has also been found
by Luo & Pedley (1998) for a one-sided collapsible channel flow. The period-doubling
oscillations at M = 5 are caused by the travelling-wave flutter along the elastic walls (see
supplementary movie 6 for an animation of the vorticity contours). At M = 6, a period-1
limit cycle oscillation has been induced by the wall inertia. The flow is still symmetric until
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Figure 19. The time history of the y-coordinate for the mid-point (x = 2.5 initially) on the elastic walls for
different mass ratios M with Re = 500, Ks = 2400, Pe = 1.95. The red line and blue line represent the upper
and lower elastic wall, respectively. Plot parameters: (a) M = 0.3; (b) M = 1; (c) M = 2; (d) M = 5; (e) M =
10; ( f ) M = 20.

the symmetry breaking of the collapsible channel walls at M = 8. The chaotic oscillations
at M = 8 (heavy walls) are due to symmetry breaking coupled with the travelling-wave
oscillation along the elastic walls induced by the wall elasticity (see supplementary movie
9 for an animation of the vorticity contours). This scenario shows some similarity to the
aeroelastic flutter of a bridge. For fixed Re = 250 with varying M, the mass ratio is the
major parameter that causes symmetry breaking of the collapsible channel flow. Therefore,
the mass ratio controls the onset of chaos, which will arise once this parameter becomes
sufficiently high. A similar observation was reported by Connell & Yue (2007) for a 2-D
flapping flag in a uniform flow.

Here the effects of a wider range of mass ratios are examined: M = 0.3, 1, 2, 5,
10 and 20 while the other non-dimensional governing parameters are fixed as follows:
Re = 500, Ks = 2400 and Pe = 1.95. Figure 19 shows the time history of the y-coordinate
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Figure 20. The y-coordinate time history for the mid-point (x = 2.5 initially) on the upper elastic wall
(a) and the wall shapes (b) corresponding to the six instants shown in (a) for M = 20 with Re = 500,
Ks = 2400, Pe = 1.95. (a) The y-coordinate time history. (b) Wall shapes.

of the mid-point of the elastic walls for different mass ratios. The oscillation amplitude
of the elastic walls increases with the mass ratio M, with solutions that are steady for
M ≤ 0.3 (see figure 19(a), results of M = 0.1 and M = 0.2 not shown here). For M = 1,
as shown in figure 19(b), the startup transient oscillation decays with time and the system
reaches steady state at t/T = 80. When M is relatively small (e.g. M ≤ 2), the oscillation
amplitude is less than 0.01 (see figure 19c) but increases significantly for M ≥ 10, as
shown in figures 19(d) and 19(e), changing from small-amplitude mode at M = 5 to
large-amplitude mode at M = 10. These results indicate that the self-excited oscillations
of the elastic walls are closely related to the mass ratio of the wall.

Figure 19( f ) shows an interesting oscillation mode at M = 20. Following the collapse
of the elastic walls initially (from t/T = 0 to t/T = 17), the oscillation grows and settles
into large amplitude. We examine one specific cycle in figures 20 and 21. Figure 20(a)
shows the time history of the y-coordinate and figure 20(b) shows the corresponding wall
shapes at six instants, as indicated in figure 20(a). It is seen from figure 20(b) that the
deformations of the two elastic walls are always symmetric at t1 to t6. The walls bulge out
strongly upstream at t1 then bounce back to a strongly collapsed state at t4.

In figure 21 the corresponding vorticity contours clearly show the vortex pair evolution,
migration and dissipation process. The vortices are always symmetric even at this high wall
inertia (M = 20). More specifically, a pair of vortices p1 is shed downstream of the elastic
walls at t1 and is convected downstream accompanied with the collapse of the walls. A new
vortex pair p2 is generated at t2 and is convected downstream with the further collapse of
the elastic walls at t3. At t4 when the elastic walls reach to their most collapsed state, a
strong central jet emerges and entrains the surrounding fluid including the vortices. After
reopening of the collapsed channel, the former vortex pairs (i.e. p1 and p2) are convected
further downstream (t5) and a new vortex pair p3 is shed again beyond the throat (t6). Such
a fluid flow is different from the jet produced in a nozzle and shows some similarity to the
jet propulsion of a cephalopod under water (Luo et al. 2020).

4.3. Effects of external pressure Pe at Re = 500
Here the effects of external pressure Pe (= 1, 2, 3, 5, 8 and 10) exerted on the elastic walls
are further investigated, while the other non-dimensional governing parameters are fixed
at Re = 500, Ks = 2400 and M = 1.
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Figure 21. Instantaneous vorticity contours at six instants marked in figure 20(a) for M = 20, Re = 500,
Ks = 2400, Pe = 1.95. The vorticity ranges from −7 (blue) to 7 (red).

Figure 22 shows the time history of the y-coordinate of the mid-point on the elastic
walls. Overall, it is seen that self-excited oscillations occur under large external pressure
(for Pe ≥ 5, see figures 22d, 22e and 22f ) and the oscillation amplitude increases
with Pe. Specifically, as shown in figure 22(a) (Pe = 1), the walls reach a stable
state immediately after collapse. For Pe = 2 and Pe = 3 (see figures 22b and 22c),
the elastic walls experience small-amplitude oscillations, but the walls reach a steady
state as the oscillations decay with time. At Pe = 5 and Pe = 8, small-amplitude
(less than 0.01D) self-excited oscillations are developed. As shown in figure 22( f ), at
Pe = 10, high-frequency small-amplitude self-excited oscillations are superimposed on
low-frequency large-amplitude oscillations. These results indicate that Pe triggers the
onset of self-excited oscillations and controls their amplitude.

We examine the special oscillation mode at Pe = 10. Figure 23 shows the time history
of the y-coordinate of the mid-point at the upper elastic wall, and the vorticity contours
at the seven instants marked in figure 23 are shown in figure 24. Figure 23 shows that the
oscillations at Pe = 10 are highly irregular, which is in a chaotic motion state. It can be
seen from figure 24 that the motions of the upper and lower elastic walls are asymmetric
with complex vortex structures, in contrast to the symmetric vortex structures shown in
figure 21. From t1 to t4, initially, the opposite elastic walls approach each other, reducing
the cross-section area of the channel. The fluid reaches the maximum speed at the throat
of the channel, reducing the pressure, which causes a further collapse of the channel until
the channel is almost closed at t5. From t1 to t4, the vortices are convected downstream
quickly until t5 when the vortices stop convecting downstream further until the channel
reopens at t6. The kinetic energy of the upstream fluid is converted to a pressure increase
that causes the channel to reopen at t6, and the cycle is repeated.

4.4. Discussion
A two-sided collapsible channel flow is numerically studied here. An IB-LBM FSI strategy
is extended to model the FSI system. Compared with the conventional ALE, the IB-LBM
FSI algorithm is simple because the Cartesian mesh is used and mesh movement is
avoided. Further, the advantages of explicit calculation and the intrinsic parallel nature
of LBM make the IB-LBM FSI solver much more efficient (up to 100 times) than the
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Figure 22. The time history of the y-coordinate of the mid-point (x = 2.5 initially) of the elastic walls under
different external pressures Pe with Re = 500, Ks = 2400, M = 1. The red line and blue line represent the
upper and lower elastic wall, respectively. Plot parameters: (a) Pe = 1; (b) Pe = 2; (c) Pe = 3; (d) Pe = 5;
(e) Pe = 8; ( f ) Pe = 10.

conventional ALE FSI solver in terms of computation time (Luo et al. 2008). In addition,
previously unexplored regions of the parameter space, such as high Reynolds number (Re
up to 3000), high structure-to-fluid mass ratio (maximum M = 100) and high external
pressure (maximum Pe = 10) are further examined here.

4.4.1. The role of symmetry breaking
Results here show that the symmetry breaking of the collapsible channel flow system may
be induced by the increase of Reynolds number, wall inertia (mass ratio) and external
pressure applied on the collapsible channel walls. Symmetry breaking is not a prerequisite
for self-excited oscillations, but the symmetry breaking of the dynamic response of the
elastic walls leads to the chaotic motion of this system.
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Figure 23. The time history of the y-coordinate for the mid-point (x = 2.5 initially) on the upper elastic wall
with M = 1, Pe = 10, Re = 500 and Ks = 2400.
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Figure 24. Instantaneous vorticity contours at seven instants during large-amplitude self-excited oscillations
for M = 1, Pe = 10, Re = 500 and Ks = 2400. The vorticity ranges from −10 (blue) to 10 (red).

Firstly, at low mass ratio M = 1, the symmetry breaking arises at the Reynolds number
of Re = 320 owing to a pitchfork bifurcation. The flow is steady both before and after
the symmetry breaking bifurcation. A similar observation of such flow asymmetry has
been reported by Kounanis & Mathioulakis (1999) in the experimental study of flow
within a self-oscillating collapsible tube. They further reported that the flexible tube
started oscillating when flow asymmetry occurred, while there are no oscillations in
the collapsible walls here when flow asymmetry first appears. Kounanis & Mathioulakis
(1999) pointed out that the symmetry breaking of the flow downstream of the collapsible
segment may be a potential mechanism for the onset of self-excited oscillations.
The different observations from this study are due to the much higher stretching stiffness
and the negative transmural pressure (instead of a low and positive transmural pressure)
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here as well as the geometric difference (i.e. two dimensional in our model and three
dimensional in Kounanis & Mathioulakis 1999). The flow bifurcation investigated in § 4.1
shows that the occurrence of symmetry breaking of the jet flow at Re = 320 and M = 1
does not excite any oscillation of the elastic walls. In contrast, the collapsible channel flow
system is still symmetric with periodic oscillations of the elastic walls at Re = 250 and
M = 2 in § 4.2.2. Therefore, with regard to the role of symmetry breaking in the instability
of a collapsible flow system, the different dynamic behaviours at Re = 320 for M = 1 and
Re = 250 for M = 2 indicate that the symmetry breaking is not a prerequisite for the onset
of self-excited oscillations.

Secondly, as shown in § 4.2.2, for Re = 250, the collapsible channel flow is symmetric
for M ≤ 7, and the symmetry breaking of the collapsible channel walls occurs at M = 8,
where the system settles into a chaotic state. Finally, as shown in figures 22 and 23, for
M = 1, the symmetry breaking occurs at Pe = 10 where the system settles into a chaotic
state again. These observations indicate that the symmetry breaking induced by the wall
inertia and the external pressure can lead the collapsible system into a chaotic state.

4.4.2. Chaotic channel wall motions
The existence of chaotic motion is confirmed by a positive dominant Lyapunov exponent
(≥ 10−2) and a chaotic attractor in the phase portrait of the y velocity displacement
of the mid-point at the collapsible channel walls. Aperiodic oscillations were observed
experimentally by Bertram et al. (1991) for Re > 4400 in a thick-walled silicone rubber
tube. The presence of chaos cannot be certainly confirmed due to the limited time
recordings made in their experiments. Results in § 4.2 show that chaos can occur over a
wide range of Reynolds numbers (i.e. 100 ≤ Re ≤ 1000), predominantly for high Reynolds
numbers at low mass ratios (i.e. Re ≥ 500 and M ≤ 4); and for low Reynolds numbers
with high mass ratios (i.e. Re ≤ 300 and M ≥ 6). Furthermore, in a general investigation
of the routes to chaos for this system, two possibilities are found: the system reaches chaos
via period-doubling or quasi-periodic bifurcations. The routes to chaos in the collapsible
system have not been reported previously.

4.4.3. Rich dynamic behaviours
The dynamic behaviours of the collapsible system are qualitatively categorized into
four major groups. The first group involves periodic oscillations of single fundamental
frequency f1. The second group involves period-doubling oscillations of one fundamental
frequency f1 and its subharmonic frequencies 0.5f1 and 1.5f1. These period-doubling
oscillations show two different wave shapes (e.g. figure 10m and 16g). The third group,
as is shown in figure 10(p), involves quasi-periodic oscillations of three incommensurate
frequencies (i.e. f1, f2 and f3). The last group involves chaotic oscillations including
small noise-like fluctuations (e.g. figures 10j and 10s) and non-repetitive irregular
oscillations (e.g. figure 16p). Similar oscillation types were also observed by Bertram et al.
(1990) in the experimental study of collapsed tubes, where the experimentally observed
oscillation types were categorized into six major groups including highly nonlinear
periodic oscillations of relatively low frequency with two groups of different wave shapes,
intermediate-frequency oscillations (nonlinear periodic oscillations at two or three times
the frequency), high-frequency oscillations, smaller non-repetitive noise-like fluctuations
and very-high-frequency oscillations. Irregular oscillations were also observed in their
experiments as a genuine part of the dynamical behaviours of the collapsible system rather
than due to any lack of control of experimental conditions.
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4.4.4. Physical mechanisms responsible for the onset of self-excited oscillations
A wide range of the controlled parameters of the collapsible channel flows are investigated
in this study (100 ≤ Re ≤ 3000, 0.3 ≤ M ≤ 100 and 1 ≤ Pe ≤ 10), and rich dynamic
behaviours of the collapsible system are observed. The physical mechanisms responsible
for the onset of these different oscillations are different, depending on the controlled
parameters, and are summarized as follows.

(i) Unbalanced transmural pressure. In the investigation of the effects of Reynolds
number shown in § 4.2.1, for Re ≤ 500, M ≤ 1, Pe = 1.95 and Ks = 2400, there
is no vortex shedding downstream of the elastic walls and the stability of the
collapsible channel walls are mainly determined by the transmural pressure. Under
these parameter conditions, the viscosity is strong enough to damp out any small
disturbances caused by wall inertia. The only unstable source, take Re = 200 as an
example, comes from the unbalanced transmural pressure (positive upstream and
negative downstream) along the elastic walls that causes self-excited oscillations.
Either positive transmural pressure (Re = 100) or negative transmural pressure
(250 ≤ Re ≤ 500) along the elastic walls can produce a steady state. Luo et al.
(2008) demonstrated that the transmural pressure could affect the stability of the
collapsible system through its interaction with the wall curvature, which supports
our findings here.

(ii) Shear layer instabilities. As the Reynolds number increases, it is found that the
generation and shedding of vortices play a major role in the stability of the
collapsible system. The shedding of vortices downstream of the throat feeds back
perturbations on the elastic walls. For M ≤ 1, the instabilities in the wall motion
for 550 ≤ Re ≤ 3000 are mainly due to shear layer instabilities. Luo & Pedley
(1996) firstly showed in a coupled FSI of a one-sided collapsible channel that the
oscillations are a consequence of the generation of vorticity waves downstream.
The effects of Re in § 4.2.1 reveal that the vortex shedding downstream of the
throat are responsible for the onset of self-excited oscillations. Furthermore, the
period-doubling, quasi-periodic and chaotic oscillations are closely associated with
vortex pairing and merging of adjacent vortices, and the interactions between
vortices on the upper and lower walls.

(iii) Wall elasticity at large mass ratios. For the onset of chaotic oscillations at Re =
250 and M = 8 in § 4.2.2, travelling-wave flutter along the elastic walls induced
by the wall elasticity causes the symmetry breaking that further triggers chaotic
oscillations. For high Reynolds numbers at high mass ratios, as shown in figure 14,
the travelling-wave flutter induced by the wall elasticity at high mass ratios (e.g.
M = 10) increases the oscillation amplitude approximately by a factor of five (e.g.
from 0.02D at M = 1 and Re = 2000 to 0.1D at M = 10 and Re = 2000). The
numerical study of the effects of wall inertia on a one-sided collapsible channel flow
of Luo & Pedley (1998) is the first study where collapse and flutter were examined
together. They focused on low mass ratios (M ≤ 1) as otherwise the amplitude of the
oscillations became too large for the mesh generator to manage. As was observed by
Luo & Pedley (1998), the flutter observed here is not a consequence of the generation
of vorticity waves downstream. The flutter found in Luo & Pedley (1998) was caused
by a phase difference between the wall pressure and wall displacement, which
enables the fluid to transfer energy continuously to the wall. The flutter observed
in this study shows similarity to the high-frequency oscillations in the experimental
observations of Bertram (1986) and Bertram et al. (1990), stemming from wall mass.
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(iv) Heavy wall. The wall inertia can be neglected when the structure-to-fluid mass ratio
is very small (e.g. the fluid is water), however, it cannot be neglected if the fluid is
air (e.g. in the context of vocal fold oscillations during phonation). Luo & Pedley
(1998) reported that the inclusion of wall inertia would introduce an additional
high-frequency flutter mode of a one-sided collapsible channel wall. For the effects
of mass ratio, as shown in figure 19, it is found that the self-excited oscillations can
be triggered by the wall inertia, and the amplitude of oscillations increases with the
wall inertia.

(v) High external pressure Pe. The onset of self-excited oscillations can also be triggered
by Pe, and the oscillating amplitude increases with Pe. A similar observation was
reported by Tang et al. (2015) for a one-sided collapsible channel flow. At Pe = 10,
the elastic walls experience high-frequency small-amplitude self-excited oscillations
superimposed on low-frequency large-amplitude oscillations, which is a chaotic
motion state. The vorticity contours in figure 24 show the near occlusion and
reopening process of the collapsible system at Pe = 10, which is quite similar to
the collapse of brachial arteries during blood-pressure measurements (Bertram et al.
1989).

5. Conclusions

In this paper the nonlinear dynamics of a two-sided collapsible channel flow has been
investigated by using an immersed IB-LBM. The transition routes from steady to chaotic
motion of the collapsible system have been studied using nonlinear dynamic analysis. The
role of symmetry breaking in the onset of self-excited oscillations is highlighted, and
nonlinear and rich dynamic behaviours of this collapsible system are newly observed.
The physical mechanisms responsible for the onset of self-excited oscillations of this
collapsible system have been explored.

Firstly, the system may experience a supercritical Hopf bifurcation to a period-1 limit
cycle oscillation. The existence of chaotic motion of the system is confirmed by a positive
dominant Lyapunov exponent and a chaotic attractor in the phase portrait of the velocity
displacement of the mid-point of the collapsible channel wall. The system has been shown
to reach chaos via period-doubling and quasi-periodic bifurcations. Secondly, for the
exploration of physical mechanisms responsible for the onset of self-excited oscillations,
it has been found that the symmetry breaking of the collapsible channel flow system
may be induced by increasing the Reynolds number, wall inertia and external pressure.
Symmetry breaking is not a prerequisite for the onset of self-excited oscillations, but the
symmetry breaking of the dynamic response of the collapsible channel walls leads to the
chaotic motion of the collapsible walls. The unbalanced transmural pressure and the shear
layer instabilities in the vorticity waves are responsible for the onset of the self-excited
oscillations of this collapsible system. In addition, the period-doubling, quasi-periodic
and chaotic oscillations are closely associated with vortex pairing and merging of adjacent
vortices, and the interactions between the upper and lower vorticity rows. For a heavy
wall, travelling-wave flutter along the elastic walls induced by the wall mass causes
the symmetry breaking of the elastic walls that further triggers the chaotic oscillations.
Finally, it has been found that large-amplitude self-excited oscillations of the collapsible
system can be induced by high mass ratio and external pressure.

Supplementary movies. Movie 1. Re = 200, M = 1, Ks = 2400 and Pe = 1.95. Movie 2. Re = 550, M = 1,
Ks = 2400 and Pe = 1.95. Movie 3. Re = 600, M = 1, Ks = 2400 and Pe = 1.95. Movie 4. Re = 650, M = 1,
Ks = 2400 and Pe = 1.95. Movie 5. Re = 800, M = 1, Ks = 2400 and Pe = 1.95. Movie 6. Re = 250, M = 5,
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Ks = 2400 and Pe = 1.95. Movie 7. Re = 250, M = 6, Ks = 2400 and Pe = 1.95. Movie 8. Re = 250, M = 7,
Ks = 2400 and Pe = 1.95. Movie 9. Re = 250, M = 8, Ks = 2400 and Pe = 1.95. Supplementary movies are
available at https://doi.org/10.1017/jfm.2021.710.
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