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Abstract

Since the introduction of spatial grammars 45 years ago, numerous grammars have been
developed in a variety of fields from architecture to engineering design. Their benefits for
solution space exploration when computationally implemented and combined with optimiza-
tion have been demonstrated. However, there has been limited adoption of spatial grammars
in engineering applications for various reasons. One main reason is the missing, automated,
generalized link between the designs generated by the spatial grammar and their evaluation
through finite-element analysis (FEA). However, the combination of spatial grammars with
optimization and simulation has the advantage over continuous structural topology optimiza-
tion in that explicit constraints, for example, modeling style and fabrication processes, can be
included in the spatial grammar. This paper discusses the challenges in providing a general-
ized approach by demonstrating the implementation of a framework that combines a three-
dimensional spatial grammar interpreter with automated FEA and stochastic optimization
using simulated annealing (SA). Guidelines are provided for users to design spatial grammars
in conjunction with FEA and integrate automatic application of boundary conditions. A simu-
lated annealing method for use with spatial grammars is also presented including a new
method to select rules through a neighborhood definition. To demonstrate the benefits of
the framework, it is applied to the automated design and optimization of spokes for inline
skate wheels. This example highlights the advantage of spatial grammars for modeling style
and additive manufacturing (AM) constraints within the generative system combined with
FEA and optimization to carry out topology and shape optimization. The results verify that
the framework can generate structurally optimized designs within the style and AM con-
straints defined in the spatial grammar, and produce a set of topologically diverse, yet valid
design solutions.

Introduction

For the last 45 years, designers have proposed various shape grammars to accomplish engi-
neering design tasks. After the introduction by Stiny and Gips (1972), shape grammars
have been created for the design of Palladian architecture (Stiny & Mitchell, 1978), Harley–
Davidson motorcycle (Pugliese & Cagan, 2002), and coffee makers (Agarwal & Cagan,
1996) where some exist on paper and others are implemented using a variety of representa-
tions (McKay et al., 2012). The primary focus of these works has been to model design
style and languages and to explore the solution space through the generation of alternative
designs. As such, shape grammars have been instrumental in the conceptual design stage.
However, since the design requirements for many of these products are difficult to quantify,
human designers are often involved in selecting the best design from the generated set
(Antonsson & Cagan, 2001). This can be problematic as the human-oriented selection process
becomes ineffective when the search space grows (Bar-Yam, 2003). Further, when presented
with increasingly complex design challenges, shortcomings such as design fixation (Purcell
& Gero, 1996), confirmation bias (Hallihan et al., 2012), and difficulty in modeling (Gibson
et al., 2014) may lead to suboptimal designs.

These issues have driven the research area of computational design synthesis (CDS), where
computational methods are developed to provide designers with means to automatically gen-
erate designs, evaluate them, and search vast solution spaces to find novel solutions and model
complex interactions (Chakrabarti et al., 2011). Integrated into such CDS, shape grammars
entail multiple benefits:

• In combination with stochastic optimization, shape grammars are able to produce optimized
designs plus a variety of designs that are nearby and yet may have vastly different character-
istics and forms.
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• Designers can directly incorporate their personal style and/or
aesthetics.

• Designers can embed manufacturing constraints within the rule
set.

While parametric modeling (Woodbury, 2010) also allows for
direct integration of personal style and manufacturing constraints,
the variety of designs is limited as the designer predefines all para-
metric variations in the model. Hence, it is difficult to generate
unexpected or novel designs (Chen & Shea, 2015).

However, to achieve these benefits for engineering problems, a
fully integrated system is still needed including quantitative evalu-
ation through simulation. A step toward this was developed in the
work of Shea et al. (2005) but was limited to import and export
between a structural shape and topology optimization method
for three-dimensional (3D) truss structures, based on a structural
shape grammar, and parametric CAD. This is challenging to do
more generically considering the wide potential variety of designs
generated by a spatial grammar and the need to automate the
simulation including the definition of boundary conditions and
material. Currently, in most cases, these have to be defined manu-
ally for each generated design to create a finite-element analysis
(FEA) model, which is time consuming and ineffective consider-
ing that a spatial grammar can generate thousands of design var-
iants. Thus, this paper focuses on providing a generalized and
automated link between the designs generated by a spatial gram-
mar, structural FEA, and computational optimization. This will
provide designers, for example, mechanical and product
designers, with new means for generative design using spatial
grammars that integrate automated feedback of design variants
from FEA and optimization to generate optimized solutions.

Figure 1 depicts the framework for CDS that consists of gen-
eration, evaluation, and optimization. The generation entails the
design and application of grammar rules within a graphical and
interactive spatial grammar interpreter spapper (Hoisl & Shea,
2011). After a design is generated using the spatial grammar, it
is exported and automatically evaluated by FEA, without designer
interaction. An objective function value is calculated considering
engineering performances, for example, stress and/or displace-
ment, and/or geometric constraints. The objective function values
are used in an integrated simulated annealing (SA) algorithm to
drive the generative design process. To highlight the uniqueness

of this approach compared with continuous topology optimiza-
tion, constraints from an additive manufacturing (AM) process
are modeled in the spatial grammar (Fig. 1, dashed arrow) so
that optimized designs can be directly fabricated. Through the
provision of an integrated approach, the intention is to provide
designers with a simulation and optimization-driven generative
system that designers can use and customize directly without
the need for programming.

The paper begins with a brief background section on the shape
grammar formalism and the combination of spatial grammars
with optimization and evaluation as well as other related work.
The framework is then presented in more detail following the pro-
cess shown in Figure 1. The section “Engineering design case
study: inline skate wheel spokes” presents an engineering case
study of inline skate wheel spoke design to demonstrate the ben-
efits of the framework. The paper finishes with a discussion and a
conclusion.

Background

Shape grammars

Shape grammars as an approach to shape computation were first
introduced in 1972 (Stiny & Gips). The formalism (Stiny, 1980)
states that a grammar consists of a set of shapes, rules, and labels,
as well as an initial shape. First, a vocabulary of shapes is defined.
From this vocabulary, both the left-hand side (LHS) and the
right-hand side (RHS) of rules are built. Rules are applied by
searching for geometries within the current working shape
(CWS) that match the shapes in the LHS of the rule under
defined geometric transformations. On detecting matches, one
match is selected and the shapes matched are replaced by the
RHS under the same geometric transformation.

This work builds on spapper, a visual and interactive spatial
grammar interpreter (Hoisl & Shea, 2011), which facilitates rule
design, implementation, and application for 3D solids in a
familiar CAD-based interface for designers. There is no emerg-
ence in spapper as it is implemented as a set grammar using
CAD primitives, which is why the term spatial grammar is used
in this paper. The term spatial grammar was proposed by
Krishnamurti and Stouffs (1993) and provides a generalized
view on grammatical approaches to generate form whether they
are implemented as strings, sets, graphs, or shapes. Within

Fig. 1. Framework and fabrication with the example of inline skate wheel spoke design.
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spapper, users are able to define parametric rules, perform auto-
mated matching of the LHS including labels, and translation
and rotation transformations as well as automated application
of rules (Hoisl & Shea, 2013).

Considering the case study of inline skate wheels, the first
application of spatial grammars to generate vehicle wheels was
to demonstrate spapper, already described. The second piece of
research focused on the potential of spatial grammars for gener-
ating customized wheel spoke patterns that integrate the spatial
constraints of a 3D printing process, so that they can be automat-
ically printed (Chen & Shea, 2015).

Combination of spatial grammars with optimization and
simulation

Shape grammars have been combined with different stochastic
search algorithms, among which are genetic algorithms.
Chouchoulas (2003) generated room layouts for high-rise build-
ings with a number of functional requirements as evaluation cri-
teria. Ang et al. (2006) generated shapes using a 2D parametric
coke bottle grammar that incorporates brand identity, and opti-
mized the designs with a volume-based objective function.

The combination of shape grammars and simulated annealing,
called shape annealing, has been proposed by Cagan and Mitchell
(1993). Shea and Cagan (1997) developed a generative method
using shape annealing to generate and optimize 2D to 3D truss
structures from free forms to highly constrained transmission
towers (Shea & Smith, 2006). With a small set of reversible para-
metric rules, they demonstrated that the method can achieve opti-
mally directed solutions to combinatorial problems and can assist
designers by enlarging the solution space (Shea & Cagan, 1999).
This work was integrated within a CAD system, but did not
enable designers to develop their own structural shape grammars
graphically and is limited to truss structures (Shea et al., 2005).

There are only a few works in which shape grammars were
linked to FEA. In addition to the work described, Barros et al.
(2015) generated Thonet chair topologies for the back of the
chair using a 2D parametric shape grammar. These topologies
were then translated into a parametric CAD model already inte-
grated within a FEA model and simulation. This method was
designed to solve a specific problem.

These works show that the research focus lies mainly on the
combination of shape grammars and stochastic optimization,
and much less on the automated integration with FEA. Further,
even though FEA is performed in the work of, for example,
Barros et al. (2015), it limits the design generation since the
underlying FEA model is still parametrized. Hence, the present
paper contributes by addressing the challenges in linking gener-
ated designs to FEA automatically, and thus by generalizing the
applicability of such CDS approaches in combination with sto-
chastic optimization that integrates engineering performance
evaluated through simulation.

Since the focus in the paper is on automated integration of
structural FEA, related work also includes continuous topology
optimization (Bendsøe & Sigmund, 2013). These methods are
powerful in the detail design stage, but are deterministic and
driven only by FEA-based performance objectives and so inferior
in the variety of solutions generated and in direct integration of
personal style and manufacturing constraints. Only one design
is produced for a given optimization model, based only on engi-
neering performance, which the user generally cannot directly
influence.

Framework

The approach taken in this paper, as shown in Figure 1, provides a
framework that integrates a spatial grammar interpreter, auto-
mated FEA, and simulated annealing optimization. The fully
automated optimization process is as follows: first the spatial
grammar generates one design alternative; this is automatically
evaluated using FEA and then simulated annealing optimization
determines whether the new design is accepted or to revert to
the previous design. Each component in the process is now pre-
sented along with the challenges in their automated integration.
The section concludes with the presentation of a use case of the
framework from the designer’s perspective.

Generation: spatial grammar

Spatial grammars can range from parametric to non-parametric
and from basic to unrestricted (Knight, 1999). Both topological
rules, that is, rules that add and remove shapes, and sizing rules
can be incorporated. Different rule sets can be applied in different
stages of the design generation process. To integrate spatial gram-
mars with FEA, we determined the following general guidelines,
so that the process can be fully automated:

• Rules should only create manifold solids (Stroud & Nagy, 2011).
If two or more solids in an assembly are coincident only at a
single point or line, the shared interface is non-manifold and
thus cannot be interpreted by a number of CAD and FEA sys-
tems and are not producible directly with AM. In a local con-
text, that is, just considering one rule, non-manifold designs
can be avoided by spatially arranging the RHS solids to always
be manifold, as described in Chen et al. (2015). Checking if a
solid is manifold or not within an assembly of solids is more
complex. However, non-manifold solids are deleted when
exported, for example, in a step-file (AP214), which is capita-
lized on by comparing the number of solids that should be
exported by the spatial grammar interpreter with the number
that is imported into the FEA package. If these numbers differ,
the current model is non-manifold and the framework returns
the solution and applies a different rule to the CWS.

• Rules should only create connected solids. Non-connected solids
lead to errors in the FEA; hence, especially parametric rules
have to be designed carefully. An example is that two connected
solids must remain connected after the rule is applied. Further
examples are given in Chen and Shea (2015).

• Rules should not create identical designs. The most time-
consuming step in the framework is the FEA, which should
thus not be performed multiple times for the same design.
Attention must be paid to parametric rule sets in particular
since the rule sequence does not represent the actual solution
that results from the parameter values applied in each rule.

Simulation: FEA

Carrying out a FEA requires a meshed geometry, material assign-
ment, and boundary conditions applied to the mesh. The biggest
challenge when creating an automated FEA model is the applica-
tion of the boundary conditions. For a FE solver to simulate the
same load case for each new geometry generated by the spatial
grammar, the connection between boundary conditions and the
surfaces they are applied to must be preserved. Hence, these sur-
faces cannot change.
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To ensure this, the approach in this work is that a designer
partitions the model into smaller components. Figure 2 (top)
shows a generic load case with a distributed force on the right
and an arbitrary boundary condition on the left. Figure 2 (bot-
tom) shows a possible partitioning, in which parts affected by
boundary conditions are separated from the design generated by
the spatial grammar. These parts, called invariant components,
stay identical throughout the optimization, so that new designs
produced by the grammar can be automatically inserted and
simulated.

However, although partitioned, the components still belong to
the same part, and thus have to be united before being analyzed.
Figure 2 (bottom) shows two possible situations: In situation A,
the new grammar design is guaranteed to be imported at the
same spatial location as the last one, and thus shares a 2D inter-
face with the invariant component, in which case they can be
united without changing the properties of the invariant compo-
nent. In case the spatial relations of grammar designs cannot be
predicted easily, that is, in situation B, a buffer part has to be
introduced to ensure a connection between each new design gen-
erated and the invariant component. If the design consists of mul-
tiple materials, surface contact conditions must be introduced
between components, which also require a buffer.

Setting up the FEA model properties, designers specify the
load case, boundary conditions, mesh, and material assignment,
but with a partitioned model. Subsequently, as the only addition,
they provide information about which components are invariant,
buffer, or belong to the design generated by the grammar, that is,
will be replaced.

Independent of the number of solids contained within the gen-
erated design, the number of buffer parts and invariant compo-
nents, a Unite feature is inevitable in the FEA model. This
Unite feature is the key to the automatic replacement of new
grammar designs, because no matter how many parts are united,
mesh and boundary conditions reference to only that feature.
Hence, the framework is implemented in such a way that it
replaces the previous design generated by the grammar with the
new one without changing the identity of the Unite feature.
Hence, the Unite feature, as well as the boundary conditions
remain unchanged, the mesh is regenerated automatically, and
the FEA can be performed. The replacement is possible for any
number of new solids, that is, the number of old and new solids
can differ.

Engineering performance such as maximum stress or displace-
ment are automatically determined from the FEA results and pro-
vided to the optimization algorithm.

Optimization: simulated annealing

For optimization algorithms to be generally applicable to spatial
grammar systems, non-linear and multimodal search spaces
have to be anticipated. Spatial grammars further create discontin-
uous search spaces as a consequence of the shape transformations
that add and remove shapes. Depending on the generative power
of the grammar (Knight, 1999), search spaces can be vast, where
variety is usually a result of parametric rules rather than the size
of the rule set. A few rule applications can generate many solu-
tions; hence, a breadth-prioritized search algorithm is favored.
Simulated annealing has been used to optimize large search spaces
(Dowsland & Thompson, 2012) and works well in conjunction
with spatial grammars (Shea & Cagan, 1997). Simulated annealing
is robust, can be tailored to optimization problems with the
requirements already mentioned and is therefore employed in
this framework.

Distinct rule sets, for example, topology and parametric sizing
rules, pose a challenge for optimization methods that are linked to
engineering design grammars (Konigseder & Shea, 2016). Hence,
the framework provides the option to divide the optimization into
multiple stages in which different rule sets are applied. In the case
study described in the section “Engineering design case study:
inline skate wheel spokes”, for example, there are ten topology
rules, three sizing rules, and one post-processing rule (Fig. 3).
In the first stage, both topology and sizing rules are applied, so
that topologically different, but also feasible designs are found.
The second stage continues with the best design from the first
stage and directs the sizes of the members toward an optimized
solution only through sizing rules. The last stage is a post-
processing stage to delete any unnecessary solids.

The definition of the neighborhood that is used for selecting
which rule to apply next has an influence on the outcome of
the optimization. This was shown in Shea (1997) through the
use of the “Hustin” rule sets where a rule type, that is, topology
or geometric rule, is selected probabilistically and each geometric
rule has a parametric neighborhood defined that specifies the
maximum parametric change. A neighbor should be in close
proximity to the current solution but far enough, so that all solu-
tions in the search space can be reached (Dowsland & Thompson,
2012). In this paper, we provide a new neighborhood definition
for rule selection that considers the neighborhood of topological
rules and sequences of rules rather than only probabilistic selec-
tion of single rules and parametrically defined neighborhoods.

Figure 4 shows a part of the search tree of a grammar system
with seven rules. Each circle denotes a possible solution, the num-
bers in the middle stand for the rule sequence. The current design
1→ 3→ 5 is thus created by applying the rules 1, 3, and 5 in that
sequence to the initial shape. The neighborhood of the current
design is defined as the choice between a parent, a sibling, or a
child solution. A child results when a new rule is applied to the
current design, for example, 1→ 3→ 5→ 6. For a sibling, the
last applied rule is replaced with a new rule (or the same rule
with a set of different parameters), for example, 1→ 3→ 4. A par-
ent is achieved by removing the last applied rule and replacing the
previous one with a new rule (or the same rule with a set of dif-
ferent parameters), for example, 1→ 7. Exchanging rules in any
other part of the sequence than its tail, for example, from 1→

Fig. 2. Generic simulation model (top) and partitioning of the model for automated
integration with a spatial grammar (bottom).
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3→ 5 to 2→ 3→ 5 or to 1→ 4→ 5 will result in topologically
disparate solutions because previous rules have much more influ-
ence on the design than later ones.

Use case

Using the described framework from the designer viewpoint
shown in the middle, Figure 5 shows the three components of
the framework and the necessary inputs by the designer. The
designer first provides the initial shape to FreeCAD 0.12, the
open source CAD software that runs spapper, together with
the spatial grammar rule set that was built in spapper. The initial
shape includes either a single primitive or an assembly of primi-
tives contained within the vocabulary of the rule set. The initial
solution consists of the same solids as the initial shape, but is pre-
pared in such a way that parts of it can be automatically replaced
by subsequent designs generated by the grammar. This prepara-
tion is dependent on the FEA model properties, for example,
boundary conditions and material distribution. Both initial

solution and FEA model properties are inputs to Siemens NX
8.5, a commercially available CAD software. The last input is
the optimization model, which defines the objective function,
the constraints, and the parameter settings for the simulated
annealing algorithm written in Python.

Hence, the designer is both grammar developer, using the
visual interface of spapper, and user of the grammar interpreter,
as defined by Chase (2002), and additionally defines the load
case and the optimization model.

Engineering design case study: inline skate wheel spokes

The framework is used to design and optimize spokes of inline
skate wheels. Inline skate wheels entail a range of characteristics
to show the merits of the framework. First, the main engineering
performance is structural strength and requires solid, 3D struc-
tures. Second, spatial grammars are capable of capturing the indi-
vidual style of a designer, or customer, and inline wheels require
aesthetic appeal and can be mass customized. Third, they consist

Fig. 3. Simulated annealing in three stages for the wheel
grammar.

Fig. 4. Definition of the neighborhood for spatial
grammar-based simulated annealing.
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of different materials, that is, the tire is made of compliant elasto-
mer and the spokes of stiff plastic (Keleny, 1999), which renders
them a good case study for the FEA model properties and for
state-of-the-art multi-material AM, for example, the Polyjet 3D
printing process.

The following sections provide the case study-specific infor-
mation to demonstrate the methods in the framework.

Inline skate wheel grammar

The rules of the inline skate wheel grammar developed using spapper
are illustrated in Figure 6 and described in detail in Table 1. The
generative power of this grammar ensues from two properties.

The first property is that the LHS for all rules is the same
shape, depicted in the middle of Figure 6 and in the surrounding
RHSs as translucent objects in orange. Some rules require the LHS
to be of a certain minimal length to be applicable, but because the
shape is the same, all rules are guaranteed to be applicable at any
time, and the rule sequence is therefore unrestricted (Knight,
1999). There is one rule not shown in Figure 6, which is the dele-
tion of a spoke only used as post-processing at the end of the opti-
mization and thus not essential to the grammar itself.

The second property is the absence of labels in the rules.
Labels are usually introduced as carriers of non-spatial informa-
tion to prevent unwanted rules from being applied. More control
comes with more labels, but the generative power is generally
more restricted. The goal of this grammar is to be as powerful
as possible, conceding some post-processing requirements, such
as the manifold check for all solids. It is difficult to categorize
the rule format because the grammar is additive with respect to
shapes (Knight, 1999) but not to labels due to their absence in
the rules. The building blocks of the grammar are block primi-
tives, which could however be replaced by other primitives. The
grammar is not subject to other constraints, and can therefore
be characterized as nearly unrestricted.

The inline skate wheel grammar includes AM constraints spe-
cific to the fused deposition modeling process as described by
Chen et al. (2015). These constraints include the minimum prin-
table dimensions of spokes, a minimum horizontal interior angle
between two spokes so that the spokes do not fuse, and a mini-
mum angle of overhang to eliminate support material. The mini-
mum dimensions are 1.5 mm in the horizontal and 0.66 mm in
the vertical directions, and the interior angle and the angle of
overhang are required to be >10° and 45°, respectively.

The validity of the wheels, that is, not disconnecting the hub
from the rim through rule applications, is achieved through well-
chosen parameter boundaries for each rule and through the
restriction of rule applications to certain stages of the optimiza-
tion process, for example, the deletion of spokes is only possible
in the last few iterations for post-processing.

Fig. 5. Framework with designer input.

Fig. 6. The inline skate wheel grammar. The LHS is always the same indicated in the
center and the orange shape in each rule indicates the LHS of the rule superimposed
onto the RHS.
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The evolution from initial shape to final wheel is shown in
Figure 7. The initial shape is one radially placed spoke. A
sequence of rule applications is applied to create the design in
step 2. Then, the outcome is copied with rotational symmetry
in step 3 to create a symmetric spoke pattern. The rotational

symmetry can be considered an aesthetic choice by the designer
and creates a specific style. The number of copies ranges from
three to eight defined by a design variable NC, which is deter-
mined randomly throughout the optimization. In step 4, a solid
representing the shape of the allowable space is imported and

Table 1. Description of the inline skate wheel grammar rules (Zimmermann et al., 2016)

Set A: In-plane, rotation around wheel axis

1 Duplicates a box, rotates the resulting boxes by an angle

2* Adds a new box to the end of the original box, rotated counter-clockwise

3* Adds a new box to the beginning of the original box, rotated counter-clockwise

4* Same as rule 2 but rotates the new box clockwise

5* Same as rule 3 but rotates the new box clockwise

6 Duplicates the box and places it adjacent to the original

Set B: In-plane rotation rule

7 Rotates a box around its longitudinal axis

Set C: Out-of-plane rules

8 Adds to the end of a box a pitched smaller box with an upward translated box at its end

9 Same as rule 8 but downwards

10 Same as rule 6 but in vertical direction

Set D: Sizing rules

Changes the height (11), width (12), and length (13) of a box

Set E: Removal rule

14+ Removes one box from the design

* Shape detection in spapper functions by recognizing an origin (and thus a label) placed at a specific corner of each box,
thereby embedding directionality. Rules 3–5 are included to remove the dependence on this origin, as they represent all the
in-plane combinations of rule 2 without any labels. Rules 7, 11, 12, and 13 are not affected because the rules do not change
the location of the center of mass for a box. The same is true for rules 6 and 10, where the new box is placed adjacent to
the original, but both boxes are translated so that their interface lies on the middle axis of the original box. Rules 8 and 9
do not cover all possibilities

+ SA sometimes accepts worse solutions, for example, boxes that add weight but do not contribute to the strength of the
structure. These boxes can be filtered out at the end of the optimization process

Fig. 7. Generation in six steps from initial shape to final wheel.
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intersected with the generated design in step 5. Each step from 1
to 5 is carried out automatically in FreeCAD, and the output is an
assembly of non-united solids that can then be transferred to
Siemens NX where the hub, rim, and tire are added in step 6.

We can estimate the generative power of the inline skate wheel
grammar as:

NS = NCNPNR

∑NA

n=1

n! (1)

The number of possible solutions NS is a product of NC,
NP, NR, and the sum of the factorial of the number of rule appli-
cations NA. NCis the number of rotationally symmetric spoke
patterns in a wheel, which equals six. NP is the average number
of possible RHS designs per rule through rule parameter enu-
meration, and is on average and approximately 1300. NR is the
total number of rules, which is 13 (neglecting rule 14). The
sum over the factorial of rule applications results from there
being approximately as many solids generated as the number of
applied rules, which are in turn LHS matches. For, for example,
three rule applications, the number of different designs results
to about 900,000.

Finite-element analysis

The wheels consist of four components depicted in Figure 8 (left):
the hub (A), the design generated by the spatial grammar (B), the
rim (C), and the tire (D). The wheels are 100 mm in diameter and
24 mm across. A, B, and C consist of VeroWhite+, while D is
made of FLX9870, both printable on a Stratasys Polyjet 500
Connex 3. The design generated by the spatial grammar is con-
nected to the hub on its inside surface and to the rim on its out-
side. The rim has two functions; conventional inline skate wheels
need a stiff rim beneath the tire to be able to carry the loads while
skating. Further, because the tire consists of a different material
than the other components, the rim functions as a buffer part
for surface contacts. The hub and the tire are defined as invariant
components.

The load case in Figure 8 (right) is adapted from simulations
for car wheels (Konig, 2004; Giger & Ermanni, 2005; Stearns et al.,
2006) and ice speed skating (de Boer et al., 1986, 1987b), in which
the forces are the same as for inline skating (de Boer, et al.,
1987a). FZ is the ground reaction force and FX the friction, both
applied locally to the rim. The inside surface of the hub is
restrained from translation and rotation. A 100 kg skater is

modeled as a loading condition and the mass is distributed
onto four wheels, resulting in a nominal force of 250 N. There
are two distinct cases in skating with respect to the forces,
which are straight skating and cornering. In straight skating,
forces reach up to 1.5 times the body weight, whereas in corner-
ing, the body weight is only exceeded by 5% (de Boer et al., 1987a,
b; de Koning et al., 1987). A further difference between these two
cases is that the forces apply laterally when cornering but medially
when straight skating, which also leads to different maximum val-
ues for the angle of contact θE, which are 41.2° and 35.5°, respec-
tively (de Boer et al., 1986, 1987a, b). This results in a friction
force Fx of 173 and 218 N and in a normal force Fz of 198 and
305 N, respectively.

Ehrenstein and Erhard (1984) suggest extending the equation
for admissible stress with a material reduction factor A [Eq. (2)] to
anticipate factors that decrease the structural soundness of the
material. Following their suggestion, A equates to 2.76 for the
inline skate wheels, and Krishnamachari (2002) recommends
1.5 for the safety factor S. Because plastic materials are sensitive
to hydrostatic pressure, Mascarenhas et al. (2004) recommend
to use the Tresca (or maximum shear) criterion in combination
with the ultimate strength K of the material.

tmax ≤ 1
2
smax = 1

2
K

S · A = 1
2

85 MPa
1.5 · 2.76 � 10.6 MPa. (2)

The wheels are meshed using unstructured tetrahedrons with
an average element size of 5 mm. A wheel is analyzed with linear
FEA for both straight skating and cornering and is completed
within 2 min on an Intel Xeon E31245 with 8 GB RAM.

Optimization model and simulated annealing parameters

The optimization model is calculated from the results of the FEA.
Stress and volume are normalized [Eq. (3)] with the admissible
stress and the maximum possible volume Vmax = 81505 mm3

(fully filled wheel), respectively. The maximum admissible stress
constraint is implemented through the exterior penalty method
with a penalty factor of 1 × 107 [Eq. (4)], which can be altered
for different optimization problems.

sobj = s

sadm
; Vobj = V

Vmax
, (3)

p = sobj if sobj ≤ 1
(sobj − 1)× 107 if sobj . 1.

{
(4)

The optimization is divided into three stages as shown in
Figure 3. These stages are case study-specific and can be changed
for different applications. Table 2 lists the objective functions and
corresponding parameters, and Eqs. (5) and (6) complete the
optimization formulation.

Minimize V, (5)

Subject to tmax ≤ 10.6 MPa. (6)

Without the inclusion of the volume in the first objective
function (Table 2), the optimum wheel after stage 1 would be
fully filled with solid material because of minimal stress. The
parameter γ is introduced to balance the influence between stress
and volume; its value is determined heuristically.Fig. 8. Partitioning of the inline skate wheel (left) and load case (right).
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The temperature is reduced exponentially and the starting
points T0,1 and T0,2 are the maximum possible change of
the objective function, following a standard implementation
(Dowsland & Thompson, 2012). The iterations are defined in
the ratio 4:1 from stage 1 to 2 and the values of the reduction fac-
tors are adjusted to those numbers. The inner loop size for stage 1
is the theoretical number of neighbors for a current design (3 × 13
neighbors for parents, siblings, and children) and the inner loop
size in stage 2 allows every sizing rule to be applied eight times on
average.

In engineering applications, it is common to also include dis-
placement constraints, but here the displacement is directly pro-
portional to the stress and does not exceed 1.5 mm for feasible
solutions, which is sufficient for plastic material.

Results

The optimization is performed 20 times to check the conver-
gence of the algorithm. The best solution found is 6.42% of the
volume of a fully filled wheel (Fig. 9a). The 20 best solutions com-
pared with each other result in a worst objective value of 7.96%, a
mean value of 7.16%, and a standard deviation of 0.38%. Hence,

the algorithm shows good convergence. Further, Figure 9b shows
a small excerpt of generated designs from the 20 runs.

As a proof-of-concept, some designs are 3D printed, attached
to skates (Fig. 9c) and tested successfully for their structural per-
formance both statically and in motion.

Discussion

The optimized design in Figure 9a demonstrates that the frame-
work can be used for 3D structural optimization problems driven
by engineering performance alone. However, the real benefit of
the framework is the variety of designs that are produced, their
uniqueness, and aesthetic appeal. Further, they can be directly
3D printed with no further post-processing, as shown in
Figure 9c. This shows the power of the framework and methods
within, in comparison to other approaches, especially in the con-
ceptual design phase.

Engineering applications most suited to this approach are 3D
structural optimization problems that require manufacturing con-
straints and personal style, variety, or aesthetics. Modeling aes-
thetics in the spatial grammar captures an individual designer
style or a brand identity but is only one factor in the perception
of designs by users (Mata et al., 2015), which needs to be investi-
gated further.

To tackle different problems using this framework, designers
must provide an optimization model, an initial shape together
with a spatial grammar rule set that is developed in spapper,
and an initial FEA model including load cases, materials, and
the partitioning of the model such that constant boundary condi-
tions can be defined. The partitioning method does not integrate
all possible boundary conditions. Problems might arise in cases
where distributed loads that depend on the mass or surface area
of the structure, for example, gravity or pressure, act directly on
the design generated by the spatial grammar.

Table 2. Objective functions and SA parameters (Zimmermann et al., 2016)

Stage Objective function SA parameters

1: Topology and sizing Ω1 = p + γVobj
γ = 20

T0,1 : 10
8

Reduction factor : 0.85
Number of iter. : 800
Inner loop size : 39

2/3: Sizing/post-processing Ω2 = Vobj T0,2 : 0.25
Reduction factor : 0.80
Number of iter. : 200
Inner loop size : 24

Fig. 9. (a) Optimized solution from 20 runs, (b) collec-
tion of interesting wheel designs, (c) printed wheels
assembled onto an inline skate.
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Future research includes facilitated generation of the FEA
model properties, that is, providing a faster way for designers to
define invariant components, buffer parts, and the generated
design component, and translate this information for the optimi-
zation. Lastly, the applicability of the framework needs to be
investigated for different engineering design applications.

Conclusion

Although shape grammars have been applied to many research
areas such as architecture, product design, and mechanical engi-
neering, the link to automated evaluation of 3D, solid structures
has been missing, thus hindering application in mechanical engi-
neering design. We demonstrate a framework that can generate a
set of structurally feasible, novel solutions for products where aes-
thetics and fabrication constraints are modeled directly in the spa-
tial grammar. Designers can create their own spatial grammar
interactively within spapper. By defining corresponding FEA
model properties, FEA is performed automatically for each design
generated through the automated integration of designs generated
by the grammar. The analysis results are used in the simulated
annealing algorithm that integrates a new neighborhood defini-
tion tailored to spatial grammar optimization problems and that
enables users to explore the solution space systematically in an
optimally directed way. For products where uniqueness, personal
style of the designer, and mass customization play an important
role, the framework shows advantages for conceptual design in
comparison to other methods. The example of customized, inline
skate wheels, which balance form and function, illustrate that the
framework does not only generate structurally optimized designs
within the style and constraints defined but also a variety of
unique designs that are directly 3D printable. With this, spatial
grammars are one step closer toward being applied more generally
for engineering design problems.
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