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Subcritical magnetohydrodynamic instabilities:
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Subcritical instabilities (i.e. finite-amplitude instabilities that occur without any
linear instability) in magnetohydrodynamic (MHD) flows are studied by computing
finite-amplitude equilibrium solutions of viscous–resistive MHD equations. The plane
Couette flow magnetised by a uniform spanwise current is used as a model flow.
Solutions are found for broad sub- and super-Alfvénic flow regimes by controlling
the magnetic Mach number, but their existence is greatly influenced by the magnetic
Prandtl number. When that number is unity, and the walls are perfectly insulating, the
solution branch found in the super-Alfvénic regime cannot be continued towards the
sub-Alfvénic regime; the boundary between those regimes is called the Chandrasekhar
state, where Chandrasekhar (Proc. Natl Acad. Sci. USA, vol. 42, 1956, pp. 273–276)
proved the non-existence of a linear ideal instability. Thus, the result may seem to
suggest that the Chandrasekhar theorem holds even when diffusivity and nonlinearity
are present. This is certainly true, but only when the perturbation magnetic field on
the boundary is small. The boundary effects add more complexity to the nonlinear
analysis of the Chandrasekhar state. The Chandrasekhar theorem is known to work
for flows bounded by perfectly conducting walls. However, somewhat paradoxically,
when the walls are perfectly conducting, our large-Reynolds-number computational
results show that the nonlinear solutions do exist in the Chandrasekhar state. We give
a theoretical reasoning for this curious phenomenon, using a large-Reynolds-number
asymptotic analysis. For small magnetic Prandtl numbers, we also show that the
solution can be continued for infinitesimally small magnetic Mach number, where the
flow is significantly sub-Alfvénic.

Key words: nonlinear instability, magnetohydrodynamics, bifurcation

1. Introduction
Interplay of hydrodynamic and magnetic instabilities is ubiquitous in various

astrophysical, geophysical and engineering flows. Theoreticians have long used
various simple background model flows to find fundamental mechanisms of such
interplay. Studies based on the magnetohydrodynamic (MHD) framework revealed
that the character of the instability depends on the typical Alfvén wave speed of
the magnetic field; if it is faster/slower than the typical fluid flow speed, the flow is
called super-/sub-Alfvénic.
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In the simplest case, the background velocity Vb is assumed to be proportional to
the Alfvén velocity of the background magnetic field Bb:

Bb = B0Vb. (1.1)

Here the constant B0 is the inverse of the magnetic Mach number. Tataronis & Mond
(1987) used (1.1) and revealed the existence of an ideal instability for sub-Alfvénic
flows |B0|> 1 for cylindrical screw pinch plasmas. The flow (1.1) is also relevant for
the competition of the Kelvin–Helmholtz and tearing instabilities, both of which occur
when the base field has an inflection point. As discussed in Chen, Otto & Lee (1997),
the Kelvin–Helmholtz/tearing mode appears only when the flow is sub-/super-Alfvénic;
the stabilisation of the Kelvin–Helmholtz/tearing mode by a magnetic field/shear has
also been observed in various flow configurations; see Chandrasekhar (1961), Miura &
Pritchett (1982), Einaudi & Rubini (1986) and Ofman, Morrison & Steinolfson (1993).
All those ideal (i.e. diffusionless) modes are stabilised when approaching |B0| = 1,
consistent with the theorem derived in Chandrasekhar (1956). The theorem claims
that the flow (1.1) with |B0| = 1 is stable when the following three assumptions are
satisfied.

(i) The nonlinearity of the perturbation is negligible.
(ii) The flow is ideal, i.e. no diffusion.

(iii) The magnetic field perturbation is negligibly small on the flow boundary.

The last assumption can be replaced by the perfectly conducting conditions on the
boundary (Chandrasekhar 1961).

There has been a great deal of research on the linear analyses of various
MHD instabilities, and the subsequent nonlinear developments of the growing
perturbations. However, the linear analysis is formally only valid for infinitesimally
small perturbations, and thus the transition to turbulence may occur by large
perturbations even when the laminar state is linearly stable. In fact, when an inviscidly
stable shear predominantly drives the flow, the most dangerous route to turbulence is
typically caused by three-dimensional finite-amplitude perturbations (e.g. Schmid &
Henningson 2001). In hydrodynamic shear flow studies, the finite-amplitude instability
that is responsible for such bypass transition route is widely referred to as ‘subcritical
instability’, because the transition occurs at smaller Reynolds number than the critical
value determined by the linear stability analysis.

Subcritical instabilities in MHD flows have by comparison received little attention.
The aim of this paper is to theoretically and numerically analyse such subcritical
MHD instabilities in broad sub- and super-Alfvéneic regimes. We select the
magnetised plane Couette flow under the condition (1.1) as a model profile. This
flow is among the fundamental problems in classical fluid dynamics, and has long
served as an archetypal model in the study of subcritical instability. The laminar
base flow induced by the movement of the walls is merely a homogeneous shear,
and the magnetic field has the same structure when a uniform current exists within
the walls. This means that the laminar flow is designed to be free from any of the
inviscid hydrodynamic and ideal MHD instabilities mentioned above. Moreover, it is
not too difficult to numerically confirm that there is no linear instability found in this
flow using the linearised viscous–resistive MHD equations. Therefore, transition to
turbulence in the flow must always occur by the subcritical instability mechanism.

This study is motivated by a number of dynamical systems theory studies of purely
hydrodynamic shear flows. In the phase space, the subcritical transition problem boils
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down to the analysis of the hyper-surface that separates the regions of laminar and
turbulent attraction. The key finding in this approach to the study of shear flow is
that there are special finite-amplitude invariant solutions (e.g. steady states, travelling
waves, periodic orbits) that are ultimately responsible for transition to turbulence
(Itano & Toh 2001; Skufca, Yorke & Eckhardt 2006). For the plane Couette flow,
Wang, Gibson & Waleffe (2007) showed that the stable structure on the hyper-surface
is the steady solution found in Nagata (1990) and Clever & Busse (1992), hereafter
called the NBC solution. Subsequently, the result of Wang et al. (2007) is found to
be consistent with the large-Reynolds-number asymptotic analysis by Hall & Sherwin
(2010) and Deguchi & Hall (2016), extending the vortex–wave interaction theory of
Hall & Smith (1991) developed for boundary-layer flows. The strong link between
the finite-amplitude invariant solutions and the subcritical transition to turbulence
has also been reinforced by the pipe flow experiments of Hof et al. (2004) and De
Lozar et al. (2012). In MHD shear flows under Kepler rotation, the importance of
the subcritical instability has been pointed out repeatedly, for example by Rincon,
Ogilvie & Proctor (2007) and Riols et al. (2013). The invariant solutions in the
non-rotating MHD plane Couette flow have been studied only recently in Deguchi
(2019a,b), together with their large-Reynolds-number asymptotic development. The
present work will extend that result for broader magnetic Mach numbers.

The profile (1.1) is experimentally realised in magnetised Taylor–Couette flow,
which has been much studied in the past three decades as a simple model of
astrophysical rotating flows (see the review article by Rüdiger et al. (2018) and
references therein). The idea of using external magnetic fields for modelling purposes
can be traced back to Balbus & Hawley (1991); their magnetorotational instability
(MRI) occurs in Taylor–Couette flow when subjected to an axial magnetic field.
Subsequently, use of an azimuthal external magnetic field was considered as an
alternative way to stimulate MRI (Hollerbach & Rüdiger 2005). The latter azimuthal
MRI is more convenient in experiments, as it has a moderate critical Reynolds
number even when the magnetic Prandtl number Pm of the flow is very small.

The base magnetic field of the azimuthally magnetised Taylor–Couette flow can be
controlled by the axial electric currents inside the inner and outer cylinders, similar to
the base velocity profile determined by the inner and outer cylinder speeds. The recent
numerical work by Rüdiger et al. (2015) used this flow under the condition (1.1) and
it was found that when either the kinematic or magnetic diffusivity is retained, a linear
instability does exist even in the Chandrasekhar state |B0| = 1. The magnetised plane
Couette flow to be studied in this paper is the narrow-gap limit of the flow studied
by Rüdiger et al. (2015) and the follow-up study of Gellert et al. (2016). However,
note that their focus was on the anticyclonic regime, where the cylinders rotate in the
same direction (the flow regime is believed to have a deep link to the MRI in the
accretion disc problem), while in this study the average rotation rate of the cylinders
is set to be zero (thus there is no MRI mechanism operational).

The finding by Rüdiger et al. (2015) can be summarised as follows. The flow
has a finite critical magnetic Reynolds number as the magnetic Prandtl number Pm
approaches zero, while for the opposite limit Pm → ∞ the critical hydrodynamic
Reynolds number apparently asymptotes to a constant. The existence of the instability
in the Chandrasekhar state does not contradict Chandrasekhar’s theorem, because the
assumption (ii) mentioned above is not satisfied. Nevertheless, for the special case
Pm = 1, Chandrasekhar’s theorem seems to hold; the critical Reynolds number tends
to infinity when perfectly conducting walls are used, whilst the critical Reynolds
number remains finite for perfectly insulating walls. This finding suggests that the
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Section 3 (figures 2, 3)
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(figure 4)

Section 5 (figure 7)

FIGURE 1. The parameter range explored in this paper. The vertical axis is the Reynolds
number R, which measures the strength of the base shear relative to the viscous effect.
The horizontal axis is B0R, i.e. the same quantity but for the base magnetic field. The
red diagonal line is the Chandrasekhar state B0 = 1. The region above this line is called
the super-Alfvénic regime (B0< 1), while below this line we have the sub-Alfvénic regime
(B0 > 1).

case Pm = 1 may have a certain mathematically special property, despite the fact that
(ii) is violated. In fact, Kirillov (2017) theoretically showed the non-existence of the
azimuthal MRI for Pm = 1 and any Reynolds numbers within the framework of the
so-called local analysis, although it does not mean a linear/nonlinear instability is
impossible in the global problem.

Deguchi (2019b) also used Pm = 1 in order to find dynamo solutions at B0 = 0.
The strategy adopted there is the so-called homotopy approach; the NBC solution is
continued towards B0>0 expecting that the branch turns back to B0=0 without losing
the magnetic field. Curiously, during the continuation, the Chandrasekhar limit B0= 1
acts as a barrier that bounces back the solution branch. As a consequence, all the
solutions computed so far are in the super-Alfvénic regime. This suggests that some
extension of Chandrasekhar’s theorem may be possible, including the nonlinear effects.
However, we shall show that formally this barrier exists only when some specific
conditions are satisfied, and that in general sub-Alfvénic solutions can be computed
beyond the Chandrasekhar limit.

After formulating the problem in the next section, we begin our numerical and
theoretical analyses in §§ 3–5. The parameter range studied in those sections is
summarised in figure 1. The first half of § 3 briefly reviews the numerical result
of Deguchi (2019b) where the nonlinear solutions are found for the super-Alfvénic
regime using perfectly insulating walls. In the same section, we repeat the same
computation but with perfectly conducting walls. In the latter case, the solution
branch can be continued slightly beyond the Chandrasekhar limit. Section 4 analyses
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the Chandrasekhar flow in detail, using the energy equations. In § 5 we study the
sub-Alfvénic solutions using small Pm to show that the solution branch exists for
very large B0. Finally, § 6 discusses some conclusions.

2. Formulation of the problem

Consider the non-dimensional viscous–resistive MHD equations

(∂t +V · ∇)V − (B · ∇)B=−∇Q+ R−1
∇

2V, (2.1a)
(∂t +V · ∇)B− (B · ∇)V = R−1

m ∇
2B, (2.1b)

∇ ·V = 0, ∇ ·B= 0, (2.1c,d)

where ∇= (∂x, ∂y, ∂z), V is the velocity, B is the magnetic field and Q is the sum of
the pressure and the magnetic pressure. We choose the velocity and length scales from
the typical scales of the base flow (1.1). For the magnetic field, the corresponding
Alfvén velocity is normalised by the velocity scale. The Reynolds number R is the
inverse of the kinematic viscosity normalised by the velocity and length scales. The
magnetic Reynolds number Rm is equal to RPm, where the magnetic Prandtl number
Pm is the ratio of the kinematic and magnetic diffusivities.

The specific flow configuration we choose is the plane Couette flow driven by
mutually moving walls placed at y = ±1. The base flow solution is Vb = Ub(y)i
with Ub(y)= y, where i is the unit vector pointing in the direction of the generated
flow. We take this direction to be an x coordinate. For the velocity perturbation
v = V − Vb = [u, v, w] we apply the no-slip conditions v = 0 on the walls. The
boundary conditions for the magnetic perturbation b = B − Bb = [a, b, c] are more
complicated as they are dependent on the conductivity of the walls (Roberts 1964). We
consider two popularly used extreme cases investigated in magnetised Taylor–Couette
flow studies (see Rüdiger et al. 2015; Gellert et al. 2016; Rüdiger et al. 2018),
namely the perfectly conducting conditions

n · b= n× (∇× b)= 0 at the walls (2.2)

and the perfectly insulating conditions

b=∇ϕ at the walls. (2.3)

Here, n is the unit vector normal to the wall and ϕ is the outer magnetic potential,
which satisfies ∇2ϕ = 0 in the outer domain (y> 1 and y<−1).

The equations for the perturbations are (the pressure perturbation is denoted as q)

(∂t +Ub∂x + v · ∇− R−1
∇

2)v − (B0Ub∂x + b · ∇)b+U′b(v − B0b)i=−∇q, (2.4a)
(∂t +Ub∂x + v · ∇− R−1

m ∇
2)b− (B0Ub∂x + v · ∇)v +U′b(B0v − b)i= 0, (2.4b)
∇ · v =∇ · b= 0. (2.4c)

We seek non-trivial nonlinear steady solutions of (2.4) using the numerical code based
on that developed in Deguchi (2019b). Hereafter we assume periodicity in the x and
z directions with respective wavenumbers α and β. Unless otherwise stated, α = 1
and β = 2; the corresponding computational box is [0, 2π] × [−1, 1] × [0, π].

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

84
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.841


882 A20-6 K. Deguchi

The periodicity of the domain allows us to use the toroidal–poloidal potential
decomposition for the divergence-free fields:u

v

w

=
u+ φxy +ψz
−φxx − φzz

w+ φyz −ψx

 ,
a

b
c

=
a+ fxy + gz
−fxx − fzz

c+ fyz − gx

 . (2.5a,b)

Here the double overline represents the average in x and z, and so the mean fields
u, w, a, c are functions of y only. The poloidal potentials φ, f and the toroidal
potentials ψ, g are expanded by Fourier series in the two periodic directions:

φ =
∑
m,n

φ̂m,n(y)eimαx+inβz, ψ =
∑
m,n

ψ̂m,n(y)eimαx+inβz, (2.6a,b)

f =
∑
m,n

f̂m,n(y)eimαx+inβz, g=
∑
m,n

ĝm,n(y)eimαx+inβz. (2.6c,d)

For the y direction we use the collocation method with the modified Chebyshev
basis functions carefully chosen to satisfy the boundary conditions. The boundary
conditions for the Fourier coefficients are

φ̂m,n = ∂yφ̂m,n = ψ̂m,n = u=w= 0 at y=±1 (2.7)

for the hydrodynamic components. Hence the appropriate basis functions for φ̂m,n and
(ψ̂m,n, u,w) are

B(1)
l = (1− y2)2Tl and B(2)

l = (1− y2)Tl, (2.8a,b)

respectively, where Tl(y) is the lth Chebyshev polynomials.
When perfectly insulating walls are used, Deguchi (2019b) showed that

∂y f̂m,n ±
√

L f̂m,n = ĝm,n = a= c= 0 at y=±1, (2.9)

where L = (mα)2 + (nβ)2 must be satisfied. Thus we can employ B(2)
l to expand

(ĝm,n, a, c) whilst for f̂m,n the basis functions can be chosen as

B(3)
l,m,n =B(2)

l +
1+ (−1)l
√

L
+

1− (−1)l
√

L+ 1
y (2.10)

so that ∂yB(3)
l,m,n ±

√
LB(3)

l,m,n = 0 is satisfied.
The appropriate boundary conditions for the perfectly conducting case are

f̂m,n = ∂yĝm,n = ∂ya= ∂yc= 0 at y=±1. (2.11)

(In order to ensure (2.2), ∂2
y f̂m,n= 0 must also be satisfied on the walls. However this

condition is automatically satisfied from the y component of the induction equations.)
Thus the basis B(2)

l can be used to expand f̂m,n. For (ĝm,n, a, c), we can for example
use the basis functions

B(4)
l =B(2)

l + (1− (−1)l)y+ (1+ (−1)l)
2y2
− 1

4
, (2.12)

satisfying ∂yB(4)
l = 0 on the walls.
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The discretisation yields algebraic equations that can be solved by the multidimen-
sional Newton method. The methodology allows us to continue the solution branches
in the parameter space, without regarding their stability. Deguchi (2019b) studied
MHD solutions for non-rotating shear flows at large R, while the earlier works by
Rincon et al. (2007) and Riols et al. (2013) concerned a system rotation effect in
addition to the shear. Vaz, Boshier & Mestel (2018) also used a similar method to find
a dynamo solution for more idealised infinite cylindrical flows. The dynamo solutions
found in Deguchi (2019a) and in this paper are more similar to the shear-driven
dynamos studied in Cline, Brummell & Cattaneo (2003), Yousef et al. (2008), Tobias
& Cattaneo (2013) and Teed & Proctor (2017), although unlike those previous studies
there is no external body forcing term introduced here.

The steady solution found in Deguchi (2019b) has the symmetries

[u, v,w, a, b, c](x, y, z) = [−u,−v,w,−a,−b, c](−x,−y, z+π/β)

= [u, v,−w, a, b,−c](x+π/α, y,−z). (2.13)

Throughout the nonlinear computations, the number of unknowns is reduced using
those symmetries. For more details of the code, see Deguchi (2019b). Typically 120
Chebyshev polynomials are used in y, while 4 and 30 Fourier modes are used for x
and z, respectively. In order to resolve the upper-branch state shown in figure 4, the
number of streamwise Fourier modes is increased to 24.

As with most of the previous plane Couette flow studies, we use the shear on the
wall to measure the deviation of a nonlinear solution from the basic laminar solution:

∆≡ uy|y=1 − 1. (2.14)

The laminar solution has ∆ = 0, while nonlinear solutions must have ∆ > 0. One
can alternatively choose a suitably defined amplitude of the perturbation, but here we
prefer to use the physically important and experimentally measurable quantity.

The code can also be used to analyse the linear stability of the base flow with a
little modification. To the best of the author’s knowledge, there is no unstable mode
found for either magnetic boundary condition.

3. Super-Alfvénic cases

In Deguchi (2019b), various external magnetic fields were applied to plane Couette
flow using perfectly insulating walls and Pm = 1; the flow (1.1) corresponds to the
case where the spanwise uniform current is applied. The bifurcation diagram obtained
in that paper is reproduced in figure 2. Here ∆ is the deviation of the drag on the
wall from the laminar value, defined in (2.14). The start point of the computation
is the NBC solution found for a purely hydrodynamic set-up by Nagata (1990) and
Clever & Busse (1992); the solution is shown by the magenta triangle at B0 = 0 in
the figure. The magnetised solution was referred to as the sinuous mode in Deguchi
(2019b), because it has symmetries (2.13) that generate three-dimensional sinusoidal
fluid motion and magnetic field. The solution branch can be continued by the Newton
method until we encounter the sharp turning point at B0= 0.9846, which is very close
to the Chandrasekhar limit B0= 1. The branch then returns to the unmagnetised limit
B0 = 0 to produce a dynamo, but the branch is truncated in the figure for the sake
of clarity (the major aim of the computation in Deguchi (2019b) was to produce a
dynamo solution at B0 = 0).
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(a) (b)

FIGURE 2. The bifurcation diagram of nonlinear steady solution in magnetised plane
Couette flow with perfectly insulating walls. Here (R,Pm, α, β)= (10 000, 1, 1, 2). This is
the same result as Deguchi (2019b, figure 7). The magenta triangle at B0= 0 is the NBC
solution. The bifurcation diagram is symmetric with respect to B0 = 0. (b) is a close-up
of (a) near the Chandrasekhar state B0 = 1.

-0.2 0 0.2 0.4 0.6 0.8 1.0 1.2

0.35

0.30

0.25

0.20

0.15

0.10

B0

Î

Dynamo solutions

Chandrasekhar state

FIGURE 3. The same plot as figure 1 but for perfectly conducting walls. The filled and
open circles at the Chandrasekhar state B0 = 1 correspond to those in figure 4.

The main interest here is the singular behaviour of the solution branch around
B0 = 1, which acts as a barrier in the continuation. That barrier also exists for other
choices of R and wavenumbers, and apparently the solution cannot be continued
for the sub-Alfvénic regime. This phenomenon reminds us of the statement of the
Chandrasekhar theorem; however, conditions (i) and (iii) mentioned in § 1 are not
satisfied. This raises the question of whether we could extend the theory to show
the non-existence of nonlinear solutions. In view of the MRI study by Rüdiger et al.
(2015), the choice Pm = 1 would be crucial in finding the extension.

In Chandrasekhar’s theorem the condition (iii) can be replaced by the perfectly
conducting conditions. Thus the effect of the conductivity of the walls on the nonlinear
solutions is worth checking. Figure 3 is the same continuation result as figure 2 but
with perfectly conducting walls. As seen in the figure, the behaviour of the branch is
more complicated than for the insulating case. First, with increasing B0 from the NBC
state, the solution branch soon experiences the turning point at B0 = 0.17, and then
returns to the unmagnetised limit. The new solution at B0 = 0 maintains a magnetic
field so it is a dynamo solution. There should be another dynamo solution with
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103102 104
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Î

R

RE = 72.58

FIGURE 4. The bifurcation diagram for the Chandrasekhar state B0 = 1. Perfectly
conducting walls are used. The solid curve is the sinuous mode, while the dashed curve
is the mirror-symmetric mode.

opposite polarity there, because of the symmetry of the MHD equations. However,
the symmetry becomes imperfect for non-zero B0, and hence the behaviour of the
other solution branch for B0 > 0 is different from that of the previous branch. We
can continue the new branch further up to B0= 1.15 beyond the Chandrasekhar limit.
This is a rather unexpected result, because from Chandrasekhar’s theorem, one may
think that the perfectly conducting case is more stable than the perfectly insulating
case. In fact, Rüdiger et al. (2015) found instability for the perfectly insulating case,
while the flow seems to be stable when perfectly conducting walls are used.

Also, the large-Reynolds-number asymptotic theory by Deguchi (2019a) suggests
that the condition (ii) may not be satisfied as well. The assumption (ii) is only
valid for large Reynolds numbers, but the largeness of R does not mean diffusivity
is negligible in the asymptotic limit. Deguchi (2019b) confirmed that the Reynolds
number of 10 000 used in the figure is sufficiently large so as to be able to employ
the asymptotic result by Deguchi (2019a), called the vortex–Alfvén wave interaction
theory. The theory uses the mean-fluctuation decomposition; hereafter the x-averaged
part is called the roll-streak part (or the vortex part), and the fluctuation part is called
the wave part. As was also shown in the hydrodynamic study by Hall & Sherwin
(2010) for both components the diffusivity is not negligible. The roll-streak equations
are fully diffusive, because the main convection mechanism in those equations is
from the sweeping by the roll flow (i.e. the cross-streamwise components of the
roll-streak part), which is much weaker than the base flow. For the wave part the
ideal approximation can be used almost everywhere. However, the diffusivity is
the leading-order effect within a thin layer around the singular point of the ideal
problem. The mechanism by which the singular behaviour of the flow is reconciled
within a thin diffusion layer surrounding the singular point is well known in the
plasma physics community; see Sakurai, Goossens & Hollweg (1991) and Goossens,
Ruderman & Hollweg (1995) for examples.

In the next section, we develop a theory to explain the numerical result obtained in
this section. Analysis of the energy budget helps us to see the effect of the boundary
terms and the diffusion terms. We shall see that the key to resolving the above rather
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paradoxical result is that the energy input from the perfectly conducting boundary
term vanishes only when the ideal approximation is used. Thus when diffusive effects
are present, both conducting and insulating walls may cause instability. We will then
use the vortex–Alfvén wave interaction theory to see a special structure appear in
the perfectly insulating boundary terms when the roll-streak–wave decomposition
is applied. This special structure leads us to show the non-existence of non-trivial
asymptotic solutions when Pm = 1.

4. The Chandrasekhar limit
4.1. The energy budget in the full MHD equations

Let us set B0 = 1 in (2.1) (the result is also valid for B0 =−1 by the symmetry of
the MHD equations). Using the Elsässer variables η±= v± b= [ξ±, η±, ζ±], equations
(2.1) can be transformed into

(∂t + 2Ub∂x + η+ · ∇− R−1
∇

2)η− =−∇q+ R−1(1− P−1
m )∇

2b, (4.1a)
(∂t + η− · ∇− R−1

∇
2)η+ + 2U′bη−i=−∇q− R−1(1− P−1

m )∇
2b. (4.1b)

Note that the Elsässer variables are divergence free from (2.4c). The ‘energies’ for
those variables can be defined as

E± =
〈|η±|

2
〉

2
, (4.2)

where the angle brackets denote the spatial average over the computational domain
[0, 2π/α] × [−1, 1] × [0, 2π/β]. Averaging η− · (4.1a) and η+ · (4.1b), we can derive
two energy budget equations

dE−
dt
=−R−1D− − Γ + R−1(Λ− λ)+ R−1(1− P−1

m )〈η− ·∇
2b〉, (4.3a)

dE+
dt
= 2I − R−1D+ + Γ + R−1(Λ+ λ)− R−1(1− P−1

m )〈η+ ·∇
2b〉. (4.3b)

Here
D± = 〈|∇η±|

2
〉 and I =−〈U′bη−ξ+〉 (4.4a,b)

are the diffusion term and the energy input term due to the base flow, respectively.
The boundary terms

Γ =
1
2

[
b
(
|b|2

2
− q
)]1

−1

, Λ=
1
2

[
(aay + bby + ccy)

]1

−1
, (4.5a,b)

λ= 1
2 [(auy − cwy)]

1
−1 (4.5c)

may also act as an energy input mechanism (recall that the double overline is the x–z
average). Those terms can be simplified by using the magnetic boundary conditions, as
summarised in table 1. The assumption (iii) mentioned in § 1 essentially requires that
all the boundary terms are negligibly small; this case may occur when the coherent
structure is localised at the mid-channel (as seen in Deguchi (2015)), or the problem
is considered in an unbounded domain. For the perfectly insulating case (2.3), all the
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Magnetic b.c. Assumption (iii) Perfectly conducting Perfectly insulating

Γ Zero Zero Non-zero
Λ Zero Zero Non-zero
λ Zero Non-zero Non-zero
γ± Zero Non-zero Zero

TABLE 1. The properties of the boundary terms in (4.3) and (4.14).

boundary terms are non-zero. At perfectly conducting walls, ay, cy and b must vanish
from (2.2), and hence Γ and Λ must be zero, while λ may not be zero.

Under Chandrasekhar’s assumptions (i)–(iii), all the terms on the right-hand side of
(4.3) can be dropped except for the energy input term 2I from the base flow. In the
linear framework, a time derivative can be replaced by the exponential growth rate of
the flow amplitude. From the first equation (4.3a), clearly the velocity and magnetic
field eigenfunctions must be identical to have a non-zero growth rate. However, from
the second equation (4.3b), this class of eigenfunctions must also have a zero growth
rate, because I ≡ 0. Therefore the Chandrasekhar theorem follows. Note that the only
boundary term that survives in the diffusionless approximation is Γ ; therefore, as
widely accepted, the theorem is valid for perfectly conducting conditions (see table 1).

We further remark here that for unidirectional flows the theorem can be used
whatever the magnetic boundary conditions. From the linearised ideal induction
equations, we can deduce that (Ub − s)b = Ubv must hold, where s is the complex
phase speed of the wave. Therefore, except for the unlikely situation that the wave is
neutral and its travelling speed coincides with the speed of the base flow on one of
the walls, b must vanish on the walls (and hence Γ = 0) as long as the impermeability
conditions are satisfied there.

The mechanism of the linear instability seen in Rüdiger et al. (2015) can be
explained using (4.3). When Pm = 1, the stability result is consistent with the
Chandrasekhar theorem, and hence the stability property can be explained by the
ideal mechanism. However, the existence of the instability for Pm 6= 1 suggests that
the terms multiplied by (1 − P−1

m ) in (4.3) have some destabilisation effects. Those
terms indeed play a role when a singularity occurs in the ideal problem, even when
the instability is predominantly driven by some ideal mechanism almost everywhere
(e.g. Bogdanova-Ryzhova & Ryzhov 1994; Sakurai et al. 1991). The absorption of
the wave at the singularity occurs in a small scale, and hence the derivative of the
flow appearing in the corresponding terms in (4.3) may not be small.

Now we turn our attention to the nonlinear regime. The stability of the
Chandrasekhar state can actually be shown even when nonlinearity and diffusivity are
present in the flow. More precisely, the assumptions (i) and (ii) are not necessary to
prove the stability, as long as Pm = B0 = 1 and the assumption (iii) is satisfied. The
proof of this new result follows from (4.3a) and the total energy equation, which can
be obtained for example by adding (4.3a) and (4.3b):

dE
dt
= I − R−1D, (4.6)

where E = (〈|v|2 + |b|2〉/2)+ E > 0 and D= 〈|∇v|2 + |∇b|2〉 +D > 0. The functions
E and D are defined in appendix A; they have come from the boundary term Λ, and
D = E = 0 occurs only for the trivial solution. The other boundary terms Γ and λ
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are cancelled out. When (iii) is satisfied, there is no energy input term in (4.3a) and
thus E− must decay monotonically; thus the equipartitioned state v = b is realised
ultimately. Approaching the equipartition state the shear energy input term behaves
like I→ 0. If I = 0, from (4.6) we can show that E is a Lyapunov function of the
base state in the entire phase space.

The extended version of the Chandrasekhar theorem above implies that if a non-
trivial nonlinear state exists in the Chandrasekhar state, the magnetic perturbation gene-
rated by it should strongly interact with the walls. Unlike the original Chandrasekhar
theorem, the extended result is not valid when (iii) is replaced by perfectly conducting
conditions, because of the non-vanishing viscous boundary terms λ and Λ. Also,
for the perfectly insulating problem, the boundary terms hinder further theoretical
progresses.

The next step we can take towards a theoretical understanding of the numerical
result in § 3 is to apply some rational reduction to the governing equations. In § 4.3,
we use the vortex–Alfvén wave interaction theory derived at the large-Reynolds-
number limit for this purpose. Before the asymptotic analysis, in the next section, we
give a detailed look at the nonlinear solutions found in the Chandrasekhar state using
the perfectly conducting conditions. The examination of the flow structure computed
at moderately large Reynolds number may also help the reader’s understanding of the
asymptotic theory.

4.2. Nonlinear states at Pm = B0 = 1 for the perfectly conducting conditions
For the perfectly conducting case, non-trivial solutions can be found even when Pm=

B0= 1 as seen in § 3. Therefore, the best we can do in (4.6) for this case is to find the
critical energy Reynolds number RE below which the laminar flow is globally stable.
To compute RE, first the maximum of I/D over all b and divergence-free v must be
computed. The maximum M can be found by solving the Euler–Lagrange equations

U′b(v−b)=−qx+2M1u, U′b(u+a)=−qy+2M1v, 0=−qz+2M1w, (4.7a−c)

ux + vy +wz = 0, U′b(v − b)= 2M1a, U′b(u+ a)= 2M1b, (4.7d−f )

where u = v = w = b = ay = 0 at y = ±1. The optimum perturbation found at
(α, β) = (1.79, 0) gives the energy Reynolds number RE = M−1

= 72.58. The value
found is remarkably higher than that for purely hydrodynamic plane Couette flow
((RE, α, β) = (20.66, 0, 1.56); see Joseph (1966)), implying that the magnetic field
causes a stabilisation effect to the flow.

All non-trivial equilibrium solutions should exist for R>RE. This can be checked by
varying R from the solutions obtained in figure 3. In figure 4 the bifurcation diagram
for B0 = Pm = 1 is shown. The two points marked by the open and filled circles
are those seen in figure 3. From the upper point, we can trace the branch towards
the saddle-node point at R= 575, but the turned branch does not return to the lower
point. The branch continued from the lower point revealed that it is originated from
the bifurcation point R= 802, at which the solid curve connects to the dashed curve.
The solution on the dashed curve has the mirror symmetry

[u, v,w, a, b, c](x, y, z)= [u, v,−w, a, b,−c](x, y,−z+π/β) (4.8)

in addition to (2.13) (the hydrodynamic part of the symmetry is the same as EQ7/EQ8
in Gibson, Halcrow & Cvitanovic (2009) and Itano & Generalis (2009)). In figure 4,
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FIGURE 5. The flow visualisation of the mirror-symmetric nonlinear solutions seen in
figure 4. The Chandrasekhar state at R = 1000. The (a,c) left- and (b,d) right-hand
panels show the hydrodynamic and magnetic fields, respectively. Yellow and blue represent
isosurface of 50 % streamwise vorticity (current) which are dominated by the wave
component excited by the resonance occurring at the middle of the channel. The grey
surface is the zero of the streamwise velocity (magnetic field). The contour of the
hydrodynamic (magnetic) streak is also shown at the front of the computational box
([0, 2π] × [−1, 1] × [0,π]).

blue solid curves are used for the sinuous mode that has the symmetry (2.13) but
does not satisfy (4.8). This mirror-symmetric mode has a saddle-node point sitting at a
lower Reynolds number (≈273) than that of the sinuous mode. Nevertheless, this value
is much higher than that for the purely hydrodynamic plane Couette flow, R≈162 (see
Deguchi 2019a).

Deguchi (2019b) found that there are two typical types of asymptotic behaviours of
the solutions at large Reynolds numbers. The upper and lower branches of the mirror-
symmetric solution seen in figure 4 best illustrate the difference of those two.

For the lower branch, the shear ∆ seems to converge towards some constant
with increasing R. This is because the flow asymptotes to the vortex–Alfvén wave
interaction type of state studied in Deguchi (2019a,b); the sinuous mode solutions we
have seen in figures 2 and 3 are also of this type. The lower panels of figure 5 display
the structure of the lower-branch solution at R= 1000. The mechanism sustaining the
solution can be explained by the asymptotic theory as follows. First we note in the
figure that the grey surfaces showing the isosurface of the zero streamwise velocity
field are almost flat (recall that the streamwise direction is x). In fact, the velocity
and magnetic fields are dominated by the x average of the streamwise component,
called the streak. The origin of the less dominant three-dimensional structure can
be explained by the ideal linear neutral stability of that streak; therefore, only one
streamwise Fourier mode is necessary to describe the leading-order structures. The
structure of the lower-branch states is similar to the so-called alpha–omega dynamo,
where the strong shear generates fields in the x direction from transverse fields;
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meanwhile waves on the flow can give an alpha effect so that diffusion can sustain
the transverse fields. The idea of using mean-fluctuation decomposition can be seen
in various mean-field dynamo theories (Braginsky 1964; Moffatt 1978; Krause &
Rädler 1980).

However, the vortex–Alfvén wave interaction theory is more than the mean-field
theory, because the closure problem inevitably associated with the decomposition is
rationally resolved by only assuming the largeness of the Reynolds number. The key
to the resolution was the use of the matched asymptotic expansions. The stability
problem possesses a singularity at the resonant position, where the velocity relative
to the phase speed of the wave coincides with the Alfvén velocity. For the mirror-
symmetric mode, by symmetry, the resonant position is simply y= 0, where the grey
surface sits. The absorption of the Alfvén wave there creates the strong streamwise
vortex and current shown by the blue and yellow surfaces. The vorticity/current is
trapped within a thin diffusive layer, whose thickness gets thinner with increasing R.
The strong fluctuation emerging within the diffusive layer causes a nonlinear feedback
effect to the x-averaged field through the Reynolds stress. Thus the wave causes a
strongly nonlinear feedback effect to the mean field, despite its rather simple structure
in the streamwise direction. The entire mechanism outlined here is very similar to
the purely hydrodynamic counterpart studied in Hall & Sherwin (2010), which can be
found on the edge of laminar and turbulent attractors, as shown by Wang et al. (2007).

For the upper branch, by contrast, the value of ∆ increases indefinitely for large R
(see figure 4). This asymptotic behaviour of ∆ is typical in turbulence simulations, due
to the presence of a near-wall boundary-layer structure in the flow. In the upper panels
of figure 5, where the upper-branch solution at R= 1000 is visualised, the presence
of the near-wall boundary layer structure can indeed be seen in the contour of the
streamwise field shown at the front of the computational box. The streamwise velocity
and magnetic fields are no longer dominated by the x average, as can be seen in the
strongly modulated wavy grey surfaces. The streamwise vorticity and current fields
have very complicated structures spread out in the entire channel. The existence of a
formal asymptotic theory for that complicated flow remains an open question.

4.3. Non-existence of the vortex–Alfvén wave interaction type of nonlinear states for
perfectly insulating conditions

The large-Reynolds-number limit corresponds to the singular perturbation problem,
and thus the limit of the diffusive problem may not coincide with the ideal
results. Deguchi (2019a) derived a set of reduced nonlinear equations by taking the
large-Reynolds-number limit of the viscous–resistive MHD equations. We shall shortly
see that the diffusivity is in fact not negligible in the limiting reduced leading-order
problem. The aim of this section is to show that there is no nontrivial solution in the
reduced problem when B0 = Pm = 1 and the perfectly insulating conditions are used.
That theoretical result may explain the numerical result obtained in figure 2.

The vortex–Alfvén wave interaction theory derived in Deguchi (2019a) is valid for
travelling-wave solutions propagating in x with speed s. The leading-order flow has
the form

V =Ubi+ [u(y, z), R−1v(y, z), R−1w(y, z)]T + εR−1
{ṽ(y, z)eiα(x−st)

+ c.c.}, (4.9a)

B=Ubi+ [a(y, z), R−1b(y, z), R−1c(y, z)]T + εR−1
{b̃(y, z)eiα(x−st)

+ c.c.}, (4.9b)
Q= R−2q(y, z)+ εR−1

{q̃(y, z)eiα(x−st)
+ c.c.}. (4.9c)
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Here the variables with overline are the x-averaged components called the ‘vortex’,
or ‘roll-streak’, part; the streamwise and cross-streamwise components are referred to
as the streak and roll, respectively. The ‘wave’ part is the component fluctuating in
x; the amplitude ε is to be specified later. Only one Fourier mode is needed in this
component because it is determined by a linear stability of the streak field.

Substituting (4.9) into (2.1), and then applying the large-Reynolds-number
asymptotic reduction, Deguchi (2019a) found a closure for the leading-order solution.
If B0 and Pm are both unity, the x-average parts of the leading-order equations are

[(v∂y +w∂z)−∇
2
]

u
v

w

− [b∂y + c∂z]

a
b
c

+
 0

qy
qz


=

U′b(b− v)
0
0

− ε2

α2

 0
{(|ṽ|2 − |b̃|2)y + (ṽw̃− b̃c̃)z} + c.c.
{(|w̃|2 − |̃c|2)z + (ṽw̃− b̃c̃)y} + c.c.

 , (4.10a)

[(v∂y +w∂z)−∇
2
]

a
b
c

− [b∂y + c∂z]

u
v

w

=
U′b(b− v)

0
0

 , (4.10b)

vy +wz = 0, by + cz = 0, (4.10c,d)

whilst the fluctuation part becomes(
q̃y

(U − s)2 − A2

)
y

+

(
q̃z

(U − s)2 − A2

)
z

− α2 q̃
(U − s)2 − A2

= 0. (4.11)

Equation (4.11) comes from the ideal linear stability problem of the hydrodynamic
streak U=Ub+ u, and the magnetic streak A=Ub+ a. Having determined q̃, we can
easily relate it to ṽ and b̃. In particular,

ṽ =−
q̃y(U − s)

iα((U − s)2 − A2)
, w̃=−

q̃z(U − s)
iα((U − s)2 − A2)

(4.12a,b)

and the ‘frozen’ condition

(U − s)[b̃, c̃] = A[ṽ, w̃] (4.13)

holds.
On a curve where either u − s = a or u − s = −a is satisfied, (U − s)2 − A2

vanishes and hence equation (4.11) becomes singular. Around the critical curves at
which the singularity occurs, we must retain the diffusive effects to regularise the
flow. The thickness of the diffusion layer is O(R−1/3), which is well known in resonant
absorption studies (Sakurai et al. 1991; Goossens et al. 1995). Two types of diffusion-
layer structures were determined in Deguchi (2019a) together with the appropriate
wave amplitude ε. Type 1 occurs when the two diffusive layers are well separated;
the amplitude in this case is ε = 1. In type 2, the two diffusive layers merge so that
the resonance there becomes stronger; as a consequence, a smaller size of the wave
amplitude ε = R−1/6 must be used.

The sharp structure within the thin diffusive layer creates a jump in the derivative
of the outer hydrodynamic roll components. The appropriate forms of the jump for
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types 1 and 2 were found in Deguchi (2019a). Equations (4.10) and (4.11) form a
closure valid at the large-Reynolds-number limit together with the jump condition.

Although the reduced equations may look complicated, the important point here is
twofold; first, the wave fields ṽ, b̃ are generated by the ideal linear stability problem
of the streak fields (4.11); second, there is no direct feedback from the wave to the
streak as one can easily confirm in (4.10). Hence, the perturbation streak fields u, a
are maintained indirectly through the roll fields driven by the wave field, which is
induced by the instability of the streak. The three-point cyclic coupling between the
wave, roll and streak fields is similar to that seen in the hydrodynamic theory (Hall
& Smith 1991; Wang et al. 2007; Hall & Sherwin 2010).

Now, let us show that there is no solution if the wall is perfectly insulating. The
core of the theoretical result are the following cross-energy equations similar to (4.3)
but for the perturbation Elsässer streak field ξ± = u± a:

〈|∇ξ−|
2
〉 =−γ−, 〈|∇ξ+|

2
〉 = 2I − γ+, (4.14a,b)

where I =−〈U′bvξ+〉 and

γ± =
1
2

[
aξ±

]1

−1

. (4.15)

Those equations can be derived by the x components of (4.10). As remarked earlier,
there is no energy input from the wave activity, because of the asymptotic reduction.
Thus, the diffusion terms on the left-hand side of (4.14) are maintained by the roll
energy input term I and the boundary terms γ±.

For the insulating case, the magnetic streak a = a + gz must vanish on the walls,
from (2.5) and (2.9). Thus there is no contribution from the the boundary terms γ±.
From the first equation in (4.14), we see that the streak components must satisfy the
equipartition condition u = a. We then recall that the wave component is generated
through the ideal linear stability problem of the streak. Thus, we can show by the
generalised version of Chandrasekhar’s theorem that there is no wave component
generated from the equipartitioned streaks (see § 4.1). Without the wave, the roll
component cannot be maintained, and thus I = 0. Therefore, using (4.14) again, we
arrive at the conclusion that the perturbation streaks u and a must be identically zero
(more technical details of the discussion here can be found in appendix B).

The discussion above critically relies on the behaviour of the boundary terms in the
streak energy equations (4.14). For perfectly conducting walls, a is non-vanishing on
the walls, and hence the equipartitioned streaky fields are not realised, as indeed can
be seen in figure 5. This may be the reason why we can compute nonlinear solutions
even when B0 = Pm = 1.

We close this section by noting that the mechanism behind the equipartitioning of
the streaky fields is somewhat similar to the Reynolds analogy seen in stratified shear
flows (i.e. the mean temperature is approximately proportional to the mean streamwise
velocity when the Prandtl number is close to unity). In fact, the analysis in § 3 is
very similar to that in Deguchi (2017), where the vortex–wave interaction theory
was applied for stratified plane Couette flow and it was found that the Reynolds
analogy exactly holds. This result and the outcome in this section are good examples
showing the usefulness of the asymptotic reduction in deducing further theoretical
results unreachable in the full equations.
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FIGURE 6. The magnetic Prandtl number dependence of the solutions found at the
Chandrasekhar state B0 = 1. Here R = 1000. The mirror-symmetric mode found for the
perfectly conducing conditions is used (the solution at Pm = 1 corresponds to the lower
triangle on the lower branch of the dashed curve in figure 3).

5. Sub-Alfvénic cases

The numerical results so far have revealed that for Pm = 1 the nonlinear solutions
continued from small B0 eventually disappear for large B0. For the perfectly insulating
case, the solution branch never crosses the Chandrasekhar limit B0= 1. Solutions can
be found at B0 = 1 for the perfectly insulating case, but the maximum B0 that the
solution can reach is only slightly greater than unity. This would cast some doubt on
the existence of subcritical instability in the sub-Alfvénic regime.

The solution can be found for much larger B0 when Pm is large or small. Here
we demonstrate this by using the mirror-symmetric mode computed for the perfectly
conducting case (the behaviour of the solutions is qualitatively similar for the sinuous
mode/perfectly insulating case). We vary Pm from this solution as shown in figure 6
to see that the nonlinear solution exists for a wide range of Pm. The starting point of
the computation is indicated by the lower triangle, which corresponds to that on the
lower branch seen in figure 4. As one can expect from figure 6, the character of the
solution is different for Pm > 1 and Pm < 1.

With increasing Pm and B0, the solution tends to possess a complicated flow
structure similar to that of figure 5(a,b). Some tentative computations for Pm = 10
show that along the solution branch the value of B0 can be increased up to about 2.
However, we do not go into much detail for the range of existence of the solutions
in this paper, as our numerical resolution eventually becomes unreliable.

For small Pm, on the other hand, the structure of the solution remains the
relatively simple vortex–Alfvén wave interaction form (see figure 5c,d) and thus
the computation is not too difficult. The smaller the value of Pm, the greater the
value of B0 we can reach along the solution branch. This is because on decreasing
Pm the Ohmic diffusion term in the induction equations will become significant,
and hence a stronger external magnetic field is necessary to support the nonlinear
solution. The ultimate behaviour of the solution as Pm → 0 and B0 → ∞ can be
described by the so-called inductionless limit (e.g. Davidson 2001). The limiting result
follows by first considering the Hartmann number H = B0RP1/2

m as a constant. Then
assuming the scaled magnetic field b̃ = P−1/2

m b, the velocity v and the total pressure
q are all O(P0

m) quantities, the limit of Pm → 0 in (2.4) gives the inductionless

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

84
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.841


882 A20-18 K. Deguchi

0 0.02 0.04 0.06 0.08 0.10

0.030

0.025

0.020

0.015

0.010

0.005

Pm

Î

FIGURE 7. The continuation of the mirror-symmetric mode solution branch towards the
inductionless limit Pm→ 0. Here R= 1000. The perfectly conducing conditions are used.
The strength of the external magnetic field is changed as B0 = 1/

√
10Pm (the Hartmann

number H ≈ 316.2).

limit equations

(∂t +Ub∂x + v · ∇− R−1
∇

2)v − R−1H(Ub∂xb̃+U′bb̃i)=−∇q, (5.1a)

∇
2b̃=H(U′bvi−Ub∂xv), (5.1b)

∇ · v =∇ · b̃= 0, (5.1c)

which can be solved in a manner similar to that of the full problem.
Figure 7 presents the solution branch continued towards the inductionless limit.

The starting point of the computation is the green square at Pm = 0.1, which exactly
corresponds to that seen in figure 6. Unlike figure 6, here the value of B0 is varied
as 1/

√
10Pm so that the Hartmann number becomes a constant. The solution branch

indeed reaches very small Pm, and then the inductionless limit equations (2.4) are
used to compute the solution at Pm = 0. Because of the inductionless limit scaling
used, the value of B0 becomes formally infinite there.

The parameter dependence of the inductionless limit is important as it gives the
leading-order behaviour of the small Pm solutions. When R is decreased, the solution
branch is expected to have a saddle-node point because the energy analysis gives
RE = 20.66, which is identical to that of the purely hydrodynamic plane Couette flow.
Figure 8 shows the bifurcation diagram of the inductionless limit solution found in
figure 7; the saddle-node point numerically found is at R= 407.4. Similar to figure 4,
the flow regime of the solutions on the lower branch is found to be of the vortex–
Alfvén wave interaction type, while that on the upper branch is not. This means that
at least the lower-branch state would persist for asymptotically large Reynolds number;
we confirm the existence of the solution by increasing R up to 10 000. Thus the result
obtained in this section strongly suggests that the subcritical instability exists in a
broad range of sub-Alfvénic regime, when Pm is small.

6. Conclusion
We have theoretically and numerically studied subcritical MHD instabilities by

computing finite-amplitude solutions of magnetised plane Couette flow in a wide
parameter range of B0, Pm and R. Perfectly conducting or insulating conditions are
used on the walls. As seen in the purely hydrodynamic studies, we expect that
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Î

R

FIGURE 8. The bifurcation diagram of the inductionless state found in figure 7 (Pm = 0
and the inverse of the magnetic Mach number B0 is infinite). The mirror-symmetric mode
solution is shown for R = 1000 and H ≈ 316.2. The perfectly conducing conditions are
used on the walls.

the existence of the steady solutions is strongly correlated with that of subcritical
transition to turbulence (Itano & Toh 2001; Hof et al. 2004; Skufca et al. 2006;
Wang et al. 2007; De Lozar et al. 2012).

It was shown in Deguchi (2019b) and § 3 that the nonlinear solutions exist for
almost the entire super-Alfvénic regime (B0 ∈ [0, 1]), if the Reynolds number R is not
too small. The shear on the walls, ∆, is monitored to measure the solutions. When
∆ tends to a constant for large R, the asymptotic flow structure can be described by
the vortex–Alfvén wave interaction theory of Deguchi (2019a).

When Pm = 1, whether the solution branch can be continued to the Chandrasekhar
state B0= 1 depends significantly on the conductivity of the walls. From the numerical
result using perfectly insulating conditions, it is likely that the solution branch cannot
pass through B0 = 1. This may look like a manifestation of Chandrasekhar’s theorem
at first glance, although the theorem is deduced assuming the smallness of the
perturbation. Curiously, for the perfectly conducting case, numerical solutions are
found at the Chandrasekhar limit. This result suggests that for finite-amplitude states,
conductivity of the walls acts as a destabilisation mechanism, as opposed to the linear
MRI found by Rüdiger et al. (2015).

Motivated by those numerical results, in § 4, an extension of the Chandrasekhar
theorem to the nonlinear regime was attempted. Using the energy budget equations
for Elsässer variables, we found that as long as the assumption (iii) is satisfied and
Pm=B0=1, we can establish stability against the nonlinear and diffusive perturbations.
However, the diffusivity affects the stability property in a more complicated manner
than that for ideal flows through the boundary terms, and therefore the extended theory
cannot work for both perfectly conducting and insulating walls. Nevertheless, we were
able to explain the numerical results in § 3, by showing the non-existence of nontrivial
solutions in the reduced problem based on the vortex–Alfvén wave interaction theory,
when the perfectly insulating conditions are used. The diffusivity is the leading-order
effect everywhere for the roll-streak component in the reduced problem, unlike the
linear MRI studied by Rüdiger et al. (2015). For the perfectly insulating conditions,
we can show that there is no energy input to the streak fields (i.e. the x component
of the mean field) through the boundary. This special property of the flow eventually
led us to show that the hydrodynamic and magnetic streak components must take
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similar form. Thus no wave driving the whole self-sustaining process can be generated
because of Chandrasekhar’s theorem for the ideal stability problem of the streak fields.
When the walls are perfectly conducting, on the other hand, there may be some energy
input through the boundary, and hence the above arguments cannot hold.

In § 5, we showed that the nonlinear solution branch can be continued for large
B0, when Pm is small. The solutions at the asymptotic limit Pm→ 0 can be computed
by using the inductionless limit equations. In order to find the limiting solution,
the magnetic Mach number is scaled as B−1

0 ∼ O(P1/2
m ). The existence of nonlinear

solutions for B0 ∈ [1,∞) is confirmed under this scaling.
In summary, solutions that may be responsible for subcritical transition to MHD

turbulence have been found for almost the whole range of B0 and not too small
R. Their existence and properties are largely influenced by Pm and the conductivity
of the walls. This paper exemplified a few cases where some theoretical analyses
are possible, but our understanding of the subcritical MHD instability is still far
from complete. The precise role played by the solutions in subcritical transition
to turbulence must be studied using direct numerical simulations in the future.
Aside from that obvious issue, there are many problems left open. For example, an
interesting question would be whether there is a subcritical instability driven purely
by a linear unidirectional magnetic field. The numerical results in this paper suggest
a negative conclusion for the existence because solutions cannot be found unless
they are subjected to a finite amount of shear. Another issue is that the range of Pm
studied in this paper is rather narrow compared with some real world problems. For
typical astrophysical and planetary flows, Pm is usually very small (e.g. stars, disks)
or very large (e.g. galaxies) depending on the object. Thus the Pm dependence of the
solutions in particular for large Pm would deserve a more careful future study.

The results here may be of interest in the context of energy dissipation in
magnetised plasmas such as stellar coronas, where resonant absorption can commonly
be found. For certain astrophysical objects such as accretion discs, the effect of
the streamline curvature in the base state is known to be important, as it causes
a number of linear instability mechanisms such as centrifugal instability and the
MRI. Such curvature effects are ignored in the present paper, but the numerical
methods used here can be modified to work in cylindrical geometry to study the
MHD Taylor–Couette flow. Thus there would undoubtedly be considerable scope
for conducting numerical continuation on that flow to study possibly more complex
interplay between the various MRIs and the subcritical MHD instability recently
found by Guseva et al. (2017).
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Appendix A. Derivation of (4.6)
In order to derive (4.6), we have to show

Λ=−D− R
dE
dt
. (A 1)

We first remark that for the perfectly conducting case, D= E = 0 from Λ= 0 (see
table 1). For the perfectly insulating case, from the y component of the induction
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equations
df̂m,n

dt
+Ubimαf̂m,n = R−1(̂f ′′m,n − Lf̂m,n) (A 2)

must be satisfied on the walls. Then using (2.9) and (A 2),

2Λ= [(aay + bby + ccy)]
1
−1 =

∑
m,n

[Lf̂ ′∗(Lf̂m,n + f̂ ′′m,n)]
1
−1

=

∑
m,n

(
−2L5/2(| f̂m,n(1)|2 + | f̂m,n(−1)|2)− RL3/2 d

dt

{
| f̂m,n(1)|2 + |̂fm,n(−1)|2

2

})
. (A 3)

Therefore, comparing this result with (A 1),

D=
∑
m,n

L5/2(| f̂m,n(1)|2 + | f̂m,n(−1)|2), (A 4)

E =
∑
m,n

L3/2

{
| f̂m,n(1)|2 + |̂fm,n(−1)|2

4

}
. (A 5)

Appendix B. Theoretical details of the discussion in § 4.3
Here we show that the wave components cannot maintain the roll-streak components

when the streak fields are equipartitioned (i.e. u= a).
When s= 0, the only possible solution of the streak stability problem is q̃= 0. In

the absence of the wave components, the roll components cannot be sustained because
there is no energy input. Then I in the second streak energy equation (4.14) can be
neglected, leading to that the streak components must be zero identically. Therefore,
no non-trivial solution is possible.

When s 6= 0 we have a type 1 interaction. In this case, we use the fact that the
equation for E−, equation (4.3a), is now significantly simplified from the complete
case. First, the left-hand side of this equation is of course zero, because we are
considering equilibrium states. Next, we consider the contribution from the wave
components on the right-hand side; here note that the diffusion effect in the thin
resonant layer does not contribute to the leading-order interaction problem, as shown
by Deguchi (2019a). Since the wave is predominantly ideal, the contribution is
negligibly small in the terms originating from the diffusion effects, namely D−, Λ
and λ. The other boundary term Γ vanishes as well because the impermeability
condition ṽ = 0 at y = ±1 also ensures b̃ = 0 there through the frozen condition
(4.13). Finally, the contribution from the roll-streak components must be treated. The
boundary terms Λ, λ are actually zero, because a = 0 on the walls. Therefore, we
have D− = 0, from which we can deduce that the hydrodynamic roll components
[v,w] must vanish identically; this also means that the wave amplitude driving them
is zero. Turning back to (4.14), we see that u = a = 0 because now I = 0. Thence,
we merely have a trivial solution.
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