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THE STRONG TREE PROPERTY AT SUCCESSORS OF SINGULAR
CARDINALS

LAURA FONTANELLA

Abstract. An inaccessible cardinal is strongly compact if, and only if, it satisfies the strong tree property.
We prove that if there is a model of ZFC with infinitely many supercompact cardinals, then there is a model
of ZFC where ℵ�+1 has the strong tree property. Moreover, we prove that every successor of a singular
limit of strongly compact cardinals has the strong tree property.

§1. Introduction. The strong tree property is a strong generalization of the usual
tree property. Given a regular cardinal κ, we say that κ has the tree property when
every κ-tree (i.e., every tree of height κ with levels of size less than κ) has a branch
of length κ. König’s Lemma establishes that the tree property holds at ℵ0. On the
other hand, ℵ1 does not satisfy the tree property, and for larger regular cardinals
whether or not they satisfy the tree property is independent from ZFC. It is well
known that the tree property provides a combinatorial characterization of weak
compactness.

Theorem 1.1 (Erdös and Tarski [3]). Assume κ is an inaccessible cardinal, then κ
is weakly compact if and only if it satisfies the tree property.

Strongly compact and supercompact cardinals admit similar characterizations.

Theorem 1.2. If κ is an inaccessible cardinal, then
1. κ is strongly compact if and only if it satisfies the strong tree property (Jech [6],
Di Prisco and Zwicker [2] and Weiss [16]);

2. κ is supercompact if and only if it satisfies the super tree property (Jech [6],
Magidor [10] and Weiss [16]).

The strong and super tree properties generalize the usual tree property to the com-
binatorics of [�]<κ, in fact they concern special structures known as (κ, �)-trees that
can be seen as “trees over [�]<κ” whose “levels” have size less than κ (this notion
will be defined in §3). The super tree property implies the strong tree property, that
entails the usual tree property in its turn. While the previous characterizations date
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194 LAURA FONTANELLA

back to the early 1970s, a systematic study of the strong and the super tree properties
has only recently been undertaken by Weiss1 who worked on these properties in his
Ph.D thesis [16] and proved that even small cardinals can consistently satisfy the
strong and the super tree properties, if we assume large cardinals.

There is a huge literature concerning the construction of models of set theory in
which several distinct regular cardinals satisfy the usual tree property. We list a few
classical results of that sort.

(1) (Mitchell [12]) Let � be a regular cardinal such that �<� = �. Assume there
is a model of ZFC with a weakly compact cardinal, then there is a model of
ZFC where �++ has the tree property. In particular, the consistency of the
tree property at ℵ2 can be obtained from a weakly compact cardinal.

(2) (Cummings andForeman [1]) Assume there is amodel of ZFCwith infinitely
many supercompact cardinals, then there is a model of ZFC where every
cardinal of the form ℵn with 2 ≤ n < � has the tree property.

(3) (Magidor andShelah [11])Assume there is amodel of ZFCwith an increasing
sequence 〈�n〉n<� such that
(a) if � = supn≥0 �n, then �n is �

+-supercompact, for all n > 0;
(b) �0 is the critical point of an embedding j : V → M where j(�0) = �1
and �

+
M ⊆M.

Then there is a model of ZFC where ℵ�+1 has the tree property.
(4) (Sinapova [14]) Assume there is a model of ZFC with infinitely many super-
compact cardinals, then there is a model of ZFC where ℵ�+1 has the tree
property.

(5) (Neeman [13]) Assume there is a model of ZFC with infinitely many super-
compact cardinals, then there is a model of ZFC where the tree property
holds at every ℵn with n ≥ 2 and at ℵ�+1.

All these results were oriented toward the construction of a model where the tree
property holds simultaneously at every regular cardinal—whether such amodel can
be found is still an open question. Some of these theorems can be generalized to
the strong or the super tree property. In fact, Weiss proved that for every integer
n ≥ 2, if we force with Mitchell’s forcing over a supercompact cardinal, we get a
model of set theory where even the super tree property holds at ℵn. The author [4,5]
(and independently Unger [15]) proved thatWeiss result can be generalized to get a
model, where all cardinals of the form ℵn with 2 ≤ n < � simultaneously satisfy the
super tree property, starting from infinitely many supercompact cardinals. Indeed,
a forcing construction by Cummings and Foreman produces a model where all the
ℵn’s satisfy the super tree property. We are going to prove from large cardinals that
even ℵ�+1 can consistently satisfy the strong tree property. More precisely we will
prove the following theorem.

Theorem 1.3. If there is a model of ZFC with infinitely many supercompact
cardinals, then there is a model of ZFC where ℵ�+1 has the strong tree property.
1In Weiss’ terminology, the strong tree property at a regular cardinal κ corresponds to the property

(κ, �)-TP for all � ≥ κ, while the super tree property corresponds to (κ, �)-ITP for all � ≥ κ.
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The proof of such theorem is motivated by Neeman’s paper [13]. By generalizing a
theorem by Magidor and Shelah [11], we will also prove the following result.

Theorem 1.4. If � is a singular limit of strongly compact cardinals, then the strong
tree property holds at �+.

Moreover, wewill weaken the hypothesis of the latter theoremby using a partition
property satisfied by strongly compact cardinals.

§2. Preliminaries and notation. It may be useful to recall some terminology. The
main reference for basic set theory is [7], while we will refer to [8] for large cardinals
notions and to [9] for the forcing technique.
Given a forcing P and conditions p, q ∈ P, we use p ≤ q in the sense that p is
stronger than q. Assume that P is a forcing notion in a model V, we will use V P to
denote the class of P-names. If G ⊆ P is a generic filter over V, then V [G ] denotes
the generic extension ofV determined byG. If a ∈ V P andG ⊆ P is generic overV,
then aG denotes the interpretation of a in V [G ]. Every element x of the ground
model V is represented in a canonical way by a name x̌. However, to simplify the
notation, we will use just x instead of x̌ in forcing formulas.

Definition 2.1. Given a forcing P and a cardinal κ, we say that

(1) P is κ-closed if and only if every decreasing sequence of conditions of P of size
less than κ has an infimum;

(2) P is κ-c.c. when every antichain of P has size less than κ;
(3) P has the κ-covering property if P preserves κ as a cardinal and for every filter
G ⊆ P generic over V, every set X ⊆ V in V [G ] of cardinality less than κ is
contained in a set Y ∈ V of cardinality less than κ in V.

We denote by Coll(κ, �) the usual Levy collapse.
We will assume familiarity with the theory of large cardinals and elementary
embeddings, as developed for example in [8]. In particular, we will use repeatedly
and without comments Silver’s technique for lifting embeddings (see Lemma 2.2).

Lemma 2.2 (Silver). Let j : M → N be an elementary embedding between inner
models of ZFC. Let P ∈M be a forcing and suppose thatG is P-generic overM, H is
j(P)-generic over N, and j[G ] ⊆ H. Then there is a unique j∗ :M [G ]→ N [H ] such
that j∗ �M = j and j∗(G) = H.

§3. The strong and the super tree properties. In this section, we introduce the
strong and super tree properties. Although the main results presented in this paper
do not concern the super tree property (just the strong tree property), for the
sake of completeness we include the definition of this property as well. In order to
define the strong and the super tree properties, we need to introduce the notion of
(κ, �)-tree.2

Definition 3.1. Given a regular cardinalκ ≥ �2 and an ordinal �≥ κ, a (κ, �)-tree
is a set F satisfying the following properties:

2In Weiss Ph.D-thesis [16] (κ, �)-trees were calledPκ�-thin lists.
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(1) for every f ∈ F, f : X → 2, for some X ∈ [�]<κ;
(2) for all f ∈ F, if X ⊆ dom(f), then f � X ∈ F ;
(3) the set LevX (F ) := {f ∈ F ; dom(f) = X} is nonempty, for all X ∈ [�]<κ;
(4) |LevX (F )| < κ, for all X ∈ [�]<κ.
The elements of a (κ, �)-tree are called nodes. Note that, despite the name,
a (κ, �)-tree is not a tree. In fact for a given node f on some level LevX , the
set of all its predecessors is {f � Y ; Y ⊆ X} and it is not well ordered. So the
main difference between a κ-tree and a (κ, �)-tree is that in the former the levels
are indexed by ordinals which are well ordered, while in the latter we have a level
for every set in [�]<κ which is not even linearly ordered. As usual, when there is no
ambiguity, we will simply write LevX instead of LevX (F ).
Definition 3.2. Given a regular κ ≥ �2, an ordinal � ≥ κ and a (κ, �)-tree F,
(1) a cofinal branch for F is a function b : �→ 2 such that b � X ∈ LevX (F ), for
all X ∈ [�]<κ;

(2) an F -level sequence is a functionD : [�]<κ → F such that for everyX ∈ [�]<κ,
D(X ) ∈ LevX (F );

(3) given an F -level sequence D, an ineffable branch for D is a cofinal branch
b : �→ 2 such that {X ∈ [�]<κ ; b � X = D(X )} is stationary.

Definition 3.3. Given a regular cardinal κ ≥ �2 and an ordinal � ≥ κ,
(1) (κ, �)-TP holds if every (κ, �)-tree has a cofinal branch;
(2) (κ, �)-ITP holds if for every (κ, �)-tree F and for every F -level sequence D,
there is an an ineffable branch for D;

(3) we say that κ satisfies the strong tree property if (κ, �)-TP holds, for all� ≥ κ;
(4) we say thatκ satisfies the super tree property if (κ, �)-ITP holds, for all� ≥ κ;
We prove a simple result that will be used repeatedly.
Lemma 3.4. Let κ be a regular cardinal and � ≥ κ. For every �∗ > �, every
(κ, �)-tree with no cofinal branches, can be extended to a (κ, �∗)-tree with no cofinal
branches.
Proof. Let F be a (κ, �)-tree with no cofinal branches and let �∗ > �.We define
a (κ, �∗)-tree F ∗ as follows: for every X ∈ [�∗]<κ, we let
f : X → 2 ∈ F ∗ ⇐⇒def f � (X ∩ �) ∈ F and for every α ∈ X \ �, f(α) = 0.
It is clear that F ∗ extends F, i.e., for every X ∈ [�]<κ, LevX (F ) = LevX (F ∗). We
check that F ∗ is a (κ, �)-tree. Conditions 1 and 3 of Definition 3.1 are trivially
satisfied. Condition 2 is easily proved: if f : X → 2 is in F ∗ and Y ⊆ X, then by
definition f � (X ∩ �) ∈ F, hence f � (Y ∩ �) ∈ F.Moreover, for every α ∈ Y \ �,
we have f � Y (α) = f(α) = 0. Therefore f � Y ∈ F ∗. It remains to prove that
for every X ∈ [�∗]<κ, the level LevX (F ∗) has size less than κ, but the function
f 
→ f � � defines a bijection of LevX (F ∗) into Lev(X∩�)(F ), so LevX (F ∗) has size
less than κ. If F ∗ has a cofinal branch b∗ : �∗ → 2, then b∗ � � is a cofinal branch
for F as well, because for every X ∈ [�]<κ, b∗ � X ∈ LevX (F ∗) = LevX (F ). Since
F has no cofinal branches, F ∗ has no cofinal branches as required. �

§4. The strong tree property at successors of singular cardinals. To prove the
consistency of the usual tree property at ℵ�+1,Magidor and Shelah first proved a
more general result concerning the tree property at successors of singular cardinals.
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Theorem 4.1 (Magidor and Shelah [11]). Assume � is a singular limit of strongly
compact cardinals, then �+ has the tree property.

In this section, we prove that under the same assumptions, even the strong tree
property is satisfied at �+. The structure of the proof is very close to Magidor and
Shelah’s proof of the previous theorem, althoughwe will prove that to get the strong
tree property at �+, it is enough for � to be a singular limit of cardinals satisfying
a nice partition property. This result is very important in the following, since the
proof of the consistency of the strong tree property at ℵ�+1, will mimic the proof of
this theorem.

Notation 4.2. Let � be a regular cardinal and let � ≥ � be any ordinal. For every
cofinal set I ⊆ [�]<� we denote by [[ I ]]2 the set of all pairs (X,Y ) ∈ I × I such that
X ⊆ Y.

Definition 4.3. Let � > κ be two regular cardinals and let S ⊆ [�]<� be a cofinal
set and c : [[ S ]]2 → 	 a function such that 	 < κ.We say that a cofinal setH ⊆ S is
a quasi homogenous set of color i < 	 iff for every X,Y ∈ H there isW ⊇ X,Y in
H such that c(X,W ) = i = c(Y,W ).

Definition 4.4. Given two regular cardinals � ≥ κ, we say that the principle
ϕ(κ, �) holds when for every � ≥ � if S ⊆ [�]<� is a stationary set, then every function
c : [[ S ]]2 → 	 with 	 < κ has a quasi-homogenous setH which is also stationary.

We now prove that strongly compact cardinals satisfy ϕ everywhere.

Theorem 4.5. Let κ be a strongly compact cardinal, then ϕ(κ, �) holds for every
regular � ≥ κ.

Proof. Fix � ≥ � and a function c : [[ S ]]2 → 	 where 	 < κ, and let S ⊆ [�]<�
be a stationary set. Consider all the sets of the form C ∩ S where C ⊆ [�]<� is
a club; they form a κ-complete family. Since κ is strongly compact, there exists
a κ-complete ultrafilter U that contains all these sets. Note that every set in U
is stationary. In fact if H ∈ U and C is a club, then by definition C ∩ S ∈ U,
hence H ∩ C ∩ S is in U as well, and it is nonempty. First, we show that for every
X ∈ S, there is iX < 	 and a set HX ⊆ S in U such that for every Y in HX
we have c(X,Y ) = iX . Assume for a contradiction that for every i < 	, the set
Ki := {Y ∈ S; Y ⊇ X and c(X,Y ) �= i} ∈ U then, by the κ-completeness
of U, the intersection

⋂
i<	 Ki is in U and it is empty, a contradiction. A similar

argument proves that the functionX 
→ iX is constant on a setH ∈ U ; let i be such
that i = iX , for every X ∈ H. Now, it is easy to see that H is quasi-homogenous
of color i. Indeed, if X,Y ∈ H, then HX ∩ HY ∩ H belongs to U and it is,
therefore, nonempty. LetZ ∈ HX ∩HY ∩H, then we have c(X,Z) = i = c(Y,Z) as
required. �

Theorem 4.6. Let � be a singular cardinal such that � = limi<cof(�) κi where
every κi is an uncountable cardinal satisfying ϕ(κi , �+). Then �+ has the strong tree
property.
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Proof. To simplify the notation we will assume that � has countable cofinality,
so � = limn<� κn. Suppose without loss of generality that 〈κn〉n<� is increasing. Let
� ≥ �+ and let F be a (�+, �)-tree. For every X ∈ [�]<�+ , let {fXi }i<|LevX (F )| be an
enumeration of LevX (F ). First, we “shrink” the tree as follows.

Lemma 4.7. There exists n < � and a stationary set S ⊆ [�]<�+ , such that for all
X,Y ∈ S, there are �, � < κn such that fX� � (X ∩ Y ) = fY� � (X ∩Y ).
Proof. Given a function f ∈ LevX , we write #f = i for i < �, when f = fXi .
Define c : [[ [�]<�

+
]]2 → � by c(X,Y ) = min{i ; #(fY0 � X ) < κi}. By hypothesis,

ϕ(κ0, �+) holds, hence there is a stationary quasi homogenous set S ⊆ [�]<�+
of color n < �. Then, for every X,Y ∈ S, there is Z ⊇ X,Y in S such that
c(X,Z) = n = c(Y,Z). This means that #(fZ0 � X ), #(fZ0 � Y ) < κn, namely
there are �, � < κn such that fZ0 � X = fX� and fZ0 � Y = fY� . So we have

fX� � (X ∩ Y ) = fZ0 � (X ∩ Y ) = fY� � (X ∩ Y ),
as required. That completes the proof of the lemma. �
Let n and S be as above, we prove the following fact.

Lemma 4.8. There is a cofinal S′ ⊆ S and an ordinal � < κn such that for all
X,Y ∈ S′, we have fX� � (X ∩ Y ) = fY� � (X ∩Y ) (the set S′ is even stationary).
Proof. For every (X,Y ) ∈ [[ S ]]2, we define c̄(X,Y ) as the minimum couple
(�, �) ∈ κn × κn, in the lexicografical order, such that fY� � X = fX� —the function
is well defined by definition of n and S.We can apply ϕ(κn+1, �+) to c̄ as this can be
seen as a function from [[S ]]2 intoκn—take any bijection h : κn×κn → κn and apply
ϕ(κn+1, �+) to c̄ ◦ h : [[ S ]]2 → κn. So, there exists a quasi homogenous stationary
set S′ of color (�, �) ∈ κn × κn, hence, for every X,Y ∈ S′, there is Z ⊇ X,Y
in S′ such that c̄(X,Z) = (�, �) = c̄(Y,Z). This means that fZ� � X = fX� and
fZ� � Y = fY� . It follows that

fX� � (X ∩ Y ) = fZ� � (X ∩ Y ) = fY� � (X ∩ Y ).
That completes the proof of the lemma. �
Now we conclude the proof of the theorem by defining a cofinal branch. Let
b :=

⋃
X∈S′ f

X
� , by the previous lemma b is a function. Moreover, for every Y ∈ S′

we have

b � Y =
⋃

X∈S′
fX� � Y =

⋃

X∈S′
fX� � (X ∩ Y ) =

⋃

X∈S′
fY� � (X ∩ Y ) = fY� .

It follows that b is a cofinal branch for F. �
Corollary 4.9. Let � be a singular limit of strongly compact cardinals, then �+

has the strong tree property.
Proof. Apply Theorems 4.5 and 4.6. �
Whether such result can be generalized to the super tree property is still an open
problem. Based on the analogy between supercompact cardinals and the super tree
property, we can conjecture that the successor of a singular limit of supercompact
cardinals satisfy the super tree property.
We conclude this section by proving the following fact.
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Proposition 4.10. Given a regular cardinal κ, if ϕ(κ, κ) holds, then κ has the
strong tree property.

Proof. Let F be a (κ, �)-tree where � ≥ κ. For every X ∈ [�]<κ, let {fXi }i<	X
be an enumeration of LevX (F ).We can assume without loss of generality that �<κ

is large enough, so that 	X (the size of |LevX (F )|) is constant on a stationary set
S ⊆ [�]<κ—indeed, if it is not the case we can take a larger �∗ anduse Lemma 3.4. So
let 	 < κ be such that 	X = 	 for everyX ∈ S.Wedefine a function c : [[S ]]2 → 	×	
by letting c(X,Y ) be the minimum couple (i, j) in the lexicografical order such that
fYj � X = fXi . The function c can be seen as a function from [[ S ]]2 into 	, so
there exists a quasi-homogenous and stationary set H ⊆ S. Assume H has color
(i, j) ∈ 	 × 	, we let b := ⋃

X∈H f
X
i and we prove that b is a cofinal branch. Given

X,Y ∈ H, there is Z ∈ H such that X,Y ⊆ Z and c(X,Z) = (i, j) = c(Y,Z). By
definition of c, we have

(1) fZj � X = fXi ;
(2) fZj � Y = fYi .
It follows that fXi � (X ∩Y ) = fYi � (X ∩Y ). Therefore b is a function and for
every Y ∈ H, we have

b � Y =
⋃

X∈H
fXi � Y =

⋃

X∈H
fXi � (X ∩ Y ) =

⋃

X∈H
fYi � (X ∩ Y ) = fYi ,

so b is a cofinal branch. �

§5. Systems. To prove the consistency of the strong tree property atℵ�+1,wewill
work with a special structure that we call a “system”. To understand this notion,
suppose we are in the following situation. Let � be a cardinal in a modelV and let P
be a forcing notion with the �+-covering property—so that for every � ≥ �+, the set
([�]<�

+
)V is cofinal in the [�]<�

+
of the generic extension. Assume Ḟ ∈ V P is a name

for a (�+, �)-tree and for every X ∈ [�]<�+ , ėX is a P-name for a an enumeration of
LevX (Ḟ ) (i.e., �P ėX : � → LevX (Ḟ ) is onto). For every p ∈ P, we define a binary
relation Sp over the pairs (X, �), where X ∈ [�]<�+ and � < � :

(X, �) Sp (Y, �)⇐⇒def p � ėX (�) = ėY (�) � X.
In other words, we have (X, �) Sp (Y, �) when p forces that the �-th function
on level Y extends the �-th function on level X. The family {Sp}p∈P satisfies the
following definition.

Definition 5.1. Given an ordinal � ≥ �+, a cofinal set D ⊆ [�]<�+ and a family
S := {Si}i∈I of transitive, reflexive binary relations over D × �, we say thatS is a
system if the following holds:

(1) if (X, �) Si (Y, �) and (X, �) �= (Y, �), then X � Y ;
(2) for every X ⊆ Y, if both (X, �) Si (Z, 
) and (Y, �) Si (Z, 
),
then (X, �) Si (Y, �);

(3) for every X,Y ∈ D, there is Z ⊇ X,Y and �X , �Y , � ∈ � such that for some
i ∈ I we have (X, �X ) Si (Z, �) and (Y, �Y ) Si (Z, �) (in particular, if X ⊆ Y,
then (X, �X ) Si (Y, �Y )).
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To prove the consistency of the strong tree property at ℵ�+1, we will have to deal
with a system similar to the one defined above. In this section, we analyze some
properties of these structures.
The elements of D × � are called nodes of the system. Given two nodes u and v,
we say that they are Si -incompatible, for some i ∈ I, if there is no w ∈ D × � such
that u Si w and v Si w.We will say that a node u belongs to a level X if the first
coordinate of u is X (i.e., u = (X, �), for some � ∈ �).

Definition 5.2. Let {Si}i∈I be a system on D × � and let b : D → � be a partial
function.
(1) We say that b is an Si -branch for some i ∈ I, if the following holds. For every
X ∈ dom(b) and for every Y ∈ D such that Y ⊆ X, we have
Y ∈ dom(b) iff there exists � < � such that (Y, �) Si (X, b(X )), and b(Y ) is
the unique � witnessing this.

(2) We say that b is a cofinal branch for the system if it is an Si -branch for some
i ∈ I, and X ∈ dom(b) for cofinally many X ’s in D.

We will often work with families of branches satisfying specific conditions.

Definition 5.3. Let {Si}i∈I be a system on D × �, a system of branches is a
family {bj}j∈J such that
(1) every bj is an Si -branch for some i ∈ I ;
(2) for every X ∈ D, there is j ∈ J such that X ∈ dom(bj).
A lemma by Silver establishes that whenever we force with a forcing that has
enough closure, it cannot add cofinal branches to a given tree.

Lemma 5.4 (Silver). Let �, κ be regular cardinals, and suppose � < κ ≤ 2� . Let
P be a �+-closed forcing in a model V and let T be a κ-tree. Then for every generic
extension V [G ] by P, every branch of T in V [G ] is in fact a member of V.
Proof. We may assume that � is minimal with 2� ≥ κ. Let ḃ be a P-name for a
new branch. We build by induction for each s ∈ ≤�2 conditions ps and points xs of
T such that

(1) if t � s, then ps ≤ pt and xs >T xt ;
(2) ps � xs ∈ ḃ;
(3) for each α, the nodes {xs ; s ∈ α2} are all on the same level �α;
(4) for each s ∈ <�2, the nodes xs�0 and xs�1 are incompatible.
By minimality of �, for every α < �, the set {xs ; s ∈ α2} has size less than κ, so we
can choose �α+1. The closure of P guarantees that the construction works at limit
stages. In the end we have a contradiction, because the level �� must have fewer than
κ many nodes, yet we have constructed 2� many distinct ones. �
Now we want to generalize Silver’s lemma to systems. More precisely, we are
going to prove that if a κ-closed forcing adds a system of branches through a
“small” system, then a cofinal branch must already exist in the ground model
(Theorem 5.6 below). Such a result generalizes a lemma by Sinapova (see [14]
Preservation Lemma) and will be used to prove the consistency of the strong
tree property at ℵ�+1. First, we prove the following lemma that provides a useful
“splitting argument”.
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Lemma 5.5 (Splitting lemma). Let � be a singular cardinal of countable cofinality
and let � ≥ �+. Let {Ri}i∈I be a system on D × � (with D ⊆ [�]<�+ cofinal ) and let
P be a forcing notion such that:
(1) max(|I |, �) < �;
(2) P is κ-closed for some regular κ between max(|I |, �)+ and �;
(3) for some p ∈ P, ḃ ∈ V P and i ∈ I, we have p � ḃ is a cofinal Ri -branch.
If V has no cofinal branches for the system, then for all � < κ, we can find a sequence
〈v� ; � < �〉 of pairwise R-incompatible elements of D × � such that for every � < �,
there exists q ≤ p that forces v� ∈ ḃ.
Proof. It might be helpful to point out that if G is a generic filter containing p,
then in V [G ] the domain of ḃG is a cofinal set in ([�]<�

+
)V . We work in V. Let

R := Ri and let E := {u ∈ D × �; ∃q ≤ p(q � u ∈ ḃ)}. First remark that, since
p forces that ḃ is cofinal, the set {X ∈ D; ∃� ∈ � (X, �) ∈ E} is cofinal. As V has
no cofinal branches for the system, we can find, for all v ∈ E two R-incompatible
nodes w1, w2 ∈ E such that v R w1, v R w2.
We inductively define for all � < � two nodes u�, v� ∈ E and a condition p� ≤ p
such that:
(1) u� and v� are R-incompatible;
(2) for all ε < �, uε R u� and uε R v� ;
(3) p� � u� ∈ ḃ;
(4) the sequence 〈pε ; ε ≤ �〉 is decreasing.
Let u be any node in E. From the remark above, there are u0, v0 ∈ E which are
R-incompatible and both u R u0 and u R v0 hold. By definition of E, there is a
condition p0 ≤ p such that p0 � u0 ∈ ḃ.
Let � > 0 and assume that uε, vε, pε are defined for every ε < �. Let q be stronger
than every condition in {pε ; ε < �}. By the inductive hypothesis (Claim 5), the
nodes 〈uε ; ε < �〉 form an R-chain whose levels are sets in [�]<�+ . The union of
the levels of these nodes is a set X in [�]<�

+
and since ḃ is forced to be a cofinal

R-branch we can find a node h of level above X and a condition q∗ ≤ q such that
q∗ � h ∈ ḃ. It follows that uε R h, for all ε < �. Since there is no cofinal branch in
V for the system, we can find twoR-incompatible nodes u�, v� ∈ E and a condition
p� ≤ q∗ such that h R u�, h R v� and p� � u� ∈ ḃ. That completes the construction.
The sequence 〈v� ; � < �〉 is as required: for if � ′ < � < �, then by definition u�′
and v�′ are R-incompatible, and u�′ R v�, hence v�′ and v� are R-incompatible as
well. �
Theorem 5.6 (Preservation theorem). In a modelV,we let � be a singular cardinal
of countable cofinality and let � ≥ �+. Let {Ri}i∈I be a system on D × � (with
D ⊆ [�]<�+ cofinal ), let P be a forcing notion and let G ⊆ P a generic filter over V.
Assume that
(1) max(|I |, �) < �;
(2) P is κ-closed for some regular κ between max(|I |, �)+ and �;
(3) in V [G ] there is a system of branches {bj}j∈J through {Ri}i∈I such that
(a) J ∈ V and |J |+ < κ;
(b) for some j ∈ J, the branch bj is cofinal.

Then, for some i ∈ I, there exists in V a cofinal Ri -branch.
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Proof. Suppose for contradiction that V has no cofinal branches for the system
{Ri}i∈I . Let {ḃj}j∈J be P-names for the branches of the system of branches in the
generic extension. The idea of the proof is similar to the proof of Silver’s lemma
above and it follows three steps.
(1) We consider just the ḃj’s that are forced to be cofinal and for every such ḃj ,
we use the Splitting Lemma to build � many incompatible nodes that are
forced to belong to ḃj , where � is a cardinal between max(|J |, |I |, �) and κ.

(2) By using the κ-closure of P and the fact that there are less than κ many
possible cofinal branches, we find a name ḃ for a R-branch and � many
R-incompatible nodes 〈u	 ; 	 < �〉 that are forced by “nice conditions” to
belong to ḃ.

(3) As � < �+, all these nodes are below some level X ∈ D and we can find a
node w on a level above X which is forced by those conditions to belong to
ḃ as well. Then we have a contradiction, as w stands in the relation R with
R-incompatible nodes below it.

We work in V. Fix, for every j ∈ J a condition pj deciding whether or not ḃj is
cofinal. We can choose the pj ’s so that they form a decreasing sequence, then by
the κ-closure of P (recall |J | < κ) there exists a condition p deciding, for every
j ∈ J whether or not bj is cofinal. We let B := {j ∈ J ; p � ḃj is not cofinal}. For
every j ∈ B, fix Xj ∈ [�]<�+ such that p forces that dom(ḃj) has empty intersection
with every Y ⊇ Xj. Since B has size less than �, the set X ∗ :=

⋃
j∈B
Xj is in [�]<�

+
.

Let C ∗ := {Z ∈ D; X ∗ ⊆ Z}. Define A := {j ∈ J ; p � ḃj is cofinal}, then by
hypothesis A is nonempty (Claim 5.6). Moreover, by strengthening p if necessary,
we can assume

p � ∀X ∈ C ∗∃j ∈ A(X ∈ dom(ḃj)) (1)

(use condition 2 ofDefinition 5.3 and the definition ofC ∗). As the size ofA is less
than the closure of the poset, we can fix for every a ∈ A, a relationRa in the system
such that p � ḃa is an Ra -branch. Fix a regular cardinal � between max(|J |, |I |, �)
and κ, we prove the following claim.
Claim 5.7. Let � be a well ordering (strict) of A. For every a ∈ A, we can define

〈qa	 ; 	 < �〉 and 〈ua	 ; 	 < �〉 such that
(1) for all 	 < �, qa	 ≤ p and qa	 � ua	 ∈ ḃa ;
(2) the nodes 〈ua	 ; 	 < �〉 are pairwise Ra -incompatible;
(3) for all 	 < �, the sequence 〈qc	 ; c � a〉 is decreasing, i.e., if b � c, then qc	 ≤ qb	 .
Proof. We proceed by induction on the ordering � . Assume that the sequences
have been defined up to a ∈ A (i.e., for every c � a). For every 	 < �, let r	 be
stronger than every condition in the set {qc	 ; c � a} (the sequence 〈qc	 ; c � a〉 is
decreasing by Claim 5.7) and let E	 := {u ∈ D × �; ∃q ≤ r	(q � u ∈ ḃa)}. For
all 	 < �, there exists 〈v	� ; � < �〉 like in the conclusion of Lemma 5.5 applied to
r	 and ḃa . Let X	 ∈ [�]<�+ be such that the level of each v	� is below X	 and let
X ∗ �

⋃
	<�
X	 in D.We want to define the sequence 〈ua	 ; 	 < �〉 with each ua	 ∈ E	
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belonging to a level above X ∗.We proceed by induction: suppose we have defined
〈ua	 ; 	 < �〉 for some � < �. For every 	 < �, there is at most one � < � such
that v�� Ra u

a
	 (because the v

�
� ’s are pairwiseRa -incompatible), let �	 be that unique

index if it exists and let �	 be 0 otherwise. Choose � ∈ � \ {��	 ; 	 < �}, then for all
	 < �, the nodes v�� and u

a
	 areRa -incompatible. Let u

a
� ∈ E� be such that v�� Ra ua� .

Then, for all 	 < �, the nodes ua	 and u
a
� areRa -incompatible. Since for every 	 < �,

we have ua	 ∈ E	, we can find a condition qa	 ≤ r	 such that qa	 � ua	 ∈ ḃa. That
completes the proof of the claim. �
We return to the proof of the theorem. Condition 3 above guarantees that for
every 	 < �, the sequence 〈qa	 ; a ∈ A〉 is decreasing. Since A has size less than κ, we
can find for every 	 < �, a condition p	 stronger than all the conditions 〈qa	 ; a ∈ A〉
and there is Y	 ∈ D such that the nodes in {ua	 ; a ∈ A} belong to levels below Y	.
Let Y ∗ ∈ C ∗ be such that Y ∗ ⊇ ⋃

	
Y	 . For all 	 < �, we fix p∗	 , w	 and a	 such that

p∗	 ≤ p	, w	 is a node on level Y ∗, a	 ∈ A and p∗	 � w	 ∈ ḃa	 (use Equation 1).
Since |A|, � < �, there is w∗ on level Y ∗ and a∗ ∈ A such that w	 = w∗, a	 = a∗,
for almost all 	 < �. Let b∗ := ḃa∗ . Given two distinct 	, � < � large enough, if
u := ua

∗
	 and v := u

a∗
� , then the following hold:

(1) p∗	 � u ∈ b∗, p∗	 � w∗ ∈ b∗;
(2) p∗� � v ∈ b∗, p∗� � w∗ ∈ b∗.
It follows that u Ra∗w and v Ra∗w. However, u and v are Ra∗ -incompatible by
definition, and that leads to a contradiction. �

§6. The strong tree property at ℵ�+1. Now we are ready to prove the consistency
of the strong tree property at ℵ�+1. The structure of the proof of this theorem is
motivated by Neeman [13].

Theorem 6.1. Let 〈κn〉n < � be an increasing sequence of indestructibly super-
compact cardinals. There is a strong limit cardinal � < κ0 of cofinality � such that by
forcing over V with the poset

Coll(�,�) × Coll(�+, < κ0)×Πn<�Coll(κn,< κn+1),
one gets a model where the strong tree property holds at ℵ�+1.
Proof. Let κ denote κ0, for every � < κ we let

(1) R(�) := Coll(�,�) × Coll(�+, < κ0)×Πn<�Coll(κn,< κn+1);
(2) L(�) := Coll(�,�) × Coll(�+, < κ0);
(3) C := Πn<�Coll(κn,< κn+1).

Assume that � = supn κn. Note that for every � < κ, the forcing R(�) produces
a model where ℵ�+1 = �+. Fix H := Πn<�Hn ⊆ C generic over V. We work in
W := V [H ]. Assume for a contradiction that in every extension of W by L(�)
with � < κ, strong limit of cofinality �, the strong tree property fails at �+. For
every such �, let �� and Ḟ (�) ∈W L(�) be a name for a (�+, ��)-tree with no cofinal
branches. Let � = sup�<κ ��, without loss of generality we can assume that �� = �
for every �, since a (�+, ��)-tree with no cofinal branches can be extended to a
(�+, �)-tree with no cofinal branches (by Lemma 3.4). Note that for every � the
poset L(�) has the �+-covering property since it is κ0-c.c. Therefore, ([�]<�

+
)W is
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cofinal in the [�]<�
+
of any generic extension ofW by L(�). Given X,Y ∈ [�]<�+

and �, � < �, we will write �L(�) (X, �) <Ḟ� (Y, �) when

�L(�) the �-th function on level Y extends the �-th function on level X

(i.e., for every � and X, we fix an L(�)-name ė�X for an enumeration of the
level of X into at most � elements, then we write �L(�) (X, �) <Ḟ� (Y, �) when
�L(�) ė

�
X (�) = ė

�
Y (�) � X ). Consider the following set

I := {(a, b, �); � < κ is strong limit of cof � and (a, b) ∈ L(�)}.
We define a system S = {Si}i∈I on [�]<�+ × � as follows. Given i = (a, b, �) ∈ I,
for every X,Y ∈ [�]<�+ and for every �, � < �, we let

(X, �) Si (Y, �)⇐⇒def (a, b) � (X, �) <Ḟ� (Y, �).
First, we prove that we can shrink the system.

Lemma 6.2. There is, in W, an integer n < � and a cofinal set D ⊆ [�]<�+ such
that { Si � D × κn}i∈I is a system.
Proof. κ is indestructibly supercompact, so we can fix j : W → W ∗ a
�-supercompact elementary embeddingwith critical pointκ,where� is large enough
for the argument that follows. We have a∗ := j[�] ∈ W ∗ ∩ [j(�)]<j(�+). Let F ∗ be
the name j(Ḟ )(�), where Ḟ is the map � 
→ Ḟ (�). We denote by � � �<�+ the
set of all the strictly increasing sequences from an ordinal α < �+. into �. For
every s ∈ � � �<�+ , the image of s is a subset of [�]<�+ . We define a sequence
〈(ps , qs , �s , ns ); s ∈� ��<�+〉 such that
(1) (ps, qs) ∈ Coll(�, �) × Coll(�+, < j(κ)), ns < �, and �s < j(κns );
(2) (ps, qs) � (j[Im(s)], �s ) <F ∗ (a∗, 0);
(3) for every t � s in� ��<�+ , we have qs ≤ qt.
The sequence is inductively defined as follows. Let s : α → � be a strictly
increasing sequence, assume by inductive hypothesis that

〈(ps , qs , �s , ns ); s ∈ � ��<α〉
is defined. By condition (3), the sequence 〈qs�� ; � < α〉 is decreasing. Moreover,
Coll(�+, < j(κ)) is �+-closed, so there exists a lower bound q̄s for 〈qs�� ; � < α〉.
The set j[Im(s)] is in [j(�)]<j(�

+), so there exists ps ∈ Coll(�, �), qs ≤ q̄s in
Coll(�+, < j(κ)) and �s < j(�) such that

(ps, qs ) � (j[Im(s)], �s ) <F ∗ (a∗, 0).

If we let ns be the minimum integer such that �s < j(κns ), then ps, qs , �s and ns
satisfy conditions 1, 2 and 3 for the sequence s. That completes the definition.
For every X ∈ [�]<�+ we denote by sX the unique strictly increasing sequence
whose image is X (i.e., sX : o.t.(X ) → � and Im(sX ) := X ). As Coll(�, �) has size
less than �<�

+
, there is a condition p and a cofinal set D ⊆ [�]<�+ such that for

everyX ∈ D,we have p = psX . By shrinkingD,we can also assume that there exists
n < � such that n = nsX , for every X ∈ D.
Claim 6.3. { Si � D × κn}i∈I is a system.
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Proof. We just have to prove that it satisfies condition (3) of Definition 5.1. Fix
X,Y ∈ D, by construction we have
(1) (p, qsX ) � (j[X ], �X ) <F ∗ (a∗, 0),
(2) (p, qsY ) � (j[Y ], �Y ) <F ∗ (a∗, 0).
Take any set Z in D such that sZ � sX , sY (in particular Z ⊇ X,Y ), then qZ is
stronger than both qX and qY . Therefore, the condition (p, qZ) forces that:
(i) (j[X ], �X ) <F ∗ (a∗, 0);
(ii) (j[Z], �Z ) <F ∗ (a∗, 0);
(iii) (j[Y ], �Y ) <F ∗ (a∗, 0).
From (i) and (ii) follows (p, qZ) � (j[X ], �X ) <F ∗ (j[Z], �Z ); from (ii) and (iii)
follows (p, qZ) � (j[Y ], �Y ) <F ∗ (j[Z], �Z ). Then, by elementarity, there exists
� < κ and (p̄, q̄) ∈ L(�) and �̄X , �̄Y , �̄Z < κn such that

(p̄, q̄) � (X, �̄X ) <Ḟ� (Z, �̄Z ) and (Y, �̄Y ) <Ḟ� (Z, �̄Z ).
If i = (p̄, q̄, �), then we just proved (X, �̄X ) Si (Z, �̄Z ) and (Y, �̄Y ) Si
(Z, �̄Z ). �
That completes the proof of the lemma. �
To simplify the notation, we define Ri := Si � D × κn, for every i ∈ I.
Let m = n + 2, by the indestructibility of κm+1 forcing over W = V [H ] with
Coll(κm, 	)V for sufficiently large 	, adds an elementary embedding � : V [H ] →
M [H ∗] with critical point κm+1 and �(κm+1) > sup �[�] (use standard arguments
for extending embeddings).
Lemma 6.4. There is inV [H ∗] a systemof branches {bj}j∈J for the system {Ri}i∈I
with J = I × κn, such that for some j ∈ J, the branch bj is cofinal.
Proof. First note that since κn, |I | < cr(�), we may assume that �(I ) = I and
�({Ri}i∈I ) = {�(Ri)}i∈I . This is a system on �(D) × κn. Let a∗ be a set in �(D)
such that �[�] ⊆ a∗.For every (i, �) ∈ I ×κn, let bi,� be the partial map sending each
X ∈ D to the unique � < κn such that (�[X ], �) �(Ri) (a∗, �) if such � exists. By
elementarity, every bi,� is anRi -branch. Condition (2) ofDefinition 5.3 is satisfied as
well: indeed, if X ∈ D, then by condition (3) of Definition 5.1, there exists �, � < κn
and i ∈ I such that (�[X ], �) �(Ri) (a∗, �), hence X ∈ dom(bi,�). It remains to
prove that for some j ∈ J, bj is cofinal. For every X ∈ D, we fix iX , �X such that
X ∈ dom(biX ,�X ). The set I has size less than κm in W, moreover Coll(κm, 	)V is
κm-closed in V [Hm ×Hm+1 × . . . ] andW = V [H ] is a κm-c.c. forcing extension
of V [Hm × Hm+1 × . . . ], so I has size < κm even in V [H ∗]. On the other hand
|D| ≥ κm, so there exists a cofinal D′ ⊆ D and i, � in V [H ∗] such that i = iX and
� = �X , for everyX ∈ D′.This means thatX ∈ dom(bi,�) for everyX ∈ D′, namely
bi,� is a cofinal branch. �
V [H ∗] is a κm-closed forcing extension of V [H ] = W, so we can apply the
Preservation Theorem. Therefore a cofinal Ri -branch b exists inW, for some i ∈ I.
Assume that i = (a, c, �), for every X ⊆ Y in dom(b), we have

(a, c) � (X, b(X )) <Ḟ� (Y, b(Y )).
If G0 × G1 ⊆ L(�) is any generic filter containing the condition (a, c), then the
branch b determines a cofinal branch for Ḟ G0×G1� inW [G0 ×G1] contradicting the

https://doi.org/10.1017/jsl.2013.3 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2013.3


206 LAURA FONTANELLA

fact that Ḟ� is a name for a (�+, �)-tree with no cofinal branches. This completes
the proof of the theorem. �

§7. Conclusions. We proved that if infinitely many supercompact cardinals exist
in a model V, then there is a forcing extension of V where ℵ�+1 has the strong tree
property. We do not know whether ℵ�+1 can consistently satisfy even the super tree
property.
We also know (see [5]) that from infinitely many supercompact cardinals, one
can build a model where the super tree property (hence, in particular the strong tree
property) holds at every cardinal of the form ℵn+2, where n < �. Then, it is natural
to ask whether it is possible to combine the two consistency results and prove from
infinitely many supercompact cardinals, the consistency of the strong tree property
“up to” ℵ�+1, i.e., at every regular cardinal ≤ ℵ�+1 (above ℵ1). These problems
remain open.
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