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Abstract

A selective, multiple-criteria method is proposed for handling constraint violations in well-defined design problems.
First, the types of design problems upon which the method may apply are presented and a graph topology is adopted for
representing the problem decomposition in the level of design parameter interrelations~design parameter graphs!.
Next, the problem of constraint violations for the design parameters is discussed. It is shown that these violations can
be resolved by modifying the values of the primary design parameters and recalculating the values of the violated
parameters. Any “blind” attempt of modifying the values of the primary design parameters for resolving occurring
violations may, eventually, create additional violations. The proposed method guides the designer toward those primary
design parameters that present the least possibility of creating more violations when their values are modified. This is
achieved by applying multiple criteria and by producing a final, sorted list of primary design parameters. The designer
may then choose the first element of this list to handle efficiently the violations of the design parameters. Two examples
are given on a design space where constraint violations occur. Through these examples, the capability of the proposed
method in helping the designer to handle constraint violation is shown. The concluding remarks, except for summa-
rizing the potential of the method, determine its boundaries and include a reference on relative work currently under
investigation.
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1. INTRODUCTION

The design of products is an integrated engineering activity
that, during the last decades, has become the object of in-
tensive academic and applied research. This is due to the
fact that design has been widely accepted as a “sine que
non” process for the manufacturing of marketable, high-
quality products.

While design contributes toward products of high final
quality, the theory of design itself is still a discipline viewed
as a “soft,” rather than well-defined subject. According to
Dym ~1994!, this is mainly because it is not sufficiently math-
ematical and does not occupy a rigorous common vocabu-
lary for analyzing and describing itself as well as the products
designed. Therefore, during the last years, and in parallel
with solving specific design problems, research efforts have

focused toward establishing axioms, theories, methods, tech-
niques, and a terminology vocabulary that could apply—
with minor modifications—to a wide spectrum of design
problems.

Two major problems in the theory of design are the for-
mal representation of the available design knowledge and
its exploitation for producing feasible design solutions. Pure
mathematical tools and conventional computer-aided de-
sign ~CAD! environments, are only partially able to pro-
vide solutions for the above problems because they can
only in part represent and handle nonquantitative, empiri-
cal, and ill-structured knowledge. Recent achievements in
the field of Artificial Intelligence offer the opportunity of
overcoming—to a certain extent—these problems by pro-
viding methods and techniques that can capture, organize,
and exploit the available design knowledge to provide bet-
ter design solutions.

In design, a decomposition of the design problem is al-
ways required. This decomposition may be implemented in
different abstraction levels and under different aspects of
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view ~Banares-Alcantara, 1991!. More specific, someone
may decompose:

• the designed product into its parts;

• the design process into its discrete successive steps;

• the design problem into subproblems~Dym, 1994!; and

• the design parameters into simpler parameters~Den-
tsoras, 1996; Tsalides and Dentsoras, 1997!, etc.

While each time the type of decomposition depends upon
its scope, there must always be a valid method for its im-
plementation in a formal and robust way.

In every design problem there are always design con-
straints. There are different types of constraints~functional,
topological, material, etc.! that usually refer to different de-
sign issues and may appear during almost all the stages of
the design process~Cross, 1991; Serrano & Gossard, 1992;
Ullman, 1992!.

For the majority of the design problems, a large number
of design parameters and even a larger number of con-
straints are necessary for the satisfactory representation of
the inherent design knowledge. Concerning constraints, their
representation and handling during design are considered
difficult problems and various methods and techniques have
been proposed for their solution.

In the present paper, a selective, multiple-criteria method
is presented for resolving constraint violations in well-
defined design problems. The method uses directed graph
structures for the representation of the design parameters
and does not require the construction of constraint net-
works. Because one or more violations may occur for one
or more design parameters, it is shown that these violations
can be resolved by modifying the values of some primary
design parameters and by recalculating, subsequently, the
values of the violated parameters.

Any “blind” attempt of modifying the values of the pri-
mary design parameters for resolving the violations may,
eventually, create additional violations. The method guides
the designer toward only those primary design parameters
that are related to the violated design parameter and present
the least possibility of creating additional violations when
their values change. For any violated parameter, multiple
successive criteria apply which, through a systematic search
on the design parameter graph structures, produce a sorted
list of primary design parameters. Then, the designer may
choose a primary design parameter from this list and try to
resolve efficiently the violation through repetitive value as-
signments to this primary design parameter accompanied
by propagation of its value.

The proposed method does not aim in ensuring that there
will always be a solution to the problem of constraint vio-
lations for a design problem. Its main concern is to avoid
the generation of more violations and help the designer to
handle efficiently the occurring violation. The program code
for the implementation of the method was written in Micro-
soft Visual Basic version 5 and developed as a module of an
already existing design environment EXTDSEARCH~Den-

tsoras, 1996; Tsalides & Dentsoras, 1997! used for solving
well-defined design problems.

2. WELL-DEFINED DESIGN PROBLEMS—
DESIGN CONSTRAINTS

2.1. Well-defined design problems

According to Dym~1994!, design problems are typically
open-ended because they usually present multiple accept-
able solutions. They are also ill-structured because the
solution-finding process—for most of cases—is not rou-
tine and cannot be represented by a series of mathematical
formulae and rules. However, there are many design cases
based upon a critical amount of well-established design
knowledge repeatedly tested in everyday design practice.
This knowledge can be expressed as formulae and rule sets
that produce acceptable solutions. This is the case mostly
for routine problems~see below!. These problems are con-
sidered aswell-definedand, as a consequence, the represen-
tation of the corresponding knowledge is much easier than
for the case of ill-structured problems. Cross~1991!, addi-
tionally, considers well-defined design problems having of-
ten only one correct answer~solution!.

During the last years, there has been a large research ef-
fort toward establishing a widely accepted taxonomy for the
various kinds of design problems. Although this work has
not yet been accomplished, there is a consensus~Dym, 1994;
Tong & Sriram, 1992; Ullman, 1992! that any design prob-
lem can be classified under one—or a combination—of the
following types:Selection design, configuration design,
parametric design, original design, redesign, and routine
design. ~Some authors use different names to describe the
same type of design problem.!

The above classification of the design problems is based
on differences concerning various aspects and characteris-
tics of the design problem under consideration. For exam-
ple, in original design, a lot of creative work has to be done
during the stage of conceptual design to produce new ideas.
These will be later elaborated—during the stage of detailed
design—to produce final solutions. In contrast, for the prob-
lems of the routine type and for the most of the cases, the
stage of the conceptual design is almost absent. The design
process presents the form of a well-established procedure
that, when followed strictly, will produce feasible design
solutions.

Routine design is the most typical representative of well-
defined design. In routine design, the inherent knowledge
can be represented and handled easier than for other ill-
structured types of problems. This fact does not retract, how-
ever, any possible complexity of the problem itself and does
not reduce the effort for introducing better representation
schemes and establishing better knowledge handling strat-
egies for its solution.

In the present work, the domain of interest is restricted to
well-defined, routine design problems. It is assumed that
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design is performed in nonautomated, designer-defined man-
ner that allows value assignments only to primary design
parameters~see Section 3.1!. The knowledge of the prob-
lem can be expressed by formulae, rule sets, and databases.
For the representation of the design knowledge, it is as-
sumed that its decomposition can be implemented on the
following levels~Dentsoras, 1996!:

• problem~tasks or subproblems! and

• parameters~derived and primary!.

The design parameters and the design tasks are represented
by frame-like structures~Dentsoras, 1996!. Their interrela-
tions are expressed formally through design parameter graph
structures~see next section!. Then, a simple depth-first search
method is applied on those structures and feasible solutions
are generated. On these solutions, multiple designer-defined
criteria may apply which, through a filtering process, will
produce the final solutions~Dentsoras, 1996!.

2.2. Design constraints

In every design problem, there are always constraints that
restrict the number of its final acceptable solutions. These
constraints can either appear as initial requirements during
the stage of the problem’s statement or be produced during
the design process as a result of the decisions made by the
designer~Ullman, 1992!.

Many design problems are considered as constraint-
satisfaction problems~CSP! because their solution depends
on the ability to articulate, apply, and satisfy the constraints
that form the implicit statement of the design goals~Dym,
1994!. The constraints comprise a part of the knowledge
about the problem itself and they must be represented and
handled together with the rest of the knowledge in every
stage of the design process. Various models have been pro-
posed for their representation and handling.

There are several methods that may apply for the solu-
tion of a CSP. The most common is the generate-and-test
method, where each possible combination of the param-
eters is systematically generated and tested to see whether
it satisfies all the constraints~Kumar, 1992!. A more effec-
tive method is backtracking where as soon as all the param-
eters relevant to a constraint are instantiated, the validity of
the constraint is checked. Then, in case a violation occurs,
backtracking is performed to the most recently instantiated
parameter~Kumar, 1992!.

A problem connected with the backtracking method is the
consideration of the order for the instantiation of the param-
eters. According to the search rearrangement method pro-
posed by Bitner and Reingold~1975!, the parameter with
the fewest possible remaining alternatives is selected for in-
stantiation. The instantiation order is different in different
branches of the constraint tree and is, generally, dynami-
cally determined. Freuder and Quinn~1985! proposed a heu-
ristic method according to which these parameters are

instantiated first that participate in the highest number of
constraints. This approach results in early pruning of the
nonsuccessful branches of the constraint tree.

According to a paper by Brown~1985!, constraint fail-
ures ~violations! are the most common failures occurring
during the design process. Because the problem is always
the proper handling of these failures, failure handlers and
redesigners are introduced in this paper together with a pre-
sentation of action and knowledge concerning failure
recovery.

Brown and Chandrasekaran~1992! investigate the knowl-
edge and control structures that characterize design as a ge-
neric problem-solving activity. They consider constraints as
agents that test for interrelations between attributes at any
stage of the design process. One kind of failure that may
occur during design is constraint violation. This violation is
handled as a demand for redesign and is treated as soon as
it occurs by proper modules, namely Failure Handler and
Redesigner.

In one of their early papers, Serrano and Gossard~1988!
present a constraint-based environment for Mechanical CAD
that can be used for the early stages of design. The manage-
ment of the constraints is implemented through constraint
networks of directed graphs. The authors also present tech-
niques for the evaluation of constraint networks, the detec-
tion of over- and underconstrained systems of constraints,
as well as for the identification and correction of redundant
and conflicting constraints. Constraint management is im-
plemented in the concept modeler—a system for concep-
tual design—and is based on the causal-dependency sphere
metaphor introduced by the authors. In a later work of the
same authors~Serrano & Gossard, 1992!, reference is made
to sensitivity analysis concerning the interdependency be-
tween design parameters. They conclude that this sensitiv-
ity analysis may be used for the constraint system too. They
present also a short mathematical analysis that covers the
subject of the estimation of the requested sensitivity of a
certain design parameter.

Taylor and Corlett~1993! present a knowledge-based ap-
proach to CAD and propose a methodology based on the
successive refinement of the design constraints imple-
mented by the ALFIE expert system.

A framework introduced by Mittal and Araya~1992! and
based partly upon the expert system PRIDE, applies to well-
defined design spaces and organizes the relevant knowl-
edge as design plans. The authors emphasize the fact that,
for such kinds of design spaces, the process of generating
alternative designs is largely a process of searching these
spaces. They also describe a problem-solver that executes
the design plans and uses information produced from a con-
straint violation as feedback for modifying a partial design.

Nadel and Lin~1992! consider the automation of auto-
mobile transmission design as a constraint satisfaction prob-
lem that involves three components: variables, values, and
constraints. The problem is represented by corresponding
sets of these components and Cartesian products. It is then
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reduced in finding value-tuples in the overall Cartesian
product.

Marcus et al.~1988! presented the expert elevator de-
signer VT that was based on the edge-acquisition tool SALT
developed by the authors. VT uses the strategy of construct-
ing a plausible approximation and then successfully refin-
ing it through extensive backtracking search on the constraint
graphs.

In the present paper, design constraints are considered as
attributes of the design parameters and are embodied as
attribute slots in their representation frames. The test for con-
straint violations is performed in parallel with the assign-
ment of values to the parameters.

The method described below is based on the fact that any
violations of the design constraints can be resolved by mod-
ifying the values of the primary design parameters that the
designer has full access to and by recalculating the prob-
lematic parameters according to these modified primary pa-
rameters. In this context, the problem solved is not a CSP
because no method is provided for obtaining the modified
set of primary design parameter values that would satisfy
all constraints and resolve the constraint violation. In con-
trast, when applied in constraint violation cases, the method
helps the designer to handle the primary design parameters

in a way that minimizes the possibility of producing new
violations. Below, an analytical presentation of this method
is given.

3. A SELECTIVE, MULTIPLE—CRITERIA
METHOD FOR RESOLVING
CONSTRAINT VIOLATION

3.1. Introduction

In every well-defined design problem, a minimum number
of design parameters are required to express the built-in de-
sign knowledge. Thedeterminative interrelations~calcula-
tion formulas, expressions, procedures, rules, etc.! among
these parameters can be representedby design parameter
graph structures~DPGS!. Every design parameter can be
expressed by a respective DPGS so that the number of
DPGSs is always equal to the total number of the design
parameters.

A design parameter graph structure is:

1. connected~Bose & Ellacot, 1991! because there is at
least one path between every pair of design param-
eters and

Fig. 1. Schematic representation of a DPGS for design parameter 1. The grey-coloured parameters are primary.
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2. directed~Bose & Ellacot, 1991!, always starting from
its leaves~ primary or independent design param-
eters)toward its root~root design parameter or sim-
ply design parameter)through one or morederived
design parameters.

As an example, a schematic representation of a DPGS for
design parameter 1~root design parameter! is shown in Fig-
ure 1. Its value arises from the values of the design param-
eters in the lower level. For each one of those parameters, a
unique DPGS can also be drawn.

Any DPGS can be considered as aunionof one or more
DPGS. This can be expressed as follows:

IF: G1 5 ~D1,C1! is a DPGS that consists of a set of
design parameters:

D1 5 $d1,d2, . . . ,dd%,d ≥ 1

and a set of relations between them:

C1 5 $c1,c2, . . . ,cd%,d ≥ 0

andG25 ~D2,C2! is another DPGS that consists of
the set of design parametersD2 ~not necessarily dif-
ferent fromD1! and the set of relationsC2 ~not nec-
essarily different fromC1!,

THEN: theunionof these two graphs is also a DPGS graph
G3 5 ~D3,C3!:

G3 5 G1 ø G2 with D3 5 D1 ø D2 andC3 5 C1 ø C2.

For the case thatDi has only one element, thenCi is man-
datory an empty set~index c 5 0!. As a consequence, the
corresponding DPGS contains one vertex and no relations.
This is the case for theG sets of the primary design param-
eters only.

According to the proposed approach, to assign a value to
a certain design parameter, it is necessary to construct its
DPGS from other, simpler DPGSs~synthesis of several
DPGS! by applying recursive procedures. For the genera-
tion of the set of primary design parameters in a certain
DPGS, a reverse process~analysis! is needed, which can
also be implemented by applying recursive procedures. In
both cases, a subset is used of the set containing all the de-
sign parameters of the problem under consideration.

Depth-first method~Rich & Knight, 1991! is used as a
recursive search procedure for synthesis and analysis. The
use of this exhaustive technique is necessary because no heu-
ristic knowledge is provided concerning the relationships
among the design parameters. By applying this method, the
DPGS for any design parameter can be constructed easily
and all the primary design parameters in this DPGS can be
located easily. The depth of a DPGS for a certain design
parameter varies according to the amount of its interrela-
tions with other parameters. This depth is equal to zero only
for primary design parameters. Therefore, the complexity

of the algorithm for constructing DPGSs and locating pri-
mary design parameters depends upon the design problem
under consideration. More specific, it depends upon the de-
composition into different tasks and subtasks and it can not
be determineda priori.

Consider the design parameterdv and its DPGSGv 5
~Dv,Cv!. For this parameter, it is further assumed that a vi-
olation has occurred. By applying the depth-first method, a
list Lv of primary design parameters can be formed. For ex-
ample, if design parameter 4 has been violated~see Fig. 2!,
then the corresponding list will beL4 5 21,33,32,31,9. The
D-sets of these primary parameters have only one member
and theirC-sets are empty.

Any value change for any of the parameters in the list Lv

may resolve the violation for the parameter dv. Then,through
a recursive synthetic process (see above), the value of dv

will be recalculated and may be found within the accept-
able limits.Therefore, the designer may eventually over-
come the violation ofdv through repetitive value assignments
to the parameters of theLv list.

While trying to resolve the violation fordv by changing
the values of the parameters of the listLv, there is always
the possibility of generating additional violations to other
parameters’ constraints. So, there must be a method that
would suggest to the designer to use that primary parameter
from the listLv that presents the least side effects for the
rest nonprimary parameters. The above problem can be
solved through a rearrangement of the listLv in ascending

Fig. 2. Schematic representation of a DPGS for design parameter 4. The
grey-coloured parameters are primary.~The above DPGS is a subpart of
the DPGS for design parameter 1, see Fig. 1!
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order. Then the first element of this list is the primary de-
sign parameter that will produce the least side effects when
its value is changed to produce a new value fordv.

For the arrangement of the elements of the list, four cri-
teria are proposed. These criteria are then combined to com-
prise an integrated method. Additionally, weight coefficients
are used to produce the final sorted list. The detailed analy-
sis is given below.

3.2. Criterion 1: Distance from the violated
parameter

The distance of a primary design parameter in a DPGS is
equal to the number of the arcs connecting the vertices along
any path starting from it and ending to the root vertex. Ac-
cording to this criterion, the shorter the distance of the pri-
mary design parameter from the violated parameter along a
path of its DPGS, the smaller the possibility of producing
additional violations when its value changes. Indeed, any
intermediate vertex~parameter! in this path has a determi-
native relation with the primary design parameter and is a
candidate for possible violation. So the less the intermedi-
ate vertices, the smaller will be the possibility of producing
additional violations.

By calculating all the distances of the members of theLv
from dv, the originalLv can be rearranged in an ascending
order. Because there may be more than one paths from a
primary parameter to a violated parameter and, therefore,
more than one distances, the maximum of them is always
considered.

As an example, suppose that:

Lv 5 d1,d2,d3

and:

dist~d1,dv! 5 3

dist~d2,dv! 5 max$dist~d2,dv!1, dist~d2,dv!2% 5 max$3,4% 5 4

dist~d3,dv! 5 1,

where there are two paths fromd2 to dv. Then the listLv
will be rearranged as:

L1 5 d3,d1,d2.

3.3. Criterion 2: Distance from the design
parameter of the maximum G-set

In every design problem, there is always a design parameter
with the maximumG-set. The DPGS of this parameter con-
tains the largest number of design parameters when com-
pared with the DPGSs of the rest parameters. The DPGS of
this parameter may either contain the violated design pa-
rameter, which implies that contains all the parameters of
its Lv, or one or more of the parameters in theLv. In every
case, the distance among each primary parameter in theLv

and the design parameter with the maximumG-set must be
determined and the originalLv must then be rearranged in
an ascending order. As an example, suppose that:

Lv 5 d1,d2,d3

and dg is the parameter with the maximumG-set. By as-
suming that the DPGSdg contains all the parameters inLv,
the corresponding distances are:

dist~d1,dg! 5 6

dist~d2,dg! 5 max$dist~d2,dg!1, dist~d2,dg!2% 5 max$5,6% 5 6

dist~d3,dg! 5 max$dist~d3,dg!1, dist~d3,dg!2% 5 max$2,1% 5 2

where there are two paths from bothd2, d3 to dg. Then the
list Lv will be rearranged as:

L2 5 d3,d2,d1.

The underlined elements inL2 present the same distance
from dg.

3.4. Criterion 3: Number of parent
design parameters

A primary design parameter connected to a number of par-
ent parameters is more suspicious for producing additional
constraint violations than one with a smaller number of par-
ent parameters. So, an estimation is done of the number of
the parent design parameters for each member of the orig-
inal Lv list. The list is then rearranged in an ascending or-
der. As an example, suppose that:

Lv 5 d1,d2,d3

and:

par~d1! 5 3,

par~d2! 5 1, and

par~d3! 5 1.

Then the listLv will be rearranged as:

L3 5 d2,d3,d1.

The underlined elements ofL3 present the same number of
parent parameters.

3.5. Criterion 4: Analytical determination
of affected parameters

According to this criterion, a detailed calculation is per-
formed of the number of all the affected parameters for each
primary design parameter in the original listLv and the cor-
responding lists are created. Then, depending on the num-
ber of the elements of each list, the originalLv list is
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rearranged in an ascending order. As an example, suppose
that:

Lv 5 d1,d2,d3

and:

al~d1! 5 d4,d7,d11

al~d2! 5 d6,d9,d11,d13,d15

al~d3! 5 d5,d8,d9,d10,d12,d17.

Then the listLv will be rearranged as:

L4 5 d1,d2,d3.

3.6. Combination of the criteria—The final list

In certain simple design cases, the above four criteria may
be applied individually to produce a sorted list of primary
design parameters. However, for most of the cases, the lists
produced by the application of the above four criteria must
be further submitted to a final elaboration to produce the
final sorted list. This list will be a product of the combined
action of those criteria and will also incorporate the influ-
ence of weight coefficients as follows:

Concerning the impact of each primary parameter’s po-
sition in the list, the weight coefficient of the first position
will be greater than the weight coefficient of the second etc.
Then:

IF: p is the position index of a primary parameterd in
a list L,

THEN: p 5 1,2, . . . ,n, wheren ≥ 1 is the number of the
primary parameters in the listLv,

Li , i 5 1,2,3,4 is the list produced by the applica-
tion of i-criterion,

~ fd, p!Li 5 appearance ofd in p-position in theLi

list ~its value can be either 0 or 1!,

fd,p 5 (i51
4 ~ fd, p!Li 5 frequency of appearance of

d in p-position for allLi lists and: 0≤ fd,p ≤ 4,

wp 5 weight coefficient ofp-position ~usually
wp 5 n 2 p 1 1, because the first position in the
list is more significant that second position etc.!.
Although the designer may choose another for-
mula or way to define the values of the weight
coefficients, s0he should take into account that the
ith position in a list is always more significant than
the ~i 2 1!th.

The final score for each primary parameterd in theLf list
will be given by the relation:

rd 5 (
p-1

n

~wp fd, p! 5 (
p51

n H~n 2 1 1 p! (
i51

4

~ fd, p!LiJ .

By applying the above relation for every primary parameter
in the list, a final ranking among them is obtained. Then the
designer can choose the parameter with the highest score
and assign a new value to it to force recalculation of the
violated design parameter.

For the case that the scores of two or more primary
parameters for a certain position in the final listLf are
equal, the problem can be solved by taking into account
the frequencies of appearance of these parameters for this
position.

Many physical and engineering problems are well-defined
design problems and can be represented by suitable design
parameter graph structures similar to that shown in Fig-
ure 1. Recently, Tsalides and Dentsoras~1997! used design
parameter graph structures to perform design of a belt con-
veyor. The DPGS shown in Figure 1 was extracted from
this design case and it refers to the determination of the con-
veyor belt width. The original parameter names were re-
placed by numbers to facilitate the analysis in the present
paper. The two examples given below were extracted from
the DPGS shown in Figure 1.

3.7. Examples

Consider parameter 4~see Fig. 1! as the violated parameter.
Its DPGS is shown in Figure 2.

After applying the depth-first method, the original list of
the primary design parameters is found to be:

Lv 5 21,33,32,31,9.

Next, the four criteria apply sequentially. The resulting lists
are:

1. dist~21,4! 5 3,

dist~33,4! 5 3,

dist~32,4! 5 max$dist~32,4!1, dist~32,4!2%

5 max$4,4% 5 4,

dist~31,4! 5 max$dist~31,4!1, dist~31,4!2%

5 max$4,4% 5 4,

dist~9,4! 5 2

and:L1 5 9,21,33,32,31.

The underlined elements inL1 present the same dis-
tance.

2. dist~21,1! 5 max$dist~21,1!1, dist~21,1!2, dist~21,1!3%

5 max$4,4,4% 5 4

dist~33,1! 5 max$dist~33,1!1, dist~33,1!2%

5 max$6,4% 5 6,

dist~32,1! 5 max$dist~32,1!1, dist~32,1!2%

5 max$5,5% 5 5,

dist~31,1! 5 max$dist~31,1!1, dist~31,1!2% 5 max$5,5% 5 5

dist~9,1! 5 3

and:L2 5 9,21,31,32,33.
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The underlined elements inL2 present the same dis-
tance.

3. par~21! 5 3, par~33! 5 2, par~32! 5 2, par~31! 5 1,

par~9! 5 1

and:L3 5 9,31,32,33,21.

The underlined elements inL3 present the same num-
ber of parent parameters.

4. al~21! 5 16,11,2,1,19,12,10,5,4

al~33! 5 23,20,16,11,2,1,10,5,4

al~32! 5 29,7,6,4,1,30,8

al~31! 5 30,7,6,4,1,8

al~9! 5 6,4,1

and:L4 5 9,31,32,33,21.

The underlined elements inL4 present the same number
of affected parameters. ListsL1–L4 form the basis for the
production of a final sorted list. For every primaryd param-
eter of the listLv and according to its position in this list, its
appearance in everyLi list and for every positionp is re-
corded. Then, for parameter 21:

p 5 1: i 5 1: ~ f21,1!L1 5 0

i 5 2: ~ f21,1!L2 5 0

i 5 3: ~ f21,1!L3 5 0

i 5 4: ~ f21,1!L4 5 0 and finally:f21,15 (
i51

4

~ f21,1!Li 5 0

p 5 2: i 5 1: ~ f21,2!L1 5 1

i 5 2: ~ f21,2!L2 5 1

i 5 3: ~ f21,2!L3 5 0

i 5 4: ~ f21,2!L4 5 0 and finally:f21,25 (
i51

4

~ f21,2!Li 5 2

p 5 3: i 5 1: ~ f21,3!L1 5 1 ~same distance with 33!

i 5 2: ~ f21,3!L2 5 0

i 5 3: ~ f21,3!L3 5 0

i 5 4: ~ f21,3!L4 5 0 and finally:f21,35 (
i51

4

~ f21,3!Li 5 1

p 5 4: i 5 1: ~ f21,4!L1 5 0

i 5 2: ~ f21,4!L2 5 0

i 5 3: ~ f21,4!L3 5 0

i 5 4: ~ f21,4!L4 5 1 ~same number of affected parameters

with 33!

and finally: f21,4 5 (
i51

4

~ f21,4!Li 5 1

p 5 5: i 5 1: ~ f21,5!L1 5 0

i 5 2: ~ f21,5!L2 5 0

i 5 3: ~ f21,5!L3 5 1

i 5 4: ~ f21,5!L4 5 1 ~same number of affected parameters

with 33!

and finally: f21,55 (
i51

4

~ f21,5!Li 5 2.

The frequencies of appearance for parameter 21 are shown
in Table 1, together with the frequencies of the rest param-
eters in the listLv. The table contains also the position weight
coefficients and the final scores.

The first row of Table 1 contains the position indices in
the lists. The second contains the corresponding weight co-
efficients. Then position 1 corresponds to the greatest weight
coefficient while position 5 to the smallest one. In the lower
part of the table, the frequency of appearance of each pri-
mary parameter in each position is given. For example, the
frequency of appearance of parameter 33 in position 3 for
all Li lists is 2. Finally, the right column in the table con-
tains the final scores for each primary parameter. For ex-
ample, the score for parameter 9 is calculated as follows:

r9 5 (
p51

5

~wp f9,p! 5 (
p51

5 H~5 2 1 1 p! (
i51

4

~ f9,p!LiJ
5 5{4 1 4{11 3{0 1 2{0 1 1{0 5 24.

According to the scores in the right column, the final list will
be: Lf 5 9,31,33,32,21. The equal scores between the
parameters 33 and 32 for the 3rd position inLf causes a mi-
nor problem that can be easily solved by comparing their
frequencies for that position. Because~(i51

4 ~ f33,3!Li 5 2! ≤
~(i51

4 ~ f32,3!Li 5 3! , parameter 32 presents a greater fre-
quency for that position in allLi lists and finally theLf

becomes:

Lf 5 9,31,32,33,21.

The designer may choose any of the primary parameters con-
tained in this list to change its value and recalculate the value
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of the violated parameter. However, by choosing the first
one, the danger of producing additional violations to other
nonprimary parameters is kept to a minimum according to
the analysis concerning the application of the four criteria.

For completing the presentation of the method, another
example~see Table 2! is given concerning the violation of
parameter 11~see Fig. 3 for its DPGS!. The final listLf is:

Lf 5 25,22,21,33.

Because there is no difference between the frequencies of
parameters 25, 22 for the first position to resolve the equal-
ity problem of the corresponding scores inLf , the designer
can either choose 25 or 22 as the parameter with the least
danger for producing more violations.

The proposed method can be easily programmed through
the extensive use of recursive procedures. By optimizing
the program code, the computation time is kept within rea-
sonable limits. A general outline of the list generation pro-
cedure is shown in Figure 4.

4. CONCLUDING REMARKS

In the present paper, a selective, multiple-criteria method is
presented for handling constraint violations in well-defined
design problems. The proposed approach is well-suited for
cases of well-defined design spaces where all the design
knowledge is knowna priori and can be configured as graph
structures in various decomposition levels. The method acts
as an assistance tool for the designer because it suggests
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those primary design parameters that present the least pos-
sibility of creating additional violations.

It is assumed that the designer has full access to all pri-
mary design parameters whose values can liberally modify
to obtain:

1. the calculation of the rest design parameters and

2. The relaxation of the occurring constraint violations.

If this access is constrained, then the method cannot oper-
ate because the constrained primary parameter~s! introduce
some degree of automation in the design process.

For the proposed method, all possible relations between
the violated parameter and the primary related parameters
are taken into account. The method combines four individ-
ual criteria to produce a sorted list of primary design pa-
rameters. The designer can liberally choose any of the
primary design parameters contained in this list to change
its value. However, by choosing the first one, the possibil-
ity for creating additional violations to other design param-
eters is kept to a minimum.

The proposed method can operate either during the cre-
ation of the design solutions or after that. Because the mech-
anism used for the creation of design solutions is a simple
depth-first method, every visited parameter can be checked
for violation of its value in parallel with its value assign-
ment. The search method is exhaustive, so it is ensured that
all the necessary parameters will be visited and checked for
violations. This implies that after a value assignment, a sorted
violation list will be created given that at least one con-
straint violation occurs.

Sometimes, when one or more design solutions have been
already produced, it becomes necessary to modify the val-

ues of one or more primary parameters in order to get so-
lution alternatives. This modification forces recalculation
of the nonprimary design parameters. For this case, any vi-
olation arising from the recalculation will be immediately
reported as a sorted list of primary parameters.

The program used for testing the method was created in
Microsoft Visual Basic version 5 environment. It was de-
veloped as a module of an already existing design environ-
ment EXTDSEARCH used for producing solutions in well-
defined design problems.

Although not implemented in the present paper, the
method may easily apply to a more abstract level of prob-
lem decomposition. If a design main task is divided into
subtasks and each subtask into more subtasks etc., then mul-

Fig. 3. Schematic representation of a DPGS for design parameter 11. The
grey-coloured parameters are primary.~The above DPGS is a subpart of
the DPGS for design parameter 1, see Fig. 1!

Fig. 4. The procedure for creating sorted primary parameters’ list.
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tiple design task graph structures may be created. Because a
task is considered to be violated if at least one of its design
parameters is violated, the method may create a sorted list
of subtasks that are related to and affect the violated one.
Then the designer knows into which subtask to intervene
first to resolve the violation without producing more vio-
lated subtasks. This approach is currently under investigation.
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