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mineral composition of large collections of rock samples

Ekaterina Fomina ,1,a) Evgeniy Kozlov ,1 and Svetlana Ivashevskaja2
1Geological Institute, Kola Science Centre, Russian Academy of Sciences, 14, Fersmana Street, 184209 Apatity, Russia
2Institute of Geology, Karelian Research Centre, Russian Academy of Sciences, 11, Pushkinskaya Street, 185910 Petrozavodsk,
Russia

(Received 16 September 2018; accepted 31 March 2019)

This paper presents an example of comparing geochemical and mineralogical data by means of the
statistical analysis of the X-ray diffraction patterns and the chemical compositions of bulk samples.
The proposed methodology was tested on samples of metasomatic rocks from two geologically dif-
ferent objects. Its application allows us to mathematically identify all the main, secondary and some
accessory minerals, to qualitatively estimate the contents of these minerals, as well as to assess their
effect on the distribution of all petrogenic and investigated trace elements in a short period of time at
the earliest stages of the research. We found that the interpretation of the results is significantly influ-
enced by the number of samples studied and the quality of diffractograms. © 2019 International
Centre for Diffraction Data. [doi:10.1017/S0885715619000435]
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I. INTRODUCTION

Many geologists, regardless of their scope of scientific
interests, face the problem of comparing mineralogical and
geochemical data. In most cases, this comparison is nearly
intuitive and limited to a simple collation of the geochemical
data and results of separately obtained mineralogical studies.
When selecting geochemical samples, geologists exert every
effort to make their collections as representative as possible.
To that end, they practice a diversity of specific sampling tech-
niques, whose purpose is to characterize a significant rock vol-
ume. In mineralogical investigations, on the contrary, local
methods (electron microprobe analysis, LA-ICP-MS, etc.)
dominate, and most of the used preparations (thin sections,
polished sections, etc.) have only two-dimensional sections
of sub-inch areas of a sample. Thus, a researcher deals with
a comparison of differently scaled objects, i.e. geochemical
data characterizes a significant rock volume, while mineralog-
ical data describes its parameters in a limited piece only.
Nevertheless, the latter is usually extrapolated to the same vol-
ume of matter that geochemical information was obtained for.
Such an extrapolation is incorrect, primarily for rocks with
taxitic structure. This includes all kinds of metasomatites, as
well as many magmatic and metamorphic formations. The
methodology we propose helps to compare mineralogical
and geochemical data obtained for the same volume of matter,
i.e. single-scaled matter.

Second, the problem is that the traditional approach to
comparing geochemical and mineralogical data is close to
“intuitive”. Since the information to be analyzed is complex,
this approach allows us to identify only the most vivid links.

Such a comparison is challenging even for a small collection.
However, representative sample set a priori must be large.
Methods of statistical data analysis have long been applied
to searching complex dependencies in geology (Jöreskog
et al., 1976; Swan and Sandilands, 1995; Davis, 2002). The
most important aspects of their application are the decreased
impact of an experimenter’s subjective view and the possibil-
ity of assessing the value of the revealed dependencies.
However, investigations with statistically compared mineral-
ogy and geochemistry are scarce. The development of this
study area with classical petrographic–mineralogical methods
is constrained by a very time-consuming process of collecting
a necessary amount of mineralogical information. For exam-
ple, the paper (Xie et al., 2003) highlights one of the few
examples of a thorough statistical comparison of geochemistry
and mineralogy, but it took more than 30 years to compile the
primary database.

In our approach, the X-ray diffraction patterns of the bulk
samples (the same powders as used for chemical analyses)
were used to reveal the mineral composition of the rock.
Considering the current level of analytical techniques, these
data are quickly obtained, even if samplings are vast. The
main problem of determining both qualitative and (especially)
quantitative mineral composition by classical methods is that
it is based on work with individual spectra, which is a labori-
ous task. Traditional standardless quantitative methods usu-
ally include sophisticated structure refinement procedures
(e.g., Rietveld refinement). Methods involving an internal
standard are not optimal for compact analysis and are often
prone to prediction errors caused by the intensity attenuation
(Moore et al., 2009). Moreover, they require a priori informa-
tion about the set of components. An effective solution to this
problem is to apply the statistical methods of blind signal
separation (i.e. the separation of a set of source signals from
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a set of mixed signals, without the aid of information about the
source signals or the mixing process), widely used in the study
of various spectral data obtained by X-ray powder diffraction
(XRPD), Raman spectroscopy, energy dispersive X-ray fluo-
rescence (EDXRF) spectrometry, and X-ray absorption spec-
troscopy (XAS). For blind signal separation in spectral data,
factor analysis (FA) in the modification of principal compo-
nent analysis (PCA), singular value decomposition (SVD), a
multidimensional regression method, multivariate curve reso-
lution (MCR), and other related methods are most often used.
These methods serve to solve a wide range of tasks, e.g.: (1)
analyzing large (thousands of spectra) datasets and increasing
the efficiency of data collection (Kirian et al., 2011; Angeyo
et al., 2012; Voronov et al., 2014; Palin et al., 2015;
Guccione et al., 2018); (2) determining the relations between
developments in XRD data and other systematically changing
properties (strength, viscosity, and volume) (Westphal et al.,
2015); (3) estimating the number of phases in the system
and identifying each phase (Artyushkova and Fulghum,
2001; Caliandro et al., 2013; Manceau et al., 2014); (4) reduc-
ing the influence of the signal-to-noise ratio (Sastry, 1997;
Schmidt et al., 2003; Chen et al., 2005; Walton and Fairley,
2005); (5) investigating the orientation and morphology of
crystalline phases (Matos et al., 2007); (6) tracking the devel-
opment of complex processes of compositional and structural
alterations in a multicomponent system (Westphal et al.,
2015); (7) performing the analysis of time-resolved experi-
mental data (Schmidt et al., 2003; Mabied et al., 2014); (8)
extracting kinetic information (the activation energy, the fre-
quency factor, the reaction order, etc.) (Palin et al., 2016;
Guccione et al., 2018). In our study, the solution of (1)–(3)
tasks from the above list is discussed, and the chemical com-
position of rocks is considered as systematically changing
properties.

This paper presents a version of the statistical comparison
of geochemical information with the mineralogical data con-
tained in the XRD-patterns using the “blind” application of
factor analysis in PCA modification. Importantly, it does not
require the time-consuming step of quantitative determination
of the mineral composition. Since methods of statistical pro-
cessing in widely available software packages (SPSS,
Statistica, etc.) are also simple, our method provides an
express statistical comparison of geochemical and mineralog-
ical data at the earliest stages of research. The size of the sam-
ple set influences the effectiveness of the method, and the
signal-to-noise ratio is not critical. If sampling is large (of
more than 40 samples), factor analysis allows us to identify
the entire set of main rock-forming, secondary and some
accessory minerals in the rocks.

II. ANALYSIS OF EXPERIMENTAL DATA

A. Research material and analytical methods

We investigated sample collections of two geological
objects of the Kola region (northwest Russia): 43 samples of
rare-earth carbonatites of the Petyayan–Vara field (the
Vuoriyarvi Devonian alkaline-ultrabasic carbonatite massif)
and 19 samples of the sillimanite schists of the Makzabak
mountain (contact rocks of the Keivy Precambrian supra-
crustal complex near alkaline granites of the Western Keivy
massif). With all the differences, all these rocks have a

pronounced taxitic structure and formation during several
superimposed metasomatic events (Kozlov et al., 2018;
Fomina et al., 2019). In this regard, the identification of the
relationship of a chemical element distribution with a specific
mineral association is an important task. Samples of each col-
lection are mixtures of more than ten minerals of variable
quantities.

The principal sample set for this research was the
collection of the Petyayan–Vara carbonatites, which is larger
and more widely studied both geochemically and by RFA.
The X-ray powder diffraction data of the bulk carbonatite sam-
ples were collected at room temperature by the Rigaku
MiniFlex II diffractometer, using a Cu target X-ray generator
operated at voltage 30 kV and current 15 mA. The scan
range of the Bragg angle (2θ) was from 3.00° to 70.00°
with a step width of 0.02° and a counting time of 2 s per
step. The obtained “raw” spectra are listed in the Electronic
Supplement (Table S1).

Since one of the research tasks was to determine the appli-
cability limits of the method, the diffractograms for samples of
sillimanite schists were collected less thoroughly. The X-ray
powder diffraction data of the bulk sillimanite samples were
collected at room temperature by the ARL X’TRA diffractom-
eter, using a Cu anode with Ni filter (Cu Kα = 1.54 Å). The
scan range of the Bragg angle (2θ) was from 5.00° to
75.00° with a step with of 0.02° and a counting time of 2 s
per step. Nickel filter was used to eliminate the CuKβ radiation
due to the using a goniometer without a monochromator. This
leads to an overestimated background. As a result, even visu-
ally it is noticeable that these diffractograms have a signifi-
cantly higher noise-to-signal ratio (Figure 1).

The purpose of the method was to compare the geochem-
ical and mineralogical characteristics of the rocks; therefore,
we made chemical analyses of the samples of both collections.
The contents of petrogenic and volatile components were stud-
ied with classical methods of “wet” chemistry at the GI KSC
RAS. Analyzing concentrations of SiO2, Al2O3, Fe2O3, MgO,
TiO2, SrO, average portions of the matter were decomposed
by melting with borax and soda, and then transferred into
the solution. A separate sample, also melted with borax and
soda, was used to determine the F content, while Cl was ana-
lyzed after sintering with KNaCO3. In addition, certain sam-
ples were decomposed by acid in the mixture (H2SO4 +
HNO3 + HF) to analyze concentrations of K2O, Na2O and
MnO; in the mixture (HNO3 + HF) to analyze P2O5; in a mix-
ture (H2SO4 + HF) to analyze FeO; and in nitric acid to calcu-
late the S content. To analyze CO2 content, the tested powder
was previously exposed to NaOH. Analyses of SiO2, Al2O3,
Fe2O3, MgO, CaO, SrO were carried out by the atomic absorp-
tion method; those of K2O, Na2O, MnO with the emission
method; TiO2, P2O5 with the colorimetric method; F, Cl
with direct potentiometric determination; CO2, FeO with titra-
tion; and Stot, H2O

+ and H2O
– gravimetrically. The measure-

ment error limits were 1.5% for concentrations >10 wt.%
and 3.5% for concentrations >1 wt.%.

Additionally, we analyzed the concentrations of trace
elements in the Petyayan–Vara carbonatites. They were
determined by inductively coupled plasma emission mass
spectrometry (ICP-MS) on the ELAN 9000 DRC-e quadru-
pole mass spectrometer (ICTREMRM KSC RAS). In this
case, a sample was transferred completely into the solution
after acid decomposition in glassy carbon crucibles, gradually
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adding distilled HF (triple addition and evaporation to wet
salts) and HNO3. The resulting sample solutions were diluted
in such a way that the intensities of the analytical signals cor-
responded to the selected calibration ranges. The precision of
the ICP-MS measurement is better than ±15% for most of ele-
ments. The Electronic Supplement provides the measured con-
tents of major and trace elements in the Petyayan–Vara
carbonatites (Table S2).

Thus, to test the proposed method, we used two sets of
data that differed significantly in their geological information
quality (number of samples, quality of diffractograms, com-
pleteness of the geochemical characteristics): “good” data
for the Petyayan–Vara carbonatites and “poor” data for the
Makzabak sillimanite schists.

B. Theory and calculation

As noted above, X-ray diffraction patterns served as a
source of mineralogical information on bulk rock samples in
the suggested method. This is based on the following set of
diffractograms properties:

• The powder diffraction pattern is an individual characteristic
of a crystalline substance;

• Each crystalline phase always displays the same diffraction
spectrum characterized by a specific set of interplanar dis-
tances d(hkl), which can also be represented in the values
of the 2θ angle, and the corresponding line intensities
I(hkl), unique to this crystalline phase;

• The X-ray diffraction spectrum of a mixture of individual
phases is a superposition of their diffraction spectra;

• The ratio of the intensities of crystalline phases present in a
sample is proportional to the content of the phases in it.

These properties are the basis of qualitative and quantita-
tive methods of X-ray phase analysis (Klug and Alexander,
1974; Jenkins and Snyder, 1996). In our case, it is also impor-
tant that intensities of individual peaks of each mineral are pro-
portional to each other and thus correlated. This allowed the
use of the factor analysis (FA) as a separator to sort data regard-
ing different mineral phases “hidden” in diffractograms, since
it focuses on emphasizing components of correlated data.

FA is aimed at ascribing a large and unwieldy set of orig-
inal (measured) variables to a smaller set of latent variables
called factors. In the actual study, FA was applied to minimize
the number of variables (factors) necessary to represent all

non-random differences in a united dataset of diffractograms
and chemical analyses of rock samples without losing signifi-
cant information. For this purpose, the principal component
analysis (PCA) was used. As a rule, FA is performed in two
steps: determining the factors and interpreting the factor
meanings. An FA is successful only if an interpretation can
be found for the factors.

Mathematically, the procedure for factor extracting can be
described as follows. Suppose we have a matrix of X variables
of (N ×M ) size, where N is the number of samples (rows) and
M is the number of independent variables (columns, in the pre-
sent study, 2θ values for XRPD + element contents), which
are usually numerous (M≫ 1). The analysis can be carried
out by examining either the correlation matrix, or the covari-
ance matrix for variables (R-technique), or the observations
(Q-technique) of the X matrix. Most often, the correlation
matrix for variables is examined, which requires additional
data processing (Jolliffe, 2002). The X matrix must be con-
verted to a standardized XS matrix. For this, each xij value is
replaced by a standardized value calculated by the formula

xSij =
xij − �xj
sj

,

where �xj is the mean and σj is the standard deviation.
The standardized data matrix is decomposed into a num-

ber of latent variables (factors) that maximize the explained
variance in the data on each successive factor, under the con-
straint of being orthogonal to the previous factor. They are
calculated as eigenvectors of the correlation matrix of the
standardized data, and the magnitude of the corresponding
eigenvalues represents the variance of the data along the
eigenvector directions (Wold et al., 1987). The initial dimen-
sionality of the dataset, equal to the number of columns (N ), is
reduced n, representing the number of the used factors. The
optimal value of n can be determined by considering the
sum of the eigenvalues of the used factors, which represents
the data variability explained by the chosen factors.

Decomposition of an XS data matrix is an operation of
data separation into a structure part and a noise part:

XS = TPT + E = Structure+ Noise,

where T is the matrix of scores, of size N × n, P is the matrix
of loadings, of size M× n, apex T means transpose, and n

Figure 1. The examples of raw diffractograms of the “good” and “poor” data sets (collections of the Petyayan–Vara carbonatites and the Makzabak sillimanite
schists, respectively).
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⩽min (N,M) (N is the number of samples, M is the number of
independent variables, n is the number of factors). The resid-
uals (noises) are collected in an E matrix such a way that T
describes the position of the samples in the new coordinate
system. P describes the new axis, which is built on the original
one. The score values describe the magnitude of a factor. The
loadings are basically the correlation coefficients between the
factors and the original variables. Statistical significance of the
loadings can be estimated using standard tests. In the actual
study, for the sample set of the Petyayan–Vara carbonatites
(43 samples), the factor loading (hereafter, rFA) critical
value module is 0.30 at a significance level of p = 0.05, and
0.48 at a significance level of p = 0.001 (correlation is insignif-
icant at rFA <|rFAcrit.|). For the sample set of the Makzabak sil-
limanite schists (19 samples), the corresponding values are
0.46 and 0.69, respectively.

In the decomposition step, the scores and loadings are
sorted according to the fraction of the total data variance
they are able to explain. To interprete the results is to decipher
the information hidden in the parameters of the scores and/or
the loadings. To simplify the interpretation of results, the pro-
cedure of orthogonal or oblique rotation of factors is com-
monly used at the final stage. Its task is to achieve the
so-called “simple structure”. The structure is considered sim-
ple, if only some of the loadings of each rotated factor are big,
while the others are close to zero. A rotation serves to repre-
sent each original variable by only a few (ideally, by one) fac-
tors. VARIMAX rotation (Kaiser, 1958), which is the most
commonly used orthogonal rotation in factor analysis
(Izenman, 2008), was applied. Starting with the first factor,
each factor is consecutively rotated to maximize the data var-
iance explained by this factor. Further details of FA and PCA
can be found elsewhere (e.g., Jöreskog et al., 1976; Wold
et al., 1987; Jolliffe, 2002).

A demonstrative example of how FA (PCA) results are
interpreted is the solution of the common mineralogical prob-
lem of determining isomorphism mechanisms. Variations in
the chemical composition of minerals are conditioned by the
occurrence of various elements in the same structural posi-
tion(s). The elements are strictly limited to the possible struc-
tural positions of the crystal lattice. They compete for these
positions and can enter the crystal structure either individually
or in groups, with the condition that the charge element is
retained. One element can simultaneously participate in sev-
eral isomorphic substitutions. For minerals of complex com-
position (with several structural positions), the discussed
problem is nontrivial. The effectiveness of the use of FA is
determined by the presence of “either-or” combinations (due
to the competition of elements) and “and-and” combinations
(occupation the position of one group of elements by either
another group or one element with the formation of a vacancy
to preserve the total charge). Since isomorphism is responsible
for variations in the chemical composition of minerals, the
application of FA to sets of chemical compositions of minerals
reveals information about this phenomenon. There, the iso-
morphic substitution reactions are reflected in factors. The val-
ues of the factor loadings indicate in which reaction(s) a
certain element participates. Elements connected by “and-
and” type are grouped due to high loadings of the same sign
(negative or positive). The “either-or” connection is realized
by separating competitors with factor loadings of different
signs. Factor values indicate the significance of each identified

isomorphism type in a particular analysis. Thus, FA is effec-
tive even in the study of minerals with complex chemical com-
position and structure (e.g., Selivanova et al., 2018).

This example shows the importance of the initial under-
standing of the causes of variability of the studied properties
(variables) for the quality of interpretation. In the actual
study, using the factor analysis, the intensities for the
XRPD-patterns and the contents of elements were studied.
Variations of all variables describing these properties are
determined by variations in the mineral content of the studied
rocks. The factors correspond to those parts of the total dataset
which belong to particular minerals, if the changes in their
content in the rocks are correlated. Hence, the values of factor
loadings indicate which parts of the rock spectrum contain the
lines of a particular mineral and which elements are concen-
trated in this mineral. Also, it displays the contribution of
the latter to the distribution of these elements in rocks.
Factor scores in this study are the numerical expressions of
the mineral(s) contents in each analysis.

We present the calculation algorithm on the example of
the Petyayan–Vara rare-earth carbonatites (“good” data).
Preliminary processing of the “raw” X-ray data for factor
analysis was done by fitting the graphs to baseline using
the CSM-3 software v.3.1.0.2 (Oxford Cryosystems).
Transformed in this way, the diffractogram represents an
array of numbers, wherein each variable (the value of 2θ
angle) corresponds to a certain intensity value. Since spectra
were taken in the range of 2θ from 3° to 70° at intervals
0.02°, each diffraction pattern was described by 3351 vari-
ables (hereafter, XRD-variables).

Prior to factor analysis, two procedures are required to
solve the problem of the analysis of data with equal and/or
zero variances (Jolliffe, 2002):

(1) The removal of variables, whose values became zero in all
diffractograms after fitting to the baseline;

(2) Adding any constant (for example, 1) to each intensity
value.

The X-ray data table based on the results of all the above
procedures, performed using Excel, is given in the Electronic
Supplement (Table S3).

Each sample, in addition to the X-ray data (3351 vari-
ables), was characterized by the contents of major and trace
elements (47 more variables; hereafter, geochemical vari-
ables). Since geochemical variables amount to about 1% of
the overall primary data, they did not have any noticeable
effect on the extracted factors structure. This was verified by
the following numerical experiment. The loading graphs of
factors extracted exclusively from data on diffraction patterns
are similar to the loading factors extracted from the combined
diffraction and geochemical data. Nevertheless, this method
allows for the relating of originally “mineralogical” factors
to the geochemistry of rocks.

The factors were calculated using generalized data
(Table S4) in the IBM SPSS Statistics v.23 software package.
The R- technique FA (“on variables”) was applied according
to the tasks assigned. Therefore, for the calculations, the
matrix of r coefficients between all pairs of “pre-prepared”
variables served as a basis. To extract the factors, the principal
component analysis was used. The factors with eigenvalues
exceeding 1 were extracted and rotated with the VARIMAX
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technique. The factor values were defined using the regression
analysis. All these steps are included in the standard settings of
the program. This allows the configuration of the analysis in a
matter of minutes regardless of one’s mathematical compe-
tence and experience of work with IBM SPSS Statistics, if
any. At this stage, obstacles may appear only due to the lack
of rotation convergence. This can be solved by increasing
the number of iterations (in our case, it took 107).
Supplementary Table S5 provides results of the calculations
(factor loadings, rFA).

C. Results

According to the results of factor analysis of the
Petyayan-Vara sample collection (“good” data), only 14 fac-
tors had any statistically significant influence on the distribu-
tion of major (Table I) and most trace elements (Table II).
Therefore, only these 14 factors were studied. Based on factor
scores and factor loadings on XRD-variables and geochemical
variables, these factors are determined by variations in the
contents of the following minerals (in order of their dispersion
decrease being explained by factors): baryte, dolomite, calcite,
ancylite-(Ce), microcline, phlogopite, fluorapatite, quartz,
strontianite, goethite, albite, aegirine, hydroxylbastnäsite-
(Ce), and ankerite (Figure 2).

The above list of phases almost entirely corresponds to the
set of main rock-forming and secondary minerals in the sam-
ples of the Petyayan–Vara collection. Factor scores reflect the
content of these minerals in the samples. This is evident when
comparing the content of barium and factor scores of the
baryte factor (baryte is the only host of Ba in the studied
rocks) (Figure 3). In all cases, the maximum values of the fac-
tor scores accurately indicate the samples richest in the mineral
to which this factor corresponds.

Factor loadings on XRD-variables are clearly similar to
the X-ray spectra of corresponding minerals from specialized

XRPD databases. For this study, ICDD PDF-2 database was
used. For comparison, preferably the patterns with star
quality marks (well characterized chemically and crystallo-
graphically, with no unindexed lines and Δ2θ ⩽0.03°) were
chosen. The similarity of factor loadings and the X-ray spectra
is clearly illustrated with an example of the fluorapatite factor
(Figure 4) corresponding to the spectrum (7) on Figure 2. A
comparison of the graphs of factor loadings values (rFA) and
the X-ray pictures of minerals revealed almost an
absolute coincidence of peak positions (the peaks positions
on the rFA graphs almost always differ from those on the dif-
fractograms of standards by no more than ±0.1°). However,
the intensities of these peaks are not equal. Based on data anal-
ysis, we found the peak heights on the graphs of factor loading
values do not only depend on the intensities of the correspond-
ing mineral reflexes (Figure 5). The diagrams show that the
positions of the most intense peaks of standards correspond
to the highest values of factor loadings. Nevertheless, weak
peaks are sometimes expressed in comparable rFA values,
although there are no rFA peaks near the position of many
small peaks of the standards. The intensity lines of other min-
erals adjacent to the considered reflexes appeared to obscure
peaks heights, thus reducing the values of factor loadings.
For the same reason, the graphs of factor loadings of apatite
and other listed minerals have unexpectedly high peaks from
rather weak mineral lines in segments of the spectrum free
from extraneous reflexes. The listed properties are well-
observed in the remaining 13 graphs of the considered factors.
Taking this into account, we identified the mineral phases cor-
responding to each factor by searching them in X-ray data-
bases, focusing specifically on the peak positions of the
factor loadings.

As per the conditions of the factor extraction, each of
them possesses significant loadings of one or several geo-
chemical variables, often reaching values of 0.8 or more.
Hereafter, such elements will be called “indicator elements”.

TABLE I. Factor loadings (rFA) of major components on factors significantly related to the distribution of elements in the rocks.

Component Brta Dol Cal Anc Mc Phl Ap Qz Str Gth Ab Aeg Bas Ank

SiО2 −0.23 −0.30 −0.04 −0.01 0.76 0.20 0.04 0.38 −0.05 0.08 0.16 0.14 0.07 0.04
TiO2 −0.25 −0.24 −0.05 −0.14 0.75 0.24 0.06 −0.06 −0.07 −0.08 −0.05 0.03 −0.11 0.09
Al2O3 −0.22 −0.31 0.03 −0.10 0.82 0.30 0.14 −0.08 −0.05 −0.01 0.18 0.03 −0.03 0.04
Fe2O3 −0.34 −0.39 0.03 −0.18 0.36 0.25 0.15 −0.09 −0.04 0.45 0.14 0.20 −0.06 0.01
FeO 0.29 0.47 −0.42 −0.32 0.02 −0.03 0.02 −0.02 −0.09 −0.16 −0.17 −0.08 0.03 0.37
FeO(T) −0.21 −0.17 −0.20 −0.38 0.41 0.26 0.18 −0.11 −0.10 0.41 0.06 0.18 −0.05 0.21
MnO 0.36 0.56 −0.23 −0.23 −0.39 −0.10 −0.05 −0.09 −0.07 −0.01 0.12 −0.02 0.13 0.12
MgO 0.13 0.59 −0.56 −0.25 −0.42 −0.03 −0.17 −0.04 0.00 −0.01 −0.06 −0.05 −0.03 −0.05
CaO −0.25 0.02 0.64 −0.26 −0.54 −0.18 0.06 −0.21 −0.11 −0.08 −0.10 −0.07 −0.05 −0.13
Na2O −0.17 −0.29 0.07 −0.10 0.31 0.04 0.08 −0.04 −0.01 0.00 0.41 0.75 −0.02 0.00
K2O −0.21 −0.27 0.01 −0.13 0.84 0.29 0.15 −0.07 −0.06 0.00 0.07 0.03 −0.04 0.04
P2O5 −0.17 −0.24 −0.02 −0.10 0.10 0.10 0.92 −0.08 −0.04 −0.04 −0.04 −0.04 0.00 0.03
CO2 −0.13 0.41 0.04 −0.11 −0.73 −0.25 −0.26 −0.11 0.03 −0.13 −0.11 −0.13 −0.01 −0.08
F −0.17 −0.27 −0.02 −0.07 0.06 0.69 0.62 −0.02 0.03 −0.04 −0.02 −0.01 0.10 0.00
S(T) 0.93 0.01 −0.12 0.25 −0.11 −0.06 −0.04 −0.03 −0.07 −0.01 −0.02 −0.04 −0.01 0.06
Cl 0.03 0.00 −0.19 −0.07 0.14 −0.04 −0.02 0.03 0.04 0.36 0.04 0.01 −0.12 0.11
SrO −0.08 −0.15 −0.03 0.72 −0.24 −0.06 −0.07 0.04 0.59 −0.06 −0.04 −0.05 0.04 −0.04
BaO 0.92 0.02 −0.12 0.19 −0.13 −0.06 −0.07 −0.06 −0.08 −0.03 −0.03 −0.04 −0.01 0.09
ΣREE2O3 0.02 −0.23 −0.05 0.88 −0.20 −0.06 −0.05 0.14 0.16 −0.01 −0.06 −0.05 0.17 0.01

Here and in Table II statistically significant loadings are bold.
aIn Tables I, II, as well as in Figure 2 factors are indicated by abbreviations of the corresponding minerals: Brt, baryte; Dol, dolomite; Cal, calcite; Anc,
ancylite-(Ce); Mc, microcline; Phl, phlogopite; Ap, fluorapatite; Qz, quartz; Str, strontianite; Gth, goethite; Ab, albite; Aeg, aegirine; Bas,
hydroxylbastnäsite-(Ce); and Ank, ankerite.
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These elements are either in the crystallochemical formula
of the corresponding mineral, or its typical impurities.
The examples are barium (0.92) and sulfur (0.93) loadings
on baryte factor, or lithium (0.96) on phlogopite factor.
On the one hand, these high loadings make it easier to iden-
tify a mineral corresponding to a factor. On the other hand,
concentrations of these elements are also geochemical
markers, allowing a rough estimation of a mineral content
in the rock, as confirmed by the petrographic research.
For example, there is no phlogopite in the samples from car-
bonatites with an Li content less than 10 ppm. Vice versa, in
rocks containing more than 10 ppm Li, the phlogopite
amount increases proportionally to the lithium concentration
and reaches its maximum in the sample most rich in Li
(450 ppm).

However, the above does not explain high loadings of zir-
conium (0.82) and hafnium (0.67) on the apatite factor, as well
as titanium (0.75), niobium (0.48) and tantalum (0.51) on the
microcline and several other factors. In addition, the minerals
of titanium, zirconium or niobium are not expressed in the rel-
evant individual factors, although, e.g., titanium oxides are
rock-forming in some samples.

In combination, the results obtained for the “good”
data proved the fact that the extracted factors are directly
related to the mineral composition of the rocks. Thus,
our approach is deprived of the main weak spot of factor
analysis, i.e., the challenging interpretation of obtained
results.

The statistical analysis of “poor” data is much more diffi-
cult to interpret. Only the first six of the 18 rFA graphs have
clearly distinguishable peaks. Moreover, only two factors are
marked by significant loadings on geochemical variables. The
morphology of the factor loading graphs differs from that con-
sidered earlier. First, the graphs are “noisy”, which, apparently,
reflects the high noise-to-signal ratio of the primary data. The
rFA graphs of the “good” sampling have the same “noisy” char-
acter in the range of 2θ from 3° to 20°, i.e. in the area almost
devoid of intense peaks and, as a consequence, with a high
“noise-to-signal” ratio as well. Second, these graphs have
both positive and negative peaks of rFA. Both have an equally
clear mineralogical interpretation. Thus, on the graph in
Figure 6, the peaks in the positive region of rFA fully corre-
spond to the peaks of the sillimanite diffractogram. The peaks
in the negative region correspond to the staurolite peaks.

The loadings on the geochemical variables obtained dur-
ing the analysis of “poor” data are as natural as in the case of
“good” data. Thus, for the “sillimanite–staurolite” factor in
the positive region (the sillimanite component of the factor),
the values of rFA on Al (0.63) and Si (0.90) are high. The
negative region (the staurolite component of the factor) has
expectedly high loadings on Mg (−0.82) and Fe (−0.95).
In this area, a “crystallochemically forbidden” factor loading
on P (−0.61) is present as well. We note that the rFA graphs
of the identified factors have no peaks, uniquely correspond-
ing to apatite (a rock-forming mineral for several samples of
our collection).

TABLE II. Factor loadings (rFA) of trace elements on the factors under consideration.

Element Brt Dol Cal Anc Mc Phl Ap Qz Str Gth Ab Aeg Bas Ank

Nb −0.13 0.00 −0.07 −0.10 0.48 0.24 0.06 −0.06 0.03 −0.10 0.03 0.13 −0.13 −0.07
Ta −0.19 −0.20 −0.10 −0.18 0.51 0.34 0.06 −0.13 0.22 −0.14 −0.09 0.03 −0.19 0.12
Zr −0.20 −0.23 −0.04 −0.13 0.06 −0.02 0.82 −0.01 0.00 0.10 −0.05 0.35 −0.01 −0.01
Hf −0.26 −0.29 −0.02 −0.09 0.14 0.02 0.67 −0.05 0.17 0.10 −0.07 0.47 −0.05 −0.01
U −0.26 −0.25 −0.01 −0.16 0.13 0.17 0.82 0.03 0.06 0.07 −0.06 −0.07 0.12 0.01
Th 0.21 −0.23 −0.03 0.10 −0.20 −0.10 0.32 0.14 0.03 −0.07 −0.09 −0.12 0.49 0.22
Li −0.08 −0.18 0.02 −0.06 0.14 0.96 0.06 −0.03 −0.01 0.00 0.02 0.03 −0.01 −0.01
Rb −0.20 −0.28 0.02 −0.12 0.73 0.52 0.12 −0.08 −0.06 −0.01 0.11 0.09 −0.03 0.04
Cs −0.09 −0.04 −0.03 0.05 0.12 0.69 0.08 −0.08 −0.12 −0.11 0.04 −0.06 −0.07 0.06
Y −0.20 −0.31 0.13 −0.06 0.05 −0.01 0.87 0.03 0.01 0.05 −0.01 −0.01 −0.04 −0.01
La 0.02 −0.23 −0.05 0.89 −0.20 −0.06 −0.05 0.12 0.14 −0.03 −0.05 −0.04 0.14 −0.01
Ce 0.04 −0.22 −0.07 0.87 −0.21 −0.07 −0.06 0.16 0.16 −0.02 −0.06 −0.05 0.21 0.01
Pr 0.05 −0.23 −0.08 0.86 −0.21 −0.07 −0.06 0.17 0.18 0.00 −0.06 −0.05 0.24 0.04
Nd 0.04 −0.23 −0.07 0.87 −0.21 −0.06 −0.05 0.15 0.17 0.01 −0.05 −0.05 0.22 0.05
Sm 0.18 −0.29 −0.09 0.77 −0.23 −0.09 0.07 0.22 0.12 0.05 −0.05 −0.08 0.30 0.05
Eu 0.23 −0.35 −0.10 0.72 −0.24 −0.10 0.21 0.18 0.11 0.06 −0.02 −0.07 0.27 0.12
Gd 0.02 −0.26 −0.06 0.85 −0.23 −0.08 0.03 0.14 0.15 0.01 −0.06 −0.06 0.23 0.03
Tb −0.02 −0.36 −0.02 0.72 −0.20 −0.10 0.30 0.18 0.09 0.06 −0.05 −0.07 0.23 0.01
Dy −0.19 −0.36 0.08 0.07 −0.01 −0.01 0.85 0.04 0.04 0.08 −0.01 0.00 0.03 0.03
Ho −0.20 −0.33 0.13 −0.03 0.05 0.01 0.86 0.03 0.02 0.06 0.00 −0.01 −0.02 0.01
Er −0.17 −0.31 0.15 −0.10 0.09 0.03 0.87 0.01 −0.01 0.06 0.02 0.03 −0.01 0.01
Tm −0.22 −0.32 0.12 −0.14 0.08 0.08 0.84 0.03 0.00 0.05 0.03 0.06 0.02 0.06
Yb −0.17 −0.36 0.21 0.01 0.03 0.04 0.83 0.03 −0.01 0.06 0.00 0.05 0.03 0.04
Lu −0.20 −0.37 0.22 −0.08 0.04 0.09 0.81 0.02 −0.02 0.03 0.03 0.11 0.01 0.06
Ni −0.22 −0.12 −0.06 −0.17 0.13 0.06 −0.05 0.14 −0.03 0.85 −0.17 0.01 0.11 0.04
Co −0.30 −0.20 0.23 −0.11 0.20 0.32 0.05 0.08 −0.08 0.53 −0.21 0.09 −0.07 0.11
V −0.20 −0.26 −0.05 −0.29 0.63 0.20 0.13 0.04 −0.06 0.23 −0.17 0.05 −0.09 0.13
Cr −0.14 0.13 0.20 −0.21 0.57 0.14 −0.05 0.15 −0.10 0.42 −0.12 0.24 0.13 −0.06
Cu −0.12 −0.09 0.15 −0.12 0.19 0.36 0.06 −0.11 0.44 0.15 −0.01 −0.16 −0.03 −0.06
Zn −0.13 0.24 −0.09 0.09 0.06 0.02 −0.03 0.31 −0.04 0.59 −0.06 0.05 −0.16 −0.06
Pb 0.04 0.02 −0.02 −0.18 0.20 0.04 −0.06 0.41 0.04 0.53 0.17 −0.04 −0.18 0.01
Mo −0.16 0.03 −0.15 −0.06 0.12 −0.06 −0.05 0.29 −0.01 0.83 −0.11 −0.08 −0.05 0.12
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Figure 2. (Colour online) The comparison of factor loading values (rFA) of the detected factors (blue lines) with peak positions in the diffractograms
corresponding to the mineral factors (red bars, IO – relative intensities, the largest peak value is 1). The rFA graphs are given in the descending order of
dispersion explained by a factor (the fraction of the latter is provided in square brackets). Diffraction patterns of the minerals are taken from the ICDD PDF-2
database, the corresponding PDF-cards numbers are in parentheses. Since all negative factor loadings are greater than critical value of −0.30 (p = 0.05), they
are excluded for simplicity.
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D. Discussion

1. The undertone of factor loadings

A diffraction pattern of each sample represents a sum of
“latent” diffractograms of minerals composing it. The absolute
intensity values of peaks on latent diffractograms depend on
the contents of the corresponding phases. Therefore, these
values vary, but always keep mutual proportionality. This
allowed us, using FA, to divide common diffractograms into
the components of each ХРВ-variable (intensity at a 2θ
angle) corresponding to a mineral. The XRD-part of a factor
is a combination of such components. In the case of an ideal
separation of primary data (a set of rock diffractograms, i.e.
mineral mixtures), these factors should be identical with the
diffractograms of separate minerals. This is indirectly testified
by the analogous peak positions in the rFA graphs and the
X-ray patterns of the reference minerals (see Figure 2).
Thus, rFA shows the impact of the reflex intensity of this min-
eral to the total (measured) intensity at the corresponding 2θ.
Therefore, for a mineral with peaks not obscured by “neigh-
bors”, around its reflections, the factor loadings of the corre-
sponding factor intensities tend towards 1 regardless of the
relative intensities of these reflexes. In our case, calcite is an
example of such a mineral (see graph 3 on Figure 2). For
each analyzed diffractogram, all the reflexes of the given min-
eral are intense and/or separate. This is displayed on the rFA

graph as peaks with subvertical shoulders and rFA values of
about 1, even for the smallest peaks. The rFA graph shows
how properly the latent diffractogram of the mineral reads in
the common diffraction pattern.

Factor loadings of geochemical variables have a different
meaning. The higher correlation between a mineral concentra-
tion in samples and reflexes intensities of its latent diffracto-
gram, the higher rFA value of an element is. Intensities of
these reflexes depend on the phase contents in samples.
Therefore, high (frequently, >0.8) factor loadings of the indi-
cator elements on complementary factors only testify to con-
centrations of such elements being proportional to the
minerals “responsible” for these factors. This is shown
above for the example of Li and phlogopite.

2. The reason for the appearance of “crystallochemically

forbidden” factor loadings, “loss” of factors and the

combination of several minerals into one factor

The proposed approach has high resolution if the sample
collections are large enough. This is confirmed by clear separa-
tion of Fe-dolomite and ankerite, which have extremely close
positions of all of their lines. Nonetheless, in some cases, the
separation was far from perfect. On the factor loadings graph,
the strontianite factor has high peaks at angles of 17.66° and
24.52° (see graph 9 on Figure 2), which are not typical for
diffractograms of this mineral. Equally bright peaks occupy
close positions (17.98° and 24.68°) on the rFA graph of
hydroxylbastnäsite (see graph 13 on Figure 2). The latter corre-
spond to the most pronounced reflections from the (002) and
(300) planes of hydroxylbastnäsite-(Ce). The reason for this
is that strontianite is closely associated with bastnäsite of
another generation. The considered “parasitic” peaks of the
rFA graph of strontianite indicate this “another” bastnäsite.
Their shift toward smaller values of 2θ may be caused by the
presence of fluorine rather than OH in its structure. It provides
significant differences in the crystal structure (Yang et al.,
2008), which probably causes the observed peak shift.

Consequently, the extracted factors at least in some cases are
the expression of not one but several minerals. Such a combina-
tion is possible only when the peaks of the latent diffractograms
of these minerals are proportional to each other, and, therefore, to
their content in rocks. Apparently, this indicates that the com-
bined phases have arisen in sub-stoichiometric amounts during
the same mineral formation reaction and are paragenetic.

Paragenetic connection is manifested not only as “para-
sitic” peaks. Earlier, we mentioned crystallochemically “forbid-
den” factor loadings of some elements: for example, zirconium
and hafnium on the fluorapatite factor. The host of these

Figure 3. (Colour online) Binary diagram “content of barium” (Ba, wt%) vs
“factor scores of the baryte factor” (Score).

Figure 4. (Colour online) The comparison of the fluorapatite X-ray diffractogram from the RRUFF database (analysis R050529, red line; IO – relative intensities,
the largest peak value is 1) with the factor loading values (rFA) of the detected apatite factor (blue line) for the 2θ-values ranging from 10° to 70°. Since all negative
factor loadings are greater than critical value of −0.30 (p = 0.05), they are excluded for simplicity.
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elements is zircon, but its content is so small that the concentra-
tion of Zr in the rocks does not exceed 320 ppm. Because of
this, there are neither zircon reflexes on diffractograms, nor
its “parasitic” peaks on the rFA graph of fluorapatite factor.
Despite this, extremely high rFA values for Zr and Hf directly
indicate the presence of these minerals in the paragenesis.
This was confirmed by a petrographic–mineralogical study.

Of no less interest is the appearance of significant factor
loadings of Ti, Nb and Ta on microcline and (less) phlogopite
factors (see Tables I and II). As was discovered, these HFSE
are concentrated mainly in Nb-rich titanium oxides repre-
sented by three polymorphic modifications (Kozlov et al.,
2018). Nevertheless, titanium or niobium minerals are not
expressed by their own factors with high loadings on Ti,

Figure 5. (Colour online) Binary diagrams of “peak intensities in the standard” (IO) vs “factor loading values in 2θ angles of these peaks” (r
FA) for the factors of

(a) dolomite, (b) calcite, (c) baryte, and (d) apatite. Red circles denote the presence of rFA peak in the range of ± 0.1° from the peak of a standards, blue squares
denote its absence. Diffraction patterns of the standards are taken from the ICDD PDF-2 database, the corresponding PDF-cards numbers are in parentheses.

Figure 6. (Colour online) The comparison of peak positions in the diffractograms of sillimanite (Winter and Ghose, 1979) and staurolite (Smith, 1968) [red bars
and green bars, respectively; IO – relative intensities, the largest peak value is 1] with the factor loading values (rFA) of the detected “sillimanite–staurolite” factor
(blue line) for the 2θ-values ranging from 10° to 70°.
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although they are rock-forming in some of the samples. This
happened because the most intense peaks of brookite (the pre-
dominant form of TiO2) mostly coincide with the microcline
peaks, and, consequently, are “lost” at the latter’s factor.

Thus, with a sufficient volume of primary data, the
“non-ideal” separation of minerals, combining them into one
factor, complicates interpretation, but also gives useful addi-
tional information about the mineralization processes and
the paragenetic links. Such a combination has the “and–and”
character, in contrast to the data “compaction” that occurs in
the case of an insufficient dataset size. In the latter case, the
main role is played by the “either–or” type of combination
due to the “squeezing” of minerals competing for a place in
the rock into one factor. Such information is of little impor-
tance for petrology.

3. Examples of using the results

As mentioned above, combining several phases into one
factor according to the “and–and” principle indicates their
paragenetic connection. For example, in our “good” dataset,
this was confirmed by a mineralogical–petrographic study of
such pairs of minerals as brookite and microcline, apatite
and zircon, strontianite and bastnaesite. Even in “poor”

dataset, the identified paragenetic connection was confirmed
for staurolite and apatite.

The factor loadings on geochemical variables (Tables I
and II) allow the evaluation of the effect of one or another
identified mineral on the distribution of each element. Thus,
analyzing the factor loadings values, we found out that
ancylite contains the bulk of strontium and rare earths in the
studied samples, although usually their main concentrators
in such rocks are strontianite or hydroxyl-bastnaesite
(Sr0.71REE0.88 against Sr0.63REE0.16 and Sr–0.01REE0.19,
respectively). Analogously, microcline turned out to be the
main concentrator of Si in our samples, and the distribution
of Na is equally influenced by albite and aegirine.
Moreover, factor loadings on the geochemical variables
allowed us to make a mineralogical interpretation of the results
of applying factor analysis exclusively to the geochemical data
given in the Electronic Supplement (Table S2). The factor
plane formed by the first two factors is given in Figure 7.
Geochemically, it describes the processes, facilitating the
effective separation of critical elements into two groups
(REE and HFSE) and the isolation of subgroups of these
groups (LREE and HREE, Ti-Nb-Ta and Zr-Hf). This repre-
sents both fundamental and practical interest. Considering
the factor loadings, each element is associated with a

Figure 7. (Colour online) Positions of the points of studied major and trace elements on the factor plane formed by two “heaviest” factors. Abbreviations of the
minerals are deciphered in the footnote of Table I. The fields limit the groups of elements associated with the minerals that belong to one or another identified
mineral associations.
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particular mineral(s). The areas that outline them correspond
exactly to the mineral assemblages determined in the rocks
of the Petyayan–Vara field (Kozlov et al., 2018). Thus, we
obtained a mathematical image of the mineralogical–geo-
chemical model describing the revealed geochemical pro-
cesses in terms of minerals and their associations.

III. CONCLUSION

The use of factor analysis for a sufficiently large set of
rock diffractograms (at least 40) makes it possible to deter-
mine the mineral composition of the entire collection at
the level of rock-forming and minor minerals, even if they
are present only in several samples of this set. The high res-
olution of the proposed approach is confirmed by the clear
separation of Fe-dolomite and ankerite, which have
extremely close positions of all of their lines. Additionally,
we can learn about the peaks of each common diffractogram
belonging to a particular mineral, as well as their exact posi-
tion. The combination of these data facilitates quantitative
XRPD by traditional methods and allows it to be performed
quickly and correctly even for large sets of samples. The
combination of analyses of mineralogical and geochemical
data (1) simplifies the determination of minerals, (2) makes
it possible to determine the effect of an identified mineral
on the distribution of each element, and (3) allows us to
link the results of the statistical processing of geochemical
data with minerals and their associations. The “gathering”
of minerals into one factor by the “and–and” type (the
appearance of parasitic peaks and “crystallochemically for-
bidden” factor loadings) suggests their paragenetic connec-
tion. However, the method is quite sensitive to both the
size of the sample set and the quality of diffraction data.
The poor quality of primary data noticeably affects the inter-
pretability of the results.
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