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The selection and placement of actuators and sensors to control compressible
viscous flows is addressed by developing a novel methodology based upon the
eigensystem structural sensitivity of the linearized evolution operator appropriate for
linear feedback control. Forward and adjoint global modes are used to construct
a space of possible perturbations to the linearized operator, which yields a small
optimization problem for selecting the parameters that best achieve the control
objective, including where they should be placed. The method is demonstrated by
informing actuation to suppress amplification of the instabilities in boundary layer
separation in a high-subsonic diffuser. Complete stabilization is observed in the
separated shear layer for short downstream distances at modest Reynolds number.
Higher Reynolds numbers and longer distances are expected to be more challenging
to stabilize; here the control informed by the procedure still substantively suppresses
amplification of instabilities. It is also demonstrated that more complex actuator–sensor
selections may not yield superior controllers.

Key words: absolute/convective instability, boundary layer control, control theory

1. Introduction
Flow control can improve the performance of fluid systems, and a large number

of approaches exist today to determine useful control parameters. However, prior
to any flow control application, the decision must be made as to what kind of
actuator should be used and where it should be placed; for closed-loop control a
sensor must also be selected and located. Often historical evidence, intuition and
hardware availability provide the driving rationales for determining actuator–sensor
selection and placement, and there are many examples of parametric exploration
to determine the optimal (in some sense) set-up. It is possible to use the solution
of the adjoint eigenvalue problem to provide information of the spatial location of
maximum receptivity of the system as a means to locate the controller (Hill 1992;
Schmid & Henningson 2000). However, the location of maximum receptivity does not
necessarily imply that flow control applied at that location will be effective. Instead,
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methods that involve a spatial overlap of the forward and adjoint global modes of the
system – the so-called ‘wavemaker’ – have been used to obtain effective locations of
control. Giannetti & Luchini (2007) used the wavemaker region, defined as the part
of the domain D where

ζ (x, y)≡ ‖ Q̂(x, y)‖‖ Q̂
†
(x, y)‖∫

D
Q̂ · Q̂

†
dV

, (1.1)

achieves its maximum magnitude, for a given global forward mode Q̂ and adjoint
mode Q̂

†
, to show that, in this wavemaker region, a change in the linearized

operator L creates the largest possible change in the corresponding eigenvalue σ .
The wavemaker region indicates a region of high dynamic sensitivity (Chomaz 2005),
where an actuator has a powerful influence on the flow, and localized feedback
is effective. Our objective is to expand the information extracted from structural
sensitivity relative to the wavemaker concept, as proposed in preliminary form by
Bodony & Natarajan (2012), to aid in actuator–sensor selection and placement.

1.1. Background
Flow control is a diverse field with several summaries available (Gad-el Hak 2001;
Docquier & Candel 2002; Kim & Bewley 2007; Joslin & Miller 2009; Theofilis &
Colonius 2011, for example); in what follows we review only those articles where
actuator and sensor placement was a significant component of the investigation.
Adjoint-based methods for flow control were first used by Hill (1992) to suppress
vortex shedding from a cylinder by placing a smaller cylinder in the wake of a larger
one. In a similar configuration, Marquet, Sipp & Jacquin (2008) used adjoint-based
sensitivity analysis of the unstable eigenmode and demonstrated how it can be used
to identify regions of the baseflow that contribute to the onset of vortex shedding.
In the context of linear control theory, Högberg & Henningson (2002) utilized
linear controllers for spatially evolving boundary layers and demonstrated that the
control was capable of stabilizing Tollmien–Schlichting waves and could inhibit
transient growth. Högberg, Bewley & Henningson (2003) utilized spatially localized
convolution kernels for significantly expanding the basin of attraction of the laminar
state in a subcritical nonlinear channel flow system using direct numerical simulations
for a range of Reynolds numbers and a variety of initial conditions of physical
interest. Chen & Rowley (2011) developed an H2 optimal controller for the control
of a supercritical, infinite-domain formulation of a system based on a linearized
Ginzburg–Landau equation, as a model for the evolution of small perturbations, such
as in a bluff body wake. Their optimal results were close to those given by the
‘wavemaker’ concept. However, the linear system they needed to solve for optimal
actuator placement does not easily scale to large systems.

Recent work on the use of the structural sensitivity approach in the context
of control has been reviewed by Sipp et al. (2010), wherein passive control of the
incompressible flow over a cylinder at Re= 47 was done by placing a smaller cylinder
in its wake (Sipp & Lebedev 2007) to explain the observed wake stabilization. They
utilized the global mode sensitivity to explain the effect of the smaller cylinder as
being analogous to an external forcing field. This type of control attains eigensystem
stabilization by a modification of the baseflow due to the presence of the smaller
cylinder. Direct numerical simulations of control of a globally unstable boundary
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Actuator selection and placement for localized feedback flow control 777

layer flow along a shallow cavity was considered by Henningson & Åkervik (2008).
Marquet et al. (2009) considered the stability of the recirculation bubble behind a
smoothed backward-facing step and provided certain guidelines for flow control. They
observed that for efficient passive control, the flow inside the recirculation bubble
should be modified, whereas for active control, the actuator should be placed just
upstream of the separation point. A linear–quadratic-Gaussian feedback controller,
which senses the wall shear stress at the downstream lip of the cavity and provides
the actuation at the upstream lip, was used to damp out the global oscillations.
Open-loop control using adjoint-based methods for compressible afterbody flows
have been investigated by Meliga, Sipp & Chomaz (2010), who evaluated several
open-loop techniques to stabilize the oscillating global mode to suppress unsteadiness.

1.2. Objectives of the present work
We combine direct numerical simulations and global mode analysis using the concept
of operator structural sensitivity (Giannetti & Luchini 2007; Sipp et al. 2010) for
linear feedback control of compressible viscous flows, such that the optimization
problem of selecting and locating an actuator–sensor pair is tractable. The method
is demonstrated on, but not limited to, a separated flow in a Mach 0.65 asymmetric
diffuser that demonstrates the control of a flow with separation and vortex shedding
in the compressible regime for internal flows. This particular flow was motivated
by the need to develop a control strategy to lessen the inflow distortion generated
within a S-duct inlet to a buried aircraft engine. Moreover, this application has the
features of flows previously analysed in literature, such as flow control of boundary
layers and open cavities (Henningson & Åkervik 2008; Sipp et al. 2010), passive
control of open, compressible flows (Meliga et al. 2010) and global mode analysis
of an incompressible, recirculation bubble in a S-shaped duct (Marquet et al. 2009).
The methodology allows us to obtain effective locations for actuator–sensor pairs,
and is flexible in that different types of control can be compared for different sensed
flow quantities. The natural disturbance modes supported by the diffuser flow (the
forward global modes) and their receptivity to change (the adjoint global modes) are
integrated to locate an actuator–sensor pair that most effectively controls the linear
system. The formulation and calculation of the global modes are discussed in § 2,
and modes are used in § 3, where the control is designed and demonstrated. Though
the approach is general, in this demonstration we restrict the support of actuation
to have a Gaussian shape and optimize its size and location. We show that it can
both fully stabilize a modest Reynolds number boundary layer separation for short
downstream distances, and suppress amplification of instabilities for longer distances
and at higher Reynolds numbers. Conclusions are summarized in § 4.

2. Formulation of the nonlinear and eigenvalue problems
2.1. Governing equations and discretization

The continuity, momentum and total energy equations for a compressible viscous ideal
gas are

∂ρ

∂t
+ ∂

∂xi
(ρui)= 0,

∂ρui

∂t
+ ∂

∂xj

(
ρuiuj + pδij − τij

)= 0,

∂ρE
∂t
+ ∂

∂xj

[
(ρE+ p) uj + qj − uiτij

]= 0,


(2.1)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

70
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.700


778 M. Natarajan, J. B. Freund and D. J. Bodony

where repeated indices are summed and all symbols have their usual meanings. We
solve (2.1) on a non-uniform, non-orthogonal mesh defined by the smooth mappings

x= X(ξ , t), with inverse ξ =Ξ(x, t), (2.2)

where X−1 = Ξ and Jacobian J = |∂X/∂Ξ |. It can be shown that (2.1) maps into
an equivalent conservative form in the computational variables ξ (Vinokur 1974).
The time integration is performed using the standard fourth-order Runge–Kutta
method. Finite differences are used to approximate the spatial derivatives in the
computational coordinates. We use the summation-by-parts operators (Strand 1994)
which, when coupled to the simultaneous-approximation-term (SAT) boundary
condition (Svärd, Carpenter & Nordström 2007; Svärd & Nordström 2008), yield
a provably stable method that has been shown to be accurate as well (Bodony
2010). The spatial approximation to ∂/∂ξ is P−1Q, where Q has the property that
Q+QT= diag(−1, 0, . . . , 0, 1) and P is a symmetric, positive-definite matrix. Sponge
zones (Colonius 2004) are used to prevent spurious reflections from the boundaries
and to maintain the flow by using a specified target state, Qtarget. For the SAT
boundary condition formulation, a penalty term is added to the right-hand side of
the discrete form of the governing equations. Following the notation in Svärd et al.
(2007), the penalized equation with SAT and sponge terms is

d Q
dt
= R(Q)+ σiP

−1E1A+(Q− gi)︸ ︷︷ ︸
SAT inviscid

+ σv
Re

P−1E1(Q− gv)︸ ︷︷ ︸
SAT viscous

− Asκ
ns(Q− Qtarget)︸ ︷︷ ︸

Sponge zone

, (2.3)

where σi and σv are the penalty parameters for the inviscid and viscous boundary
conditions, respectively, and E1 is a matrix whose (1,1) element is 1 and all others
are 0. Here R(Q) represents the divergence of the fluxes in the governing equations,
and A+ is a Roe matrix (Svärd et al. 2007) evaluated using the states Q and gi. It is
known that σi 6−2 and

σv 6− 1
4p0

max
(
γµ

Prρ
,

5µ
3ρ

)
, (2.4)

where p0 is the (1, 1) element of P, for stability. Also, As = 5.0 is the amplitude of
the sponge, ns = 2.0, the spatial strength and κ is a scaled coordinate which ranges
from κ = 0 at the interior of the sponge to κ = 1 at the exterior.

2.2. Forward and adjoint eigenvalue problems
For convenience, the discrete nonlinear equations are expressed as

d Q
dt
= R̃(Q), (2.5)

where Q is the vector of unknowns and R̃(Q) is the discretized right-hand side,
including the SAT and sponge terms. The structural sensitivity analysis is based on
a linearization of (2.5) about an equilibrium baseflow Qe that satisfies R̃(Qe) = 0.
The selective frequency damping (SFD) method (Åkervik et al. 2006) is used to
obtain the equilibrium solution when it is linearly unstable. The forward eigenvalue
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problem is formulated from the linearized equations as follows. Linearization of (2.5)
for small perturbation Q′ from Qe, yields

d Q′

dt
= L(Qe)Q′, (2.6)

where

L(Qe)= ∂ R̃(Q)
∂Q

∣∣∣∣
Qe

(2.7)

includes the boundary and sponge terms. The eigenvalue problem we consider is based
on a modal decomposition of the form

Q′(x, t)= Q̂(x)eσ t, (2.8)

so that (2.6) becomes
σ Q̂= L(Qe) Q̂, (2.9)

with σ as the eigenvalue and Q̂ as the eigenvector. A discrete-adjoint approach is
used to solve the adjoint eigenvalue problem using a volume correction formulation
(Chandler et al. 2012), such that the discrete-adjoint operator is

L† = V−1LTV , (2.10)

where V = diag(v1/V, v2/V, . . . , vn/V), with V , the volume of the fluid domain and vi,
the volume of the cell associated with grid point i. With (2.10), the adjoint eigenvalue
problem is

L† Q̂
† = σ Q̂

†
. (2.11)

Since (2.10) is a similarity transformation for LT, it can be seen that the eigenspectrum
of the forward operator L matches the discrete-adjoint operator L†, whereas the
eigenmodes will differ. We thus obtain a forward–adjoint pair of eigenmodes for each
eigenvalue. The discretization used for the global modes in (2.9) and (2.11) is the
same as is used for the nonlinear solver of (2.5).

2.3. Numerical evaluation of the global modes
The eigensystems (2.9) and (2.11) were solved using PETSc (Balay et al. 1997) for
storing and manipulating the matrix operators and SLEPc (Hernandez, Roman &
Vidal 2005) for the eigenvalue analysis. The eigenvalue problems are solved using
the Krylov–Schur implementation of the Implicit Restart Arnoldi Method (IRAM)
with MUMPS (Amestoy et al. 2001) for the LU factorization.

3. Control with linear feedback forcing
The method for estimating the actuator types and locations for control utilizes the

forward ( Q̂) and adjoint global modes ( Q̂
†
). To illustrate a specific and important

case, we consider collocated linear feedback forcing to affect flow control to suppress
the growth rate of specific global modes of the baseflow, though other choices are
possible, including, for example, multiple sensors that may not be co-located with the
actuators. It may even be desirable to selectively increase a mode’s growth rate or
change its frequency to cause or avoid resonance. The present demonstration using
the canonical example of stabilization will clearly show how the theory is generalized
to include actuator shape for a specific control–feedback pairing.
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3.1. Formulation
The linear forcing is included in (2.6) as

d Q′

dt
= L(Qe)Q′ + αC Q′︸ ︷︷ ︸

Forcing

= [L(Qe)+ αC]Q′, (3.1)

where α is the control gain and the actuator matrix operator C is designed to alter
the eigensystem of the linearized operator. The objective we pursue is to optimize the
movement of the eigenvalues towards the stable half of the complex-σ plane and, if
possible, stabilize them. The actuator, defined by

C(x)=

c11 c12 c13 c14
c21 c22 c23 c24
c31 c32 c33 c34
c41 c42 c43 c44


︸ ︷︷ ︸

C̃

e−(x−x0)
2/`2

x−(y−y0)
2/`2

y , (3.2)

is centred at (x0, y0), and has Gaussian support in both directions (`x, `y). Restricting
the spatial support of the forcing is a matter of convenience, and is not a restriction
of the method; instead, it is used to improve realizability of the estimated controller
in a physical experiment. The choice of Gaussian functions is arbitrary, and they may
be constrained, if desired, to exist solely on surfaces.

The actuator C̃ specifies the control–feedback pair. For example, consider the
case with just one non-zero element in C̃, c12 = 1 (say). Such an actuator adds the
forcing term to the continuity equation based on the sensed streamwise momentum
perturbation, hence the control–feedback pair is ρ–ρu. The eigenspectrum shift created
by the actuator matrix operator αC (Giannetti & Luchini 2007) is estimated by the
integral over the flow domain V ,

δσ = α

∫
V

Q̂†
T
C Q̂ dV∫

V
Q̂†

T
Q̂ dV

. (3.3)

Although we do not pursue this option, we note that the definition of C̃ can be
expanded to allow for sensing differential quantities such as gradients, wall shear
stress, vorticity or dilatation.

The optimization to stabilize the forward global mode Q̂ seeks

C∗
def≡ argmin

C,||C̃||=1
Re(α−1δσ ), (3.4)

with respect to the parameters {{cij}4i,j=1, x0, y0, `x, `y}. Because the structural sensitivity
estimate is linear in the cij coefficients, we bound C̃. Importantly, as formulated, this is
a small optimization problem with 20 parameters in two dimensions. (The extension to
three dimensions is straightforward.) It is important to note that (3.3) provides detailed
information about the change in the eigensystem, more than the basic wavemaker
of (1.1) used by Giannetti & Luchini (2007), and its use to formulate an effective
optimization problem for actuator/sensor selection and placement in (3.4) enables us
to rationally select probable control strategies.
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SAT far-field SAT far-field
SAT inviscid wall

SAT viscous wall

FIGURE 1. (Colour online) Computational domain (drawn to scale, δ is the boundary layer
thickness of the incoming boundary layer) showing the boundary conditions. The dotted
lines denote the sponge zones.

Only collocated control–feedback is considered for the remainder of the paper.
The case of spatially separated control and feedback would increase the parametric
space for optimization, and the corresponding optimization problem would involve
other parameters such as the size and location of the feedback region. However, the
dimension of the problem scales with the number of actuators and sensors, and not
on the dimensionality of the discretized system. Furthermore, we note that there are
many examples of flow control where linearization about a time-averaged flow, rather
than the true equilibrium solution, is desirable for reasons discussed in Sipp et al.
(2010) and, in these cases, a baseflow determined from either a Reynolds-averaged
Navier–Stokes, large-eddy, or direct numerical simulation may be profitable.

It is important to note that the optimization problem (3.4) is not guaranteed to be
convex. Therefore, a local minimum need not be a global minimum and the optimized
control parameters may depend on the initial condition. Hence, the optimal values
obtained from the above procedure are only locally optimal.

To measure the performance of the actuator–sensor pair selected, one should
evaluate the objective function for the flow control, such as from direct numerical
simulations. Controlled simulations using a given actuator with different values of the
control gain α would give some indication as to how the control objective changes
with the actuation and its relation to the eigenspectrum. The control algorithm is
flexible, and different control–feedback combinations for actuation can be chosen.
However, the actual performance of the control can be determined only through
simulations and, hence, finding the optimal actuator with respect to the control
objective is a trial and error procedure that can be cast in a variational framework
(Bewley, Moin & Temam 2001; Wei & Freund 2006; Kim, Bodony & Freund 2014).

3.2. Computational domain and flow conditions
We apply the method to try to stabilize a separated boundary layer within a duct.
Figure 1 shows the computational domain and the boundary conditions for the flow
under consideration. The incoming flow is a Mach 0.65 (free stream) boundary layer
at a Reynolds number of c∞δ/ν = 250. The grid size used for the present simulation
is (Nξ ,Nη)≡ (1386, 200), in the streamwise and wall-normal directions, respectively.

3.3. Steady baseflow for the Mach 0.65 diffuser
The equilibrium baseflow solution for the Mach 0.65 diffuser was computed using the
SFD method, with parameters χ = 0.05 and 1= 20.0 (in the notation of Åkervik et al.
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0

0.25

0.50

0.70

FIGURE 2. (Colour online) Mach number contours at steady state.

2006) estimated from the eigenanalysis of the unsteady flow field. Figure 2 shows
the Mach number contours for the equilibrium baseflow Qe for which the residual
||R̃(Qe)||∞ was reduced to 10−11 over time 1tc∞/δ= 10 000. Mesh independence was
established by verifying that the relevant portion of the global eigenspectrum for the
steady baseflow showed very little change upon refinement (e.g. the change in the
growth rate of the most unstable eigenmode was less than 0.02 % upon increasing
the grid points by a factor of 2). Further quantitative comparisons of the growth rate
of the global modes, those computed directly from the simulation, and those from
the linear stability analysis, also showed that the simulation was well resolved (not
shown).

3.4. Actuator–sensor selection
Controller selection and placement for localized linear feedback control requires the
solution of the optimization problem (3.4), with C̃ bounded, applied to a specific
eigenvalue. To demonstrate the method we target the most unstable eigenvalue in
figure 3(a), whose forward and adjoint global modes are shown in figure 3(b,c)
and wavemaker λ in figure 3(d). Observe that the wavemaker shown in figure 3(d)
suggests that the separated flow may be efficiently affected by a controller slightly
downstream of the diffuser corner. However, it does not suggest which specific
control/sensor pair(s) should be examined, nor does it yield a spatially precise
location for actuation that is specific to the control/sensor pair.

To first demonstrate the methodology of controller selection and placement, we
consider the constrained case of mass control with the forcing based on different
feedback variables: ρ, ρu, ρv and ρE. (The unconstrained case will be shown in
§3.5.1.) The target eigenmode for optimization is the most unstable one (figure 3a).
Figure 3(b–d) shows the eigenmodes and the wavemaker associated with the most
unstable mode. As expected, the wavemaker indicates that the upstream corner of the
diffuser is where the flow is most sensitive to active actuation. This result is consistent
with that observed by Marquet et al. (2009). Figure 4 demonstrates the outcome of
the present placement and optimization approach, showing the shape and location of
the locally optimal actuation region for mass control for different control–feedback
pairs. It is important to note that the shape, size, and location for optimal actuation
is seen to depend on the type of control–feedback employed. The wavemaker λ does
not provide this level of detail but gives, instead, a useful estimate on what may be
expected. We did not observe any dependence on the initial conditions chosen for
the optimization when using the Trust-Region-Reflective algorithm in MATLAB (Han
1977).

Discrete-adjoint eigenmodes have been shown to have oscillations close to the
boundaries (Chandler et al. 2012) when the underlying forward discretization is
not dual consistent. Figure 3(e) shows that the near-wall oscillations are confined
to just three grid points close to the boundary, and do not extend further into the
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 0

 –0.05

 –0.10

 –0.15

 –0.20
0–0.02–0.04–0.06–0.08

9.90 9.95

Unstable

10.00 10.05 10.10

(a) (b)

(c)

(d)

(e)

FIGURE 3. (Colour online) (a) The eigenspectrum for the Mach 0.65 equilibrium
baseflow in the diffuser; (b) forward eigenmode, Re(ρ̂u); (c) adjoint eigenmode, Re(ρ̂u†

);
(d) wavemaker as defined by (1.1); (e) near-wall zoom of the adjoint eigenmode.

0 5 10 15 20 25 0 5 10 15 20 25

0

5

10

–5

0

5

10

–5

(a) (b)

FIGURE 4. (Colour online) Shape and location of the effective wavemaker for mass
control for different control–feedback pairs: (a) ρ−ρ and ρ−ρu, (b) ρ−ρv and ρ−ρE.

domain. However, the discrete-adjoint approach gives the exact adjoint and facilitates
identifying forward–adjoint pairs which correspond to the same eigenvalue. It is the
overlap of this pair of forward and adjoint global modes that gives us the wavemaker,
which is an essential part of the analysis. The continuous-adjoint approach avoids
the unphysical oscillations, but the eigenvalue of the adjoint mode corresponding to
a given forward mode can differ significantly (Chandler et al. 2012), and hence the
identification of a forward–adjoint pair becomes difficult.

3.5. Control of vortex shedding in the Mach 0.65 diffuser
The actuator is now used to globally stabilize the system and control the vortex
shedding in the diffuser.

3.5.1. Global stabilization using linear feedback control
To study the effect of the increased control gain on the system, consider ρ–ρ

control–feedback, as specified via C̃ in (3.2). The global eigenanalysis of the
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0 –0.002 –0.004 0.002

 –0.02

 –0.04

 –0.06

 –0.08

 –0.10

Parasitic
Target

FIGURE 5. (Colour online) The eigenspectrum shift as a function of the control gain
α: (blue) show the locus of eigenvalues that have unfavourable shift. The arrows point
in the direction of increasing control gain from α=0.0 to 0.108. The controlled eigenvalue
is indicated byE (red). The open symbols (@) show the uncontrolled eigenspectrum.

closed-loop system A + αC was performed with different values of the gain α

to obtain the range of values for which the system was globally stabilized (figure 5).
Although the control was developed targeting the most unstable eigenvalue, there
is ‘parasitic’ movement of other eigenvalues as well. In general, such a parasitic
movement of eigenvalues need not be favourable. Since the estimate for the eigenvalue
shift, δσ , given by (3.3) is linear in the coefficients cij (a result that follows from
assuming δA = αC is suitably small so that products of perturbed quantities can be
neglected), the actual eigenvalue shift as A is perturbed to A+αC will begin to differ
significantly from that obtained from the first-order structural sensitivity analysis of
(3.3); namely that the spectrum of A+αC is approximated by the spectrum of A plus
a correction δσ . It can be seen that for low values of control gain, the eigenspectrum
tends to shift towards the left-hand plane (LHP), and for this flow achieves complete
stabilization; for further increase in α, some of the eigenvalues return to the right-hand
plane (RHP). Global stability is achieved for 0.105<αstable< 0.108, whereas the linear
estimate for the minimum control gain for stabilizing the most unstable eigenvalue
was α = 0.32. As a consequence of this reversal of the eigenspectrum shift, there
exists only a range of the control gain α for which global stabilization can be
achieved even in just the linear system.

It should be noted that there are numerous actuator–sensor combinations that include
single as well as multiple control(s)–feedback(s) that could be developed using the
algorithm. For the present flow, other feedback combinations using mass control were
analysed as well. The root-locus diagram for the cases ρ−ρu, ρ−ρv and ρ−ρE are
shown in figure 6(a–c), respectively. In the linear regime of structural sensitivity, the
controller with maximum flexibility is the one that utilizes the full potential of the
control matrix C. Such an actuator can be obtained by performing an unconstrained
optimization by optimizing over all coefficients cij of the control matrix C. For this
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FIGURE 6. (Colour online) The eigenspectrum shift as a function of the control gain α
for mass control with different feedback combinations: (a) ρ−ρu, (b) ρ−ρv, (c) ρ−ρE,
(d) unconstrained optimization. (blue) show the locus of eigenvalues that have
unfavourable shift. The arrows point in the direction of increasing control gain. The
controlled eigenvalue is indicated byE (red). The open symbols (@) show the uncontrolled
eigenspectrum.

case, we find that the estimated best actuator is, to within a constant,

C̃unconstrained =

 1 −1 −1 1
−1 1 1 −1
1 −1 −1 1
−1 1 −1 −1

 . (3.5)

The root-locus diagram for this controller is shown in figure 6(d). It can be seen
that none of the above combinations could globally stabilize the system. The
eigenspectrum shift, due to nonlinearity, pushes some of the eigenvalues back into
the unstable regime. The ‘×’ (blue) mark in figure 6, and all subsequent root-locus
diagrams, indicate the location in the eigenspace at which the error between the real
parts of the predicted (from structural sensitivity) and the actual computed eigenvalues
for a given control gain α, reaches 1 %, i.e. [(σr)predicted− (σr)computed]/(σr)predicted=0.01,
where (σr)predicted = (σr)uncontrolled + δσstructural sensitivity.
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Simulation ID α Global stability

1 0.05 Unstable
2 0.105 Stable
3 0.3 Unstable

TABLE 1. Direct numerical simulations to study the effect of control on vortex shedding.

3.5.2. Control of vortex shedding in the diffuser
To confirm applicability to the actual, nonlinear flow, three different simulations

were conducted with the same initial condition: the equilibrium baseflow perturbed
with the most unstable eigenmode with the perturbation amplitude in the nonlinear
regime (∼5 % of maximum amplitude). The actuation used ρ–ρ control–feedback. The
control forcing term appears in the continuity equation as

∂ρ

∂t
= R̃ρ(Q)+ αe−(x−x0)

2/`2
x−(y−y0)

2/`2
y (ρ−ρe), (3.6)

where ρe is the steady baseflow density. The simulations performed and the observed
system character corresponding to the actuator are given in table 1. We define the
total perturbation kinetic energy in the system as E(t)= ∫V [u′(t)2 + v′(t)2] dV/2. The
control objective, E(t)/E(0), is used to quantify the deviation of the system from the
baseflow. Figure 7 shows the eigenspectrum and the unsteadiness quantification for the
controlled flow for different values of the control gain. It can be seen that the control
gain within the global stabilization window (0.105<α < 0.108) suppresses the vortex
shedding downstream of the diffuser completely, whereas actuation with the gain value
outside the stabilization window amplifies the initial perturbation energy of the system.
The present Reynolds number was selected to illustrate this fundamental change of
behaviour. It is noteworthy that other control–feedback methods can be developed with
the present algorithm; however, identifying all such combinations was not part of the
present work.

3.6. More challenging-to-control configurations
The domain length and Reynolds number of the diffuser example were such that the
control could completely suppress instabilities and stabilize the flow as simulated in
the corresponding DNS. Of course, such efficacy is likely out of the question for
higher Reynolds numbers and longer domains. Indeed, the information contained with
the spectrum of A+ αC, as a function of Lx and Re, could be used to estimate the
degree to which complete stabilization could be achieved. We choose to demonstrate
the effect of these parameters by performing flow control for the following two
additional cases for comparison. In the first case, the Reynolds number is held fixed
at Re = 250, but the domain length is increased 50 % to Lx = 180δ. In the second
case, the domain length remains at Lx = 120δ, but the Reynolds number is increased
to 350. We further show that the ability to rationally select actuator/sensor pairs, and
locate them, is robust to these changes.

3.6.1. Longer domain
To study the effect of the domain length, a steady baseflow was computed for

the extended domain with Lx/δ = 180 at Re = 250 and the results were compared
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FIGURE 7. (a,d,g) Eigenspectrum: @ uncontrolled, p controlled. (b,e,h) E(t)/E(0) for
different control gains α. (c, f,i) Contours of instantaneous vorticity. (a–c) α = 0.05;
(d–f ) α = 0.105; (g–i) α = 0.3.
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FIGURE 8. (Colour online) (a) Eigenspectrum for the short and long domains at Re= 250:
Lx/δ= 120 (@); Lx/δ= 180 (×). (b) The controllers for the short and long domains almost
overlap.

to those from the original domain with Lx/δ = 120. Figure 8(a) shows that the
unstable and least stable branch of the eigenspectrum is preserved for the short
and long domains; but the long domain, on account of having a longer shear layer,
supports more unstable modes (figure 9a). The controllability analysis for A + αC
was performed for different values of the control gain α for the long domain using
the same control–feedback ρ−ρ type with which global stabilization was observed
for the short domain. Although the flow could not be globally stabilized for the
longer domain, a significant reduction of the growth rate was observed for the
unstable eigenvalues (≈50 % for the most unstable eigenvalue) (figure 9b). It is
well recognized that the global modes are sensitive to the domain size (Nichols
& Lele 2011), so we anticipate the spectrum to have changed in this case, and
streamwise decorrelation makes control over the full domain by localized actuation a
fundamentally more challenging problem. Still the most unstable eigenvalue targeted
by the control is suppressed and the overall flow rendered less amplifying by the
informed control. We note that the actuator placement is essentially unchanged, as
shown in figure 8(b). The longer domain analysis shows that the type of localized
feedback control for a real, physical flow of this configuration may still depend
on the type of outlet/length of the domain encountered by the flow downstream of
separation.

3.6.2. Higher Reynolds number
A steady baseflow was computed at Re= 350 for the short domain and the results

were compared with the case at Re= 250. Figure 10(a) shows the comparison of the
eigenspectrum for the two baseflows. The effect of increasing the Reynolds number
is qualitatively similar to that of the long domain at Re = 250, with more unstable
eigenvalues and higher growth rates. Figure 10(b) shows the effect of increasing
the control gain α for the ρ–ρ control–feedback, where it can be seen that the
flow cannot be globally stabilized, but a significant reduction in the growth rate
is obtained for all the unstable eigenvalues. The control was also performed using
the actuator developed by unconstrained optimization as described in §3.5.1. The
root-locus diagram (figure 11) shows that the reversal of the eigenspectrum shift

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

70
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.700


Actuator selection and placement for localized feedback flow control 789

–0.15

–0.10

–0.05

0(a) (b)  0

–0.02

–0.04

–0.06

–0.08

–0.10
0–0.010 –0.005 0.005 0.010 0–0.002 0.002 0.004 0.006

FIGURE 9. (a) Eigenspectrum for the short and long domains at Re = 250: Lx/δ = 120
(@); Lx/δ = 180 (×). (b) Effect of the control gain (α) on the eigenspectrum with ρ−ρ
control–feedback for the long domain at Re= 250: uncontrolled (×); α = 0.105 (C); α =
0.11 (6); α = 0.12 (E).
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FIGURE 10. Eigenspectrum for the short domain at two different Reynolds numbers: Re=
250 (@); Re= 350 (E). (b) Effect of the control gain (α) on the eigenspectrum with ρ−ρ
control–feedback for the short domain at Re= 350: uncontrolled (E); α = 0.05 (×); α =
0.10 (6); α = 0.20 (A).

occurs within a short range of the control gain (0 6 α 6 0.02), and hence global
stabilization could not be achieved in this case as well.

The conclusion is that the complete suppression of instabilities is likely out of
the question for higher Reynolds numbers and longer domains. Still, the present
technique provided informed actuation that suppresses the instabilities even in these
cases, though the flow is not, of course, fully stabilized.

4. Conclusions
This paper develops an extended structural sensitivity analysis that can be used

to estimate profitable types and locations of actuators and sensors in a flow control
scenario. Using the information contained in the forward and adjoint global modes of
the uncontrolled baseflow, an optimization problem is presented that scales linearly
in the number of actuators and sensors, but is independent of the dimensionality of
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FIGURE 11. (Colour online) Effect of the control gain (α) on the eigenspectrum for
the unconstrained actuator for the baseflow at Re = 350 (0 6 α 6 0.02). (blue) show
the locus of eigenvalues that have unfavourable shift. The arrows point in the direction
of increasing control gain. The controlled eigenvalue is indicated by E (red). The open
symbols (@) show the uncontrolled eigenspectrum.

the underlying discretized problem. The method is applied to the stabilization of a
separated boundary layer within an asymmetric diffuser at Mach 0.65, where the
spectrum of the linearized, closed-loop system describes well the behaviour of the
fully nonlinear system. Potential generalizations of the method are also discussed.

Acknowledgements
Financial support from Rolls-Royce North America (Dr J. Sokhey, technical

monitor) and the Office of Naval Research (Drs J. Doychak, K. Millsaps and
B. Henderson, technical monitors) is gratefully acknowledged. This material is
also based in part upon work supported by the Department of Energy, National
Nuclear Security Administration, under Award Number DE-NA0002374. Financial
support from the Center for Turbulence Research Summer Program for D.J.B. is also
gratefully acknowledged.

REFERENCES

ÅKERVIK, E., BRANDT, L., HENNINGSON, D. S., HŒPFFNER, J., MARXEN, O. & SCHLATTER, P.
2006 Steady solutions of the Navier–Stokes equations by selective frequency damping. Phys.
Fluids 18, 068102.

AMESTOY, P. R., DUFF, I. S., L’EXCELLENT, J.-Y. & KOSTER, J. 2001 Mumps: a general purpose
distributed memory sparse solver. In Applied Parallel Computing. New Paradigms for HPC in
Industry and Academia, pp. 121–130. Springer.

BALAY, S., GROPP, W. D., MCINNES, L. C. & SMITH, B. F. 1997 Efficient management of
parallelism in object oriented numerical software libraries. In Modern Software Tools in
Scientific Computing (ed. E. Arge, A. M. Bruaset & H. P. Langtangen), pp. 163–202.
Birkhäuser.

BEWLEY, T., MOIN, P. & TEMAM, R. 2001 DNS-based predictive control of turbulence: an optimal
benchmark target for feedback algorithms. J. Fluid Mech. 447, 179–225.

BODONY, D. 2010 Accuracy of the simultaneous-approximation-term boundary condition for time-
dependent problems. J. Sci. Comput. 43 (1), 118–133.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

70
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.700


Actuator selection and placement for localized feedback flow control 791

BODONY, D. & NATARAJAN, M. 2012 Controller selection and placement in compressible turbulent
flows. Proceedings of the Summer Program. pp. 35–42. Center for Turbulence Research.

CHANDLER, G. J., JUNIPER, M. P., NICHOLS, J. W. & SCHMID, P. J. 2012 Adjoint algorithms
for the Navier–Stokes equations in the low Mach number limit. J. Comput. Phys. 231 (4),
1900–1916.

CHEN, K. K. & ROWLEY, C. W. 2011 H2 optimal actuator and sensor placement in the linearised
complex Ginzburg-Landau system. J. Fluid Mech. 681, 241–260.

CHOMAZ, J.-M. 2005 Global instabilities in spatially developing flows: non-normality and nonlinearity.
Annu. Rev. Fluid Mech. 37, 357–392.

COLONIUS, T. 2004 Modeling artificial boundary conditions for compressible flow. Annu. Rev. Fluid
Mech. 36, 315–345.

DOCQUIER, N. & CANDEL, S. 2002 Combustion control and sensors: a review. Prog. Energy Combust.
Sci. 28 (2), 107–150.

GIANNETTI, F. & LUCHINI, P. 2007 Structural sensitivity of the first instability of the cylinder wake.
J. Fluid Mech. 581, 167–197.

GAD-EL HAK, M. 2001 Flow control: the future. J. Aircraft 38 (3), 402–418.
HAN, S.-P. 1977 A globally convergent method for nonlinear programming. J. Optim. Theor. Applics.

22 (3), 297–309.
HENNINGSON, D. & ÅKERVIK, E. 2008 The use of global modes to understand transition and

perform flow control. Phys. Fluids 20, 031302.
HERNANDEZ, V., ROMAN, J. E. & VIDAL, V. 2005 SLEPc: a scalable and flexible toolkit for the

solution of eigenvalue problems. ACM Trans. Math. Softw. 31 (3), 351–362.
HILL, D. C. 1992 A Theoretical Approach for Analyzing the Restabilization of Wakes. National

Aeronautics and Space Administration, Ames Research Center.
HÖGBERG, M., BEWLEY, T. R. & HENNINGSON, D. S. 2003 Linear feedback control and estimation

of transition in plane channel flow. J. Fluid Mech. 481, 149–175.
HÖGBERG, M. & HENNINGSON, D. S. 2002 Linear optimal control applied to instabilities in spatially

developing boundary layers. J. Fluid Mech. 470, 151–179.
JOSLIN, R. D. & MILLER, D. N. 2009 Fundamentals and Applications of Modern Flow Control.

American Institute of Aeronautics and Astronautics.
KIM, J. & BEWLEY, T. R. 2007 A linear systems approach to flow control. Annu. Rev. Fluid Mech.

39, 383–417.
KIM, J., BODONY, D. J. & FREUND, J. B. 2014 Adjoint-based control of loud events in a turbulent

jet. J. Fluid Mech. 741, 28–59.
MARQUET, O., LOMBARDI, M., CHOMAZ, J.-M., SIPP, D. & JACQUIN, L. 2009 Direct and adjoint

global modes of a recirculation bubble: lift-up and convective non-normalities. J. Fluid Mech.
622, 1–21.

MARQUET, O., SIPP, D. & JACQUIN, L. 2008 Sensitivity analysis and passive control of cylinder
flow. J. Fluid Mech. 615, 221–252.

MELIGA, P., SIPP, D. & CHOMAZ, J.-M. 2010 Open-loop control of compressible afterbody flows
using adjoint methods. Phys. Fluids 22, 054109.

NICHOLS, J. W. & LELE, S. K. 2011 Global modes and transient response of a cold supersonic jet.
J. Fluid Mech. 669, 225–241.

SCHMID, P. J. & HENNINGSON, D. S. 2000 Stability and Transition in Shear Flows. Springer.
SIPP, D. & LEBEDEV, A. 2007 Global stability of base and mean flows: a general approach and its

applications to cylinder and open cavity flows. J. Fluid Mech. 593, 333–358.
SIPP, D., MARQUET, O., MELIGA, P. & BARBAGALLO, A. 2010 Dynamics and control of global

instabilities in open-flows: a linearized approach. Appl. Mech. Rev. 63 (3), 30801.
STRAND, B. 1994 Summation by parts for finite difference approximations for d/dx. J. Comput.

Phys. 110 (1), 47–67.
SVÄRD, M., CARPENTER, M. & NORDSTRÖM, J. 2007 A stable high-order finite difference scheme

for the compressible Navier–Stokes equations, far-field boundary conditions. J. Comput. Phys.
225 (1), 1020–1038.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

70
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.700


792 M. Natarajan, J. B. Freund and D. J. Bodony

SVÄRD, M. & NORDSTRÖM, J. 2008 A stable high-order finite difference scheme for the compressible
Navier–Stokes equations: no-slip wall boundary conditions. J. Comput. Phys. 227 (10),
4805–4824.

THEOFILIS, V. & COLONIUS, T. 2011 Special issue on global flow instability and control. J. Theor.
Comput. Fluid Dyn. 25 (1–4), 1–6.

VINOKUR, M. 1974 Conservation equations of gasdynamics in curvilinear coordinate systems.
J. Comput. Phys. 14 (2), 105–125.

WEI, M. & FREUND, J. B. 2006 A noise-controlled free shear flow. J. Fluid Mech. 546, 123–152.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

70
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.700

	Actuator selection and placement for localized feedback flow control
	Introduction
	Background
	Objectives of the present work

	Formulation of the nonlinear and eigenvalue problems
	Governing equations and discretization
	Forward and adjoint eigenvalue problems
	Numerical evaluation of the global modes

	Control with linear feedback forcing
	Formulation
	Computational domain and flow conditions
	Steady baseflow for the Mach 0.65 diffuser
	Actuator–sensor selection
	Control of vortex shedding in the Mach 0.65 diffuser
	Global stabilization using linear feedback control
	Control of vortex shedding in the diffuser

	More challenging-to-control configurations
	Longer domain
	Higher Reynolds number


	Conclusions
	Acknowledgements
	References




