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Frequency lock-in can occur on a spring suspended airfoil in transonic buffeting
flow, in which the coupling frequency does not follow the buffet frequency but locks
onto the natural frequency of the elastic airfoil. Most researchers have attributed
this abnormal phenomenon to resonance. However, this interpretation failed to
reveal the root cause. In this paper, the physical mechanism of frequency lock-in
is studied by a linear dynamic model, combined with the coupled computational
fluid dynamics/computational structural dynamics (CFD/CSD) simulation. We build
a reduced-order model of the flow using the identification method and unsteady
Reynolds-averaged Navier–Stokes computations in a post-buffet state. A linear
aeroelastic model is then obtained by coupling this model with a degree-of-freedom
equation for the pitching motion. Results from the complex eigenvalue analysis
indicate that the coupling between the structural mode and the fluid mode leads
to the instability of the structural mode. The instability range coincides with the
lock-in region obtained by the coupled CFD/CSD simulation. Therefore, the physical
mechanism underlying frequency lock-in is caused by the linear coupled-mode flutter
– the coupling between one structural mode and one fluid mode. This is different
from the classical single-degree-of-freedom flutter (e.g. transonic buzz), which occurs
in stable flows; the present flutter is in the unstable buffet flow. The response of the
airfoil system undergoes a conversion from forced vibration to self-sustained flutter.
The coupling frequency certainly should lock onto the natural frequency of the elastic
airfoil.

Key words: flow–structure interactions, low-dimensional models, shock waves

1. Introduction

Transonic buffet is an aerodynamic phenomenon of self-sustained shock oscillations
and dramatic lift fluctuations that occur with a certain combination of Mach number
and mean angle of attack, the onset of which is linked to a global instability (Crouch
et al. 2009; Sartor et al. 2015b; Kou & Zhang 2017). These shock oscillations are
regarded as a result of shock–boundary layer interaction (Lee 2001). Transonic buffet,
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especially the consequent unsteady load, has a negative influence on the fatigue life of
the aircraft. Therefore, the investigation on transonic buffet has important theoretical
and practical values in aeronautical engineering.

In the classical conception of aeroelasticity, transonic buffeting is considered to
be a dynamic response problem and is believed to be a type of forced vibration
under the unstable buffet flow, in the process of which the interaction between
the fluid and the solid is ignored. Based on this viewpoint, most investigations,
wind tunnel experiments (McDevitt & Okuno 1985; Jacquin et al. 2009; Doerffer,
Hirsch & Dussauge 2010; Hartmann, Feldhusen & Schröder 2013a) and numerical
simulations (Deck 2005; Xiao, Tsai & Liu 2006; Chen, Xu & Lu 2010; Sengupta
et al. 2013; Grossi, Braza & Hoarau 2014; Iovnovich & Raveh 2015) were performed
on rigid stationary wings/airfoils. These wind tunnel experiments provided detailed
experimental status and abundant data, which have been used as standard examples
to validate the computational fluid dynamics (CFD) codes. The numerical simulations
focus on the prediction of buffet onsets, periodic buffet flows and unsteady buffet
loads based on CFD tools with different levels of precision.

Recently, Raveh & Dowell (2014) studied the aeroelastic responses of an elastically
mounted airfoil system in transonic buffeting flow by numerical simulations. In
classical aeroelasticity, the airfoil would display a forced vibration due to the
unstable buffet flow. Thus, the airfoil oscillation frequency should depend on the
buffet frequency. However, it is found that it no longer follows the buffet frequency
but locks onto the natural frequency of the elastic system when the natural frequency
approaches the buffet frequency. Simultaneously, a larger oscillating amplitude of
the airfoil is observed within the lock-in region, which is dangerous to the aircraft.
This abnormal phenomenon is often referred to as ‘frequency lock-in’ in transonic
buffeting flow. It is firstly investigated on a NACA0012 airfoil undergoing a prescribed
harmonic oscillation in transonic buffeting flows (Raveh & Dowell 2011). And in
a wind tunnel experiment, Hartmann, Klaas & Schröder (2013b) also observed the
phenomenon of frequency lock-in.

The above phenomenon is very similar to the frequency lock-in founded in
vortex-induced vibration (VIV) of flow past a cylinder (Blevins 1990). They are both
an oscillation of the spring suspend airfoil/cylinder with an increasing amplitude in a
periodic unstable flow, and the oscillation frequency follows the natural frequency of
the elastic system rather than the frequency of the unstable flow. The frequency lock-in
phenomenon in VIV has been extensively studied based on either experimental or
numerical methods, such as the effects of Reynolds number (Govardhan & Williamson
2006), mass ratio (Prasanth, Premchandran & Mittal 2011) and structural damping
coefficient (Nguyen et al. 2012) in the lock-in region. Most researchers attributed
its inducement in VIV to resonance (Govardhan & Williamson 2002; Willden &
Graham 2006). The large-amplitude oscillation occurs when the cylinder natural
frequency is comparable with the vortex shedding frequency, which corresponds
to the conventional resonance theory. The frequency lock-in in transonic buffeting
flow is also attributed to the nonlinear aerodynamic resonance (Raveh & Dowell
2011, 2014; Hartmann et al. 2013a), inheriting the classic concept from VIV. The
resonance process is as follows. As the frequency of the buffet flow approaches that
of the elastic airfoil system, the oscillating aerodynamic forces cause an increasing
amplitude of motion, which corresponds to a standard resonance effect. Then, if this
amplitude is large enough, the buffeting flow is somehow affected and forced to
move at the natural resonating frequency of the elastic airfoil system. This feedback
process is implicitly assumed to be nonlinear, as the existence of lock-in and its
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region depend on the oscillation amplitude. However, the interpretation that frequency
lock-in is caused by simple resonance has its limitations. For example, Singh &
Mittal (2005) conducted numerical simulations to investigate VIV and found that the
maximum vibration amplitude of the cylinder was acquired at the ratio of the natural
frequency of the elastic system to the unstable flow frequency ks/kb∼ 1.28 rather than
at the synchronized point ks/kb ∼ 1.0. Quan et al. (2016) studied the characteristics
of frequency lock-in in transonic buffeting flow by the coupled computational fluid
dynamics/computational structural dynamics (CFD/CSD) simulation method. Results
showed that the maximum vibration amplitude of the NACA 0012 airfoil was obtained
at the frequency ratio ks/kb ∼ 1.5, and the lock-in phenomenon still existed when it
was enlarged to ks/kb∼ 2.4. Besides, the lock-in region did not display a symmetrical
distribution against the buffet frequency as expected by resonance theory (Singh &
Mittal 2005; Raveh & Dowell 2011; Besem et al. 2016), but it is often located on the
side of higher frequency, which was obvious in the coupled CFD/CSD simulations
(Singh & Mittal 2005; Quan et al. 2016). These anomalies are difficult to explain
from the perspective of resonance.

In the study of VIV in cylinder wake flow, different interpretations have been
proposed based on the linear analytical model. De Langre (2006) utilized a
semi-empirical and linearized wake oscillator model, in which all nonlinear and
dissipative terms were neglected. The resulting linear system was constructed by
coupling the wake oscillator model and the structural oscillator. Stability analysis
results showed that frequency lock-in was primarily caused by the coupled-mode
flutter instead of the nonlinear resonance. This analytical idea opened a new threshold
for the interpretation of the frequency lock-in phenomenon in VIV. Quite recently,
Zhang et al. (2015c) constructed a linear reduced-order model (ROM) based on the
system identification method to study VIV at low Reynolds numbers. Results from
the ROM showed that the frequency lock-in phenomenon could be divided into two
patterns, resonance-induced lock-in and flutter-induced lock-in, according to different
inducing mechanisms. It provides a comprehensive understanding of mechanisms of
the frequency lock-in in VIV.

What are the physical mechanism of the frequency lock-in phenomenon and the
consequence of the oscillation with a large amplitude in transonic buffeting flow?
The key to answering this question is to construct an appropriate fluid model for
the post-buffet flow, since it is simple to construct a structural model. Different from
the cylinder wake flow, for which many semi-analytical or semi-empirical models
have been proposed, there are no such models in transonic buffet flow. The current
widely used CFD method is a nonlinear and high-order model, which can help
display details of flow structures, but it is not convenient to analyse the mechanism.
Therefore, the premise in the study of the lock-in mechanism is to set up a low-order
but high accuracy linear ROM, which has an advantage of distinctly displaying
the physical mechanism associated with stability. In this paper, we construct a
CFD-based ROM for the unsteady aerodynamics of a pitching NACA 0012 airfoil
in transonic buffeting flow by using a system identification method. By coupling
the CFD-based ROM with the structural motion equation the ROM-based model is
constructed. Eigenvalue analysis of this aeroelastic model is then performed to study
the mechanism underlying the frequency lock-in phenomenon in transonic buffeting
flow at M = 0.7, Re = 3 × 106 and α = 5.5◦. A coupled CFD/CSD simulation is
simultaneously conducted to validate results analysed by the ROM-based aeroelastic
model.
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FIGURE 1. (Colour online) Block diagram of the models and their relationship.

2. A brief introduction to the models
This section will briefly introduce the methods/models used in the next three

sections and their relationship. As shown in figure 1, for the transonic buffet flow,
there are two ways/models to obtain the unsteady generalized aerodynamic loads. One
is CFD simulation with the unsteady Reynolds-averaged Navier–Stokes (URANS)
method (the blue block), of which details and validation will be presented in § 3.
The other is the ROM (the green block) with an external input by the system
identification method. The building of the ROM is based on the CFD data; therefore,
it has a considerable accuracy and higher efficiency compared with CFD. In § 4,
the process and the validation of the ROM will be discussed. We then establish the
aeroelastic model by coupling the fluid model with the structural equations. There are
also two strategies, which are decided by the way to obtain the unsteady generalized
aerodynamic loads. As shown in figure 1, when the block of the structural equations
(S) connects with the CFD (F1), we obtain the coupled CFD/CSD simulation method.
However, when the structural block connects with the ROM (F2), it is the ROM-based
aeroelastic model. These will be discussed in § 5.

3. Numerical method and its validation
Periodic shock motions in transonic buffet occur on time scales that are much

longer than those of wall-bounded turbulence, so a numerical simulation performed
solving the URANS equations is justified (Crouch et al. 2009; Sartor, Mettot &
Sipp 2015a; Sartor et al. 2015b). Many numerical simulations based on the URANS
method have been performed since the 1990s. In particular, numerical scheme,
turbulence model, time step size and grid influences have been studied. Barakos
& Drikakis (2000) assessed the adequacy of several turbulence models, including
the Baldwin–Lomax model, Spalart–Allmaras (S–A) model, linear and nonlinear
k–ε models and a nonlinear k–ω model, for transonic buffet simulations. The S–A
turbulence model predicted the transonic buffet onset at slightly higher angles of
attack than those in the wind tunnel test. Some researchers, such as Goncalves &
Houdeville (2004), Xiao et al. (2006), Crouch et al. (2009), Raveh & Dowell (2011,
2014) and Sartor et al. (2015a), computed transonic buffet using the URANS method
and the S–A turbulence model.
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3.1. Flow governing equations
In this study, the flow analysis of the NACA0012 airfoil is performed by an in-house
hybrid-unstructured flow solver which solves the URANS equations by a cell-centred
finite volume approach. The integral form of the two-dimensional compressible
URANS equations with the S–A turbulence model can be written for a cell of
volume V limited by a surface S. The equation can be expressed as:

∂

∂t

∫
V

W dV +
∮

S
Ei(W,Vgrid) · n dS−

∮
S

Ev(W) · n dS=
∫

V
H dV, (3.1)

where n represents the outer unit normal vector to the boundary S; W is a
five-component vector of conservative variables, W = [ρ ρu ρv ρE ρν̃]T. ρ is
the density; u, v are the x and y components of the velocity vector of the flow; E
denotes the specific total energy; and ν̃ denotes the working variable of the S–A
turbulence model. Ei(W, Vgrid) and Ev(W) are the inviscid flux and the viscous flux,
respectively. H is the source term.

The spatial discretization and time integration of the turbulence model equation
and mean flow equations are carried out in a loosely coupled way. The second-order
advection upstream splitting method (AUSM) + scheme is conducted to evaluate the
inviscid flux, with a reconstruction technique based on the least-squares approach.
High-order reconstruction schemes refer to Liu et al. (2016). The grid velocity Vgrid
is modified according to the geometric conservation law (Hyung & Yannis 2006)
when CFD/CSD simulations are performed. The viscous flux term is discretized
by the standard central scheme. In the turbulence model, the transport equation
for the working variable υ̂ is given by the standard form proposed by Spalart &
Allmaras (1992). Many reports have indicated that the S–A turbulence model with
a second-order scheme is accurate enough to predict the flow instability (Crouch,
Garbaruk & Magidov 2007; Sartor et al. 2015a; Sartor & Timme 2017). The
convective and source terms are discretized by the second-order AUSM + scheme,
and the destruction and diffusion terms by the second-order central scheme in the
present study. For unsteady computations, the dual time stepping method, proposed
by Jameson (1991), is used to solve the governing equations. At the sub-iteration,
the fourth stage Runge–Kutta scheme is used with local time stepping and residual
smoothing to accelerate the convergence. Details of the numerical method can be
found in Zhang et al. (2015b) and Gao, Zhang & Ye (2016a).

A no-slip wall boundary condition is applied to the airfoil surface. The location and
velocity of the airfoil are updated at each real time step due to the pitching motion
of the airfoil. Moreover, the far field boundary is assigned a non-reflective boundary
condition based on Riemann invariants to ensure that the disturbance generated by the
object does not return to the flow field.

A moving boundary is involved in the simulation due to the airfoil pitching motion
when the frequency lock-in is simulated. Thus, a grid deformation method must be
used to match the grid with the new wall boundary condition. The scheme of the
computational grid deformation is based on radial basis function (RBF) interpolation
(De Boer, Van der Schoot & Bijl 2007; Wang, Mian & Ye 2015). A compact
Wendland’s C2 function (De Boer et al. 2007) is chosen as the basis function.

3.2. Validation of the CFD method
Validation of CFD results is performed based on a transonic buffet wind tunnel test by
Doerffer et al. (2010). They performed a wind tunnel test on a NACA0012 airfoil at
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FIGURE 2. Buffet onset boundaries calculated with different CFD codes at Mach numbers
from 0.7 to 0.8, and Re= 3× 106.

Mach numbers from 0.7 to 0.8, at a Reynolds number of 3× 106 and within a range
of angles of attack including the buffet onset. In this experimental test, the buffet
frequency at M = 0.7 and α = 5◦ is 74 Hz, which is 0.176 in the non-dimensional
reduced frequency scale. The reduced buffet frequency is defined as kb = πfbc/U∞.
fb is the buffet frequency; c indicates the chord of the airfoil; and U∞ denotes the
velocity of the free stream.

The computational hybrid-unstructured flow solver has 25, 361 nodes and 40 layers
of structured viscous grid around the airfoil. The distance between the first layer and
the wall in the perpendicular direction is 5× 10−6 chords (y+∼ 1). The time step for
the CFD simulation is 2.94× 10−4 s. Figure 2 shows the comparison of the transonic
buffet onset boundary for the NACA0012 airfoil. The circles are from the experiment
of Doerffer et al. (2010) and the clean solid line is from the URANS method. It
also shows the results from Soda & Voss (2005), in which the boundaries are larger
than those of the experimental data. The experiment and URANS calculations are
in very good agreement. At M = 0.7, the calculated buffet onset angle is 4.80◦,
which is very close to the 4.74◦ tested by Doerffer et al. (2010). Time histories of
the lift coefficient at 4.6◦, 4.8◦ and 5.5◦ are shown in figure 3. It can be seen that
the dramatic unsteady loads occur at 5.5◦. Therefore, further investigation of the
lock-in phenomenon is performed at M = 0.7 and α = 5.5◦. Figure 4 shows reduced
buffet frequencies at different angles of attack at M = 0.7. As the angle of attack
increases, the buffet frequency increases smoothly and slightly. At α= 5◦, the reduced
frequency is 0.180, which is very close to the experimental data. For the scale of
Strouhal number, St = fbc/U∞, it is approximately 0.058. McDevitt & Okuno (1985)
obtained St = 0.045–0.070 on the NACA0012 airfoil. These results indicate that the
numerical method in this paper is accurate for the simulation of transonic buffet. The
convergence of the grid and the time step are presented in appendix B. For more
validation of the URANS method, one can refer to our earlier studies (Gao et al.
2015; Zhang et al. 2015b).

The grid deformation method is important to the coupled CFD/CSD simulation. The
validation of this method and the numerical algorithm are tested on a forced harmonic
pitching NACA 0012 airfoil from the CT5 case by Landon (1982). Details of the
case and validated results are both presented in our research in Gao et al. (2015) and
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FIGURE 3. (Colour online) The lift and moment responses at α = 4.6◦, α = 4.8◦ and
α = 5.5◦ at M = 0.7 and Re= 3× 106.
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FIGURE 4. Buffet frequencies at different angles of attack, M = 0.7 and Re= 3× 106.

Zhang et al. (2015b). The method is appropriate for the present investigation on the
frequency lock-in.

4. Modelling of unsteady aerodynamics
4.1. Reduced-order modelling by system identification

The application of the ROM to unsteady aerodynamics has been an active area of
research in recent years (Lucia, Beran & Silva 2004; Ghoreyshi, Jirasek & Cummings
2014). It is desirable to use a relatively simple but accurate approximation for
unsteady aerodynamics by a ROM with a small number of orders (typically less than
one hundred) rather than the full-order CFD model. Popular ROMs are mainly based
on proper orthogonal decomposition (POD) and the system identification method.
They have been successfully performed to study thrust modelling for a flapping
airfoil (Li et al. 2017), flutter in transonic flow (Hall, Thomas & Dowell 2000;
Thomas et al. 2006; Zhang, Chen & Ye 2015a), aeroservoelasticity (Zhang & Ye
2007; Zhang, Ye & Zhang 2009; Huang et al. 2015) and unstable flow control
(Barbagallo, Sipp & Schmid 2009; Juillet, Schmid & Huerre 2013). To solve the
above-mentioned stability problems, one needs to establish a dynamic linear model

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

12
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.120


Mechanism of frequency lock-in in transonic buffeting flow 535

under a slight structural disturbance even if the flow contains some nonlinear features,
such as the shock wave and separation. However, for the limit-cycle oscillation (LCO)
in transonic flow, if larger shock motions are involved, the nonlinearity becomes the
dominant characteristic. Zhang, Wang & Ye (2012) established a nonlinear unsteady
aerodynamic ROM using the RBF neural network, and accurately predicted LCOs
with large shock motions in transonic flow. It became a hot topic to model nonlinear
and unsteady aerodynamics (He, Yang & Gu 2014; Mannarino & Mantegazza 2014;
Huang et al. 2015). Very recently, Gao, Zhang & Ye (2016b) studied the transonic
buzz based on the ROM in pre-buffet flow. However, these ROMs were conducted by
the forced perturbation based on stable flows. To the authors’ knowledge, they have
not been documented in unstable transonic buffet flows.

We are interested in constructing a linear model to analyse the underlying
mechanism of the lock-in phenomenon rather than a nonlinear model just to reproduce
complex responses. This linear model is constructed based on the system identification
method. The transonic buffet flow discussed in the present study is unstable, and this
makes it a challenging construction for two reasons:

(i) The linear ROM must be set up based on the unstable steady-state base flow.
However, it is a challenge to obtain the unstable steady solution of the transonic
buffet flow.

(ii) In the training process, a competition exists between the unstable buffet flow
itself and the unsteadiness caused by the forced pitching airfoil. Therefore, the
other challenge is to design an appropriate forcing signal to avoid the training
behaving nonlinearly.

The ROM on the basis of ARX (Auto Regressive with eXogenous input) is
introduced in detail in our previous study (Zhang & Ye 2007), and it has been
successfully performed in the investigation of VIV at supercritical Reynolds numbers
(Zhang et al. 2015c). For the unstable flow, the modelling process contains three steps
– obtaining the unstable steady base flow, training and then performing identification.
In this paper, the modelling of the transonic buffet flow is also based on the
ARX model. Given that the unsteady loads are computed in a discrete domain,
the single-input–single-output model can be expressed as follows:

ya(k)=
na∑

i=1

Aiya(k− i)+
nb−1∑
i=0

Biu(k− i), (4.1)

where ya is the system output (pitching moment coefficient Cm) and u is the system
input (pitching angle θ ). Ai and Bi are constant coefficients to be estimated. Orders
of the model chosen by the user are na and nb. The least-squares method is used
to estimate unknown model parameters. To guarantee the mean data are zero, the
constant levels need to be removed from the initial data before they are estimated.

In order to complete the state-space aeroelastic analysis, we define a state vector
xa(k) consisting of (na+ nb− 1) vector states as follows:

xa(k)= [ya(k− 1), . . . , ya(k− na), u(k− 1), . . . , u(k− nb+ 1)]T. (4.2)

The state-space form of the discrete-time aerodynamic model is as follows:

xa(k+ 1)= Ãaxa(k)+ B̃au(k)
ya(k)= C̃axa(k)+ D̃au(k),

}
(4.3)
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where:

Ãa =



A1 A2 · · · Ana−1 Ana B1 B2 · · · Bnb−2 Bnb−1
1 0 · · · 0 0 0 0 · · · 0 0
... 1 · · · 0 0 0 0 · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...

0 0 · · · 1 0 0 0 · · · 0 0
0 0 · · · 0 0 0 0 · · · 0 0
0 0 · · · 0 0 1 0 · · · 0 0
0 0 · · · 0 0 0 1 · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...
0 0 · · · 0 0 0 0 · · · 1 0


B̃a =

[
B0 0 0 · · · 0 1 0 0 · · · 0

]T

C̃a =
[
A1 A2 · · · Ana−1 Ana B1 B2 · · · Bnb−2 Bnb−1

]
D̃a = [B0]



(4.4)

To couple with the structural motion equation, the discrete-time state-space form
equation is turned into the continuous-time form by bilinear transformation, and the
model in the state-space form is constructed as (4.5):

ẋa(t)= Aaxa(t)+ Bau(t)
ya(t)= Caxa(t)+ Dau(t).

}
(4.5)

As we construct the state-space model of the unsteady aerodynamics, the instability
problem of the flow is converted into the analysis of eigenvalues of the matrix Aa
in (4.5).

4.2. Validation of the reduced-order model
As discussed in § 3.1, there are two difficulties in constructing a linear ROM with
external input in the unstable transonic buffet flow. Firstly, the ROM must be
trained by appropriate signals based on the steady-state base flow. Different from
the time-averaged flow, the steady-state base flow strictly satisfies the governing
equations and boundary conditions in the mathematical form. It plays an important
role in the modelling of unsteady flow and stability analysis (Dowell & Hall 2001;
Barkley 2006; Illingworth, Morgans & Rowley 2012). For the symmetric cylinder
wake flow, we can obtain the base flow by imposing a symmetric boundary condition
or virtual damping (Zhang et al. 2015c). While for transonic buffet flow, the approach
is to stabilize the unsteadiness by some control methods, which should not cause
extra changes on the initial flow conditions such as the angle of attack, airfoil
shape and so on. In our recent work (Gao et al. 2016a), the unstable steady-state
solution of buffet flow is obtained by a closed-loop active control method. Under the
optimal control law, the unsteadiness of the buffet flow is stabilized. The stabilized
flow is the steady base flow for the given buffet state, which is used as the initial
flow in the training process. Figure 5 shows pressure contours and streamlines of
the time-averaged flow field and steady-state base flow field at M = 0.7, α = 5.5◦.
By comparing pressure contours, significant differences are observed between the
two flows. For the time-averaged flow, the shock wave disappears; while for the
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FIGURE 5. (Colour online) Pressure contours and streamlines of flow fields at M = 0.7,
α = 5.5◦: (a) time-averaged flow; and (b) steady-state base flow.
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FIGURE 6. (Colour online) Comparison of pressure coefficients between the time-averaged
flow and the steady-state base flow.

steady-state base flow, it remains at 20 % after the leading edge of the airfoil. This
directly leads to the difference in the pressure coefficient, as shown in figure 6, and
consequently to the difference in the aerodynamic force, as shown in figure 7(a), the
pitching moment coefficient of the unstable steady base flow being slightly larger than
that of the time-averaged one. Figure 7(a) also presents the evolution of the buffet
flow at M = 0.7 and α = 5.5◦ based on the steady-state solution, and in figure 7(b),
the response is plotted in the logarithm scale. When the non-dimensional time is less
than 140, the amplitude of the moment coefficient is less than 0.015. At this stage,
the evolution develops in an approximately linear way, which we define as the linear
stage. When the non-dimensional time is larger than 140, the growing amplitude of
the unstable aerodynamic force will ultimately give rise to a nonlinear, limit-cycling
behaviour, which is certainly not linear. So the training process must be performed
at the linear stage.

As to the second difficulty, the training signal must satisfy the following three
requirements: (i) the frequency of the training signal should cover the buffet frequency;
(ii) the amplitude of the training signal should be small, otherwise it will induce
nonlinear responses; (iii) the training signal should not be too long and the training
process must be finished before the amplitude of the moment reaches 0.015. As
shown in figure 8(a), a chirp signal with an increasing frequency is designed as the
input. Figure 8(b) shows the power spectrum density (PSD) analysis of the signal.
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FIGURE 7. (Colour online) Evolution of the pitching moment coefficients based on the
steady-state base flow are plotted in (a) normal scale and (b) logarithm scale, where Cm0
indicates the mean pitching moment coefficient.
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FIGURE 8. (a) Time history and (b) PSD analysis of the training signal.

Its dominant reduced frequencies are from 0.1 to 0.5, including the buffet reduced
frequency. In addition, to reduce the impact of the airfoil sudden movement in the
flow, a smoothing method with an average weight coefficient is used in the initial
period of non-zero signals.

We set up the aerodynamic model at M= 0.7, α= 5.5◦ to verify the ROM. In order
to accurately predict the unsteady aerodynamics, delay orders should be assigned with
relatively large numbers, i.e. na= nb= 80. The identified results are compared with
those of CFD simulations in figure 9; and a good agreement is observed between them.
Therefore, the identification method based on the ARX model has a high numerical
accuracy.

The ROM is then validated in the time domain by comparing with CFD simulations
under the excitation of harmonic signals. The harmonic forcing signal is in the form
of θ = θam sin(2πnfbt). θam is the vibration amplitude of the airfoil; fb is the frequency
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FIGURE 9. Identified results compared with those of CFD simulations.

 0.01

 0

 –0.01

 –0.02

 –0.03

 –0.04

 0

 –0.01

 –0.02

 –0.03

 –0.04
0 20 40

CFD
ROM

60 80 50 1501000

t t

(a) (b)

FIGURE 10. Comparisons of time responses of a harmonic pitching airfoil at α= 5.5◦ for
(a) θ = 0.02 sin(1.4πfbt) and (b) θ = 0.02 sin(2.6πfbt).

of buffet; and n is the non-dimensional coefficient. Figure 10 shows comparison of
time histories of the pitching moment coefficient between ROM and CFD simulation
at two typical forcing frequencies (n = 0.7 and n = 1.3). ROM predictions exactly
match those computed by the CFD simulation when the amplitude of the pitching
moment coefficient is less than 0.015.

By solving the eigenvalue of matrix Aa in (4.5), we can obtain the least stable fluid
mode, which is associated with the instability of the transonic buffet flow. The real
part of the eigenvalue indicates the damping of the fluid mode, and a positive one
means that the fluid is unstable. The imaginary part of the eigenvalue, in the reduced
frequency scale, indicates the reduced frequency of the fluid mode. Figure 11 displays
the trajectory of the least stable eigenvalue at M = 0.7, which changes smoothly as
the angle of attack increases. The flow is globally stable (eigenvalues lie in the left
half-plane) at small angles of attack up to α= 4.70◦. Then, the eigenvalue crosses the
imaginary axis between α = 4.70◦ and α = 4.80◦. Note that the critical angle of the
buffet onset obtained here corresponds to the angle computed by the CFD simulation,
and it approximates to the α = 4.74◦ observed in the experiment by Doerffer et al.
(2010). At α = 5.5◦, the buffet frequency from the present ROM is 0.196 and it is
0.198 from the CFD simulation (figure 4). This reveals that the linear buffet frequency
by the ROM is almost the same as the nonlinear one by the CFD. Therefore, we will
not differentiate them in the ensuing discussion, and they are both donated by kb. This
is different from the cylinder wake flow, in which the linear frequency is lower than
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FIGURE 11. Least stable eigenvalues loci obtained by the ROM at various angles of attack
at M = 0.7.

the nonlinear frequency (Zhang et al. 2015c), and in which the larger the Reynolds
number is, the bigger the difference is (Sipp et al. 2010).

5. Models for aeroelasticity
5.1. Coupled CFD/CSD simulation method

The generalized structural motion equation in matrix form is as follows:

M · ξ̈ +G · ξ̇ + K · ξ =Q, (5.1)

where ξ is the structural generalized displacement; M , G and K are the generalized
mass, damping and stiffness matrices, respectively. Q is the generalized aerodynamic
force provided by the CFD.

The structural motion equation can be non-dimensionalized by the time dt =
U∞/b dtphysics. For the dynamics of the SDOF pitching airfoil with zero damping,
equation (5.1) can be written as:

θ̈ + k2
s θ =

1
πµr2

α

(2Cm), (5.2)

where θ represents the airfoil pitching angle. ks = ωsb/U∞ is the reduced frequency
non-dimensionalized by the half-aerodynamic chord b, natural frequency of the
pitching spring ωs and the free-stream velocity U∞. Therefore, ks represents the
natural frequency of the elastic airfoil in the ensuing discussion. µ= m/πρb2 is the
non-dimensional mass ratio, where m and ρ represent the mass of the wing with unit
span and the density of the free stream, respectively. rα is the gyration radius of the
airfoil around the elastic axis at a = 0.224c. Cm is the pitching moment coefficient.
A sketch diagram of the SDOF pitching airfoil is shown in figure 12.

By defining the structural state vector x= [θ, θ̇ ]T, the structural motion equation in
the state-space form is as follows:

ẋ=F(x, t)= Ax+ BQ(Cm), (5.3)
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FIGURE 12. Sketch diagram of the SDOF pitching airfoil system.

where A= [ 0 I
−M−1K −M−1G

]
; B= [ 0

M−1

]
; 0 is the zero matrix; I is the identity matrix; and

Q is a function of Cm, defined by Q(Cm)= 2Cm/(πµr2
α). Equation (5.3) is a first-order

differential equation system. A fourth-order accuracy hybrid linear multi-step method
(Zhang, Jiang & Ye 2007) is used to solve the aeroelastic equation (5.3) in the time
domain.

Lack of a standard case for the SDOF flutter, the above-coupled CFD/CSD
simulation method is validated by classical flutter cases with two degrees of freedom.
In our previous work, flutter boundaries of the bench active control technology
(BACT) model (Zhang et al. 2015b), the Isogai wing (Zhang et al. 2007) and the
LCO with NACA64010 airfoil (Zhang et al. 2012) agreed well with experimental
data and reference results.

5.2. ROM-based aeroelastic model

Defining the structural state vector xs = [θ, θ̇ ]T for the present SDOF pitching airfoil,
the structural motion equation (5.1) in the state-space form can be rewritten as:

ẋs(t)= Asxs(t)+ qBsya(t)
u(t)= Csxs(t)+ qDsya(t),

}
(5.4)

where As =
[

0 1
−k2

s 0

]
, Bs =

[
0
1

]
, Cs =

[
1 0

]
, Ds = [0], q= 1/(πµr2

α).

By defining the state vector xae=[xs,xa]T and coupling the structural state equations
(5.4) with the aerodynamic state equations (4.5), we obtain the state equation and
output equation for the linear aeroelastic system as follows:

ẋae(t)=
[

As + q · BsDaCs q · BsCa
BaCs Aa

]
· xae(t)= Aae · xae(t)

u(t)= [Cs 0
]
· xae(t).

 (5.5)

The ROM-based aeroelastic model of a SDOF pitching airfoil system is then
obtained. The problem of aeroelastic stability is converted into the analysis of
complex eigenvalues of Aae. The process of the transonic aeroelastic analysis is:

(i) Use the URANS flow solver to compute the aerodynamic coefficient of the mode
with the designed input signal in figure 8.

(ii) Use the identification technique to construct the input–output difference model
(4.3) in the discrete-time domain, and then turn it into the continuous-time state-
space form (4.5).
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(iii) Couple the aerodynamic state-space equation (4.5) and the structural state-space
equation (5.4) to obtain the ROM-based aeroelastic state-space equation (5.5).

(iv) Solve the complex eigenvalues of the state matrix Aae in (5.5). We focus on
the two most unstable eigenvalues, which correspond to the fluid and structural
modes. With different structural parameters, natural frequencies of the elastic
airfoil and mass ratios, we can obtain a set of eigenvalues. It is the root loci.
The stability of the aeroelastic system changes when the root loci cross the
imaginary axis.

The model is then validated by the BACT case (Rivera et al. 1992). Although this
case is a two DOF system, procedures for the modelling are the same. Therefore, it
is an alternative validation owing to lack of standard cases for the SDOF system. The
results are shown in appendix C.

6. Results and discussion
This paper focuses on the frequency lock-in phenomenon in transonic buffeting

flows. An NACA 0012 airfoil at M = 0.7, α = 5.5◦ and Re= 3× 106 is used as the
computational case. The ROM-based aeroelastic model constructed in § 5.2 is applied
to analyse the mechanism of the phenomenon. The coupled CFD/CSD method
constructed in § 5.1 is used as a supplement to conclusions from the ROM-based
aeroelastic model. The airfoil is free to vibrate in SDOF pitching with a supporting
axis at 0.224c. In § 6.1, the frequency lock-in phenomenon is simulated based on the
coupled CFD/CSD method. In § 6.2, eigenvalue analysis of the ROM-based aeroelastic
model is conducted, and the mechanism underlying the lock-in is discussed. In § 6.3,
the effect of the mass ratio µ is investigated. But before further discussion, some
frequencies should be clarified. The first is kb, which is the buffet frequency of the
rigid airfoil as discussed in § 4.2. The second is ks, which is the natural frequency
of the elastic airfoil. And the last is kae, which is the coupling frequency of the
aeroelastic system.

6.1. Characteristics of the frequency lock-in
Figures 13–15 show time history responses and PSD analyses at different natural
frequencies (ks) of the elastic airfoil at µ= 200. In the cases of ks = 0.10 (figure 13)
and ks = 0.60 (figure 14), the amplitudes of the pitching angle responses are very
small; and the amplitudes of the pitching moment coefficient are approximately equal
to those of the rigid model (figure 7). PSD analyses show that coupling frequencies
(kae) are dominated by the buffet frequency (kb = 0.196), which displays forced
vibration under the unstable buffet loads. However, in the case of ks= 0.35 (figure 15),
the basic coupling frequency is no longer dominated by the buffet frequency, but
follows the natural frequency of the elastic airfoil. This is the frequency lock-in
phenomenon. When it occurs, the amplitude of the oscillating pitching angle exceeds
8◦, and the amplitude of the moment coefficient is much larger than that of the rigid
model. Such large-amplitude oscillations may cause serious flight accidents.

Furthermore, figure 16 shows the coupling frequency (kae) of the aeroelastic system
as a function of the natural frequency (ks). In most regions, the coupling frequency
follows the buffet frequency. However, in the region of 0.21 < ks < 0.46 (the lower
boundary is controversial, which will be discussed in next section), the coupling
frequency locks onto the natural frequency. The dashed line kae = ks represents the
lock-in phenomenon. It is found that lock-in can occur in a wider range at the ratio
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FIGURE 13. Time histories at ks=0.10 of (a) the pitching angle response; (b) the pitching
moment coefficient response; and (c) the PSD analysis of the pitching moment coefficient
response.
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FIGURE 14. Time histories at ks=0.60 of (a) the pitching angle response; (b) the pitching
moment coefficient response; and (c) the PSD analysis of the pitching moment coefficient
response.

of natural frequency to buffet frequency (ks/kb) from 1.07 to 2.34. Previous research
attributed the frequency lock-in to resonance. However, the so-called ‘resonance
region’ (0.21 < ks < 0.46 or 1.07 < ks/kb < 2.34) does not display a symmetrical
distribution against the buffet frequency (0.196), but it is entirely located in the
higher frequency side. Is frequency lock-in in transonic buffeting flow really caused
by resonance?

6.2. Mechanism of the frequency lock-in
The mechanism underlying the lock-in will be discussed in this section using the
ROM-based aeroelastic model. Figure 17 presents the eigenvalue loci of the coupled
system varying with the natural frequency (ks) of the airfoil at µ = 200. It can be
found that the eigenvalue loci have two branches, which we define as branch A and
branch B. For branch A, its mode is stable (eigenvalues lie in the left half-plane)
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FIGURE 15. (Colour online) Time histories at ks= 0.35 of (a) the pitching angle response;
(b) the pitching moment coefficient response; and (c) the PSD analysis of the pitching
moment coefficient response.
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FIGURE 16. Oscillating frequency of the aeroelastic system as a function of the natural
frequency of the elastic airfoil.

at low natural frequencies; then as the natural frequency increases, it crosses into
the right half-plane, and the coupling frequency of the system at the crossing point
is kae = 0.196; as the natural frequency increases furthermore, it approaches the
uncoupled least stable fluid mode (refer to figure 11 at α= 5.5◦). However, for branch
B, it is unstable at the initial stage; then as the increase of the natural frequency, it
crosses into the left half-plane, and the coupling frequency at the crossing point is
kae = 0.46.

Figure 18 shows the imaginary part of the eigenvalue loci in figure 17 as a function
of the natural frequency ks. At low natural frequencies, the coupling frequency of
branch A follows the natural frequency of the structural model (S mode); and the
coupling frequency of branch B is dominated by the buffet frequency of the fluid
mode (F mode). However, at high natural frequencies, the coupling frequency of
branch A turns to be dominated by the buffet frequency; while that of branch B
becomes to follow the natural frequency. The corresponding modes also exchange.
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FIGURE 17. (Colour online) Eigenvalue loci of the aeroelastic system at M= 0.7, α= 5.5◦
and µ= 200.
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FIGURE 18. (Colour online) Imaginary part of the eigenvalue loci as a function of the
natural frequency.

From the above analysis, it can be seen that there is mode veering between the
two branches. Mode veering refers to the phenomenon associated with the imaginary
part (frequency) of the eigenvalue loci of a system with a variable parameter: two
branches approach each other and then veer away and diverge instead of intersecting
(Perkins & Mote 1986; Chen & Kareem 2003; Vijayann & Woodhouse 2014). When
mode veering occurs, eigenmodes (eigenvectors) associated with these two branches
also exchange in a continuous way. Meliga & Chomaz (2011) first found the veering
phenomenon between F mode and S mode, which was defined as mode transition
in their study, when they investigated the effect of mass ratio on the instability of
a spring mounted circular cylinder. It is found that if the mass ratio is larger than the
critical mass ratio, the instability is led by F mode; if it is smaller, the instability is
led by S mode; and if it is close to the critical mass ratio, no clear distinction can
be found between the two modes.
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FIGURE 19. (Colour online) Mode veering of imaginary part (frequency) of the eigenvalue
loci with the varying natural frequency of the elastic airfoil. The blue triangle symbol
refers to branch B, and the black square symbol refers to branch A. The dashed line
denotes the buffet frequency of the rigid airfoil, and the solid line denotes the natural
frequency. Blue arrows denote directions of eigenvectors associated with branch B, and
black arrows denote those of branch A. The grey area refers to the mode veering region
based on the approximate law.

Figure 19 shows the close-up view of the veering region, as well as the coupling
frequency of the aeroelastic system from the coupled CFD/CSD simulation which
corresponds to that of branch B. As the natural frequency (ks) of the elastic airfoil
approaches to the buffet frequency (kb), the loci of branch A and branch B tend to
veer and march along each other’s previous locus (dashed and solid lines in figure 19),
thus avoiding an intersection; and the modes associated with these two frequencies
exchange. We also plot the directions (the real part and the imaginary part in complex
plane) of the complex eigenvectors. As shown in figure 19, only components of
interest are displayed, black and blue arrows standing for branch A and branch B,
respectively. The directions also exchange after the mode veering. Therefore, they can
be used to track the mode veering region. A common approximate law is defined as:
if the direction of an eigenvector displays a deflection more than 10◦ compared with
that of the initial (last) one, we define it as the onset (offset) of the veering region.
Based on this law, the mode veering region (the grey area), 0.168 < ks < 0.232
or 0.83 < ks/kb < 1.18, can be marked in figure 19. Therefore, we can draw a
panorama of the mode veering associated with branch B with the increasing natural
frequency. Before the mode veering, ks < 0.168, branch B corresponds to F mode;
while after that, ks > 0.232, it turns to correspond to S mode. In the veering region,
0.168> ks > 0.232, the mode property of branch B transforms from F to S. Due to
the continuity of the transformation, it is difficult to distinguish S mode from F mode
in the region.

Figure 20 shows the real part (represents the damping characteristics) and imaginary
part (represents the frequency characteristics) of the eigenvalue loci in figure 17, as
well as the coupling frequency and the amplitude of the pitching angle from the
coupled CFD/CSD simulation as functions of the natural frequency of the elastic
airfoil. Since the real part and the imaginary part share the same veering range,
the real part also displays the mode veering phenomenon (figure 20b), which has
been discussed in the imaginary part of the loci in figure 19. Before the veering
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FIGURE 20. (Colour online) (a) Imaginary part of the eigenvalue loci, (b) real part of
the eigenvalue loci from the ROM-based aeroelastic model; and (c) coupling frequency of
the system, (d) oscillating amplitude of the pitching airfoil from the coupled CFD/CSD
simulation varying with the natural frequency of the elastic airfoil.

(ks < 0.168), branch B stands for F mode, but after that (ks > 0.232), it turns to stand
for S mode. From figure 20(b), it can also be seen that the damping (real part) of
S mode is positive at 0.232 < ks < 0.460. Based on the linear eigenvalue theory, a
positive damping means the instability of S mode, namely, flutter in aeroelasticity.
The upper flutter boundary (the crossing point) is at ks= 0.460, which is exactly equal
to the upper boundary of the lock-in region from the coupled CFD/CSD simulation.

Figure 21 shows the comparison of the logarithmic increment of the pitching
angle between the coupled CFD/CSD simulation and the ROM-based aeroelastic
model. The logarithmic increment from the ROM-based model is transformed
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FIGURE 21. (Colour online) Comparison of the logarithmic increment between the
coupled CFD/CSD simulation and the ROM-based aeroelastic model as a function of the
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FIGURE 22. (Colour online) Time history of the pitching angle of the airfoil from
the coupled CFD/CSD simulation and the sample for the calculation of the logarithmic
increment at (a) ks = 0.25, (b) ks = 0.28 and (c) ks = 0.42.

from the real part (positive damping) of branch B in figure 20(b). In the coupled
CFD/CSD simulation, it is calculated from the time history of the pitching angle
at the initial stage with approximately exponential oscillation. It is defined as
η = Ln(Amj+1(θ)− Amj(θ))/Amj(θ), where Amj(θ) represents the amplitude of the
jth cycle. Responses and samples for the calculation of the logarithmic increment at
typical natural frequencies are shown in figure 22. It can be seen that the logarithmic
increment from the coupled CFD/CSD simulation can reasonably match that predicted
by the linear model. As shown in figure 22(a), at ks = 0.25, the oscillation reaches a
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LCO rapidly because of the higher linear increment (positive damping). In this case,
the nonlinearity dominates the system. The predicted increment from the sample of
the simulation is also dominated by the nonlinearity. Therefore, errors at cases of
ks < 0.25 are reasonable. In the case of ks = 0.42, the time history of the pitching
angle displays an exponential growth. Both logarithmic increments are in good
agreement. Therefore, from the results in figures 19 and 21, both are convincing, the
characteristics of the frequency and the damping in the lock-in region predicted by
the linear ROM-based aeroelastic model. Besides, the frequency lock-in is dominated
by linear dynamics.

In order to thoroughly understand the dynamics of the buffeting response, the
natural frequency (ks) of the airfoil is divided into four sub-regions, as shown in
figure 20(c). They are divided by three critical natural frequencies, namely, the lower
and upper boundaries (kl

s = 0.168, km
s = 0.232) of the frequency loci veering, and the

upper flutter boundary (ku
s = 0.460). In sub-regions 1 (ks < 0.168) and 4 (ks > 0.460),

coupling frequencies follow the buffet frequency, namely, kae = kb. In fact, they are
both forced vibration caused by the unsteady buffeting loads. Vibration amplitudes
of the airfoil are comparatively small in these two sub-regions. In sub-region 2
(0.168< ks < 0.232), namely, the mode veering region, the coupling frequency neither
follows the buffet frequency nor the natural frequency. The oscillating amplitude of
the airfoil in this sub-region is between that in sub-regions 1 and 3. It is a transitional
stage. However, due to the continuity of the veering process, it is hard to identify
which mode, S mode or F mode, dominates the system instability. In sub-region 3
(0.232< ks < 0.460), the coupling frequency synchronizes with the natural frequency
(kae= ks) – the phenomenon of the frequency lock-in, and the airfoil vibrates with an
increasing amplitude. The peak oscillation amplitude is achieved at a distinctly high
frequency ratio of ks/kb = 1.73 rather than ks/kb = 1.0.

Results from the above discussion indicate that the coupling between the S mode
and F mode leads to the instability of the former. Besides, the instability range
coincides with the lock-in region obtained from the coupled CFD/CSD simulation.
It reveals that the frequency lock-in is caused by the linear coupled-mode flutter.
However, the flutter in this study is not a classical mode coupling between structural
modes but a coupling between one structural mode and one fluid mode. Therefore,
the physical mechanism underlying the frequency lock-in phenomenon in transonic
buffeting flow is SDOF flutter. But different from the classical SDOF flutter (e.g.
transonic buzz) which occurs from an initial stable flow, the present one is in the
unstable buffeting flow. Its particularity is the competition between two unstable
modes. Therefore, the response of the airfoil system undergoes a conversion from
the forced vibration to the self-sustained oscillation (flutter). The coupling frequency
certainly should lock onto the natural frequency of the elastic airfoil. The occurrence
of the frequency lock-in is dominated by the linear dynamics.

The conversion is then validated by the coupled CFD/CSD simulation at µ= 200
and ks= 0.3 with zero initial condition of the displacement and velocity. Based on the
analysis of the linear dynamics, there are two unstable modes in this case, F mode
and S mode. The complex response can be explained by the competition between the
two unstable modes. Figure 23 shows the time history and the frequency content of
the responses. The response history can be divided into three stages. In the first stage,
t< 200, the pitching angle is very small and the pitching moment coefficient vibrates
with the amplitude approximately equal to that of the rigid airfoil. The coupling
frequency is followed by the buffet frequency (kb = 0.196) (figure 23c). Therefore,
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FIGURE 23. (Colour online) Time history of (a) the pitching angle, (b) the pitching
moment coefficient and (c–e) frequency contents of the aeroelastic system at M = 0.7,
α = 5.5◦ and µ= 200, ks = 0.3 with zero initial conditions.

the system is dominated by the unstable F mode, displaying forced vibration under
the unstable buffet loads in this stage. In the second stage, 200< t < 440, there are
two peak frequency components, the buffet frequency with less power, and the natural
frequency with more power (figure 23d). It means that, as the response time goes,
the buffet frequency becomes weak, while the natural frequency becomes strong.
That is, the unstable S mode gradually dominates the dynamic characteristics of
the system. Finally, in the last stage, t > 440, the responses diverge. The oscillating
frequency absolutely follows the natural frequency (figure 23e). The frequency lock-in
phenomenon occurs. The unstable S mode completely dominates the characteristics
of the system. Therefore, the system in this stage displays self-sustained oscillations
(flutter).

With time going on (t > 800), responses of the pitching angle and the moment
coefficient increase rapidly and eventually approach LCOs. Owing to a limited time
range, LCO is not shown in figure 23, but it is exhibited in figure 15. It can be seen
that the pitching moment does not display a simple harmonic response (figure 15b).
The PSD result shows two peaks (figure 15c). The basic peak (0.35) is accurately
located at the structural reduced frequency, and the second one equals twice that of
the structural reduced frequency. This is a nonlinear response. We notice that the
airfoil pitching angle exceeds 8◦ (figure 15a). Such a large-amplitude pitching motion
certainly leads to a nonlinear flow, and consequently results in a double frequency
response of the pitching moment. However, we want to specifically emphasize that
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FIGURE 24. (Colour online) (a) Real part and (b) imaginary part of the eigenvalue loci
at µ= 60 as functions of the natural frequency of the elastic airfoil.

the nonlinearity dominates the system only when the structural pitching angle is large
enough. At the initial stage of the response with a small pitching angle, the system
is dominated by the instability of the structural mode (flutter). In transonic flow,
a divergent response (flutter) generally reaches a LCO finally, as a result of the shock
wave. Therefore, the nonlinear response (LCO) is just the final performance of the
coupling linear flutter.

Some researchers have investigated the frequency lock-in in unstable flows with
harmonic forcing, such as the transonic buffet flow by Raveh & Dowell (2011) and
the open-cavity flow by Sipp (2012). These studies used uncoupled methods, and in
particular, the lock-in range depends on the forcing amplitude. In essence, there exists
a completion between the unstable flow and the unsteadiness caused by the forcing.
As long as the forcing amplitude is large enough, the unsteadiness of the forcing flow
will dominate the entire characteristics of the system.

6.3. Effect of the mass ratio
The investigation in §§ 6.1 and 6.2 is performed at a fixed mass ratio µ= 200. This
section will focus on the effect of the mass ratio on the dynamics of the buffeting
response and frequency lock-in.

Figures 24 and 25 show the complex eigenvalue loci as functions of the natural
frequency (ks) of the elastic airfoil at µ = 60 and µ = 1000, respectively. Generally,
the analysis procedure is similar to that of the eigenvalue loci at µ = 200. We first
recognize properties of the two branches and boundaries of the veering region by
directions of eigenvectors based on the imaginary part of the eigenvalue loci (figures
24b and 25b). Then, we determine the upper flutter boundary (the crossing point of
branch B) in the real part of the eigenvalue loci (figures 24a and 25a). Therefore,
we can get three critical frequencies, the lower and upper boundaries (kl

s and km
s )

of the veering region and the upper flutter boundary (ku
s ). In the case of µ = 60,
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FIGURE 25. (Colour online) (a) Real part and (b) imaginary part of the eigenvalue loci
at µ= 1000 as functions of the natural frequency of the elastic airfoil.

kl
s = 0.126, km

s = 0.253 and ku
s = 0.460; while in the case of µ = 1000, kl

s = 0.190,
km

s = 0.210 and ku
s = 0.460. According to the three critical points, the natural frequency

can be also divided into four sub-regions, namely, the forced vibration regions as
sub-region 1 and 4, the mode veering region as sub-region 2 and the frequency lock-in
region as sub-region 3. As discussed in § 5.2, the responses are forced vibrations in
sub-regions 1 and 4 with smaller oscillating amplitudes, and the coupling frequencies
always follow the buffet frequency. In sub-region 3, S mode is unstable, and the
unstable region coincides with the lock-in region. It provides further evidence for the
fact that the frequency lock-in phenomenon in transonic buffeting flow is caused by
the linear coupled flutter. Furthermore, we notice that the upper flutter boundary (the
crossing point, ku

s ) is substantially fixed at ku
s = 0.460 at different mass ratios. This

reveals that the mass ratio has a slight influence on this boundary. This is different
from the conclusion in VIV (Meliga & Chomaz 2011; Zhang et al. 2015c), in which
the upper boundary of the lock-in is significantly affected by the mass ratio, especially
when the mass ratio is rather small. In sub-region 2, veering boundaries greatly rely
on the mass ratio. The veering range changes from (0.126, 0.253) to (0.190, 0.210) as
the mass ratio increases from µ= 60 to µ= 1000. Thus, the larger the mass ratio is,
the narrower the veering region is and the closer veering boundaries are to the buffet
frequency.

Figure 26 shows the comparison of the coupling frequency (kae) between the
coupled CFD/CSD simulation and the ROM-based aeroelastic model at both mass
ratios. The coupling frequency obtained by the simulation reasonably matches that of
the model. Especially, the linear ROM-based aeroelastic model can accurately predict
the upper flutter boundary. Therefore, it further proves that the frequency lock-in in
transonic buffeting flow is dominated by linear dynamics. However, the characteristics
of veering, to a certain extent, are associated with nonlinear dynamics when the mass
ratio is small. In this region, the interaction between fluid and structure is strong,
and the linear stage is very short, which is believed to be responsible for the gap
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and µ= 5000.

between the linear model and the nonlinear coupled CFD/CSD simulation at µ= 60.
A full weakly nonlinear model, such as that reported by Meliga & Chomaz (2011),
may help to analyse cases with very small mass ratios.

We further enlarge the mass ratio to µ = 5000. The eigenvalue loci are shown
in figure 27. It can be seen that the loci display two separated and clean clusters.
One fluctuates in the vicinity of the least stable F mode (figure 11), and forms
a circle with the increasing natural frequency (ks) of the elastic airfoil. The other
fluctuates in the vicinity of the imaginary axis, first crossing the axis from the left
half-plane to the right half-plane at ks = 0.196 and then crossing from the right
to the left at ks = 0.460. This is different from the eigenvalue loci in figure 17.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

12
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.120


554 C. Gao and others

0.01

0.02

0

Re

0.4

0.2

0.6

0

Im

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Coupled F mode
Coupled S mode

Crossing

(a)

(b)
Frequency

lock-in

Flutter

FIGURE 28. (Colour online) (a) Real part of the eigenvalue loci and (b) imaginary part of
the eigenvalue loci as functions of the natural frequency of the elastic airfoil at M= 0.7,
α = 5.5◦ and µ= 5000.

In this case, µ = 5000, the branch in the vicinity of the least stable F mode is a
coupled F mode. And the other branch near the imaginary axis is a coupled S mode.
Figure 28 shows the real and imaginary parts of complex eigenvalue as functions of
the natural frequency of the elastic airfoil. From the imaginary part in figure 28(b),
it can be seen that the coupled-mode frequencies always follow their uncoupled
frequencies. When ks = 0.196, the two loci intersect but do not repeal. This is the
phenomenon of loci crossing. Different from the loci veering, eigenmodes associated
with the two branches do not exchange in loci crossing. As shown in figure 28(a),
the damping of S mode is positive when the natural frequency is within the range of
0.196< ks< 0.460, indicating the instability of S mode (flutter). This range is also the
lock-in region from the coupled CFD/CSD simulation. This further verifies that the
frequency lock-in in transonic buffeting flow is caused by the linear coupled-mode
flutter.

It can be seen that with the increase of the mass ratio, the imaginary part
(frequency) of the eigenvalue loci changes from veering to crossing, which suggests
the existence of a critical mass ratio. It is closely related to characteristics of the
least stable F mode. That is, free-stream parameters, namely, Mach number, angle of
attack and Reynolds number determine the critical mass ratio. In the present study, we
calculate that the critical mass ratio is µ= 3350. Figure 29 shows the mode veering
region and the frequency lock-in region at different mass ratios. Good agreement is
observed between boundaries calculated by the coupled CFD/CSD simulation and
those obtained by the ROM-based aeroelastic model. As the mass ratio increases,
the mode veering region becomes smaller. At µ = 3350, the mode veering region
vanishes and the lower boundary of the lock-in region equals the buffet frequency.

7. Conclusions
In this paper, we study the dynamics of a spring suspended NACA0012 airfoil in

transonic buffeting flow, especially the physical mechanism underlying the frequency
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FIGURE 29. (Colour online) Mode veering and frequency lock-in boundaries as functions
of the mass ratio.

lock-in phenomenon, by a linear dynamic model. On the basis of the ROM-based
aeroelastic model, effects of both the natural frequency of the elastic airfoil and the
mass ratio on the dynamics of the airfoil system are investigated by the complex
eigenvalue analysis. The coupled CFD/CSD simulation is also performed as a
supplement to nonlinear time-domain responses. Main conclusions can be summarized
as follows:

(i) The frequency lock-in in transonic buffeting flow is not caused by the resonance,
but the linear coupled-mode flutter. In this study, when the frequency ratio is
within the range of 1.07 < ks/kb < 2.34, the instability of the structural mode,
resulting from the coupling between the fluid and structural modes, is the root
cause of the frequency lock-in. This mechanism provides a reasonable explanation
why the lock-in region significantly deviates from the resonance point (ks/kb∼ 1).

(ii) The flutter is in essence the SDOF flutter in an unstable separated flow, different
from the classical one (e.g. transonic buzz) which occurs in stable flows. In the
present case, there is a competition between two unstable modes – the unstable
fluid mode and the unstable structural mode. Therefore, the response of the airfoil
system undergoes a conversion from the forced vibration to the self-sustained
flutter.

(iii) The frequency lock-in in transonic buffeting flow mainly depends on the
linear dynamics instead of the nonlinear characteristics. The linear ROM-based
aeroelastic model is proved to be effective as in that it successfully predicts
many characteristics in the region of frequency lock-in, including the coupling
frequency, the logarithmic increment and the upper flutter boundary, which are
mostly consistent with those calculated by the coupled CFD/CSD simulation.
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Appendix A. Nomenclature

CFD computational fluid dynamics
CSD computational structural dynamics
SDOF single-degree-of-freedom
ROM reduced-order model
LCO limit-cycle oscillation
PSD power spectrum density
M Mach number
α angle of attack
Re Reynolds number
U∞ free-stream velocity
ρ density of the air
T∞ free-stream temperature
a∞ free-stream sound speed
c chord length
b half chord length, b= c/2
fb dimensional buffet frequency (Hz)
Cm pitching moment coefficient
Cl lift coefficient
na orders of the ROM
nb orders of the ROM
θ pitching angle
µ mass ratio
η logarithmic increment
ks natural frequency of the elastic airfoil
kb buffet frequency
kae coupling frequency
kl

s lower boundary of the veering region
km

s upper boundary of the veering region
ku

s upper flutter boundary

Appendix B. Convergence of the grid and the time step

In order to assess convergence in numerical results, the transonic buffet flow at
M= 0.7, α= 5◦ and Re= 3× 106 has been computed for four grids G1 to G4 differed
by their spatial resolution. All results presented in the present study are from G3 grid,
which is shown in figure 30. Results are detailed in table 1 for nodes of grids and the
amplitude of aerodynamic forces, which show that nearly all constants are converged
down to the third digit. Results of G3 and G4 grids are almost equal, but the time cost
of G3 grid is cheaper. Therefore, the G3 grid is adopted in this research considering
the balance between efficiency and accuracy.

Generally, the time step of fluid dynamics is smaller than that of structural
dynamics. Therefore, the time step of the present study is decided by the simulation
of the buffet flow. For the time convergence of the buffet flow, simulations were run
using non-dimensional computational time steps dt ranging from 0.02 to 1, where
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G1 G2 G3 G4

Airfoil nodes 90 180 400 600
Surface nodes 4426 9624 25 361 43 004
Amplitude of Cl 0.080 0.100 0.110 0.110
Amplitude of Cm 0.016 0.024 0.024 0.024
Reduced frequency 0.183 0.181 0.180 0.180

TABLE 1. Dependence of the results on different grids differing by their spatial resolution.

Non-dimensional dt 1.0 0.7 0.5 0.1 0.02
Physical dt (s) 2.94× 10−3 2.06× 10−3 1.47× 10−3 2.94× 10−4 5.89× 10−5

Time averaged Cl — 0.540 0.574 0.576 0.577
Amplitude of Cl — 0.09 0.108 0.110 0.110
Time averaged Cm — 0.146 0.154 0.156 0.156
Amplitude of Cm — 0.012 0.024 0.024 0.024
Reduced frequency — 0.16 0.178 0.180 0.180

TABLE 2. Comparison of results at different time steps.

the physical time step is defined as dt= dtphysicsa∞/c. Table 2 shows the aerodynamic
forces, along with the reduced frequency using G3 grid. When the time step increases
to 1.0 or a larger one, the CFD solver cannot calculate a buffet. The results converge
with a decreasing time step, and a non-dimensional time step no larger than 0.1
(physical time step of 0.00029 s) is adequate for the present simulations.

Appendix C. Validation of aeroelastic models

We choose the BACT case (Rivera et al. 1992) to validate the aeroelastic models.
Although this case is a two DOF system, procedures for the modelling are the
same. That is, it is an alternative validation owing to lack of standard cases for the
SDOF system. Relevant parameters of the BACT case are µ= 3366, r2

α = 1.036 and
ωh/ωα = 0.6539 (ωh and ωα are natural frequencies of the plunge and pitch mode,
respectively) based on the NACA0012 airfoil. Details of other parameters can be
found in studies by Rivera et al. (1992) and Zhang et al. (2015b). At M = 0.71
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FIGURE 31. (Colour online) Comparison of the time history of the displacement responses
between the CFD/CSD simulation and the ROM-based simulation at M= 0.71, µ= 3363:
(a) V∗f = 0.575; (b) V∗f = 0.583; and (c) V∗f = 0.595.

and α = 0◦, the calculated reduced flutter velocity based on the coupled CFD/CSD
simulation method is 0.585, and the ROM-based one is 0.583, as shown in table 3.
Figure 31 shows the comparison of the time history of displacement responses at three
velocities between the coupled CFD/CSD simulation and the ROM-based simulation.
The ROM-based results can match well with those of the simulation.
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V∗f ωf /ωα

Experiment 0.594 0.817
CFD/CSD 0.585 0.730
ROM 0.583 0.726

TABLE 3. Comparison of flutter boundaries among the experiment, coupled CFD/CSD
simulation and ROM-based aeroelastic model.
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