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High-resolution signal processing techniques
for through-the-wall imaging radar systems
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Through-the-Wall Imaging is an ever-expanding area in which processing time, scanning time, vertical, and horizontal reso-
lutions have been tried to improve. In this study, several methods are investigated to obtain efficient reconstruction of
through-the-wall imaging radar signals with high resolution. Microwave radar signals, which are produced in YTU
Microwave Laboratory, are processed by compressive sensing (CS). B and C scanned reflection data samples collected
between 1 and 7 GHz frequency band are taken randomly at 1/4, 1/2 of whole amount and reconstructed by CS method.
Considering the signal structure, 10 and 20 compressible Fourier coefficients are taken through CS to analyze the difference
between them. In addition, we applied synthetic aperture radar (SAR) processing, also combined with SAR-Multiple Signal
Classification over raw data. Experimental performance results are given and shown in the figures with high quality.

Keywords: Compressive sensing, Ground penetrating radar, Through-the-wall imaging, Synthetic aperture radar, Multiple signal
classification, Stepped frequency radar

Received 1 November 2015; Revised 24 March 2016; Accepted 3 April 2016; first published online 29 April 2016

I . I N T R O D U C T I O N

In the last decades, ground-penetrating radar (GPR) has
become a leading technology for the detection, identification,
and imaging of subsurface artifacts, abnormalities, and struc-
tures. It has a very broad range of applications [1–3]. GPR per-
formance is associated with the electrical and magnetic
properties of local soil and buried targets, as well as with
implementation of the GPR hardware and software. The
central frequency and bandwidth of the GPR signal chosen
are key factors in the detection of subsurface features.
Conventional GPRs are usually designed for geophysical
applications and use central frequencies below 1 GHz. The
lower frequencies are preferred to detect something buried
too deep, due to the dramatically increased attenuation
versus frequency. Nevertheless, the higher frequencies are
needed for better range resolution and detailed echoes to
determine small objects. Thus, GPR systems that transmit
ultra-wide band (UWB) impulse signals are proposed primar-
ily to benefit from both low and high frequencies [4].
Stepped-frequency (SF) technique offers some benefits com-
pared with time-domain GPR systems. Most important,
SF-GPR has a distinct advantage over conventional impulse
GPR, where there is no effective control of the source fre-
quency spectrum. Apart from increased resolution and

increased depth of penetration, the signal spectrum received
by SF-GPR offers the advantage of reading the real and
phase parts, which can be made use of in analyzing subtle
and complex inhomogeneities [5].

Through Wall Imaging (TWI) radar systems with micro-
wave techniques, which allow us to see through obstacles such
as concrete, brick, and trees, is highly popular research subject
for military and civilian applications [6]. For example, it could
be used in hostage rescue and anti-terror missions, in detection
and locating survivors trapped inside a burning building, or in
areas, which have been plagued by natural disasters (e.g. earth-
quakes or avalanches). Moreover, as a military application, it
allows law enforcement to get an accurate target localization
and classification of people and detection of objects within the
building in a hostage crisis. In TWI radar systems, the micro-
wave signals, which are able to penetrate to opaque obstacle,
are radiated to the obstacles via antennas and back-scattered
fields from the target objects are collected. After that, the col-
lected back-scattered data are processed with signal processing
techniques to obtain the high resolution images of the concealed
targets and objects behind the wall. Furthermore, in such an
imaging system, it is very useful to operate in the ultra-wide
band (UWB) or multi-band, because of efficient penetration to
the concrete, brick or wood at low frequencies, and for high reso-
lution by using high frequencies.

Super-resolution is very important for the signal processing
of GPR to resolve closely buried targets. However, it is not easy
to get high resolution as GPR signals are very weak and envel-
oped by the noise. The multiple signal classification (MUSIC)
algorithm, which is well known for its super resolution cap-
acity, has been implemented for signal and image processing
of GPR. Therefore, we implemented super-resolution spectral
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estimation technique MUSIC algorithm to improve the reso-
lution capacity. This technique deals with a signal processing
method used to increase the vertical resolution of a radar
image and to obtain a high-precision signal level [7].

Synthetic aperture radar (SAR) is a well-known technique,
which uses signal processing to improve the resolution beyond
the limitation of physical antenna aperture [8]. In SAR,
forward motion of actual antenna is used to synthesize a very
long antenna. SAR allows the possibility of using longer wave-
lengths and still achieving good resolution with antenna struc-
tures of reasonable size. SAR is very useful over a wide range
of applications, including sea and ice monitoring, mining, oil
pollution monitoring, oceanography, snow monitoring, classifi-
cation of earth terrain, etc. [9]. Recently, UWB SAR has become
a promising technology for TWI radar systems, as well [10].

Compressive sensing (CS) method shows that reconstruc-
tion of unknown signals, which have a sparse or compressible
representation in a certain transformation domain, can be
obtained from a small set of measurements as compared
with conventional techniques. CS keeps the information
about the related signal in a relatively small number of
random measurements. Research on CS has been spreading
various areas such as communications, remote sensing,
radar, information theory, image processing [11–17].

CS application for GPR imaging problem was first demon-
strated in [18]. In that work, the subsurface area was modeled
that consisted of a small number of discrete point-like targets,
and a dictionary of model data was generated for each possible
discrete target point. The subsurface image was generated by
solving a ℓ1 minimization-based optimization problem with
a decreased number of measurements. Later, these results
were extended to the SF [19] and impulse GPR [20] cases.
In [21], Yoon, et al. used CS for through-the-wall imaging
using wide-band beam forming, where the unmeasured fre-
quency points were reconstructed with CS and conventional
wideband beam forming was applied on the reconstructed
measurements.

In this study, an UWB SF-GPR system scenario is designed
and realized by Anritsu vector network analyzer. The network
analyzer sweeps a wide signal band between 1 and 7 GHz. The
continuous SF method is applied. The UWB transmitter and
receiver antenna designed for this system is the partial dielec-
tric loaded TEM fed ridged horn [22].

I I . D A T A A C Q U I S I T I O N A N D T E S T
M E A S U R E M E N T

In this work, CS algorithm and SAR, MUSIC algorithms for
super resolution are applied to TWI radar.

The transmission coefficient S21 is measured by the
network analyzer over the operational band. For B-scan
image data, S21 must be dependent on time. Therefore, the
inverse Fourier transform of S21 is applied to obtain matrix T.

T = F−1 S21{ }. (1)

The mathematical representation of equation (1) is given as

T = 1
N

∑N−1

n=0

S21e

−2pjkn
N , (2)

where, k represents the sampled points in the time domain,
lower case n represents the sampled points in the frequency
domain, and N is the number of sampled points.

The background signal can be considered as a calibration or
reference signal for ameliorating the image of collected data.
This signal consists of the direct pulse from transmitting and
receiving antennas, ringing from the antennas, and clutter
from other objects (not targets) that reflect the electromagnetic
energy within the antenna beam width. The clutter can be mini-
mized by using lower band radiator antennas. Nevertheless, this
case will degrade the image resolution, which will cause hard-
recognition of small buried objects. To reduce the clutter effect
on B-scan plot, the reference signal is collected at the non-target
position of the space [23]. If the transmission coefficient S21,
which depends on time is symbolized by T, then background
removed A-scan signal is calculated as

TB = 1
N

∑N

i=1

Ti(x, y, z), (3)

TBR(z) = T(z) − TB(z), (4)

where, ai is each A-scan data obtained from initial clear region
and N is its number, aB represents the non-target background
signal (3) and aBR corresponds to background removed
A-scan signal (4).

Then, the absolute of background removed T matrix is plotted
by command “surface” and B-scan image is obtained in (5).

B = T| |. (5)

I I I . C S

CS method can be divided into two main sections as sensing
with minimal samples and reconstruction by sparse or com-
pressible approach. Let, x be N–length sparse signal in
sparse domain, which can be expressed with K-basis vectors
as:

x = Cs. (6)

If m measurements are taken from random projections onto
F, the projected signal can be expressed as:

y = Fx = FCs. (7)

Let F and C be the projection and the base matrices, respect-
ively, and the sparsity pattern vector is possible by the follow-
ing convex optimization

min s
L

∥∥∥ ∥∥∥ subject to Qs ≤ y, (8)

whereQ ¼ FC.
In general, the GPR signal is noisy. Thus, the compressive

measurement yi at the ith aperture position have the following
form:

yi = FiCis + noisei, (9)
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and the convex optimization is supported by

min s
L

∥∥∥ ∥∥∥ subject to (Q s
L+noise) −Qs

∣∣∣ ∣∣∣ ≤ error. (10)

A convex optimization package is used for the numerical solu-
tion [24].

In this article, we use two scenarios for signal processing
applications. The first scenario of our work is the investigation
of body model behind a brick wall. Metal target model, which
is used for through-wall imaging operation is shown in Fig. 1.
The thickness of the wall is 30 cm. The distance from the
antenna to the target is 85 cm. The wall is almost homoge-
neous and has bricks.

Figure 2 is the B-scan image of the original TWI radar back-
ground removed data; Fig. 3 is the CS results where 20 and 40
random measurements are taken, respectively, based on 10
Fourier compressible coefficients. In Fig. 4, 20 and 40 random
measurements are taken, respectively, based on 20 Fourier com-
pressible coefficients. In reconstruction process, the number of
measurements is important. This issue determines the quality
of the reconstructed signal. The other investigated case is
Fourier coefficients, which are used to make the signal com-
pressible. If the compressible coefficients, which construct the
signal are decreased, the image resolution decreases. But, even
if these coefficients are increased as enough, the quality of
image resolution is acceptable as enough [22].

The second scenario is the model of two target objects as
shown in Fig. 5. The thickness of the wall is 30 cm. The dis-
tances from the antenna to the targets are 1 and 1.5 m, respect-
ively. The wall is almost homogeneous and has the bricks. The
B-scan and C-scan images of raw data are given in Figs 6 and 7.

In Figs 8 and 9, noise reduction is observed by taking the
top 10 sparse Fourier coefficients. % 50 random measure-
ments are taken to get fine quality of image resolution in
the results.

I V . S A R A L G O R I T H M

SAR algorithm is created by forming a fictional antenna array
to obtain narrower beam in the area, organized by the foot-
print size of the radar. To obtain SAR beam of antenna at
each scan point, as shown in Fig. 10, a balance phase term
is added to S21 parameter depending on the distance from
location of nth antenna to target point Rn given in (11)

Rn =
�������������
H2

T + nd( )2
√

, (11)

Fig. 2. B-scan measurement raw data (background removed).

Fig. 1. Metal target model for TWI operation.

Fig. 3. (a) CS taken 20 random measurements based on 10 Fourier compressible coefficients (b) CS taken 40 random measurements based on 10 Fourier
compressible coefficients.
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where, HT and d are vertical distance from location of refer-
ence antenna to target point and distance between antennas,
respectively. The illustration geometry for synthetic antenna

array and difference between distances from location of each
antenna to the target point is shown in Fig. 10.

The difference between distance from location of each
antenna to target point and distance from location of the ref-
erence antenna to the target point,DRn, is given in (12) as

DRn = Rn − HT . (12)

Then, SAR effect to S parameter, S21SAR can be calculated as in
(13)

S21SAR =
∑N

n=1

S21ejkDRn , (13)

where, k and N are the wave number and the number of
antennas, respectively.

While a balance phase term is added to S21SAR parameter,
the angle between the distance from nth antenna to target
and distance from reference antenna to target is calculated

Fig. 4. (a) CS taken 20 random measurements based on 20 Fourier compressible coefficients (b) CS taken 40 random measurements based on 20 Fourier
compressible coefficients.

Fig. 5. Two metal target model for TWI operation (a) head and body, (b) arm
and hand.

Fig. 6. Background removed raw data (a) B-scan, (b) C-scan.
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as follows (14)

tan u = nd
HT

. (14)

Thereby, it was determined that the angle of the incoming

signal (u) can be associated with the antenna beam.

u = tan−1 nd
HT

.
180
p

( )
. (15)

Fig. 7. Background removed raw data C-scan slices (a) head and body, (b) arm and hand.

Fig. 8. CS taken 80 random measurements (%50 of all) based on 10 Fourier compressible coefficients (a) B-scan, (b) C-scan.

Fig. 9. C-scan CS images (a) head and body, (b) arm and hand.
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Also, SAR length of this process is calculated as given in (16)

LSAR = Nd.

The SAR application of our work is investigation of two metal
targets behind the brick wall.

The B-scan and C-scan slice of through-wall imaging SAR
operation are given in Figs 11 and 12. It is seen that through-

wall imaging SAR operation gives better horizontal resolution
than the conventional GPR operation.

V . M U S I C A L G O R I T H M

The MUSIC algorithm is a nonparametric spectral estimation
technique, which estimates multiple scattering centers from

Fig. 10. Operating principle of fictive antenna array on SAR progress.

Fig. 11. (a) B-scan SAR data, (b) C-scan SAR image where targets on the slices.

Fig. 12. C-scan slices of SAR algorithm result (a) head and body, (b) arm and hand.
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the observed voltage received on an array of antenna utilizing
the eigenvector. The eigenvalue of diagonal matrix helps to
estimate the numbers of reflected signals [7].

The signal covariance matrix of the transmission coeffi-
cient S21 is written as in (17)

C = S21S21
∗, (17)

where, ∗ denotes complex conjugate transpose. Furthermore,
incident wave and noise can be considered as not related
(orthogonal). For this reason signal covariance matrix is
divided into two orthogonal subspace matrixes. These spaces
are called signal and noise subspace. This distinction is done
with eigenvalue decomposition or singular value decompos-
ition. v column vector of zero valued eigenvectors matrix is
made up noise subspace of covariance matrix and is called
projection matrix, Pnoise.

If the point which is observed belongs to object, reaches to
measuring point under a definite phase difference. Phase shift
in frequency domain corresponds to time difference between
two signals. If we consider the distance of xi to antenna as di

and is the velocity of wave propagation, delay time of signal
which returns to receiver correspond to. If time intervals
during the scanning is perpendicular to the noise subspace,

it is called as scattering point.

a(t) = [e−2pf1tL , e−2pf2tL , . . . , e−2pfktL ], (18)

where, a(t) in (18) is a delay-time mode vector. It is calculated
during the scan time (tL) and it depends on the number of fre-
quency measurement, k.

The position (delay time) of each reflection point, Pmusic in
(19), can be estimated by searching the peak position of the
MUSIC function as [7]

Pmusic(t) =
a(t)∗a(t)

a(t)∗Pnoisea(t) . (19)

In Figs 13 and 14, we propose a multi-processing approach,
which combines SAR algorithm and time-domain response
of MUSIC algorithm to obtain super-resolution in both hori-
zontal and vertical scanning planes. In the case of real human
target at similar sizes, the 1–7 GHz UWB signal-to-noise ratio
performance of the figures could decrease up to 5 dB [25].

Fig. 13. Combined SAR and MUSIC algorithm result (a) B-scan, (b) C-scan.

Fig. 14. C-scan slices of combined SAR and MUSIC algorithm (a) head and body, (b) arm and hand.
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V I . C O N C L U S I O N

In this paper, using UWB partial dielectric loaded TEM horn
antenna, through-the-wall imaging B and C-scan images are
presented by CS, SAR and MUSIC. Reconstruction of the
microwave radar signal is realized by CS with fewer and
random measurements employing convex optimization. In
reconstruction process, the number of measurements is
important. This issue determines the quality of the recon-
structed signal. The other investigated case is Fourier coeffi-
cients, which are used to make the signal compressible. If
the compressible coefficients which construct the signal are
decreased, the image resolution decreases. However, even if
these coefficients are increased as enough, the quality of
image resolution is acceptable as enough. On the second
stage, the combination of SAR and MUSIC algorithms is
employed to enhance the vertical and horizontal resolutions.
Therefore, better detection of closely buried targets is possible
with improved image quality.
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