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In this paper, enlightened by the asymptotic expansion methodology developed by Li
[(2013). Maximum-likelihood estimation for diffusion processes via closed-form density
expansions. Annals of Statistics 41: 1350–1380] and Li and Chen [(2016). Estimating
jump-diffusions using closed-form likelihood expansions. Journal of Econometrics 195(1):
51–70], we propose a Taylor-type approximation for the transition densities of the stochas-
tic differential equations (SDEs) driven by the gamma processes, a special type of Lévy
processes. After representing the transition density as a conditional expectation of Dirac
delta function acting on the solution of the related SDE, the key technical method for
calculating the expectation of multiple stochastic integrals conditional on the gamma pro-
cess is presented. To numerically test the efficiency of our method, we examine the pure
jump Ornstein–Uhlenbeck model and its extensions to two jump-diffusion models. For
each model, the maximum relative error between our approximated transition density and
the benchmark density obtained by the inverse Fourier transform of the characteristic
function is sufficiently small, which shows the efficiency of our approximated method.

Keywords: asymptotic expansion, gamma process, stochastic differential equation, transition
density

1. INTRODUCTION

It is known that Lévy-driven stochastic differential equations (SDEs) have been discussed
in detail [2,20,21]. The jump-diffusion SDE driven by the gamma process, as one impor-
tant type of the Lévy-driven SDEs, has been widely used in finance. For instance, the
Ornstein–Uhlenbeck (OU)-type SDEs driven by the gamma processes were applied for mod-
eling the short rate [8] and the returns of S&P 500 index [14]. The various sensitivity indices
for the asset price dynamics driven by the gamma processes were discussed in Kawai and
Takeuchi [17,18]. Note that the gamma process is a pure jump increasing Lévy process
[2,5,30]. Starting from the gamma process, the variance gamma process was defined [24,25].

For the financial applications mentioned above, the transition densities of the related
SDEs play a vital role [4,28]. However, except for some special cases, the transition densities
or even characteristic functions of the SDEs usually do not admit closed-form formulas,
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which bring difficulties for related applications. In this paper, enlightened by the asymptotic
expansion method presented in Li [22] and Li and Chen [23], we propose a Taylor-type
closed-form expansion for the transition density of the jump-diffusion SDE driven by the
gamma process.

For the jump-diffusion SDE driven by the gamma process, we start from representing
its transition density as a conditional expectation of a Dirac delta function acting on the
solution of the related SDE by applying the theory of Malliavin calculus [9,12,16,21]. The
main challenge in our method is to calculate the expectation of the product of the values
of a gamma process at different intermediate times, conditional on the value of this gamma
process at the terminal time. Consequently, through the distributional property of gamma
bridge discussed in Ribeiro and Webber [27], we express this type of conditional expectation
as a polynomial function of the value of this gamma process at the terminal time. In this
context, the expansion term of the transition density for any finite order can be analytically
calculated in an efficient manner.

To illustrate the efficiency of our method, we conduct numerical analyses through three
examples of the SDEs driven by the gamma processes, that is, the pure jump OU model,
along with its extensions to the constant diffusion and the square-root diffusion models.
For each model, we compare the true transition density obtained by the inverse Fourier
transform of its characteristic function with the approximated density obtained by our
proposed asymptotic expansion method. The numerical results show that our approximated
transition density can be efficiently calculated and converge rapidly to the true density.

The rest of this paper is organized as follows. Section 2 lays our model setup and gives
the general expression of the asymptotic expansion. Section 3 provides detailed procedures
for explicitly representing the expansion terms. Section 4 exhibits the numerical performance
of our expansion method through three concrete examples. Section 5 concludes the paper.
The appendix gives the explicit expressions of the Sobolev norms and the dual Sobolev
norms along with the definition of the convergences under these norms, which will be used
in this paper.

2. THE MODEL SETUP AND APPROXIMATION METHODOLOGY

2.1. Preliminaries of Dirac Delta function

Before introducing our asymptotic expansion methodology, we first give a brief introduction
of the Dirac delta function (see Hayashi [9], Ishikawa [12], Kanwal [16], and Kunita [21] for
more details).

For ease of exposition later, we introduce the following notations and concepts. Denote
by S ′(R) the set of all real-valued tempered distributions. According to Section 6.2 in
Kanwal [16], the Dirac delta function denoted as δ(·) and its associated derivative operators
d�δ(·)/dx� for � ≥ 1 belong to S ′(R). Here, for each � ≥ 1, the derivative operator d�δ(·)/dx�

is defined through an inner product with an infinitely differentiable function f(·) with
compact support on R, that is,

〈
d�δ(x− y)

dx�
, f(x)

〉
x

= (−1)�

〈
δ(x− y),

d�f

dx�
(x)

〉
x

(1)

for a fixed y ∈ R, where the inner product 〈f(x), g(x)〉x :=
∫∞
−∞ f(x)g(x) dx (see Section 2.6

in Kanwal [16] for more details).
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Let D∞(R) be the set of all real-valued smooth Wiener–Poisson functionals and
D′

∞(R) be the set of all real-valued generalized Wiener–Poisson functionals [21]. Accord-
ing to Theorem 5.12.1 and equation (5.175) in Kunita [21], for a tempered distribution
Φ ∈ S ′(R), a regular nondegenerate Wiener–Poisson functional F ∈ D∞(R) and a smooth
Wiener–Poisson functional G ∈ D∞(R), the generalized expectation E[·] is defined as

E[Φ(F ) ·G] :=
1
2π

∫ +∞

−∞

∫ +∞

−∞
e−ivxΦ(x)E[GeivF ] dx dv, (2)

where F and G can be treated as the random variables on the Wiener–Poisson space
and the expectation in the right-hand side of Eq. (2) is the usual expectation in com-
mon sense. Hereafter, the notations E[·] and E[·] represent the generalized expectation and
usual expectation, respectively.

For a fixed y ∈ R, when we take Φ(·) = δ(· − y) and G ≡ 1 in Eq. (2), from the equation
∫ +∞

−∞
e−ivxδ(x− y) dx = e−ivy, (3)

we obtain that

E[δ(F − y)] =
1
2π

∫ ∞

−∞
e−ivyE[eivF ] dv. (4)

Here, the functional F in Eq. (4) can be taken as the strong solution of a homogeneous
jump-diffusion SDE satisfying the nondegenerate-bounded (NDB) condition (see Sections
3.5–3.6 in Ishikawa [12] for more details). Especially, taking F ≡ 0 in Eq. (4), we can obtain
that

δ(y) =
1
2π

∫ +∞

−∞
eivy dv. (5)

Let F (ε) be a regular Wiener–Poisson functional in D∞(R) for some parameter ε ∈
(0, 1]. For example, F (ε) can be taken as the strong solution of some jump-diffusion SDEs
with a parameter ε ∈ (0, 1]. In the remaining of this section, for a fixed y ∈ R, we introduce
some theoretical results about the asymptotic expansion of δ(F (ε) − y) with respect to the
parameter ε (see [12 Sect. 4.1]). We assume that the functional F (ε) satisfies the uniformly
nondegenerate condition (see [12 Definition 4.1]) and has an expansion

F (ε) =
∞∑

j=0

fjε
j (6)

with respect to the Sobolev norms in D∞(R), where f0, f1, f2, . . . are smooth
Wiener–Poisson functionals. See Appendix A for more details about the explicit expressions
of the Sobolev norms in D∞(R) and the definition of the convergence in D∞(R).

According to Theorem 4.1 of Ishikawa [12], for each fixed y ∈ R, δ(F (ε) − y) belongs to
D′

∞(R) and has an asymptotic expansion

δ(F (ε) − y) =
M∑

m=0

Φm(y)εm + O(εM+1) (7)

with respect to the dual Sobolev norms in D′
∞(R), where M ∈ N denotes an arbitrary order

of the expansion. See Appendix B for more details about the explicit expressions of the
dual Sobolev norms in D′

∞(R) and the definition of the convergence in D′
∞(R). Given the
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functionals {f0, f1, f2, . . .} defined by Eq. (6), the coefficients Φm(y) ∈ D′
∞(R) for m ≥ 0

can be expressed as

Φ0(y) = δ(f0 − y) and Φm(y) =
∑

(�,(j1,j2,··· ,j�))∈Sm

1
�!
d�δ(f0 − y)

dx�

�∏
i=1

fji
for m ≥ 1,

(8)
where the index set Sm is defined as

Sm := {(�, j(�)) | � = 1, 2, . . . , j(�) = (j1, j2, . . . , j�) with j1, j2, . . . , j� ≥ 1

and j1 + j2 + · · · + j� = m}. (9)

For example, the coefficients Φ1(y) and Φ2(y) are given by

Φ1(y) = f1
dδ(f0 − y)

dx
and Φ2(y) = f2

dδ(f0 − y)
dx

+
1
2
f2
1

d2δ(f0 − y)
dx2

.

According to Section 4 in Ishikawa [12], by taking the generalized expectation defined
in Eq. (2) on both sides of Eq. (7), we can obtain that

E[δ(F (ε) − y)] =
M∑

m=0

E[Φm(y)]εm + O(εM+1). (10)

For example, the terms E[Φ0(y)] and E[Φ1(y)] in Eq. (10) can be evaluated via Eq. (1), Eqs.
(2) and (3) as

E[Φ0(y)] = E[δ(f0 − y)] =
1
2π

∫ +∞

−∞
e−ivyE[eivf0 ]dv

and

E[Φ1(y)] = E

[
f1
dδ(f0 − y)

dx

]
=

1
2π

∫ +∞

−∞
iv e−ivyE[f1 eivf0 ] dv.

In the subsequent calculation of the expansion terms for the transition density, by using
Eq. (2), we will transform some specific generalized expectations like E[Φm(y)] into the usual
expectations.

2.2. The Model Setup

In this paper, we consider the following homogeneous jump-diffusion SDE driven by a
gamma process

dX(t) = μ(X(t);θ) dt+ σ(X(t);θ) dW (t) + dL(t), X(0) = x0, (11)

where the functions μ(x;θ) and σ(x;θ) are assumed to depend on some parameter vector
θ belonging to an open bound set Θ, {W (t), t ≥ 0} is a Brownian motion and {L(t), t ≥ 0}
is a gamma process. Moreover, we assume that the gamma process {L(t), t ≥ 0} starts at
L(0) = 0 with the density function

pL(t)(x) =
batxat−1 e−bx

Γ(at)
, x ≥ 0 (12)

at time t > 0, where a and b are positive constants, and Γ(·) denotes the gamma func-
tion. The two processes {W (t), t ≥ 0} and {L(t), t ≥ 0} are independent. The characteristic
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function of the gamma process L(t) is calculated as

EeiλL(t) =
(

1 − iλ

b

)−at

� exp[tψL(λ)], (13)

where ψL(λ) = −a log(1 − iλ/b) is the characteristic exponent of {L(t), t ≥ 0}.
To guarantee the existence and uniqueness of the strong solution X(t) of SDE (11) and

obtain other desirable properties for implementing our method, the following standard and
technical assumptions are assumed in this paper:

Assumption 1: The diffusion function σ(x;θ) satisfies that infx∈R σ(x;θ) > 0 for any
θ ∈ Θ.

Assumption 2: For each k ∈ N+, the kthorder partial derivatives in x of μ(x;θ) and σ(x;θ)
are uniformly bounded for any (x,θ) ∈ R × Θ.

Assumption 3: The functions μ(x;θ) and σ(x;θ) satisfy the linear growth conditions

|μ(x;θ)| ≤ c1(1 + |x|) and |σ(x;θ)| ≤ c2(1 + |x|),
for some c1, c2 ∈ R+ and any (x,θ) ∈ R × Θ.

Assumptions 1 and 2 guarantee the NDB condition and the uniformly nondegenerate
condition for justifying the validity and convergence of our proposed asymptotic expansion
method, which will be shown in Section 2.3. Assumptions 2 and 3 guarantee the existence
and uniqueness of the strong solution X(t) of SDE (11).

2.3. The Expansion of the Transition Density

For the jump-diffusion SDE (11), by the time-homogeneity nature, the transition density of
X(t+ Δ) given X(t) = x0 can be expressed as

P(X(t+ Δ) ∈ dx |X(t) = x0;θ) = pX(Δ)(x |x0;θ) dx, (14)

where Δ denotes the time interval. For most SDEs defined in (11), their transition den-
sities do not admit closed-form expressions. Even for some special cases with closed-form
conditional characteristic functions, the inversion to transition densities may not be easy,
especially for the pure-jump processes [4,28]. In the following, we propose a closed-form
expansion for approximating the transition density pX(Δ)(x|x0;θ) of the jump-diffusion
SDE (11).

To start with, we parameterize the dynamics of X(t) in (11) via a parameter ε ∈ (0, 1]
as

dX(ε, t) = ε[μ(X(ε, t);θ) dt+ σ(X(ε, t);θ)dW (t) + dL(t)], X(ε, 0) = x0. (15)

Note that the solution X(ε, t) of (15) satisfies X(ε, t)|ε=1 = X(t). By regarding ε ∈ (0, 1] as
an extra element of the parameter vector, we see that the SDE (15) still satisfies Assumptions
2 and 3, which implies the existence and uniqueness of the strong solution X(ε, t) [26]. The
transition density of X(ε, t) in (15) can be expressed as

P(X(ε, t+ Δ) ∈ dx |X(ε, t) = x0;θ) = pX(ε,Δ)(x |x0;θ) dx. (16)

Once we obtain an asymptotic expansion of pX(ε,Δ)(x |x0;θ) as a series of ε, the transition
density pX(Δ)(x |x0;θ) in Eq. (14) can be obtained by letting ε = 1.
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To derive the asymptotic expansion of pX(ε,Δ)(x|x0;θ) in Eq. (16), we first claim that
X(ε, t) satisfies the NDB condition introduced in Section 2.1, which will justify the represen-
tation of the transition density pX(ε,Δ)(x |x0;θ) as a conditional expectation shown below.
Note that for X(ε, t), the NDB condition introduced from Definition 3.5 in Ishikawa [12] is
transformed to the condition that σ(x;θ) �= 0 for any (x,θ) ∈ R × Θ, which is guaranteed
by Assumption 1.

Based on the NDB condition and the time-homogeneity nature of X(ε, t), we represent
pX(ε,Δ)(x |x0;θ) as a conditional expectation of Dirac delta function acting on

X(ε,Δ) − x by

pX(ε,Δ)(x |x0;θ) = E[δ(X(ε,Δ) − x) |X(ε, 0) = x0;θ]. (17)

The validity of Eq. (17) will be verified in Remark 2 below in detail. For brevity, we omit
the initial condition X(ε, 0) = x0 and drop the dependence of θ in the SDEs (11) and (15)
hereafter, unless especially noted. According to Proposition 4.4 in Ishikawa [12], we give
the expansion of X(ε,Δ) in the following proposition. Here, we recall the Sobolev norms in
D∞(R) introduced after Eq. (6).

Proposition 1: The solution X(ε,Δ) of the SDE (15) can be expressed as a pathwise
Taylor-type expansion1

X(ε,Δ) =
M∑

m=0

Xm(Δ)εm + O(εM+1) forε ∈ (0, 1) (18)

with respect to the Sobolev norms in D∞(R), where M ∈ N denotes an arbitrary order of
expansion,

X0(Δ) = X(0,Δ) ≡ x0, (19)

X1(Δ) = μ(x0)Δ + σ(x0)W (Δ) + L(Δ), (20)

and

Xm(Δ) =
∫ Δ

0

μm−1(s) ds+
∫ Δ

0

σm−1(s) dW (s) for m ≥ 2, (21)

in which

μm(s) :=
1
m!

dmμ(X(ε, s))
dεm

∣∣∣∣
ε=0

=
∑

(�,(j1,j2,...,j�))∈Sm

1
�!
d�μ(x0)
dx�

�∏
i=1

Xji
(s) (22)

and

σm(s) :=
1
m!

dmσ(X(ε, s))
dεm

∣∣∣∣
ε=0

=
∑

(�,(j1,j2,...,j�))∈Sm

1
�!
d�σ(x0)
dx�

�∏
i=1

Xji
(s) (23)

with the index set Sm defined by (9).

1 According to the proof of Proposition 7.8 in Hayashi and Ishikawa [10], the remainder term O(εM+1)
of the expansion for X(ε, Δ) in (18) can be explicitly expressed as

εm+1

m!

∫ 1

0
(1 − θ)m

(∫ Δ

0

dmμ(X(α, t))

dαm

∣∣∣∣
α=εθ

dt +

∫ Δ

0

dmσ(X(α, t))

dαm

∣∣∣∣
α=εθ

dW (t)

)
dθ.
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Proof: By Proposition 4.4 in Ishikawa [12], we can obtain Eqs. (19), (20), and

Xm(Δ) =
∫ Δ

0

1
(m− 1)!

dm−1μ(X(ε, s))
dεm−1

∣∣∣∣
ε=0

ds+
∫ Δ

0

1
(m− 1)!

dm−1σ(X(ε, s))
dεm−1

∣∣∣∣
ε=0

dW (s)

(24)

for m ≥ 2. Further, from the expansion of X(ε,Δ) in (18), we can obtain Eqs. (22) and (23)
with the index set Sm defined by (9) and the condition X(0, t) ≡ x0. Plugging Eqs. (22)
and (23) into Eq. (24), we can obtain Eq. (21). �

Next, we illustrate the expansion of pX(ε,Δ)(x |x0;θ) in Eq. (17) as a convergent series
of ε. To do this, we standardize X(ε,Δ) into

Y (ε,Δ) =
X(ε,Δ) − x0

σ(x0)
√

Δε
, (25)

from which the transition density pX(ε,Δ)(x |x0;θ) in Eq. (17) can be represented in terms
of Y (ε,Δ) as

pX(ε,Δ)(x |x0;θ) =
1

σ(x0)
√

Δε
E[δ(Y (ε,Δ) − y)]

∣∣∣∣
y=

x−x0
σ(x0)

√
Δε

. (26)

According to Hayashi and Ishikawa [10] and Definition 4.1 in Ishikawa [12], Y (ε,Δ) in Eq.
(25) satisfies the uniformly nondegenerate condition which is guaranteed by Assumptions 1
and 2. Then, the expectation in the right-hand side of Eq. (26) admits a convergent series
of ε, which is summarized into the following conclusion. Here, we recall the dual Sobolev
norms in D′

∞(R) introduced in the analysis after Eq. (7) and give the following proposition.

Proposition 2: The generalized expectation E[δ(Y (ε,Δ) − y)] in the right side of Eq. (26)
admits the following expansion

E[δ(Y (ε,Δ) − y)] =
M∑

m=0

Ωm(y)εm + O(εM+1) for ε ∈ (0, 1) (27)

with respect to the dual Sobolev norms in D′
∞(R), where Ωm(y) := EΦm(y) for m ≥ 0 is the

generalized expectation with

Φ0(y) = δ(Y0(Δ) − y) (28)

and

Φm(y) =
∑

(�,(j1,j2,...,j�))∈Sm

1
�!

1
(σ(x0)

√
Δ)�

d�δ(Y0(Δ) − y)
dx�

�∏
i=1

Xji+1(Δ) (29)

for m ≥ 1, in which the index set Sm is defined in (9), Xi(Δ), i ≥ 1 are defined in Eq. (18)
and Y0(Δ) = X1(Δ)/σ(x0)

√
Δ.
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Proof: To obtain an expansion of E[δ(Y (ε,Δ) − y)] in Eq. (26) with respect to ε, we notice
from Eqs. (18), (25), and X0(Δ) ≡ x0 that

Y (ε,Δ) =
M∑

m=0

Ym(Δ)εm + O(εM+1), (30)

where

Ym(Δ) =
Xm+1(Δ)
σ(x0)

√
Δ
, for m = 0, 1, 2, . . . . (31)

Since the functional δ(· − y) belongs to S ′(R), according to Eq. (7), we obtain a Taylor-type
expansion of δ(Y (ε,Δ) − y) as

δ(Y (ε,Δ) − y) =
M∑

m=0

Φm(y)εm + O(εM+1) (32)

for any M ∈ N. Here in Eq. (32), it follows from Eqs. (8), (30), and (31) that Φm(y) for
m ≥ 0 can be given by Eqs. (28) and (29) for m ≥ 1. Further, based on Eq. (10), we take
the generalized expectation on both sides of Eq. (32) to obtain the expansion Eq. (27). �

For simplicity, we name Ω0(y) and Ωm(y) for m ≥ 1 in Eq. (27) the leading term and
the higher-order terms, respectively. Combining Eqs. (26) and (27) by letting ε = 1, the
approximated transition density of X(Δ) up to the Mthorder is proposed as

p
(M)
X(Δ)(x |x0;θ) :=

1
σ(x0)

√
Δ

M∑
m=0

Ωm

(
x− x0

σ(x0)
√

Δ

)
. (33)

Consequently, to approximate the transition density pX(Δ)(x |x0;θ) in Eq. (14) up to any
finite order, it suffices to specify the functions Ω0(y) and Ωm(y) for m ≥ 1 in Eq. (33), which
will be investigated in Section 2.4.

Remark 1: To the best of our knowledge, we do not find any rigorous theoretical results
about the convergence of the expansion series for X(ε,Δ) by letting ε = 1. Nevertheless,
in Section 4 of Ishikawa [12], the authors point out that the convergence of X(ε,Δ) for
ε ∈ (0, 1) given by Proposition 4.4 therein can be extended to hold for ε = 1. Further, in Li
[22] and Li and Chen [23] , they approximate the transition densities of the parameterized
solutions X(ε,Δ) of the considered SDEs by letting ε = 1 in a similar manner, and their
numerical results exhibit the order-by-order convergence. Inherited from the above facts, in
our model, we also choose to take ε = 1 in the theoretical approximation. Numerically, as
will be seen in Section 4, the results also exhibit the order-by-order convergence for the
expansions of the considered transition densities.

Remark 2: Equation (17) can be verified as follows. According to Section 6.4 in Kunita
[21], under the initial condition X(ε, 0) = x0, the strong solution X(ε, t) of SDE (15) is
uniquely tied to a stochastic flow, which is a regular Wiener–Poisson functional belonging
to the set D∞(R) ([21 Sect. 3.1]). Thus, by noting that X(ε, t) satisfies the NDB condition,
under the initial condition X(ε, 0) = x0, we take F = X(ε,Δ) in Eq. (4) to obtain that

E[δ(X(ε,Δ) − x) |X(ε, 0) = x0;θ]

=
1
2π

∫ +∞

−∞
e−ivxE[eivX(ε,Δ) |X(ε, 0) = x0;θ] dv = pX(ε,Δ)(x |x0;θ),

which verifies Eq. (17).
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Remark 3: The above closed-form expansion method can also be applied to the special case
of SDE (11) with σ(X(t);θ) ≡ 0. In this context, we only adjust the above algorithm to
standardize X(ε,Δ) defined by (15) into

Y (ε,Δ) =
X(ε,Δ) − x0

ε

instead of Eq. (25), which implies that

E[δ(X(ε,Δ) − x)] =
1
ε
E[δ(Y (ε,Δ) − y)]

∣∣∣∣
y=

x−x0
ε

.

The remaining procedures are performed in a similar manner. Therefore, the approximated
transition density of X(Δ) up to the Mthorder can be obtained by

p
(M)
X(Δ)(x |x0;θ) =

M∑
m=0

Ωm(x− x0), (34)

where Ωm(y) = EΦm(y) and the terms Φm(y) are calculated by

Φ0(y) = δ(Y0(Δ) − y)

and

Φm(y) =
∑

(�,(j1,j2,...,j�))∈Sm

1
�!
d�δ(Y0(Δ) − y)

dx�

�∏
i=1

Xji+1(Δ)

for m ≥ 1, with the index set Sm defined in (9) and Y0(Δ) = X1(Δ).

2.4. General Expressions of the Leading Term and High-order Terms

In this part, we give the explicit expression of the leading term Ω0(y) and the general
representations of the higher-order terms Ωm(y) for m ≥ 1 defined in Eq. (33). Throughout
this section, we denote by φ(·) the density function of a standard normal variable and recall
that pL(t)(·) is the density function of the gamma process L(t) given by Eq. (12).

From Eq. (28), the leading term Ω0(y) is expressed as

Ω0(y) = E[δ(Y0(Δ) − y)], (35)

which is exactly the density function of Y0(Δ) evaluated at y. The explicit expression of
Ω0(y) is given in the following proposition.

Proposition 3: The leading term Ω0(y) in Eq. (33) admits the following explicit expression

Ω0(y) =
∫ +∞

0

φ

(
y − μ(x0)Δ + u

σ(x0)
√

Δ

)
pL(Δ)(u) du,

where pL(Δ)(·) is the density function of the gamma process L(Δ) given by Eq. (12).
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Proof: From Eqs. (4) and (35), we obtain that

Ω0(y) = E[δ(Y0(Δ) − y)]

=
1
2π

∫ +∞

−∞
e−ivyE[eivY0(Δ)] dv

= E

[
1
2π

∫ +∞

−∞
e−ivyE[eivY0(Δ) |L(Δ)]dv

]
. (36)

We notice from Eqs. (20) and (31) that Y0(Δ) in Eq. (36) can be represented as

Y0(Δ) =
X1(Δ)
σ(x0)

√
Δ

=
W (Δ)√

Δ
+
μ(x0)Δ + L(Δ)

σ(x0)
√

Δ
. (37)

Here, conditioned on the jump term L(Δ), the variable Y0(Δ) in Eq. (37) follows a normal
distribution. Therefore, the inner term of the expectation in the last equation of Eq. (36)
can be calculated as

1
2π

∫ +∞

−∞
e−ivyE[eivY0(Δ) |L(Δ)] dv

= E

[
1
2π

∫ +∞

−∞
e−ivye

iv
(

W (Δ)√
Δ

+
μ(x0)Δ+L(Δ)

σ(x0)
√

Δ

)
dv

∣∣∣∣L(Δ)
]

=
∫ ∞

−∞
E

[
1
2π

∫ +∞

−∞
e−ivy e

iv
(

x+
μ(x0)Δ+L(Δ)

σ(x0)
√

Δ

)
dv

∣∣∣∣L(Δ)
]
φ(x) dx

= E

[∫ ∞

−∞

(
1
2π

∫ +∞

−∞
e−ivy e

iv
(

x+
μ(x0)Δ+L(Δ)

σ(x0)
√

Δ

)
dv

)
φ(x) dx

∣∣∣∣L(Δ)
]
. (38)

By the relation Eq. (5), we obtain that

1
2π

∫ +∞

−∞
e−ivy e

iv
(

x+
μ(x0)Δ+L(Δ)

σ(x0)
√

Δ

)
dv = δ

(
x+

μ(x0)Δ + L(Δ)
σ(x0)

√
Δ

− y

)
.

Then plugging the above equation into Eq. (38) by noting the definition of the Dirac delta
function, we obtain that

1
2π

∫ +∞

−∞
e−ivyE[eivY0(Δ) |L(Δ)] dv

= E

[∫ ∞

−∞
δ

(
x+

μ(x0)Δ + L(Δ)
σ(x0)

√
Δ

− y

)
φ(x) dx

∣∣∣∣L(Δ)
]

= E

[
φ

(
y − μ(x0)Δ + L(Δ)

σ(x0)
√

Δ

) ∣∣∣∣L(Δ)
]
. (39)

Plugging Eq. (39) into (36), the leading term Ω0(y) can be finally calculated as

Ω0(y) = E

[
E

[
φ

(
y − μ(x0)Δ + L(Δ)

σ(x0)
√

Δ

)∣∣∣∣L(Δ)
]]

=
∫ +∞

0

φ

(
y − μ(x0)Δ + u

σ(x0)
√

Δ

)
pL(Δ)(u) du.

�
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To calculate the higher-order terms Ωm(y) for m ≥ 1, we introduce the following
notations. For � ≥ 1 and j = (j1, j2, . . . , j�) with ji ≥ 1, we define

K(�,j)(z1, z2) := E

(
�∏

i=1

Xji+1(Δ)

∣∣∣∣∣W (Δ), L(Δ)

)∣∣∣∣∣
W (Δ)=z1

√
Δ,L(Δ)=z2

. (40)

Here, we omit the dependent variate Δ in the notation K(�,j)(z1, z2) when there is no
ambiguity. Meanwhile, for any bivariate differentiable function u(x, y) defined on R

2, we
introduce the following partial differential operators on the first variable:

D(1)
1 (u(x, y)) :=

∂u(x, y)
∂x

− xu(x, y)

and D(n)
1 (u(x, y)) := D(1)

1 (D(n−1)
1 (u(x, y))) for n ≥ 2.

(41)

The representations of Ωm(y) for m ≥ 1 are given in the following theorem.

Theorem 1: For any integer m ≥ 1, the high-order term Ωm(y) in Eq. (33) admits the
following expression:

Ωm(y) =
∑

(�,(j1,j2,...,j�))∈Sm

(−1)�

�!
1

(σ(x0)
√

Δ)�

∫ +∞

0

D(�)
1 (K(�,j)(z1, z2)) · φ(z1) · pL(Δ)(z2) dz2,

(42)
where the index set Sm is defined in (9), pL(Δ)(·) is the density function of the gamma
process L(Δ) given by Eq. (12) and

z1 = y − μ(x0)Δ + z2

σ(x0)
√

Δ
. (43)

Proof: We see from the definition of Φm(y) in Eq. (29) that

Ωm(y) = EΦm(y) =
∑

(�,(j1,j2,...,j�))∈Sm

E

[
1
�!

1
(σ(x0)

√
Δ)�

d�δ(Y0(Δ) − y)
dx�

�∏
i=1

Xji+1(Δ)

]

=
∑

(�,(j1,j2,...,j�))∈Sm

1
�!

1
(σ(x0)

√
Δ)�

E

[
d�δ(Y0(Δ) − y)

dx�

�∏
i=1

Xji+1(Δ)

]
. (44)

For the generalized expectation in the last line of Eq. (44), according to Eq. (2), we have

E

[
d�δ(Y0(Δ) − y)

dx�

�∏
i=1

Xji+1(Δ)

]

=
1
2π

∫ +∞

−∞

∫ +∞

−∞
e−ivx d

�δ(x− y)
dx�

E

[
�∏

i=1

Xji+1(Δ) · eivY0(Δ)

]
dx dv

=
∫ +∞

−∞

(
1
2π

∫ +∞

−∞
e−ivx d

�δ(x− y)
dx�

dx

)
E

[
�∏

i=1

Xji+1(Δ) · eivY0(Δ)

]
dv.
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By the relations Eqs. (1) and (3), the above equation is further calculated as

E

[
d�δ(Y0(Δ) − y)

dx�

�∏
i=1

Xji+1(Δ)

]

=
∫ +∞

−∞

(
1
2π

(−1)�

∫ +∞

−∞
δ(x− y)

d�e−ivx

dx�
dx

)
E

[
�∏

i=1

Xji+1(Δ) · eivY0(Δ)

]
dv

=
∫ +∞

−∞

1
2π

(iv)�e−ivy · E
[

�∏
i=1

Xji+1(Δ) · eivY0(Δ)

]
dv. (45)

Then following the definition of Y0(Δ) in Eq. (37) and using the independence between
Brownian motion W (t) and the gamma process L(t), the expectation in the last line of Eq.
(45) is calculated as

E

[
�∏

i=1

Xji+1(Δ) · eivY0(Δ)

]

= E

[
�∏

i=1

Xji+1(Δ) · eiv
(

W (Δ)√
Δ

+
μ(x0)Δ+L(Δ)

σ(x0)
√

Δ

)]

=
∫ ∞

0

∫ ∞

−∞
E

[
�∏

i=1

Xji+1(Δ) · eiv
(

z1+
μ(x0)Δ+z2

σ(x0)
√

Δ

) ∣∣∣∣∣W (Δ), L(Δ)

]∣∣∣∣∣
W (Δ)=z1

√
Δ,L(Δ)=z2

× φ(z1)pL(Δ)(z2) dz1 dz2. (46)

By the definition of K(�,j)(z1, z2) in Eq. (40), the expectation calculated in Eq. (46) can be
further expressed as

E

[
�∏

i=1

Xji+1(Δ) · eivY0(Δ)

]
=
∫ ∞

0

∫ ∞

−∞
e
iv
(

z1+
μ(x0)Δ+z2

σ(x0)
√

Δ

)
K(�,j)(z1, z2)φ(z1)pL(Δ)(z2) dz1 dz2.

(47)
Plugging Eq. (47) into (45), we obtain that

E

[
d�δ (Y0(Δ) − y)

dx�

�∏
i=1

Xji+1(Δ)

]

=
∫ +∞

−∞

1
2π

(iv)�e−ivy

∫ ∞

0

∫ ∞

−∞
e
iv
(

z1+
μ(x0)Δ+z2

σ(x0)
√

Δ

)
K(�,j)(z1, z2)φ(z1)pL(Δ)(z2) dz1 dz2 dv

=
∫ +∞

0

∫ ∞

−∞

1
2π

e−ivypL(Δ)(z2)

⎛
⎝∫ ∞

−∞

∂� e
iv(z1+

μ(x0)Δ+z2
σ(x0)

√
Δ

)

∂z�
1

K(�,j)(z1, z2)φ(z1) dz1

⎞
⎠ dv dz2.

(48)
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Using integration by parts, the last line of Eq. (48) can be further calculated as∫ +∞

0

∫ ∞

−∞

1
2π

e−ivypL(Δ)(z2)
∫ ∞

−∞
(−1)� e

iv(z1+
μ(x0)Δ+z2

σ(x0)
√

Δ
) ∂�(K(�,j)(z1, z2)φ(z1))

∂z�
1

dz1dvdz2

=
∫ +∞

0

∫ ∞

−∞

(∫ ∞

−∞

1
2π

e−ivy e
iv
(

z1+
μ(x0)Δ+z2

σ(x0)
√

Δ

)
dv

)

× (−1)� ∂
�(K(�,j)(z1, z2)φ(z1))

∂z�
1

pL(Δ)(z2) dz1 dz2. (49)

By the relation Eq. (5), it follows that

1
2π

∫ +∞

−∞
e−ivy e

iv
(

z1+
μ(x0)Δ+z2

σ(x0)
√

Δ

)
dv =

1
2π

∫ +∞

−∞
e
iv
(

z1+
μ(x0)Δ+z2

σ(x0)
√

Δ
−y

)
dv

= δ

(
z1 +

μ(x0)Δ + z2

σ(x0)
√

Δ
− y

)
,

Plugging the above equation into Eq. (49), we obtain that

E

[
d�δ (Y0(Δ) − y)

dx�

�∏
i=1

Xji+1(Δ)

]

=
∫ +∞

0

∫ ∞

−∞
δ

(
z1 +

μ(x0)Δ + z2

σ(x0)
√

Δ
− y

)
(−1)� ∂

�(K(�,j)(z1, z2)φ(z1))
∂z�

1

pL(Δ)(z2) dz1 dz2

=
∫ +∞

0

(−1)� ∂
�(K(�,j)(z1, z2)φ(z1))

∂z�
1

∣∣∣∣∣
z1=y−μ(x0)Δ+z2

σ(x0)
√

Δ

· pL(Δ)(z2) dz2. (50)

Thus, plugging Eq. (50) into Eq. (44), we obtain that

Ωm(y) =
∑

(�,(j1,j2,...,j�))∈Sm

(−1)�

�!
1

(σ(x0)
√

Δ)�

×
∫ +∞

0

∂�(K(�,j)(z1, z2)φ(z1))
∂z�

1

∣∣∣∣∣
z1=y−μ(x0)Δ+z2

σ(x0)
√

Δ

pL(Δ)(z2) dz2. (51)

From the definition (41), for any bivariate differentiable function u(z1, z2), we have

∂

∂z1
(u(z1, z2)φ(z1)) =

(
∂u(z1, z2)

∂z1
− z1u(z1, z2)

)
φ(z1) ≡ D(1)

1 (u(z1, z2)) · φ(z1),

and
∂�

∂z�
1

(u(z1, z2)φ(z1)) = D(�)
1 (u(z1, z2)) · φ(z1)

for any � ≥ 1, from which we obtain that

∂�(K(�,j)(z1, z2)φ(z1))
∂z�

1

= D(�)
1 (K(�,j)(z1, z2)) · φ(z1). (52)

Plugging Eq. (52) into (51), we obtain the formula Eq. (42). �
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According to Eq. (42) in Theorem 1, to calculate the high-order terms Ωm(y) for m ≥ 1,
it suffices to derive the bivariate function D(�)

1 (K(�,j)(z1, z2)) with K(�,j)(z1, z2) defined in
Eq. (40), which will be shown in Section 3.

3. EXPLICIT CALCULATION OF D(�)
1 (K(�,J)(Z1, Z2))

In this section, we explicitly derive the function D(�)
1 (K(�,j)(z1, z2) for every fixed � ≥ 1 and

j = (j1, j2, . . . , j�) with ji ≥ 1 in Eq. (42) and thus Ωm(y) for m ≥ 1 in Eq. (42), from which
we obtain the approximated transition density p

(M)
X(Δ)(x |x0;θ) in Eq. (33). Moreover, for

illustration purpose, we exhibit the first several expansion terms of {Ωm(y), m ≥ 0} in Eq.
(33) below for three examples of SDE (11), that is, the pure jump OU model, constant
diffusion model, and square-root diffusion model.

To present our methodology for calculating the function D(�)
1 (K(�,j)(z1, z2)), we intro-

duce the following notations. For fixed integer h ≥ 1 and arbitrary index n = (n1, n2, . . . , nh)
with nonnegative integers n1, n2, . . . , nh, we define the h-dimensional vector

Ln(t) := (Ln1(t), Ln2(t), . . . , Lnh(t)) (53)

by using the gamma process L(·). For example, when n = (1), Ln(t) = (L(t)), and when
n = (0, 1), Ln(t) = (1, L(t)).

For any index i = (i1, i2, . . . , ih) with i1, i2, . . . , ih ∈ {0, 1} and h-dimensional vector
Ln(t) in (53), we define an iterated Itô integral as

Ii,Ln(Δ) :=
∫ Δ

0

∫ sh

0

· · ·
∫ s2

0

Ln1(s1) · · ·Lnh−1(sh−1)Lnh(sh) dWi1(s1) · · ·

dWih−1(sh−1) dWih
(sh), (54)

where W0(t) := t and W1(t) := W (t). For example, we have

I(0),L(0)(Δ) = Δ, I(1),L(0)(Δ) = W (Δ), I(0),L(1)(Δ) =
∫ Δ

0

L(s1) ds1,

I(1),L(1)(Δ) =
∫ Δ

0

L(s1) dW (s1),

I(0,0),L(0,0)(Δ) =
∫ Δ

0

∫ s2

0

ds1 ds2, I(0,1),L(0,0)(Δ) =
∫ Δ

0

∫ s2

0

ds1 dW (s2),

and

I(1,0),L(0,1)(Δ) =
∫ Δ

0

∫ s2

0

L(s2) dW (s1) ds2, I(1,1),L(1,0)(Δ) =
∫ Δ

0

∫ s2

0

L(s1) dW (s1) dW (s2).

We notice that the iterated Itô integral Ii,Ln(Δ) defined by Eq. (54) involves two inde-
pendent processes, that is, the Brownian motion W (·) and the gamma process L(·). Such
independence will simplify the calculation related to Ii,Ln(Δ) as seen below.

In order to clarify the procedures of calculating D(�)
1 (K(�,j)(z1, z2)) in Eq. (42), we give

a general methodology below with the details elaborated subsequently.
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Methodology 1: The procedures of calculating D(�)
1

(
K(�,j) (z1, z2)

)
in Eq. (42).

Step 1 Convert the multiplication of the expansion terms in K(�,j)(z1, z2), that is,
�∏

i=1

Xji+1(Δ), into a linear combination of iterated Itô integrals Ii,Ln(Δ) as defined

in Eq. (54) with the coefficients depending on μ(x0), σ(x0) and their higher-order
derivatives evaluated at x0, via the relation Eq. (21) and the Itô product formula.

Step 2 Calculate the conditional expectation

E(Ii,Ln(Δ) |W (Δ), L(Δ))|W (Δ)=z1
√

Δ,L(Δ)=z2
(55)

as a linear combination of the terms uniformly represented as

zm
1 ·

∫ Δ

0

∫ sh

0

· · ·
∫ s2

0

E[Ln1(s1) · · ·Lnh−1(sh−1)Lnh(sh)|L(Δ)] ds1 · · · dsh−1 dsh

(56)
for some h ≥ 1, 0 ≤ m ≤ h, 0 < s1 < s2 < · · · < sh < Δ, and nonnegative integers
n1, n2, . . . , nh via Brownian bridge.

Step 3 Compute the conditional expectation in Eq. (56) as a power function of L(Δ).

Step 4 Express the function D(�)
1 (K(�,j)(z1, z2)) in Eq. (42) as

D(�)
1 (K(�,j)(z1, z2)) =

∑
n1,n2≥0

Pμ,σ
(�,j)(n1, n2)zn1

1 zn2
2 , (57)

where the coefficient functions Pμ,σ
(�,j)(n1, n2), n1, n2 ≥ 0 depend on the functions

μ(x0), σ(x0) and their higher-order derivatives evaluated at x0.

In the following sections 3.1–3.4, we give the detailed descriptions of Steps 1, 2, 3, and
4 in the above methodology, respectively. The calculating procedures can be implemented
by traditional symbolic softwares, and we employ Wolfram Mathematica in this paper. In
Section 3.5, we consider three examples of SDE (11) for illustrations.

3.1. Conversion of the Multiplication
∏�

i=1 Xji+1(Δ) as a Linear Combination of
Iterated Itô Integrals

First, we show that the multiplication of iterated Itô integrals defined in Eq. (54) can be
converted into a linear combination of the iterated Itô integrals taking the same form as in
Eq. (54).

Given an index i = (i1, i2, . . . , ih), we denote by i− the index obtained from deleting
the last element of index i, that is,

i− := (i1, i2, . . . , ih−1).

Similarly, we denote by

Ln−(t) := (Ln1(t), Ln2(t), . . . , Lnh−1(t))

the (h− 1)-dimensional vector obtained from deleting the last element of Ln(t) in (53).
Consequently, the iterated Itô Integral Ii−,Ln−(Δ) can be defined as

Ii−,Ln−(Δ) :=
∫ Δ

0

∫ sh−1

0

· · ·
∫ s2

0

Ln1(s1) · · ·Lnh−2(sh−2)

× Lnh−1(sh−1) dWi1(s1) · · · dWih−2(sh−2) dWih−1(sh−1).
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For two fixed positive integers h, q and the gamma process L(·), we consider the h-
dimensional vector Ln(t) and q-dimensional vector Lm(t) written as

Ln(t) = (Ln1(t), Ln2(t), . . . , Lnh(t)) and Lm(t) = (Lm1(t), Lm2(t), . . . , Lmq (t))

for some indices n =(n1, n2, . . . , nh) and m =(m1,m2, . . . ,mq) with nonnegative
integers n1, n2, . . . , nh,m1,m2, . . . ,mq. Then for two indices i =(i1, i2, . . . , ih) and
k =(k1, k2, . . . , kq) with i1, i2, . . . , ih, k1, k2, . . . , kq ∈ {0, 1}, the product of two iterated
Itô integrals Ii,Ln(Δ) and Ik,Lm(Δ) satisfies the following iterative relation

Ii,Ln(Δ)Ik,Lm(Δ)

=

[∫ Δ

0

Ii−,Ln−(s1) · Lnh(s1) dWih
(s1)

]
·
[∫ Δ

0

Ik−,Lm−(s1) · Lmq (s1) dWkq
(s1)

]

=
∫ Δ

0

Ii,Ln(s1)Ik−,Lm−(s1) · Lmq (s1) dWkq
(s1)

+
∫ Δ

0

Ii−,Ln−(s1)Ik,Lm(s1) · Lnh(s1) dWih
(s1)

+
∫ Δ

0

Ii−,Ln−(s1)Ik−,Lm−(s1) · Lnh+mq (s1) · 1{ih=kq=1} ds1, (58)

where the second equation follows from the Itô product formula

∫ Δ

0

f(s1) dWi1(s1) ·
∫ Δ

0

g(s1) dWj1(s1)

=
∫ Δ

0

∫ s1

0

f(s2) dWi1(s2)g(s1) dWj1(s1) +
∫ Δ

0

∫ s1

0

g(s2) dWj1(s2)f(s1) dWi1(s1)

+
∫ Δ

0

f(s1)g(s1)1{i1=j1=1} ds1

and 1{ih=kq=1} is the indicator function defined as

1{ih=kq=1} =
{

1, if ih = kq = 1,
0, otherwise.

By iterative applications of the relation Eq. (58), the product of Ii,Ln(Δ) and Ik,Lm(Δ) can
be expressed as a linear combination of the iterated Itô integrals defined by Eq. (54).

Next, we show that the expansion terms Xj1+1(Δ),Xj2+1(Δ), . . . , Xj�+1(Δ) in Eq. (40)
can be expressed as a linear combination of iterated Itô integrals Ii,Ln(Δ) defined in Eq. (54),
with coefficients depending on μ(x0), σ(x0), and their higher-order derivatives evaluated at
x0. Based on this, it follows from Eq. (58) that the multiplication

∏�
i=1Xji+1(Δ) can be

converted into a linear combination of Ii,Ln(Δ) defined in Eq. (54). To do this, in what
follows, we illustrate that Xm(Δ) admits the aforementioned linear combination form for
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m ≥ 1. By using Eq. (54), X1(Δ) in Eq. (20) can be written as

X1(Δ) = μ(x0)I(0),L(0)(Δ) + σ(x0)I(1),L(0)(Δ) + L(Δ), (59)

which admits the linear combination form. For m ≥ 1, we notice from Eq. (21) that

Xm+1(Δ) =
∫ Δ

0

μm(s) ds+
∫ Δ

0

σm(s) dW (s), (60)

with μm(s) and σm(s) defined by Eqs. (22)–(23), from which we observe that both μm(s) and
σm(s) are linear combinations of the products of the terms from {X1(s),X2(s), . . . , Xm(s)}.
Then, by iterative applications of Eqs. (58)–(60), we can also derive Xm+1(Δ) for m ≥ 1
as a linear combination of iterated Itô integrals Ii,Ln(Δ) for h ≤ m+ 1 formed as Eq. (54),
where the coefficients depend on μ(x0), σ(x0), and their higher-order derivatives evaluated
at x0.

Therefore, to calculate K(�,j)(z1, z2) in Eq. (40) for every fixed � ≥ 1 and j =
(j1, j2, . . . , j�) with ji ≥ 1, it suffices to focus on the type of conditional expectation (55).

3.2. Simplification of the Conditional Expectation (55) via Brownian Bridge

Starting from this part, we focus on calculating the following conditional expectation

E(Ii,Ln(Δ) |W (Δ), L(Δ))|W (Δ)=z1
√

Δ,L(Δ)=z2

= E

(∫ Δ

0

∫ sh

0

· · ·
∫ s2

0

Ln1(s1) · · ·Lnh−1(sh−1)Lnh(sh)

× dWi1(s1) · · · dWih−1(sh−1)dWih
(sh)|W (Δ), L(Δ)

)∣∣∣∣∣
W (Δ)=z1

√
Δ,L(Δ)=z2

, (61)

where the iterated Itô integral Ii,Ln(Δ) is defined by Eq. (54) with i1, i2, . . . , ih ∈ {0, 1},
W0(t) = t, and W1(t) = W (t).

To simplify the conditional expectation in Eq. (61), we utilize the following representa-
tion of Brownian bridge, that is,

(W (s) |W (Δ) = z1
√

Δ) d= Bz1(s) := B(s) − s

Δ
B(Δ) +

s√
Δ
z1 (62)

for 0 ≤ s ≤ Δ, where the symbol “ d=” means distributional identity and B(·) is a one-
dimensional standard Brownian motion. Then, by the independence between W (·) and
L(·), the conditional expectation in Eq. (61) can be equivalently expressed as

E(Ii,Ln(Δ) |W (Δ), L(Δ))|W (Δ)=z1
√

Δ,L(Δ)=z2

= E

(∫ Δ

0

∫ sh

0

· · ·
∫ s2

0

Ln1(s1) · · ·Lnh−1(sh−1)

× Lnh(sh) dBz1
i1

(s1) · · · dBz1
ih−1

(sh−1) dBz1
ih

(sh) |L(Δ)

)∣∣∣∣∣
L(Δ)=z2

, (63)
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where Bz1
1 (s) := Bz1(s) and Bz1

0 (s) := s. Therefore, we only need focus on the conditional
expectation

E

(∫ Δ

0

· · ·
∫ s2

0

Ln1(s1) · · ·Lnh(sh) dBz1
i1

(s1) · · · dBz1
ih

(sh)

∣∣∣∣∣L(Δ)

)
, (64)

from which the conditional expectation in Eq. (63) can be obtained by letting L(Δ) = z2.
For the sake of simplicity, we denote by EL(·) := E(·|L(Δ)) the conditional expectation
given L(Δ) hereafter. By plugging (62) into (64), we obtain that

E

( ∫ Δ

0

∫ sh

0
· · ·

∫ s2

0
Ln1 (s1) · · ·Lnh−1 (sh−1)Lnh(sh) dBz1

i1
(s1) · · · dBz1

ih−1
(sh−1) dBz1

ih
(sh)

∣∣∣∣L(Δ)

)

= EL

(∫ Δ

0

∫ sh

0
· · ·

∫ s2

0
Ln1 (s1) dBz

i1
(s1) · · ·Lnh−1 (sh−1) dBz1

ih−1
(sh−1)Lnh(sh) dBz1

ih
(sh)

)

= EL

(∫ Δ

0

∫ sh

0
· · ·

∫ s2

0
Ln1 (s1)

{
1{i1=1}

(
dB(s1) − B(Δ)

Δ
ds1 +

z1√
Δ

ds1

)
+ 1{i1=0} ds1

}

× · · · × Lnh−1 (sh−1)

{
1{ih−1=1}

(
dB(sh−1) −

B(Δ)

Δ
dsh−1 +

z1√
Δ

dsh−1

)
+ 1{ih−1=0} dsh−1

}

×Lnh(sh)

{
1{ih=1}

(
dB(sh) − B(Δ)

Δ
dsh +

z1√
Δ

dsh

)
+ 1{ih=0} dsh

})
. (65)

In order to derive the explicit expression of Eq. (65), for any index i = (i1, i2, . . . , ih)
with i1, i2, . . . , ih ∈ {0, 1} and h-dimensional vector Ln(t) in (53), we define an iterated Itô
integral

Ji,Ln(Δ) :=
∫ Δ

0

∫ sh

0

· · ·
∫ s2

0

Ln1(s1) · · ·Lnh−1(sh−1)Lnh(sh) dBi1(s1) · · ·

Bih−1(sh−1) dBih
(sh), (66)

where B0(t) := t and B1(t) := B(t), with the Brownian motion B(t) introduced in (62).
Then, we fully expand the product of the differential forms in the last equation of Eq. (65)
and find that in order to calculate Eq. (65), it suffices to calculate the following two kinds
of conditional expectations (

z1√
Δ

)k1

EL(Ji,Ln(Δ)) (67)

and (
z1√
Δ

)k2

EL(B(Δ)k3 · Ji,Ln(Δ)), (68)

where the integers k1, k2, k3 ∈ {0, 1, . . . , h} satisfy the condition k2 + k3 ≤ h and Ji,Ln(Δ)
is defined in Eq. (66). To precede, we notice the following relation

B(Δ)Ji,Ln(Δ) =
h+1∑
m=1

J(i1,...,im−1,1,im,...,ih),(Ln1 (Δ),...,Lnm−1 (Δ),1,Lnm (Δ),...,Lnh (Δ))(Δ)

+
h∑

m=1

1{im=1}J(i1,...,im−1,0,im+1,...,ih),Ln(Δ), (69)

which can be verified similarly as in Proposition 5.2.3 of Kloeden and Platen [19]. By
iterative applications of Eq. (69), the conditional expectation (68) can be converted into a
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linear combination of the conditional expectations uniformly represented as in (67). Then
from the martingale property of stochastic integrals and the independence between the
gamma process and Brownian motion, the conditional expectation (67) equals to zero if
there exists some integer m ∈ {1, 2, . . . , h} such that im = 1 in i. Therefore, the conditional
expectation (64) can be finally derived as a linear combination of the terms uniformly
represented as (56). Based on this, to calculate (64), it suffices to derive the conditional
expectation in (56).

3.3. Calculating the Conditional Expectation in (56)

In this part, we focus on the following conditional expectation

E[Ln1(s1)Ln2(s2) · · ·Lnh(sh)|L(Δ)] (70)

appeared in (56), for some 0 < s1 < s2 < · · · < sh < Δ and nonnegative integers
n1, n2, . . . , nh. The expectation (70) involves the product of values of the gamma process
L(·) evaluated at different intermediate times conditional on the value of L(·) at the terminal
time Δ and can be represented as a power function of L(Δ) by the following theorem.

Theorem 2: For h ≥ 1, 0 < s1 < s2 < · · · < sh < Δ and nonnegative integers n1, n2, . . . , nh,
we have

E[Ln1(s1)Ln2(s2) · · ·Lnh(sh) |L(Δ)]

=

∏m1−1
r=0 (as1 + r)

∏m2−1
r=m1

(as2 + r) · · ·∏mh−1
r=mh−1

(ash + r)∏mh−1
r=0 (aΔ + r)

Lmh(Δ),

where mk = n1 + n2 + · · · + nk for k = 1, 2, . . . , h, and the parameter a is defined through
the density function of L(·) in Eq. (12).

Proof: We first notice a fact that for the gamma process L(·) with density function given
by Eq. (12) and t0 < t1 < t2, conditional on L(t0) = v0 and L(t2) = v2, we have (cf. [27])

L(t1)
d= v0 + p(v2 − v0), (71)

where p is a random variable following Beta distribution as p ∼ B(a(t1 − t0), a(t2 − t1)).
Now we return to the proof of this proposition. For 0 < s1 < s2 < · · · < sh < Δ, by the

property of iterated expectation and L(0) = 0, we can get

E[Ln1(s1)Ln2(s2) · · ·Lnh(sh) |L(Δ)]

= E{E[Ln1(s1)Ln2(s2) · · ·Lnh(sh) |L(s2), . . . , L(sh), L(Δ)]|L(Δ)}
= E{Ln2(s2) · · ·Lnh(sh)E[Ln1(s1) |L(s2), . . . , L(sh), L(Δ)]|L(Δ)}
= E{Ln2(s2) · · ·Lnh(sh)E[Ln1(s1) |L(s2)]|L(Δ)}, (72)

where the last equality follows from the harness property of general Lévy process (see, for
example, [15 Sect. 11.2.7]). To calculate E[Ln1(s1)|L(s2)] in the last line of Eq. (72), we see
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from (71) that given L(s2),

L(s1)
d= p1L(s2), where p1 ∼ B(as1, a(s2 − s1)),

from which E[Ln1(s1)|L(s2)] = Ln1(s2)E[pn1
1 ] and Eq. (72) can be further calculated as

E[Ln1(s1)Ln2(s2) · · ·Lnh(sh) |L(Δ)] = E[pn1
1 ]E[Ln1+n2(s2)Ln3(s3) · · ·Lnh(sh) |L(Δ)].

(73)
Similarly, in the right-hand side of Eq. (73), we notice that

E[Ln1+n2(s2)Ln3(s3) · · ·Lnh(sh) |L(Δ)]

= E{Ln3(s3) · · ·Lnh(sh)E[Ln1+n2(s2) |L(s3)] |L(Δ)}
= E[pn1+n2

2 ]E[Ln1+n2+n3(s3)Ln4(s4) · · ·Lnh(sh) |L(Δ)],

where p2 ∼ B(as2, a(s3 − s2)), so that

E[Ln1(s1)Ln2(s2) · · ·Lnh(sh) |L(Δ)]

= E[pn1
1 ]E[pn1+n2

2 ]E[Ln1+n2+n3(s3)Ln4(s4) · · ·Lnh(sh) |L(Δ)].

Continuing the above procedure in a similar manner, for h ≥ 2, we deduce that

E[Ln1(s1)Ln2(s2) · · ·Lnh(sh)|L(Δ)]

= E[pn1
1 ]E[pn1+n2

2 ] · · ·E[pn1+n2+···+nh

h ]Ln1+n2+···+nh(Δ)

� E[pm1
1 ]E[pm2

2 ] · · ·E[pmh

h ]Lmh(Δ), (74)

where

pk ∼ B(ask, a(sk+1 − sk)), for 1 ≤ k ≤ h− 1 (75)

and

ph ∼ B(ash, a(Δ − sh)), (76)

with mk = n1 + n2 + · · · + nk for 1 ≤ k ≤ h.
To evaluate the expectation E[pmk

k ] for k = 1, 2, . . . , h in Eq. (74), we notice that for a
random variable X ∼ B(α, β),

E[Xk] =
α(k)

(α+ β)(k)
:=

∏k−1

r=0

α+ r

α+ β + r

holds for any positive integer k. Then, it follows from (75) and (76) that

E[pmk

k ] =
mk−1∏
r=0

ask + r

ask+1 + r
=

∏mk−1
r=0 (ask + r)∏mk−1

r=0 (ask+1 + r)
, for 1 ≤ k ≤ h− 1,

and

E[pmh

h ] =
mh−1∏
r=0

ash + r

aΔ + r
=
∏mh−1

r=0 (ash + r)∏mh−1
r=0 (aΔ + r)

.
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Plugging the above two equations into Eq. (74), we obtain that

E[Ln1(s1)Ln2(s2) · · ·Lnh(sh) |L(Δ)]

=
∏m1−1

r=0 (as1 + r)∏m1−1
r=0 (as2 + r)

∏m2−1
r=0 (as2 + r)∏m2−1
r=0 (as3 + r)

· · ·
∏mh−1−1

r=0 (ash−1 + r)∏mh−1−1
r=0 (ash + r)

∏mh−1
r=0 (ash + r)∏mh−1
r=0 (aΔ + r)

Lmh(Δ)

=

∏m1−1
r=0 (as1 + r)

∏m2−1
r=m1

(as2 + r) · · ·∏mh−1
r=mh−1

(ash + r)∏mh−1
r=0 (aΔ + r)

Lmh(Δ),

which concludes the proof. �

3.4. The Explicit Expressions of D(�)
1 (K(�,j)(z1, z2)) and Ωm(y)

Based on the previous calculations in Sections 3.1–3.3, the function K(�,j)(z1, z2) defined by
Eq. (40) can be established as a linear combination of zn1

1 zn2
2 for n1, n2 ≥ 0, denoted by

K(�,j)(z1, z2) =
∑

n1,n2≥0

Hμ,σ
(�,j)(n1, n2)zn1

1 zn2
2 ,

where the coefficient functions Hμ,σ
(�,j)(n1, n2), n1, n2 ≥ 0 depend on the functions μ(x0),

σ(x0), and their higher-order derivatives evaluated at x0. According to the definition of the
partial differential operators D(�)

1 (·) for � ≥ 1 in (41), the expression of D(�)
1 (K(�,j)(z1, z2))

can take the form as in Eq. (57). Then, it follows from Eqs. (42) and (43) that Ωm(y) can
be finally represented as

Ωm(y) =
∑

(�,(j1,j2,...,j�))∈Sm

(−1)�

�!
1

(σ(x0)
√

Δ)�

∑
n1,n2≥0

Pμ,σ
(�,j)(n1, n2)

×
∫ +∞

0

zn1
1 zn2

2 φ(z1)pL(Δ)(z2)dz2,

where z1 = y − (μ(x0)Δ + z2)/σ(x0)
√

Δ and y = (x− x0)/σ(x0)
√

Δ, the index set Sm is
defined in (9), μ(·) and σ(·) are defined through the SDE (11), φ(·) is the standard normal
density function and pL(Δ)(·) is the density function of L(Δ) in Eq. (12).

Remark 4: For the special case of the SDE (11) with σ(X(t);θ) ≡ 0 in Remark 3, to
calculate Ωm(y) for m = 0, 1, 2, . . . in Eq. (34), we skip the procedures in Section 3.2. The
remaining procedures are performed in a similar manner.

3.5. Examples

In this section, we consider three examples of SDE (11), that is, the pure jump OU model,
the constant diffusion model, and the square-root diffusion model introduced below, to give
the concrete expressions of the first several expansion terms of {Ωm(y),m ≥ 0} in Eq. (33).

The first model below is the pure jump OU process which is a special case of the non-
Gaussian OU processes proposed by Barndorff-Nielsen and Shephard [3]. The pure jump
OU process is widely used in finance and statistical analysis, for example, to specify the
stochastic volatility driving the dynamics of asset prices. We refer Barndorff-Nielsen and
Shephard [3], Cont and Tankov [5] and Schoutens [28] for more details of the non-Gaussian
OU processes.
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Model 1 (Pure-jump OU model). By taking θ = {κ, θ} and letting μ(x;θ) = κ(θ − x)
and σ(x;θ) ≡ 0 in (11), we obtain the pure jump model

dX(t) = κ(θ −X(t))dt+ dL(t), X(0) = x0. (77)

The function Ωm(y) for m = 0, 1, 2, 3 in Eq. (34) can be calculated as

Ω0(y) =
baΔ(y − ηΔ)aΔ−1 e−b(y−ηΔ)

Γ(aΔ)
,

Ω1(y) = −b
aΔ(y − ηΔ)aΔ−2 e−b(y−ηΔ)

2Γ(aΔ)
κΔ[(by − aΔ)y + ηΔ(1 − by)],

Ω2(y) =
baΔ(y − ηΔ)aΔ−3 e−b(y−ηΔ)

24(1 + aΔ)Γ(aΔ)
κ2Δ2[b2(y − ηΔ)2(y2(4 + 3aΔ) − 2yηΔ + η2Δ2)

− 2b(1 + aΔ)(y − ηΔ)(y2(2 + 3aΔ) − 6ηΔy + κ2η2)

+ (1 + aΔ)(3a2y2Δ2 + 2(2 − 5aΔ)ηΔy + (2 + aΔ)η2Δ2)],

and

Ω3(y) = −b
aΔ(y − ηΔ)aΔ−4 e−b(y−ηΔ)

48(1 + aΔ)Γ(aΔ)
κ3Δ3 × {[b3(2 + aΔ)y3 − b2(6 + aΔ(8 + 3aΔ))y2

+ b(1 + aΔ)(2 + aΔ(4 + 3aΔ))y − a3Δ3(1 + aΔ)]y3

− ηΔ[b3(8 + 3aΔ)y3 − b2(26 + 3aΔ(9 + 2aΔ))y2 + b(1 + aΔ)(6 + aΔ(20 + 3aΔ))y

− (1 + aΔ)(2 + aΔ(−6 + 7aΔ))]y2 + η2Δ2[b3(13 + 3aΔ)y3

− b2(40 + 3aΔ(11 + aΔ))y2

+ b(1 + aΔ)(14 + 19aΔ)y − (1 + aΔ)(−4 + aΔ(6 + aΔ))]y

− η3Δ3[b3(11 + aΔ)y3 − b2(27 + 17aΔ)y2 + 3b(1 + aΔ)(4 + aΔ)y − aΔ(1 + aΔ)]

+ bη4Δ4[by(−8 − 3aΔ + 5by) + 2(1 + aΔ)] + b2η5Δ5(1 − by)},

where η := κ(θ − x0).
The following model introduces an extra innovation driven by the Brownian motion,

which generalize the Vasicek model in Vasicek [29].
Model 2 (Constant diffusion model). By taking θ = {κ, θ, σ} and letting μ(x;θ) = κ(θ −

x) and σ(x;θ) ≡ σ > 0 in (11), we obtain the constant diffusion model

dX(t) = κ(θ −X(t)) dt+ σ dW (t) + dL(t), X(0) = x0. (78)

The function Ωm(y) for m = 0, 1, 2, 3 in Eq. (33) can be calculated as

Ω0(y) = S0(y),

Ω1(y) =
κΔ1/2

2σ
{yS1(y) + [ηΔy + σΔ1/2(1 − y2)]S0(y)},
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Ω2(y) =
κ2

24σ4(1 + aΔ)

× {S4(y) + 2(ηΔ − σΔ1/2y)S3(y) + [η2Δ − 2ησΔ1/2y

+ σ2(aΔ + (4 + 3aΔ)y2)]ΔS2(y)

+ 2σ2Δ3/2(1 + aΔ)[η(1 + 3y2)Δ1/2 + 3σ(1 − y2)y]S1(y)

σ2Δ2(1 + aΔ)[η2(1 + 3y2)Δ + 6ησΔ1/2(1 − y2)y + σ2(1 − 10y2 + 3y4)]S0(y)}

and

Ω3(y) =
κ3Δ1/2

336σ5(1 + aΔ)
× {7yS5(y) + [21ηΔy − σΔ1/2(−4 + 3aΔ + 21y2)]S4(y)

+ [21η2Δy + ησΔ1/2(5 − 9aΔ − 42y2) + σ2(−19 + 16aΔ + 7(4 + aΔ)y2)y]ΔS3(y)

+ [7η3Δ3/2y − η2σΔ(2 + 9aΔ + 21y2) + ησ2Δ1/2y(4 + 39aΔ + 21(2 + aΔ)y2)

+ σ3(9 + 16aΔ − 7(4 + 3aΔ)y4 + (33 + 5aΔ)y2)]Δ3/2S2(y)

+ σΔ2(1 + aΔ)[−3η3Δ3/2 + 3η2σΔ(10 + 7y2)y + ησ2Δ1/2(23 + 19y2 − 42y4)

+ σ3(−16 − 67y2 + 21y4)y]S1(y) + 7σ2Δ5/2(1 + aΔ)

× [η3Δ3/2(1 + y2)y + η2σΔ(1 + 2y2 − 3y4)

+ ησ2Δ1/2(−1 − 10y2 + 3y4)y − σ3(1 + 5y2 − 7y4 + y6)]S0(y)},

where η := κ(θ − x0) and for m = 0, 1, 2, . . .,

Sm(y) :=
1

2
√

2π
baΔ

Γ(aΔ)
A−1−rm/2 exp

[
−1

2
(y − κ(θ − x0)Δ1/2/σ)2

]

×
[
BΓ

(
1 +

rm
2

)
1
F1

(
1 +

rm
2
,
3
2
;
B2

4A

)
+
√
AΓ

(
1 + rm

2

)
1F1

(
1 + rm

2
,
1
2
;
B2

4A

)]

with rm := m+ aΔ − 1, A := 1/(2σ2Δ), B := y/σΔ1/2 − κ(θ − x0)/σ2 − b, and

1F1(a, b; z) :=
∞∑

k=0

((a)k/(b)k)zk/k!

as the Kummer confluent hypergeometric function.
The following jump-diffusion model is a generalization of the square-root diffusion model

proposed by Cox et al. [6]. For this model, Assumption 2 is not satisfied. Nevertheless, it
deserves noting that Assumption 2 is a sufficient condition instead of a necessary condition
to guarantee the convergence of the approximation theoretically. Although we have not
given a theoretical justification for the approximation in the square-root model, we still
consider this model as an example in this paper since its wide applications in finance (see,
e.g., [6,7,11]). At the same time, we also want to show that for some models which do not
satisfy all of Assumptions 1–3, the approximation method in this paper still works.

https://doi.org/10.1017/S0269964820000480 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964820000480


424 F. Jiang et al.

Model 3 (Square-root diffusion model). By taking θ = {κ, θ, σ} and letting μ(x;θ) =
κ(θ − x) and σ(x;θ) ≡ σ

√
x with σ > 0 in (11), we obtain the square-root diffusion model

dX(t) = κ(θ −X(t)) dt+ σ
√
X(t) dW (t) + dL(t), X(0) = x0. (79)

The function Ωm(y) for m = 0, 1, 2 in Eq. (33) can be calculated as

Ω0(y) = S0(y),

Ω1(y) =
1

4σx2
0

√
Δ
{yS2(y) + [2κθΔy + 2σ(x0 − y2)

√
Δ]S1(y)

[κη(θ + x0)Δ2y + 2κθσ(x0 − y2)Δ3/2 + σ2(−3x0 + y2)Δy]S0(y)},
and

Ω2(y) =
1

480σ4x4
0Δ2(1 + aΔ)

{5S6(y) + 20(κθΔ − σ
√

Δy)S5(y)

+ [10κ2(3θ2 − x2
0)Δ

2 − 60κθσΔ3/2y + (15(3 + aΔ)y2 + (−12 + 17aΔ)x0)σ2Δ]S4(y)

+ 20κ3θ(θ2 − x2
0)Δ

3 − 20κ2σ(3θ2 − x2
0)Δ

5/2y

− 2κσ2((7 + 6aΔ)x2
0 + θ(x0(1 − 28aΔ) − 30(2 + aΔ)y2))Δ2

+ 2σ3(x0(38 + 9aΔ) − 10(4 + 3aΔ)y2)Δ3/2y]S3(y)

+ [5κ4(θ2 − x2
0)

2Δ2 − 20κ3σθ(θ2 − x2
0)Δ

3/2y

+ (η2(30y2(4 + 3aΔ) + x0(37 + 66aΔ)) + 12κηx0(5y2(4 + 3aΔ) + x0(4 + 9aΔ))

+ 20κ2x2
0(x0aΔ + (4 + 3aΔ)y2))σ2Δ + 2σ3η(−10y2(10 + 9aΔ)

+ x0(77 + 48aΔ))
√

Δy + 4κσ3x0(−5y2(10 + 9aΔ) + x0(48 + 33aΔ))
√

Δy

− σ4(−5(19 + 18aΔ)y4 + (281 + 252aΔ)x0y
2

+ (9 + 23aΔ)x2
0)]Δ

2S2(y)

+ σ2(1 + aΔ)Δ5/2[−4κ3(θ2 − x2
0)(3x

2
0 − 8θx0 − 15θy2)Δ3/2

+ 6σ(η2(23x0 − 30y2) + 4κηx0(13x0 − 15y2) + 20κ2x2
0(x0 − y2))Δy

+ σ2(η(7x2
0 − 552x0y

2 + 180y4) + 36κx0(x2
0 − 16x0y

2 + 5y4))
√

Δ

+ σ3(−241x2
0 + 382x0y

2 − 60y4)y]S1(y)

+ 5σ2(1 + aΔ)Δ3κ2η2(x0 + 3y2)(θ + x0)2Δ2 + 12κ2θση(x0 − y2)(θ + x0)Δ3/2y

+ 2σ2Δ(x2
0 − 10x0y

2 + 3y4)(3η2 + 6κηx0 + 2κ2x2
0)

− 4κθσ3(15x2
0 − 20x0y

2 + 3y4)
√

Δy + 3σ4(−3x3
0 + 21x2

0y
2 − 11x0y

4 + y6)]S0(y)},
where η := κ(θ − x0) and for m = 0, 1, 2, . . . ,

Sm(y) :=
1

2
√

2π
baΔ

Γ(aΔ)
A−1−rm/2 exp

[
−1

2

(
y − κ(θ − x0)Δ1/2

σ
√
x0

)2
]

×
[
BΓ

(
1 +

rm
2

)
1F1

(
1 +

rm
2
,
3
2
;
B2

4A

)
+
√
AΓ

(
1 + rm

2

)
1F1

(
1 + rm

2
,
1
2
;
B2

4A

)]

with rm := m+ aΔ − 1, A := 1/(2σ2x0Δ), and B := y/σ
√
x0Δ1/2 − κ(θ − x0)/σ2x0 − b.
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4. NUMERICAL PERFORMANCE

In this section, we demonstrate the performance of the approximations for transition den-
sities via the previous introduced pure-jump OU model, constant diffusion model, and
square-root diffusion model in Section 3.5. To test the accuracy of the asymptotic expan-
sion methodology, we calculate the true transition density by inverse Fourier transform of
its known characteristic function as the benchmark for each of the above three models. Here,
we use the numerical inverse Fourier transform method proposed by Abate and Whitt [1],
which has been proved to be efficient and accurate. By comparing the approximated tran-
sition densities using our asymptotic expansion method with the true densities obtained by
inverse Fourier transform, we show that the approximation errors decrease quickly as the
approximation order M in Eq. (33) increases.

For each example, the true transition density of X(Δ) can be obtained via its
characteristic function φ(Δ;ω) := EeiωX(Δ) by

pX(Δ)(x |x0; θ) =
1
2π

∫ +∞

−∞
e−ixωφ(Δ;ω) dω

=
1
π

∫ +∞

0

[cos(xω)Re(φ)(Δ;ω) + sin(xω) Im(φ)(Δ;ω)] dω, (80)

which can be efficiently approximated via the following Euler summation as

E(m,n, x) =
m∑

k=1

(
m
k

)
2−msn+k(x),

where the truncated series is defined by

sn(x) :=
h

2π
+
h

π

n∑
k=1

[Re(φ)(Δ; kh) cos(khx) + Im(φ)(Δ; kh) sin(khx)].

We refer to Abate and Whitt [1] for more technical details.
By using Eq. (13), we can derive the explicit expressions of the characteristic functions

for the above three models as follows. For the pure jump OU model, we have

φ(t;ω) = exp
{
iω[e−κtx0 + θ(1 − e−κt)] − a

κ

[
Li2

(
iωe−κt

b

)
− Li2

(
iω

b

)]}
,

where Lis(z) :=
∑+∞

k=1 z
k/ks is the polylogarithm function. For the constant diffusion model,

we have

φ(t;ω) = exp
{
iω[e−κtx0 + θ(1 − e−κt)] − ω2σ2(1 − e−2κt)

4κ

−a
κ

[
Li2

(
iωe−κt

b

)
− Li2

(
iω

b

)]}
.

For the square-root diffusion model, we have

φ(t;ω) = E[eiωX(t)|X(0) = x0] = eα(t)+β(t)x0 ,
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where β(t) = 2iωκ/(2κeκt + iωσ2(1 − eκt)) and

α(t) =
1
σ2

{
2κ2θt+ aσ2t log(b) − (2κθ + aσ2t) log

[
1 − eκt

(
1 − 2κ

iωσ2

)]
+ 2κθ log

(
2κ
iωσ2

)

+ aσ2t

[
log

(
1 − beκt(2κ− iωσ2)

iω(2κ− bσ2)

)
− log

(
b− 2iωκ

iωσ2(1 − eκt) + 2κeκt

)]}

+
a

κ

[
Li2

(
1 − 2κ

iωσ2

)
− Li2

(
eκt

(
1 − 2κ

iωσ2

))

− Li2

(
b(2κ− iωσ2)
iω(2κ− bσ2)

)
+ Li2

(
beκt(2κ− iωσ2)
iω(2κ− bσ2)

)]
.

For the numerical comparison, according to Barndorff-Nielsen and Shephard [3], James
et al. [13] and Li and Chen [23], we set the parameters of the above three examples as follows.
For the pure jump OU model in (77), we set κ = 0.6, θ = 0.02, a = 100, and b = 10. For
the constant diffusion model in (78), we set κ = 0.6, θ = 0.02, σ = 0.3, a = 100, and b = 10.
For the square-root diffusion model in (79), we set κ = 0.6, θ = 0.02, σ = 0.3, a = 100, and
b = 10. In each model, we set the initial value x0 = 0.3.

For each model, given the true transition density pX(Δ)(x|x0; θ) in Eq. (80) and the
approximated density p(M)

X(Δ)(x |x0; θ) derived by Eq. (33) or Eq. (34), we denote by

eM (Δ, x |x0; θ) = pX(Δ)(x |x0; θ) − p
(M)
X(Δ)(x |x0; θ) (81)

the Mthorder approximation error and define the maximum relative error as

max
x∈D

∣∣∣∣eM (Δ, x |x0; θ)
pX(Δ)(x |x0; θ)

∣∣∣∣
over a region D.

We consider monthly, weekly, and daily monitoring frequencies (Δ = 1/12, 1/52, 1/252)2

and plot the maximum relative errors of order M = 0, 1, 2, 3 for each model in Figure 1. It is
easy to observe that the maximum relative errors decrease quickly as the order of expansion
increases. For example, when we choose Δ = 1/252 and the order of M = 2, the maximum
relative error of each model can attain the level as 10−5. Besides, when the monitoring
frequency rises, that is, the time interval Δ becomes smaller, the maximum relative error
will decrease correspondingly for each model.

The CPU time used to compute the explicit expansion terms of the various orders by
Mathematica is given in Table 1. Here, the column of M = 2 (respectively M = 3) means
that the approximated density in each of the three models employs the first three expansion
terms Ω0, Ω1 , and Ω2 (respectively the first four terms Ω0, Ω1, Ω2, and Ω3), and the CPU
time includes the total time for computing all the three (respectively four) expansion terms.
Meanwhile, for each model given different Δ, we give the CPU time used to compute the
approximated densities with approximation order M = 3 by Matlab, as shown in Table 2.
Here, for each case, we choose the initial point as x0 = 0.3 and calculate 800 values of the
transition density function to evaluate the maximum relative error.

2 For the pure jump OU model, the region of the forward variable x is [0.3, 1.3] for Δ = 1/12, 1/52, 1/252.
For the constant diffusion model, when Δ = 1/12, 1/52 ,and 1/252, the regions of the forward variable x are
[0.1, 2.5], [0.1, 1.1], and [0.22, 0.39], respectively. For the square-root diffusion model, when Δ = 1/12, 1/52,
and 1/252, the regions of the forward variable x are [0.3, 2.3], [0.20, 1.14], and [0.22, 0.62], respectively.
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Figure 1. Maximum relative absolute errors of density approximation for Models 1, 2, and 3 with orders M = 0, 1, 2, 3. (a) Pure jump
OU model, (b) constant diffusion model, and (c) square-root diffusion model.

Figure 2. Errors of density approximation for weekly monitoring frequency (Δ = 1/52) in the pure jump OU model, that is, e0, e1, e2, e3
as the approximation errors with respect to the expansion orders M = 0, 1, 2, 3, respectively. The region of the forward variable x in this
model is [0.3, 1.3]. (a) e0, (b) e1, (c) e2, and (d) e3.
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Figure 3. Errors of density approximation for weekly monitoring frequency (Δ = 1/52) in the constant diffusion model, that is,
e0, e1, e2, e3 as the approximation errors with respect to the expansion orders M = 0, 1, 2, 3, respectively. The region of the forward
variable x in this model is [0.1, 1.1]. (a) e0, (b) e1, (c) e2, and (d) e3.

Figure 4. Errors of density approximation for weekly monitoring frequency (Δ = 1/52) in the square-root diffusion model, that is,
e0, e1, e2, e3 as the approximation errors with respect to the expansion orders M = 0, 1, 2, 3, respectively. The region of the forward
variable x in this model is [0.20, 1.14]. (a) e0, (b) e1, (c) e2, and (d) e3.

https://doi.org/10.1017/S0269964820000480 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0269964820000480


STOCHASTIC DIFFERENTIAL EQUATIONS DRIVEN BY THE GAMMA PROCESSES 429

Table 1. CPU time for computing the various orders of approximations by Mathematica

M = 2 M = 3

Pure jump OU model 6.4s 24.3s
Constant diffusion model 3.9s 25.7s
Square-root diffusion model 35.3s 643.5s

Table 2. CPU time for computing the approximated densities for different Δ with M = 3
by Matlab

Δ = 1/252 Δ = 1/52 Δ = 1/12

Pure jump OU model 0.464s 0.654s 0.491s
Constant diffusion model 123.6s 112.2s 127.8s
Square-root diffusion model 241.2s 247.8s 265.2s

In Figures 2–4, we plot the series of approximation errors defined by (81) for the three
models, respectively. For each model, we consider the case of Δ = 1/52 and denote by
e0, e1, e2, e3 the abbreviation of eM (Δ, x|x0; θ) in Eq. (81) for M = 0, 1, 2, 3, respectively.
We observe from Figures 2–4 that the approximation errors decrease quickly and consistently
as the order of expansion increases.

The advantages of our asymptotic expansion method over the method of inverse Fourier
transform can be summarized as follows:

(1) When the solution of SDE (11) does not admit an explicit expression of X(t) or
characteristic function φ(t;ω), our method can still be used to approximate the
transition density.

(2) The approximation errors decrease quickly as the approximation order M in Eq.
(33) increases; thus, it suffices to use the first several expansion terms for the
approximation.

(3) Since the SDE driven by the gamma process involves the fat-tail characteristic,
the characteristic function φ(t;ω) for the pure jump SDE decreases slowly when
ω → +∞, which induces heavy computation burden in the inverse Fourier transform
method. In contrast, our expansion terms for the pure jump SDE can achieve quick
convergence and be evaluated in a few seconds for any rational initial value of X0.

5. CONCLUDING REMARKS

In this paper, we propose a closed-form asymptotic expansion to approximate the transition
density of the jump-diffusion SDE driven by the gamma process. We employ three examples
with known characteristic functions for numerical illustrations and comparisons. Compared
with the method of calculating the transition density by inverse Fourier transform of the
characteristic function, our method is more efficient while achieving low approximation
errors. In terms of the applications in financial engineering, our approximation method can
be directly applied for option pricing and hedging to obtain analytically tractable results,
which is left for further study.
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tions. Boston: Birkhäuser.
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APPENDIX

In this part, we give a brief introduction of the Sobolev norms in D∞(R) and the dual Sobolev
norms in D′∞(R)(see Hayashi and Ishikawa [10], Ishikawa [12], and Kunita [21] for more details).

APPENDIX A. THE SOBOLEV NORMS IN D∞(R)

Let (Ω,F ,P) be the Wiener–Poisson space with P = P1 × P2, where P1 and P2 denote the proba-
bility measures on the Wiener space and the Poisson space, respectively. Denote by H the collection
of random variables on (Ω,F), which can be expressed as a function of finite one-dimensional Wiener
integrals and finite one-dimensional integrals with respect to the Poisson random measure. Then,
in Hayashi and Ishikawa [10], the authors define Dk,l,p(R) := H̄‖·‖k,l,p for k, l ∈ N and p ≥ 2, which
is the completion of H under the Sobolev norm ‖ · ‖k,l,p defined by

‖F‖k,l,p := ‖F‖k,l,p,1,

where for ρ ∈ N, they define

‖F‖k,l,p,ρ :=

⎛
⎜⎝‖F‖p

0,l,p +
k∑

k′=1

l∑
l′=0

EP

⎡
⎢⎣∫

A(ρ)k′

⎛
⎝∫

T l′

∣∣∣∣∣D
l′
t D̃k′

u F

γ(u)

∣∣∣∣∣
2

dt

⎞
⎠

p/2

M̂(du)

⎤
⎥⎦
⎞
⎟⎠

1/p

and

‖F‖p
0,l,p := EP1(|F |p) +

l∑
j=1

EP1

[(∫
T j

|Dj
t F |2 dt

)p/2
]

,

with the set A(ρ) := {u ∈ R : γ(u) ≤ ρ}. Here, Dl, D̃u, EP (·), and EP1(·) are the lth differential
operator, the difference operator, the expectation with respect to P, and the expectation with
respect to P1 , respectively. Define

D∞(R) :=
∞⋂

k,l=0

⋂
p≥2

Dk,l,p(R).

According to Ishikawa [12], the functional F (ε) in Eq. (6) can be expanded as a convergent series of
ε with respect to the Sobolev norms in D∞(R), if for any m ≥ 1, k, l ∈ N, and p ≥ 2, the condition

lim sup
ε→0

1

εm+1

∥∥∥∥∥∥F (ε) −
m∑

j=0

fjε
j

∥∥∥∥∥∥
k,l,p

< +∞

holds.
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APPENDIX B. THE DUAL SOBOLEV NORMS IN D′
∞(R)

Denote by D′
k,l,p(R) the analytic adjoint space of Dk,l,p(R), i.e., the normed space with the dual

Sobolev norm ‖ · ‖′k,l,p given by

‖Φ‖′k,l,p = sup
‖G‖k,l,p=1

|E[Φ · G]|,

where the generalized expectation E[·] is introduced in Eq. (2). Define

D′∞(R) :=
∞⋃

k,l=0

⋃
p≥2

D′
k,l,p(R).

According to Ishikawa [12], the functional δ(F (ε) − y) can be expanded as a convergent series of ε
in Eq. (7) with respect to the dual Sobolev norms in D′∞(R), if for any m = 1, 2, . . ., there exists
k, l ∈ N and p ≥ 2, such that

lim sup
ε→0

1

εm+1

∥∥∥∥∥∥δ(F (ε) − y) −
M∑

m+0

Φm(y)εm

∥∥∥∥∥∥
k,l,p

< +∞.
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