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THE IMPLICITLY CONSTRUCTIBLE UNIVERSE

MARCIA J. GROSZEKAND JOEL DAVIDHAMKINS

Abstract. We answer several questions posed by Hamkins and Leahy concerning the implicitly con-
structible universe Imp, which they introduced in [5]. Specifically, we show that it is relatively consistent
with ZFC that Imp |= ¬CH, that Imp �= HOD, and that Imp |= V �= Imp, or in other words, that
(Imp)Imp �= Imp.

§1. Introduction. The implicitly constructible universe, denoted Imp, was defined
by Hamkins and Leahy [5]:

Definition 1.1. For a transitive setX , a subset S ⊆ X is implicitly definable over
X if for some formula ϕ(x1, . . . , xn) in the language of ZFC with an additional
one-place predicate symbol, and some parameters a1, . . . , an ∈ X , the set S is the
unique subset of X such that

(X,∈, S) |= ϕ(a1, . . . , an).
Definition 1.2. Imp is defined by iteratively applying the implicitly definable
power set operation as follows.
Imp0 = ∅;
Impα+1 = {S | S is implicitly definable over Impα} (Imp1 = {∅});
Imp� =

⋃
α<�

Impα for limit �.

Imp =
⋃
α∈OR

Impα .

Hamkins and Leahy showed the following facts.

Proposition 1.3 (Hamkins and Leahy [5]). Imp is an inner model of ZF , with
L ⊆ Imp ⊆ HOD.
If ZF is consistent, so is ZFC + (Imp �= L).
For α < �L1 , as a consequence of Shoenfield absoluteness, Impα = (Impα)

L; thus,
Imp�L1 = (Imp�L1 )

L = L�L1 .

In this article, we answer some questions posed by Hamkins and Leahy [5]. These
questions aim to separate Imp fromL and fromHOD, both literally (Hamkins and
Leahy showed that we may have Imp �= L, and we show here that we may have
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Imp �= HOD) and in terms of their properties. In particular, we show that (given
the consistency of ZF ):

1. It is consistent that Imp |= ¬CH . (Theorem 2.3.)
2. It is consistent that Imp �= HOD. (Theorem 3.6.)
3. It is consistent that Imp |= V �= Imp (that is, (Imp)Imp �= Imp).
(Theorem 4.11.)

Imp is defined level-by-level, inductively, as is the constructible universe L. An
important distinction is that, given Lα and S ⊂ Lα , whether S ∈ Lα+1 depends
only on Lα , while given Impα and S ⊂ Impα , whether S ∈ Impα+1 depends on the
power set of Impα . By the above results, despite the similarity of the definitions of
Imp and L, we see that Imp is less like L and more like HOD.
We leave open, among other things, the question of whether Imp |= ¬AC is
consistent. As (V = Imp) =⇒ AC , Theorem 4.11 is relevant to this question.

§2. Preliminary results and notation. The following facts were noted byHamkins
and Leahy:

Proposition 2.1 (Hamkins and Leahy [5]). SupposeM |= ZFC + V = L. If P
is a forcing poset in M , and G is the unique element ofM [G ] that is P-generic over
M , then inM [G ] we must have G ∈ Imp, and therefore (Imp)M [G ] =M [G ].
Proposition 2.2 (Hamkins and Leahy [5]). If G is P-generic overM , where P is
an almost-homogeneous notion of forcing inM , thenM [G ] |= Imp ⊆M .
Hamkins and Leahy use Proposition 2.1 in the proof of the consistency of Imp �=
L [5].
By playing off rigidity (unique generics) against (almost) homogeneity, we can
control which sets belong to Imp in generic extensions and in their submodels.
We begin with the following proposition:

Theorem 2.3. If ZF is consistent, so is ZFC + (Imp |= ¬CH ).
Proof. Abraham’s model [1] and Groszek’s model [3] for a minimal failure of
CH are each produced by forcing over a modelM of V = L with a poset P such
thatG is the unique element ofM [G ] that is P-generic overM , andM [G ] |= ¬CH .
Since, by Proposition 2.1, in each of these models Imp = M [G ], it follows that in
each of these models Imp |= ¬CH . �
To prove the main theorems of this article, we will employ the technique of
Groszek [3] to produce unique generics. This entails coding a generic sequence of
reals into the degrees of constructibility of the generic extension, by combining
products and iterations of Sacks forcing.
For the remainder of this article, will will use the following notation.
We identify a set with its characteristic function, so if x ∈ 2α , we may say � ∈ x
rather than x(�) = 1.
We letM be a model of ZFC + V = L, and define forcing partial orders inM .
In general, we will blur the distinction between objects in a generic extension and
names for those objects in the ground model. This is to avoid the confusion of, for
example, introducing notation for the name in the ground model of the name in an
intermediate extension of an object in a further extension.

https://doi.org/10.1017/jsl.2018.57 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.57


THE IMPLICITLY CONSTRUCTIBLEUNIVERSE 1405

S will denote Sacks forcing. Forcing with S over a model ofV = L adds a generic
real g ⊆ 2� of minimal (nonzero) L-degree [6].
Q will always denote a countable-support iteration

〈
Q� | � < α

〉
of some count-

able length α, such that each Q� is forced to be either S or S × S, and Q0 = S.
Whether Q� is S or S× S may depend on the generic sequence below � .
The following proposition follows from earlier work on Sacks forcing (for
example, see Baumgartner and Laver [2], and Groszek [3]).

Proposition 2.4. Forcing with Q preserves �1, and if G is Q-generic over a model
M of V = L, then inM [G ] the L-degrees of reals are exactly:

1. a well-ordered sequence
〈
d� | � ≤ α〉, where d0 is the degree of ∅, d�+1 is the

degree of the Q� -generic, and for limit � , d� is the degree of the sequence of
generic reals 〈d� | � < �〉; and

2. for each � < α such that Q� is S × S, a pair of incomparable degrees d�,0 and
d�,1 between d� and d�+1.

P will always denote a countable-support product
∏
i∈I

Pi , where each Pi has the

form Q described above.
Wewill denote theP-generic sequence byG = 〈Gi | i ∈ I 〉, whereGi isPi -generic.
Each Gi is equivalent to a sequence of generic reals of countable length αi ; we
will denote the join of these reals (relative to some fixed counting of αi) as gi .
An important technical lemma is the following.

Lemma 2.5. SupposeM |= V = L, the poset P ∈M is as described above, and G
is P-generic overM , where G = 〈Gi | i ∈ I 〉. If x is a real inM [G ] and for all i ∈ I
we have x �∈M [Gi ], then the L-degree of x lies above at least two minimal (nonzero)
L-degrees of reals.

This lemma is proven using a fusion construction of the sort common to Sacks
forcing arguments. Since the proof is not especially illuminating of any new ideas,
we defer it to Section 5, at the end of the article. At the end of Section 5 we state a
more general result about degrees of constructibility of reals in generic extensions
by forcing notions built from Sacks forcing.

§3. Separating Imp fromHOD. In this section, we produce a model N in which
Imp �= HOD.
Definition 3.1. Let M be a model of V = L, and in M , let P =

∏
i∈I

Pi be the

countable-support product defined by letting I be �1 × �1 and P(α,�) be the length
α iteration of Sacks forcing S.

By Proposition 2.4, each P(α,�) adds an initial segment of degrees of constructibil-
ity of reals of order type α + 1, which we will call a tower of height α + 1, with top
point deg(g(α,�)). (By the conventions stated after Proposition 2.4, g(α,�) denotes
the join of the sequence of reals added by P(α,�). Since P(0,�) is trivial, we let g(0,beta)
denote the zero real, or ∅.) Furthermore, in M [G ], the only well-ordered initial
segments of the degrees of constructibility of reals are these towers and their initial
segments. (To see this, suppose x is a real whose degree is not in one of these towers,
Then for all i ∈ �1 × �1, we have x �∈ M [Gi ]. Therefore, by the technical lemma
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(Lemma 2.5), x lies above at least two minimal (nonzero) L-degrees of reals, so its
degree is not in any well-ordered tower of L-degrees.) Hence, each of these towers
is maximal. In our argument later, we will code information into certain submodels
of the forcing extension by controlling the ordinals α for which there is a unique
such maximal tower.
InM [G ] there are also Cohen subsets of�1, that is, subsets of�1 that are generic
overM for the forcingAdd (�1, 1) whose conditions are countable partial functions
from �1 to 2. One such element is x, defined by x(α) = g(α,0)(0).
Define the model N by N =M [H ], where

H =
〈
G(α,�) | (� ∈ Lim ∪ {0} & n ∈ � & α = � + 2n & x(� + n) = 0) ⇒ � = 0

〉
.

That is, for � ∈ Lim ∪ {0}, if x(� + n) = 0, then we omit from N all but one
maximal tower of height � + 2n + 1.

Claim 3.2. IfG(α,�) is not an entry in the sequenceH , then no real whose (nonzero)
degree is in the tower added by G(α,�) is in N .
Therefore, the maximal towers in N are precisely those added by the G(α,�), where
for some � ∈ Lim ∪ {0} and n ∈ �, we have either α = � + 2n & (x(� + n) = 0 ⇒
� = 0) or α = � + 2n + 1.

Proof. Suppose p forces that G(α, �) is not an entry in H . That is, for some
� ∈ Lim ∪ {0} and some n ∈ �, we have α = � + 2n and � �= 0 and p forces that
x(� + n) = 0 (that is, p � gα,0(0) = 0). Since p forces that gα,0(0) = 0, then p
forces thatH is an element of

M ′ =M [
〈
Gα′ ,�′ | α′ = α =⇒ � ′ = 0

〉
].

But since
〈
Gα′,�′ | α′ = α =⇒ � ′ = 0

〉
is generic overM for

∏
i∈J

Pi , where J ⊂ I
is inM and (α, �) �∈ J , it follows by standard results about product forcing that no
element ofM [G(α,�)] \M is inM ′. SinceM ′ ⊇ N , this completes the proof. �
Claim 3.3. In N , x is ordinal definable

Proof. For � ∈ Lim ∪ {0}, recalling that G(α,�) adds a maximal tower of height
α + 1, we have x(� + n) = 0 iff there is a unique maximal tower of L-degrees
of reals of height � + 2n + 1. (If x(� + n) = 1, there are �1-many maximal
towers of height � + 2n + 1. There are always �1-many maximal towers of height
� + 2n + 2.) �
Furthermore, in N , there is G ′ that is P-generic over M , defined by, for �, � ∈
Lim ∪ {0} and n,m ∈ �,

G ′(� + 2n, � +m) = G(� + 2n + 1, � + 2m)) � � + 2n;

G ′(� + 2n + 1, � +m) = G(� + 2n + 1, � + 2m + 1);

where G(α, �) � 	, for 	 < � , is {p � 	 | p ∈ G(α, �)}. That is, we are recovering
the existence of many mutually generic maximal towers of L-degrees of reals of
height α+1 for all α, by cutting half the towers of height �+2n+2 down to height
� + 2n + 1.
Now we haveM [G ′] ⊂ N ⊂M [G ].
Claim 3.4. (Imp)N =M .
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Remark 3.5. The following proof generalizes to show:
Suppose M ⊆ M ′ ⊆ N ⊆ M ′′ are models of set theory. Suppose further that
ImpM

′ ⊆ M , ImpM ′′ ⊆ M , and M ′ and M ′′ satisfy the same sentences with
parameters from M . (This will follow if M ′ andM ′′ are generic extensions of M
via the same almost homogeneous forcing notion inM .) Then

ImpM
′
= ImpN = ImpM

′′
.

Proof. The forcing P is almost homogeneous, so by Proposition 2.2,
(Imp)M [G

′] = (Imp)M [G ] =M . In fact, for all α, we have

(Impα)
M [G′] = (Impα)

M [G ] = {y ∈M | �P (y ∈ Impα)},
and so we may define Iα = (Impα)

M [G′] = (Impα)
M [G ] ∈M .

Show inductively that, for all α,

(Impα)
N = Iα.

Assume as inductive hypothesis that (Impα)
N = Iα .

First, suppose that S ∈ Iα+1 = (Impα+1)M [G ]. Then for some formula ϕ and
a1, . . . , an ∈ Iα , we have that S is the unique subset of Iα in M [G ] such that
(Iα,∈, S) |= ϕ(a1, . . . , an). But since S ∈M , we haveS ∈ N , and sinceN ⊂M [G ],
we have that S is also unique in N . Hence S ∈ (Impα+1)N .
Conversely, suppose that S ∈ (Impα+1)N . Then, for some formula ϕ and
a1, . . . , an ∈ Iα , we have that S is the unique subset of Iα in N such that
(Iα,∈, S) |= ϕ(a1, . . . , an). Since N ⊂ M [G ], we have S ∈ M [G ], and so by
the almost-homogeneity of P, we have

�P (∃Z ⊆ Iα) ((Iα,∈, Z) |= ϕ(a1, . . . , an)).
But then

M [G ′] |= (∃Z ⊆ Iα) ((Iα,∈, Z) |= ϕ(a1, . . . , an)).
Since S was unique in N andM [G ′] ⊆ N , then the only possible such Z inM [G ′]
is S. Therefore S ∈ (Impα+1)M [G

′] = Iα+1. �
Nowwe have thatx �∈M = (Imp)N , but x ∈ (HOD)N . This proves the following
theorem.

Theorem 3.6. If ZF is consistent, then so is ZFC + (Imp �= HOD).

§4. Separating (Imp)Imp from Imp. In this section, we produce a model N in
which (Imp)Imp �= Imp.
Definition 4.1. The forcing poset SCn is the countable-support length � itera-
tion of (Sk)k<� where (letting g denote the join of the generic reals gk for Sk , which
we may call the generic real for SCn),

Sk =

{
S k ≤ n or (k = n + 2 + j & j �∈ g);
S× S k = n + 1 or (k = n + 2+ j & j ∈ g).

(Note that the join of an �-sequence of reals is defined, as in Definition 5.11, in
such a way that g(n) depends only on the Sk-generics for k < n.)
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IfM |= V = L, and G is SCn-generic overM , then by Proposition 2.4, inM [G ]
the degrees of constructibility form a lattice of height � and width 2 (a tower of
lines and diamonds) that (uniformly) codes (n, g), where g is the generic real. In
particular, in M [G ] there is a unique SCn generic over M (and no SCm-generic
overM form �= n). Furthermore, the lattice of degrees of constructibility inM [G ]
contains a unique minimal nonzero degree.

Definition 4.2. A self-coding real with base n is any real x such that the degrees
of constructibility below x form a lattice coding x in the same way that the generic
real g for SCn is coded by the degrees of constructibility below g.

It is not hard to see that if x is a self-coding real, the base n is uniquely determined
by x. Also, if x is a self-coding real, then �L[x]1 = �L1 .

Claim 4.3. There is a formula ϕsc(n) such that
1. If X ⊂ �L1 , (L�L1 ,∈, X ) |= ϕsc(n), x = X ∩ �, and �L[x]1 = �L1 , then x is a
self-coding real with base n;

2. If x is a self-coding real with base n, then there is a unique X ⊂ �L1 such that
X ∩ � = x and (L�L1 ,∈, X ) |= ϕsc(n).

Proof. Choose a canonical way of coding the structure of L�L1 [x], for any real
x, into Y ⊆ �L1 , coding the truth predicate of the model L�L1 [x] coded by Y into
Z ⊆ �L1 , and coding x, Y , and Z into X ⊆ �L1 in such a way that X ∩� = x.
Then ϕsc(n) asserts that X is the canonical code for L�L1 [X ∩ �], and that the
model coded by X satisfies a sentence asserting that the universe is L�L1 [r] for a
self-coding real r with base n. �
Definition 4.4. If x is a self-coding real with base n, then the unique X ⊂ �L1
such thatX ∩� = x and (L�L1 ,∈, X ) |= ϕsc(n) is denotedC (x), the canonical code
for L�L1 [x].

This implies the following fact.

Claim 4.5. Let N be a model of ZF in which x is the unique self-coding real with
base n. Then inN we have Imp�L1 = (Imp�L1 )

L (by Proposition 1.3),C (x) ∈ Imp�L1 +1,
and x ∈ Imp�L1 +2.
Definition 4.6. The forcing P is a countable-support product

S×
∏

i∈(�1×�)
Pi

where
P(α,n) = SCn.

If G is P-generic, then G is equivalent to the sequence of generics

〈GS, Gi | i ∈ (�1 × �)〉
or to the sequence of generic reals

〈gS, gi | i ∈ (�1 × �)〉 .
Claim 4.7. If M |= V = L, and G is P-generic over M , then in M [G ] the only
self-coding reals with base n are the generic reals g(α,n).
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Proof. By Proposition 2.4, the only self-coding real in M [G(α,n)] is the generic
real g(α,n). By the technical lemma (Lemma 2.5), any real not in anyM [G(α,n)] lies
above at least two different minimal (nonzero) L-degrees of reals, and therefore is
not a self-coding real with base n. �

Definition 4.8. N =M [H ] is the submodel ofM [G ] defined by setting h to be
the join of gS and the reals g0,n, and setting

H =
〈
gS, g(α,n) |α < �1 & (α = 0 or n �∈ h)

〉
.

Claim 4.9. In N , there is a unique self-coding real with base n iff n ∈ h.
Proof. By Claim 4.7, the only self-coding reals inM [G ] are the g(α,n). By defini-
tion ofH , if n �∈ h, every g(α,n) is inN =M [H ], so there are many self-coding reals
with base n.
If n ∈ h, by an argument like the proof of Claim 3.2, the only g(α,n) in N is g(0,n),
so there is a unique self-coding real with base n in N . �
Claim 4.10. Let H ′ =

〈
gS, g(0,n)

〉
n<�
. Then:

1. (Imp)N =M [H ′]. In particular, gS ∈ (Imp)N .
2. gS �∈ (Imp)M [H ′].

Proof. Weknow by Proposition 1.3 that in bothN andM [H ′], we have Imp�L1 =
L�L1 .
For part (1), by Claim 4.9, if n ∈ h, then in N there is a unique self-coding real
with base n, and so there is a unique X ⊆ �L1 such that (L�L1 ,∈, X ) |= ϕsc(n),
namely C (g0,n). Hence, C (g0,n) ∈ Imp�L1 +1. On the other hand, if n �∈ h, then
we will show that C (gα,n) �∈ Imp�L1 +1, hence there is no X ∈ Imp�L1 +1 such that
(Imp�L1 ,∈, X ) |= ϕsc(n)
To see this, suppose that p ∈ P and p forces (L�L1 ,∈, C (gα,n) |= 
(a1, . . . , ak).
Since P is a product forcing, and C (gα,n) is defined from the P(α,n) generic, it must
be the case that p(α, n), as a condition in P(α,n) = SCn , forces (L�L1 ,∈, C (g) |=

(a1, . . . , ak). We can extend p to p′ such that, for some (�, n) �∈ dom(p), we have
p′(�, n) = p(α, n). Thus, p′ forces (L�L1 ,∈, C (g�,n) |= 
(a1, . . . , ak). This shows
that C (g(α,n) cannot be the unique X such that (L�L1 ,∈, X ) |= 
(a1, . . . , ak), and
therefore C (g(α,n)) �∈ Imp�L1 +1.
This shows that in N , the real h is definable over Imp�L1 +1, and therefore h ∈
(Imp)N . It follows, sinceH ′ is constructible from h, thatM [H ′] ⊆ (Imp)N .
To see the reverse inclusion, byProposition 2.2 it suffices to note thatN is obtained
fromM [H ′] as a generic extension for an almost-homogeneous notion of forcing,
namely

P =
{
p � {(α, n) | 0 < α < �1 & n �∈ h}

∣∣ p ∈ P
}

(where P is defined inM ).
To see that P is almost-homogeneous, let the restrictions p = 〈ps, p〉 and q =

〈qs , q〉 be any conditions in P, and let � < �1 be such that the supports of p and q
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are contained in (� × �). Then the permutation ϕ of �1 × � defined by

ϕ(�, n) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(�, n) if � = 0 or � ≥ 2�;
(� +m − 1, n) if � = m and 0 < m < �;
(� + 	, n) if � = 	 and � ≤ 	 < �;
(m + 1, n) if � = � +m and m < �;
(	, n) if � = � + 	 and � ≤ 	 < �;

induces an automorphism ϕ of P that fixes h, H ′, and P. In M [H ′], ϕ gives an
automorphism of P that sends p � {(α, n) | 0 < α < �1 & n �∈ h} to a condition
compatible with q � {(α, n) | 0 < α < �1 & n �∈ h}.
To see that N is a P-generic extension of M [H ′], note that N = M [H ′][H ′′]
where

H ′′ = 〈gα,n | 0 < α < �1 & n �∈ h)〉 .
Suppose that D is a dense subset of P in M [H ′], and p =

〈
ps, p

〉 ∈ P. Choose
q =

〈
qs , q

〉 ≤ 〈
ps, p � ({0} × �〉 (so q is a condition for adding H ′) and r ∈ P

such that q forces

r ∈ D and r ≤ p � {(α, n) |
0 < α < �1 & n �∈ h} where r = r � {(α, n) | 0 < α < �1 & n �∈ h}.

Note that if α > 0 and r(α, n) �≤ p(α, n), then q � n ∈ h. Define p′ ≤ p by
p′ =

〈
qs , p

′〉 where
p′(α, n) =

⎧⎪⎨
⎪⎩
q(α, n) if α = 0;
r(α, n) if α > 0 and r(α, n) ≤ p(α, n);
p(α, n) otherwise.

Then p′ forces the generic filter addingH ′′ to meet D.
For part (2), H ′ is generic over M for the product forcing S × ∏

n∈�
SCn . Since

this is a product forcing,M [H ′] is a generic extension of M [〈g0,n | n ∈ �〉] by the
almost-homogeneous forcing (S)M , which adds the generic real gS. Therefore in
M [H ′], by Proposition 2.2, we have that gS �∈ Imp. �
This shows that in N we have gS ∈ Imp and gS �∈ (Imp)Imp, proving the following
theorem.

Theorem 4.11. If ZF is consistent, so is ZFC + ((Imp)Imp �= Imp).

§5. Proof of technical lemma. In this section we prove the technical lemma.
Lemma 5.1. SupposeM |= V = L, the poset P ∈ M is as described in Section 2,
and G is P-generic over M , where G = 〈Gi | i ∈ I 〉. If x is a real in M [G ] and for
all i ∈ I we have x �∈ M [Gi ], then the L-degree of x lies above at least two minimal
(nonzero) L-degrees of reals.

To establish notation and intuition, we begin by reviewing Sacks forcing.
Sacks forcing conditions are perfect trees, binary trees in which branching nodes
are dense. A subtree is a stronger condition. The generic G is equivalent to the
generic real g, the unique real that is a branch through all the trees in G .
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Definition 5.2. If T ⊆ 2<� is downward closed, and � ∈ T , we say � splits in
T if ��0 ∈ T and ��1 ∈ T . We may call � a splitting node of T .
A perfect tree is a downward closed T ⊆ 2<� such that for every � ∈ T there is
some 
 ⊇ � that splits in T .
A branch of T is b ∈ 2� such that, for all n < �, the restriction b � n is an
element of T . The set of all branches of T is denoted [T ].
Sacks forcing S has as conditions perfect trees, ordered by T ′ ≤ T (T ′ is stronger
than T ) iff T ′ ⊆ T .
If G ⊆ S is S-generic over M , then the S-generic real g is defined in M [G ] by
g =

⋂{[T ] | T ∈ G}.
If G ⊆ S is S-generic over M , then G = {T ∈ (S)M | g ∈ [T ]}. Hence,
M [G ] =M [g].

Definition 5.3. Let T be a perfect tree. The root, or stem, of T is the shortest

 ∈ T that splits in T .
For � ∈ 2n, we define rt�(T ) by induction on n:
If � = 〈〉 is the empty sequence, then rt�(T ) is the root of T .
Inductively, rt��i(T ) is the shortest 
 ⊇ (rt�(T ))�i that splits in T .
Remark 5.4. The collection of splitting nodes {rt�(T ) | � ∈ 2<�} comprises an
isomorphic copy of the complete binary tree 2<� inside T .
Any branch b through T is determined by {� | rt�(T ) ⊂ b}, and any branch
b′ through 2� determines a branch through T , given by the downward closure of
{rt�(T ) | � ⊂ b′}.
We use the rt�(T ) to construct fusion sequences (defined below), an essential tool
for Sacks forcing arguments.

Definition 5.5. For T ∈ S and n < �, the nth splitting level of T is Sn(T ) =
{rt�(T ) | � ∈ 2n}.
If T ′ ≤ T , and Sm(T ′) = Sm(T ) for all m < n, we say T ′ ≤n T .
A fusion sequence for S is a decreasing (with respect to the partial ordering)
sequence of conditions 〈Tm | m ∈ �〉 such that

(∀n)(∃kn)(∀m,m′) (kn ≤ m ≤ m′ =⇒ Tm′ ≤n Tm).
The fusion of the sequence is

⋂{Tm | m < �}.
Remark 5.6. The set Sn(T ) is a maximal antichain of nodes of T ; any branch
through T extends exactly one element of Sn(T ).
T ′ ≤0 T iff T ′ ≤ T .
The fusion T of a fusion sequence 〈Tm | m ∈ �〉 is a condition, T = ∧

m<�
Tm.

Furthermore, for all m we have T ≤ Tm, and for all m ≥ kn we have T ≤n Tm ≤n
Tkn .

Although S is not countably closed, we can use closure under fusions of fusion
sequences in place of countable closure to prove, for example, that S does not
collapse �1, and that any function f : � → � in a generic extension by S is
dominated by a function in the ground model.
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Fusion sequences are also used to prove the property for which Sacks forcing was
developed: IfG is Sacks generic overM , then every element ofM [G ] is either inM
or equivalent (equidefinable using parameters fromM ) toG . In particular, ifM |=
V = L, then the generic real g is of minimal (nonzero) degree of constructibility.
Typically, constructing a fusion sequence uses the notion of restriction:

Definition 5.7. If 
 ∈ T , then T
 , sometimes called the restriction of T to 
, is
{� ∈ T | � ⊆ 
 or 
 ⊆ �}.

If � ∈ 2<�, then T(�) = Trt� (T ).
Remark 5.8. If � ∈ 2n, then rt�(T ) ∈ Sn(T ) is the root of T(�).
For each n < �, the collection {[T(�)] | � ∈ 2n} is a partition of the branches of
T . The collection {T(�) | � ∈ 2n} is a maximal antichain of conditions extending
T .
The condition T forces that exactly one element of Sn(T ) = {rt�(T ) | � ∈ 2n} is
an initial segment of g, and g is a branch through exactly one T(�) for � ∈ 2n.
For all T , T ′ in S,

T ′ ≤n T ⇐⇒ (∀� ∈ 2n) (T ′
(�) ≤ T(�)).

It will be convenient to use this alternative characterization of ≤n when we
generalize the definition to products and iterations.

Remark 5.9. Suppose D ⊆ S is an open dense set. Given T and n, we can
extend every T(�) for � ∈ 2n to a condition S(�) ∈ D, and put those extensions
together to form S ≤n T such that S(�) = S(�) ∈ D for each � ∈ 2n. (Formally,
S =

⋃
�∈2n
S(�).) Thus, S forces the generic to contain one of finitely many elements

S(�) of D.
If Dn is an open dense set for each n ∈ �, we can begin with any condition T
and build a fusion sequence, 〈Tn | n < �〉 with T0 = T , Tn+1 ≤n Tn , and, for all
� ∈ 2n, (Tn+1)(�) ∈ Dn. The fusion S of this fusion sequence forces that, for each
n, the generic contains one of finitely many elements (Tn+1)(�) of Dn .
If x is a term for a function from � toM , andDn is the set of conditions forcing
a value for x(n), then S forces each x(n) to lie within a finite set of possible values.
Hence, if x : � → �1, the range of x is contained in some countable set inM ; this
shows S does not collapse �1. If x : � → �, then S determines a ground model
function f : � → � such that S forces x to be dominated by f; f(n) is an upper
bound for the possible values of x(n).
Suppose that x is a term for an element of 2� that is not in the ground model
M . To show x is equivalent to the generic real g, construct a fusion sequence below
any condition T , so that the fusion S provides a method for using x to determine
{� ∈ 2<� | S(�) ∈ G} (and hence, to determine g). To do this, when extending
R = Tn toTn+1 ≤n R, instead of extending each individualR(�) to lie in some dense
set, extend each pair R(�) and R(
) (for � �= 
) to force contradictory facts about x
(that is, for some k, one forces x(k) = 0 and the other forces x(k) = 1). Then the
resulting R will force that, for � ∈ 2n, we have R(�) ∈ G iff R(�) forces only correct
facts about x; since S ≤n Tn+1 ≤n R, we have S(�) ∈ G iff S(�) forces only correct
facts about x. In this way x recovers {� | rt�(S) ⊂ g}, and therefore x recovers g.
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We can always ≤n-extend R in this way: Since x is forced not to be inM , there
must be some k such thatR(�) does not decide the value ofx(k). Thenwe can extend
R(
) to decide the value of x(k), and R(�) to decide the opposite value. Repeating
this for all pairs � �= 
 from 2n, we produce the desired Tn+1.

To extend the fusion technique to products and iterations of S, we use
coordinatewise definitions of restrictions, fusion sequences, and fusions.
In particular, suppose p = 〈p(i) | i ∈ I 〉 is a condition. To define an analogue
of p(�), we break up � into finitely many subsequences �k , for each k choose a
coordinate i , and replace p(i) with the restriction (p(i))(�k ).
To organize this, we introduce notation for finite and infinite joins.

Definition 5.10. For x, y ∈ 2�, the join of x and y is x ⊕ y, defined by

(x ⊕ y)(n) =
{
x(k) if n = 2k;
y(k) if n = 2k + 1.

We make a similar definition for � ∈ 2m and 
 ∈ 2m or 
 ∈ 2m−1: � ⊕ 
 has
domain 2m in the first case, and 2m − 1 in the second, and

(� ⊕ 
)(n) =
{
�(k) if n = 2k;

(k) if n = 2k + 1.

If z ∈ 2≤�, we can view z as a join, and define its left and right parts: If z = x⊕y,
then �(z) = x and r(z) = y.

Definition 5.11. Let [ , ] : � × � → � be a computable bijection, increasing in
each coordinate, such that [0, 0] = 0, [0, 1] = 1, and otherwise [m, n] > max(m, n).
If � is a sequence of length at most �, for each n < � define the sequence c(�, n)
by c(�, n)(m) = �([n,m]). If [n,m] is not in the domain of �, then m is not in the
domain of c(�, n).
The least n such that, for � of length k and all m ≥ n, the domain of c(�,m) is
empty, is denotedW (k).
If, for each n, xn is a sequence of length �, the join

⊕
n<�
xn is the sequence x

defined by x([n,m]) = xn(m).

The bijection [ , ] allows us to view a (possibly partial) function � on � as a
function on � ×�. If we view � × � as a two-dimensional grid, then c(�, n) is the
restriction of � to the nth column of the grid.
If � is a finite sequence, then c(�, n) is a finite sequence for all n, and for all but
finitely many n we have c(�, n) = 〈〉. If we view � of length k as a partial function
on the � × � grid, thenW (k) is the width of the domain of �, that is, the number
of columns having nonempty intersection with the domain of �.
Taking the join of 〈xn | n < �〉 is the reverse process, viewing eachxn as a function
on the nth column of the grid.

Remark 5.12. If � =
⊕
n<�
xn, then c(�, n) = xn .
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For combinations of iterations and products of Sacks forcing over a model of
V = L, we want to employ the method of fusion sequences to analyze the degrees
of constructibility in the generic extension.
We define fusion sequences and fusions coordinatewise, with an inductive
component to the definition in the case of iteration.

Definition 5.13. 1. A decreasing sequence 〈pm | m < �〉 in S× S is a fusion
sequence if it is a fusion sequence in each coordinate; that is, if pm = (Sm,Tm),
then both 〈Sm | m < �〉 and 〈Tm | m < �〉 are fusion sequences in S.
Its fusion is the coordinatewise fusion,

∧
m<�
pm =

( ⋂
m<�
Sm,

⋂
m<�
Tm

)
.

2. A fusion sequence for an iteration Q of length α, and its fusion, are defined
coordinatewise. Inductively:
A decreasing sequence 〈pm | m < �〉 is a fusion sequence if for all � < α,
the sequence 〈pm � � | m < �〉 is a fusion sequence in 〈Q� | � < �〉, and its
fusion forces 〈pm(�) | m < �〉 to be a fusion sequence in Q� .
The fusion of the sequence is the condition p =

∧
m<�
pm such that, for all

� < α, we have that p � � =
( ∧
m<�
pm � �

)
and p(�) denotes the fusion∧

m<�

(
pm(�)).

3. A fusion sequence for P, and its fusion, are defined coordinatewise:
A decreasing sequence 〈pm | m < �〉 is a fusion sequence if for all i the
sequence 〈pm(i) | m < �〉 is a fusion sequence for Pi .
Its fusion is defined by

( ∧
m<�
pm

)
(i) =

∧
m<�

(
pm(i)).

As with S, the fusion, or infimum, of a fusion sequence is a condition.
For constructing fusion sequences in this setting, we want to generalize the
definitions of T(�) and ≤n.
For countable products and iterations, we can decompose � into subsequences
c(�, n), and use a fixed enumeration {i(n) | n < �} of the support of the product or
iteration to make a coordinatewise definition of p(�).
For an uncountable product or iteration, we define a notion p(�,�s), where �s iden-
tifies the coordinates to which we associate those subsequences c(�, n) that are
nonempty.

Definition 5.14. 1. Suppose p = (T0, T1) ∈ S× S.
For � ∈ 2<� , we define p(�) = ((T0)(�(�)), (T1)(r(�))).
We define p ≤n q iff (∀� ∈ 2n) (p(�) ≤ q(�)). (As in Defintion 5.10, �(q�)
and r(�) denote the left and right parts of �.)

2. ForQ of countable length α, fix an enumeration {�m | m < �} of α, such that
�0 = 0.
For p ∈ Q and � ∈ 2<� we define p(�) coordinatewise: p(�)(�m) is a term
for (p(�m))c(�,m).
We define p ≤n q iff (∀� ∈ 2n) (p(�) ≤ q(�)).
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3. For p ∈ P, � ∈ 2n, and �s = 〈i(k) | k < 	〉, whereW (n) ≤ 	 ≤ �, we define
p(�,�s) by p(�,�s)(i(k)) = p(i(k))(c(�,k), and for i �∈ {i(k) | k < 	}, we set
p(�,�s)(i) = p(i).
We define p ≤n,�s q iff (∀� ∈ 2n) (p(�,�s) ≤ q(�,�s)).

Remark 5.15. For S × S and Q, if p ∈ G , then the sequence 〈� | p(�) ∈ G
〉
is

equivalent to the generic G .
ForP, if �s = 〈i(k) | k < �〉 andp ∈ G , the sequence 〈� | p(�,�s) ∈ G

〉
is equivalent

to the portion of the generic
〈
Gi(k) | k < �

〉
.

This is also true coordinatewise: In S× S, from {�(�) | p(�) ∈ G} and p, we can
recover g0, and similarly for g1. In Q, from {c(�, k) | p(�) ∈ G}, G � �k , and p, we
can recover g�k . In P, from {c(�, k) | p(�) ∈ G} and p, we can recover gi(k).
For S× S and Q, if �p = 〈pm | m < �〉 is a sequence of conditions such that

(∀n)(∃kn)(∀m,m′) (kn ≤ m ≤ m′ =⇒ p′m ≤n pm),
then �p is a fusion sequence. Furthermore, if p is its fusion, then for all m ≥ kn we
have p ≤n pm.
For P, if �p = 〈pm | m < �〉 is a sequence of conditions and �s = 〈i(k) | k < �〉 is
an enumeration of

⋃{supp(pm) | m < �} such that
(∀n)(∃kn)(∀m,m′) (kn ≤ m ≤ m′ =⇒ p′m ≤(n,�s) pm),

then �p is a fusion sequence. Furthermore, if p is its fusion, then for all m ≥ kn we
have p ≤(n,�s) pm.
Note, in this case, that p ≤(n,�s) q is equivalent to p ≤(n,�s�m) q, for anym ≥W (n).
We will use this in constructing fusion sequences, when wemay need to find p ≤(n,�s)
q although only some initial segment of �s has been defined.
To produce r ≤n p such that the restrictions r(�) (or r(�,�s)) for � ∈ 2n all have
some given property, we wish, as in the case of Sacks forcing, to extend each p(�)
individually, and then put the results together to form r. However, we can no longer
extend the p(�) independently; extending p(�) generally changes p(
) for 
 �= �. To
facilitate extending the p(�) sequentially, for q ≤ p(�) we define the amalgamation
of q into p above �, essentially the result of extending p(�) and then plugging the
extension q back into p.
The amalgamation of q into p above � will be the maximal (weakest) r ≤n p
such that r(�) = q.

Definition 5.16. 0. For � ∈ 2n, T ∈ S, and S ≤ T(�), the amalgamation of
S into T above � is Am�(T,S) = S ∪⋃{T(
) | 
 ∈ 2n & 
 �= �}.

1. For � ∈ 2n, and S × S conditions p = (T0, T1) and q = (S0, S1) ≤ p(�),
we define Am�(p, q), the amalgamation of q into p above level n, to be the
coordinatewise amalgamation (Am�(�)(T0, S0), Amr(�)(T1, S1)).

2. For � ∈ 2n, p ∈ Q, and q ≤ p(�), we define Am�(p, q), the amalgamation of
q into p above �, inductively: Letting r denote Am�(p, q),

r(�m) =

{
Amc(�,m)(p(�m), q(�m)) if (∀�k < �m) (p(�k)(c(�,k)) ∈ G�k ));
p(�m) otherwise.

3. For p ∈ P, � ∈ 2n, �s = 〈i(k) | k < 	〉 (with 	 ≥ W (n)), and q ≤ p(�,�s),
the amalgamation of q into p above (�, �s) is defined to be the coordinatewise
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amalgamation: Letting r denote the amalgamation Am(�,�s)(p, q), we define
r(i(k)) = Am(c(�,k))(p(i(k)), q(i(k))), and for i �∈ {i(k) | k < 	}, we set
r(i) = q(i).

Remark 5.17. To somewhat clarify clause (2) above, note that p is a condition
for the iterated forcingQ =

〈
Q� | � ≤ α〉, so p(�m) is a name. IfQ�m is forced to be

S, then p(�m) is forced to be a perfect tree inM [G � �m]. Then r(�m) is a name for
a perfect tree inM [G � �m]. It is constructed so that r(�m) is forced by p � �m to
satisfy the given definition. In somewhatmore detail,

〈
p(�k)(c(�,k)) | �k < �m

〉
forces

r(�m) to equalAmc(�,m)(p(�m), q(�m)), and conditions inQ � �m incompatible with〈
p(�k)(c(�,k)) | �k < �m

〉
force r(�m) to equal p(�m).

Remark 5.18. In the case of S, for � ∈ 2n, and R = Am�(T,S), we have
R(�) = S, and for 
 ∈ 2n with 
 �= �, we have R(
) = T(
).
In the case of S× S, for � ∈ 2n, q ≤ p(�), and r = Am�(p, q), we have r(�) = q.
For 
 ∈ 2n with 
 �= �, we have r(
) ≤ p(
), but we do not in general have r(
) = p(
).
(However, if �(
) �= �(�), we have equality in the first coordinate, and if r(
) �= r(�),
we have equality in the second coordinate.)
In the case of Q as in clause (2) above, for � ∈ 2n, q ≤ p(�), and r = Am�(p, q),
we have r(�) = q. For 
 ∈ 2n with 
 �= �, we have r(
) ≤ p(
), but we do not in
general have r(
) = p(
). However, we do have the following (which will be used
later): If c(�, 0) �= c(
, 0), then r(
) = p(
).
An illustrative case is the two-step iteration of Sacks forcingQ = 〈Q0,Q1〉, where

Q0 and Q1 are both Sacks forcing. A condition in Q is a pair p = 〈T,T ′〉, where T
is a perfect tree in M , and T ′ is a term for a perfect tree in M [G0]. Suppose that
� = 〈0, 0〉 = 〈0〉 ⊕ 〈0〉, and q = 〈S, S′〉 ≤ p(�) =

〈
T(〈0〉), T ′

(〈0〉)
〉
. (For purposes of

illustration we are using the pairwise join, rather than the infinite join, to decompose
�.) If r is the amalgamation of q into p above �, then
r(〈0〉⊕〈0〉) = r(�) = 〈S, S′〉 = q,
r(〈0〉⊕〈1〉) =

〈
S,T ′

(〈1〉)
〉
,

r(〈1〉⊕〈0〉) =
〈
T(〈1〉), T ′

(〈0〉)
〉
= p(〈1〉⊕〈0〉), and

r(〈1〉⊕〈1〉) =
〈
T(〈1〉), T ′

(〈1〉)
〉
= p(〈1〉⊕〈1〉).

This is precisely what is needed for r ≤2 p with r(�) = q to be maximal (as weak as
possible). Here �(
) is playing the role of c(
, 0), and where �(
) = 〈1〉 �= �(�), we
have r(
) = p(
), as claimed.
In the case of P as in clause (3) above, for q ≤ p(�,�s), and r = Am(�,�s)(p, q),
we have r(�,�s) = q. For 
 ∈ 2n with 
 �= �, we have r(
,�s) ≤ p(
,�s), but we do not
in general have r(
,�s) = p(
,�s). However, derived from the above, we do have the
following (which will be used later):
Suppose i = i(k) for some k < 	, and for 
 ∈ 2n we set b(
) = c(c(
, k), 0).
(That is, b(
) is the subsequence of 
 that determines the initial path of the generic
real for (Pi)0.) If b(
) �= b(�), then r(
,�s)(i) = p(
,�s)(i).

Lemma 5.19. LetM |= V = L.
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InM , let P =
∏
i∈I

Pi be a countable-support product where each Pi is a countable-

support iteration
〈
Q� | � < αi

〉
of countable length αi , such that each Q� is either S

or S× S (which one may depend on the generic sequence below �). Let x be a P-term
for a function from � to the ordinals.
Let i ∈ I , and p ∈ P, such that p � x �∈ M [〈Gj | j �= i〉]. Let n < �, and

�s = 〈i(k) | k < 	〉 be a finite sequence from I of length at leastW (n), with i(0) = i .
For 
 ∈ 2n, set b(
) = c(c(
, 0), 0). Suppose �, 
 ∈ 2n and b(
) �= b(�). Then
there are a condition r ≤n,�s p, a number d < �, and ordinals � �= � ′ such that
r(�,�s) � x(d ) = � and r(
,�s) � x(d ) = � ′.
Proof. Suppose by way of contradiction that, for all d < �, all q ≤ p�,�s , and
all � such that q � x(d ) = �, if r = Am�,�s(p, q), we have r(
,�s) � x(d ) = �. By
Remark 5.18, since r(
,�s)(i) = p(
,�s)(i) (and since amalgamation is defined coordi-
natewise), the condition r(
,�s) is determined by p and q � {j | j �= i}. Specifically,
r(
,�s) =

(
Am(�,�s)(p, q)

)
(
,�s)
, where q(i) = p(
,�s)(i) and q(j) = q(j) for j �= i .

Then p�,�s forces that x(d ) = � if and only if there is q ∈ G � {j | j �= i} such that(
Am�,�s (p, q))(
,�s) � x(d ) = �, where q(i) = p(
,�s)(i) and q(j) = q(j) for j �= i .
But this contradicts p � x �∈M [〈Gj | j �= i〉].
Hence, we can find d < �, �, and q ≤ p(�,�s), such that q � x(d ) = �, but(
Am�,�s (q, p))(
,�s) �� x(d ) = �. Choose q′ ≤

(
Am�,�s(q, p))(
,�s) such that q

′ � x(d ) =
� ′ for � ′ �= �, and let r = Am
,�s (Am�,�s(p, q), q′). Then r(
,�s) = q′ � x(d ) = � ′, and
r(�,�s) ≤

(
Am�,�s (p, q))�,�s = q � x(d ) = �, as desired. �

Proposition 5.20. LetM |= V = L.
InM , let P =

∏
i∈I

Pi be a countable-support product where each Pi is a countable-

support iteration
〈
Q� | � < αi

〉
of countable length αi , such that each Q� is either S

or S × S (which one may depend on the generic sequence below �). Let x be a term
for a function from � to the ordinals.
Let i ∈ I , and p ∈ P, such that p � x �∈M [〈Gj | j �= i〉]. Then p � (Gi)0 ≤L x.
Proof. We define a fusion sequence 〈pm | m < �〉 and an enumeration �s =

〈i(k) | k < �〉 of ⋃
m<�
supp(pm), such that from the fusion

∧
pm, the sequence �s ,

and x, we can recover the generic real (gi)0 for (Qi)0.
At step m we define pm and i(m), using a diagonalization strategy to insure the
range of �s is

⋃
m<�
supp(pm).

We will guarantee we have a fusion sequence by making pm+1 ≤m+1,�s�(m+1) pm.
Let p0 = p, and i(0) = i .
Inductively, suppose pm and �sm = 〈i(0), . . . , i(m)〉 have been defined, with the
following property: Say that conditions q and r are separated by x if there are a
number d < � and ordinals � �= � ′ such that p � x(d ) = � and q � x(d ) = � ′.
For � ∈ 2m, as in Lemma 5.19, define b(�) = c(c(�, 0), 0). Then, for all �, 
 ∈ 2m,
if b(�) �= b(
), then (pm)(�,�sm) and (pm)(
,�sm ) are separated by x.
Choose i(m + 1) according to our diagonalization strategy.
By Lemma 5.19, for any �, 
 ∈ 2m+1 with b(�) �= b(
), there is r ≤m+1,�s�(m+1) pm
such that r(�,�sm+1) and r(
,�sm+1) are separated by x. Therefore, by a finite iteration
of choosing ≤m+1 extensions, we may choose pm+1 ≤m+1,�s�(m+1) pm such that, for
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all �, 
 ∈ 2m+1 with b(�) �= b(
), we have that (pm+1)(�,�sm+1) and (pm+1)(
,�sm+1) are
separated by x.
Let q be the fusion

∧
pm. Then, q forcesx to recover the generic real (gi)0 for (Qi)0

as follows: Let � ∈ 2n, and m such that if 
 ∈ 2m, then b(
) ∈ 2n. Then pm forces
that rt�((pm(i))(0)) ⊂ (gi )0 iff there is 
 ∈ 2m with b(
) = � such that (pm)(
,�s�m)
forces no incorrect facts about x; that is, whenever (pm)(
,�s�m) � x(d ) = �, then in
fact x(d ) = �. �
Proposition 5.21. InM , let P =

∏
i∈I

Pi be a countable-support product where each

Pi is a countable-support iteration
〈
Q� | � < αi

〉
of countable length αi , such that

each Q� is either S or S× S (which one may depend on the generic sequence below �).
Let x be a term for a function from � to ordinals.
Then, inM [G ], one of:

1. x ∈M ;
2. x ∈M [Gi ], where Gi is Pi -generic for some i ∈ I ; or
3. x lies above at least two minimal (nonzero) L-degrees of reals.

This proves the technical lemma.

Remark 5.22. Unlike the previous proposition, this depends on the fact that the
domain of x is countable.

Proof. Let p be any condition, and extend p so one of

1. p � (∀i ∈ I ) (x ∈M [〈Gj | j �= i〉]);
2. For some k ∈ I , we have p � (x �∈ M [〈Gj | j �= k〉]), and p � (∀i ∈ I ) (i �=
k =⇒ x ∈M [〈Gj | j �= i〉]);

3. For some i0, i1 ∈ I , we have p � (x �∈ M [〈Gj | j �= i0〉]) and p � (x �∈
M [〈Gj | j �= i1〉]).

In Case (3), by Proposition 5.20, p forces x to lie above the (nonzero) minimal
L-degrees added byGi0 andGi1 . We show that in Case (1), we can extend p to force
x ∈M , and in Case (2), to force x ∈M [Gi0 ].
In each case, we build a decreasing sequence of conditions 〈pn | n < �〉, and
simultaneously build an enumeration �s = 〈i(n) | n < �〉 of ⋃

n<�
supp(pn). For q ∈

P, we let q[−n] denote q � {i | i �∈ {i(0), i(1), . . . , i(n)}}. We let P[−n] denote∏
i �∈{i(0),...,i(n)}

Pi .

For Case (1), choose i(0). Since p � (x ∈M [〈Gj | j �= i0〉]), we can choose p0 ≤
p and a term x0 for forcing with P[−0] such that p0 � x = x0 and p0 � x0(0) = �0.
Since x0 is a term for forcing with P[−0] and p0 � (x0 ∈ M [〈Gj | j �= i(1)〉]),
we also have p0 � (x0 ∈ M [〈Gj | j �∈ {i(0), i(1)}〉]), and p0[−0] � (x0 ∈
M [〈Gj | j �∈ {i(0), i(1)}〉]). Therefore we can choose p1[−0] ≤ p0[−0] and a term
x1 for forcing with P[−1] such that p1[−0] � x0 = x1 and p1[−0] � x1(1) = �1.
Expand p1[−0] to p1 ≤ p0 by setting p1(i0) = p0(i0).
Then p1 ≤ p0 ≤ p, p1(i(0)) = p0(i(0)), and p1 � (x = x1 & x(0) =
�0 & x(1) = �1).
Inductively, assume that we have p ≥ p0 ≥ · · · ≥ pn−1, x0, x1, . . . , xn−1, and
�0, �1, . . . , �n−1 such that for all m′ < m < n:
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1. pm(i(m′)) = pm′(i(m′));
2. xm is a term for forcing with P[−m] and pm � x = xm;
3. pm � x(m) = �m.
Then, as before, we can choose pn[−(n − 1)] ≤ pn−1[−(n − 1)] and a term xn
for forcing with P[−n] such that pn[−(n − 1)] � xn−1 = xn, and pn[−(n − 1)] �
xn(n) = �n . Expandpn[−(n−1)] to pn by, form < n, setting pn(i(m)) = pm(i(m)).
This preserves the inductive hypothesis.
Finally, let q be the limit of the pn: q(i(n)) = pn(i(n)). Then, for all n, we have
q � x(n) = �n . Therefore, q � x ∈M .

For Case (2), we combine the construction of Case (1) with the construction
of a fusion sequence for Pk . During the course of the construction, we construct

�s = 〈i(n) | n < �〉 enumerating
( ⋃
n<�
supp(pn)

)
−{k}. For q ∈ ∏

i �=k
Pi and r ∈ Pk,

we let q�r denote the condition defined by setting (q�r)(i) = q(i) for i �= k and
(q�r)(k) = r.
Choose p0 ≤ p such that p0 � x = x〈〉, where x〈〉 is a term for forcing with

P[−0], and p0 � x〈〉(0) = �〈〉.
Inductively, assume we have constructed a decreasing sequence of conditions

〈pm | m < n〉, a collection of terms 〈x� | � ∈ 2m,m < n〉, and a collection of
ordinals 〈�� | � ∈ 2m,m < n〉 such that, for all m′ < m < n,

1. pm(k) ≤m′ pm′(k);
2. pm(i(m′)) = pm′(i(m′));
3. For � ∈ 2m, x� is a term for forcing with P[−m];
4. For � ∈ 2m, ((pm(k))(�))�(pm � I − {k, i(0), . . . , i(m − 1)}) � x�(m) = �� ;
5. For 
 ∈ 2m−1, ((pm(k))(
��))�(pm � I −{k, i(0), . . . , i(m−1)}) � x
 = x
�� .
We can extend this to n as follows:
Let q0 denote pn−1(k) and r0 denote pn−1 � (I − {k, i(0), i(1), . . . , i(n − 1)}),
and enumerate 2n as {�j | j = 1, . . . , b}.
Inductively, for j = 1, . . . , b, if �j = 
�� , choose a condition (r ≤
(qj−1)(�j ))

�rj−1, a term x�j for forcing with P[−n], and an ordinal ��j such
that r � x
 = x�j and r � x�j (n) = ��j . Let qj = Am�j (qj−1, r(k)) and
rj = r � (I − {k, i(0), i(1), . . . , i(n − 1)}).
Define pn by pn(k) = qk , pn(i(j)) = pn−1(i(j)) for j = 0, . . . , n − 1, and
pn � (I − {k, i(0), . . . , i(n − 1)}) = rb .
Now, define q ≤ p by setting q(k) = ∧

n∈� pn(k) and q(i(n)) = pn(i(n)). Then
q forces that, for all n, we have (x(n) = ��) ⇐⇒ ((q(k))(�) ∈ Gk); that is, q forces
x ∈M [Gk ]. �
The technical lemma proved here (Lemma 2.5) is a special case of the general
analysis of degrees in generic extensions by forcing notions built from Sacks forc-
ing. A reasonably general result, proved using the ideas in Case 2 of the proof of
Proposition 5.21, is stated in the following proposition.
This proposition concerns generalized iterations as defined in Groszek and Jech
[4]. For a well-founded partial ordering I , a generalized iteration 〈Pi | i ∈ I 〉 is
defined in the natural way, so that Pi is a term for a partial ordering in the generic
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extension by 〈Pj | j < i〉. Generalized iterations encompass products, iterations,
and various combinations of products and iterations.
An ordering is �2-like if every point has fewer than �2-many predecessors. In
the proposition below, using an �2-like partial ordering I guarantees cardinal
preservation, as shown in [4].

Proposition 5.23. Let M |= V = L. In M , let I be any well-founded, �2-like
partial ordering, and let P be a countable-support generalized iteration along I such
that every Pi is forced to be either S or the trivial forcing (which one may depend on
the generic below i). SupposeG is P-generic overM .
If x is any real in M [G ], then x ≡L 〈Xn | n < �〉 where, for some {i(n) | n <

�} ⊆ I inM , and some {F (n) | n < �} inM such that each F (n) is a finite set of
finite binary sequences,

Xn =

{
Gi(n) if (∃� ∈ F (n)) (� ⊂ ⊕

m<n Xm);
∅ otherwise.

Furthermore, for all i ∈ I ,
(Gi ≤L x) ⇐⇒ ((∃n) (Gi ≤L Xn)) ⇐⇒ ((∃n) (Xn = Gi(n) & i ≤ i(n))).
Remark 5.24. The general idea of this proposition is that every real in the generic
extension is equivalent to a join 〈Gi | i ∈ J 〉 of countably many of the explicitly
added generic reals. However, this is complicated by the fact that the set J may
not be in the ground model. For example, suppose that P is a product of countably
many copies of Sacks forcing, adding a generic sequence 〈Gn | n < �〉, and x is
〈Gi+1 | G0(i) = 0〉. Then, in the notation of this proposition, x is equivalent to
〈Xn | n < �〉 where X0 is G0, and Xi+1 is Gi+1 if G0(i) = 0, and ∅ otherwise. The
sequence {F (n) | n < �} captures the way in which the value of X0 at i determines
Xi+1.
The fusion argument to prove the proposition begins with a variant of
Lemma 5.19. Intuitively, this variant assumes that x is forced not to lie in
M [〈Gj | j ≤ i〉], and says that p can be ≤n,�s -extended to r so that if the stems
of r(�,�s)(i) and r(
,�s)(i) are different, then r(�,�s)(i) and r(
,�s)(i) force different things
about x. By choosing each r(�,�s) to also determine the stem of r(�,�s)(i), this allows
x to compute which stem is associated with r(�,�s)(i) for r ∈ G , and thus ultimately
to recover Gi . In this case, if i is the nth element of the support of the eventual
fusion condition, we have Xn = Gi . If, on the other hand, x is forced to lie in
M [〈Gj | j ≤ i〉], we have Xn = ∅.
The picture is complicated because we cannot initially force whether x ∈
M [〈Gj | j ≤ i〉] for all i in the support; instead, we consider a new i at each stage
of the fusion construction. When we are committed to ≤n,�s-extending our current
condition p to a new r, we may not be able to decide whether x ∈M [〈Gj | j ≤ i〉];
the best we can do is to say that r(�,�s) decides whether x ∈M [〈Gj | j ≤ i〉] for each
� of appropriate length. We can determine � by knowing the stems of r(j) for the j
already considered. These Gj will appear earlier in the X sequence than the newly
considered Gi ; the F sequence will capture the way in which this initial part of the
X -sequence determines the stems of the conditions and therefore whether Gj or ∅
appears next in the sequence.
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