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Controlling vortex shedding using spanwise-varying passive or active actuation
(namely three-dimensional control) has recently been reported as a very efficient
method for regulating two-dimensional bluff-body wakes. However, the mechanism
of how the designed controller regulates vortex shedding is not clearly understood. To
understand this mechanism, we perform a linear stability analysis of two-dimensional
wakes, the base flow of which is modified with a given spanwise waviness. Absolute
and convective instabilities of the spanwise wavy base flows are investigated using
Floquet theory. Two types of base-flow modification are considered: varicose and
sinuous. Both of these modifications attenuate absolute instability of two-dimensional
wakes. In particular, the varicose modification is found to be much more effective
in the attenuation than the sinuous one, and its spanwise lengths resulting in
maximum attenuation show good agreement with those in three-dimensional controls.
The physical mechanism of the stabilization is found to be associated with the
formation of streamwise vortices from tilting of two-dimensional Kármán vortices
and the subsequent tilting of these streamwise vortices by the spanwise shear in the
base flow. Finally, the sensitivity of absolute instability to spanwise wavy base-flow
modification is investigated. It is shown that absolute instability of two-dimensional
wakes is much less sensitive to spanwise wavy base-flow modification than to two-
dimensional modification. This suggests that the high efficiency observed in several
three-dimensional controls is not due to the sensitive response of the wake instability
to the spanwise waviness in the base flow.

Key words: absolute/convective instability, instability control, wakes/jets

1. Introduction
The wake behind a bluff body is an important canonical flow which we often

encounter in many engineering applications. Vortex shedding in the near-wake region
is an important source of drag, vibration, and noise generation, and therefore there
have been numerous efforts to control it. Much of this work has often focused on
developing control methods within a two-dimensional framework: the control input
is homogeneous in the spanwise direction (we shall refer to this approach as ‘two-
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dimensional’ control). The well-known examples include an end plate (Nishioka &
Sato 1974; Stansby 1974), base bleed (Bearman 1967; Wood 1967), a splitter plate
(Roshko 1955; Bearman 1965; Kwon & Choi 1996), a secondary small cylinder
(Strykowski & Sreenivasan 1990), and active blowing/suction based on flow sensing
(Min & Choi 1999; Son, Jeon & Choi 2011). On the other hand, a number of
relatively recent studies have proposed a conceptually different approach where the
control input varies along the spanwise direction (we shall refer to this approach
as ‘three-dimensional’ control). A segmented trailing edge (Tanner 1972; Rodriguez
1991), a wavy trailing edge (Tombazis & Bearman 1997), a wavy front stagnation
face (Bearman & Owen 1998; Owen, Szewczyk & Bearman 2000; Darekar & Sherwin
2001), spanwise-periodic blowing/suction (Kim et al. 2004; Kim & Choi 2005), and a
small vertical tab (Park et al. 2006) are examples which significantly attenuate vortex
shedding in a wide range of the Reynolds number. For further details on this approach,
the reader may refer to a recent review by Choi, Jeon & Kim (2008).

An important feature of the three-dimensional control is that it is often much
more efficiently implemented than the two-dimensional one. For instance, base bleed,
which injects a non-negligible amount of fluid at the rear of the cylinder, typically
requires the actuation velocity φ ' 0.2U∞ (U∞ is the free-stream velocity) for
complete stabilization of vortex shedding (Schumm, Berger & Monkewitz 1994), while
the spanwise wavy blowing and suction in Kim & Choi (2005) achieves the same
performance only with φ ' 0.07U∞. Despite the high efficiency of this approach, the
essential mechanism of how the three-dimensional control regulates vortex shedding
remains poorly understood.

Hydrodynamic stability theories have undergone significant development for the last
three decades, and they now provide a solid theoretical framework for understanding
the onset and dynamics of vortex shedding in bluff-body wakes. Vortex shedding
is a typical nonlinear self-sustained oscillation which results from a supercritical
Hopf bifurcation (Mathis, Provansal & Boyer 1984; Provansal, Mathis & Boyer
1987; Schumm et al. 1994). When the Reynolds number exceeds a critical value,
a disturbance associated with unstable global modes undergoes exponential growth
(Jackson 1987; Zebib 1987). The growing disturbance is then saturated due to
stabilizing nonlinearity, and it eventually forms a limit-cycle oscillation. In weakly
non-parallel flows, the appearance of such a global oscillation has been firmly
associated with absolute instabilities in the near-wake region (Chomaz, Huerre &
Redekopp 1988; Monkewitz 1988; Huerre & Monkewitz 1990; Monkewitz, Huerre &
Chomaz 1993; Pier 2002). More recent analyses have shown that this near-wake region
acts as a wavemaker for both linear and nonlinear global instabilities (Chomaz 2005;
Giannetti & Luchini 2007; Hwang & Choi 2008).

The hydrodynamic stability theory also provides important physical insights into the
mechanism by which the given control strategy stabilizes vortex shedding. The control
input often induces non-negligible changes in the base flow in the near-wake region
acting as the wavemaker of vortex shedding. This change leads to stabilization of the
near-wake absolute instability and subsequently of global instability. This mechanism
has successfully explained why many two-dimensional controls yield stabilization of
vortex shedding. For example, base bleed attenuates the near-wake absolute instability
by weakening the strength of reverse flows in the recirculation zone (Monkewitz
1988; Hwang & Choi 2006). Strong base suction, which promotes entrainment of
the free-stream high momentum into the recirculation region, weakens the absolute
instability in this region (Hammond & Redekopp 1997; Leu & Ho 2000). Placing a
small secondary cylinder in the separating shear layer is also shown to stabilize both
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the near-wake absolute and global instabilities (Hwang & Choi 2006; Marquet, Sipp &
Jacquin 2008; Pralits, Brandt & Giannetti 2010).

The firm relation between the near-wake base-flow modification by the control input
and the resulting stabilization of vortex shedding in many two-dimensional controls
leads us to pose a key question for three-dimensional control: does the spanwise wavy
base-flow modification by a three-dimensional control stabilize the near-wake absolute
instability and global instability?. We should emphasize that this question is actually
a combination of two independent questions: (i) how does the designed control input
modify the near-wake base flow?; and (ii) does the spanwise waviness itself in the
base flow play any role in stabilizing the near-wake absolute instability and/or global
instability? Examining these two aspects of the given question is particularly important
in understanding where the very high efficiency of several three-dimensional controls
(Kim et al. 2004; Kim & Choi 2005; Park et al. 2006) originates from: it could
be from highly efficient base-flow modification by the given control input or from
the highly sensitive nature of the wake instability itself to the spanwise waviness in
the base flow. The purpose of the present study is to provide appropriate answers to
these questions arising from three-dimensional control. In particular, the present study
is aimed at answering the latter by examining whether the presence of the spanwise
waviness in the base flow leads to stabilization of the near-wake absolute instabilities.

The presence of the spanwise waviness in the base flow, however, yields a difficulty
in performing the analysis that is our aim. It has been thought that theoretical
investigation of the spatio-temporal evolution of instabilities in spatially periodic base
flows is a challenging issue. Although the criterion for absolute instability could
be derived using Floquet theory (Brevdo & Bridges 1996), its technical complexity
has limited its application to only a few cases for the linearized Navier–Stokes
system (Bertolotti et al. 2004; Pier 2007). For this reason, most previous studies
have examined the spatio-temporal evolution of instabilities using numerical simulation
(Brancher & Chomaz 1997; Brandt et al. 2003). However, the numerical simulation
is often computationally very expensive because it requires a very long streamwise
domain to give space for the driven wave packets to evolve sufficiently far downstream.
Therefore, when one is to examine a relatively large number of parameters as in the
present study, this approach would not be suitable. This underlying difficulty forces us
to follow the analytic approach proposed by Brevdo & Bridges (1996). This therefore
naturally poses another objective of the present study, which is to examine the analytic
criterion of absolute instability in a spatially periodic base flow for the Navier–Stokes
system.

The paper is organized as follows. In § 2, we derive the analytic criterion of absolute
instability for the streamwise-parallel and spanwise-periodic base flows. In § 3, we
numerically verify the criterion of absolute instability for two-dimensional parallel
wakes containing a spanwise waviness in the base flow. We subsequently show that
the base-flow modification with the given spanwise waviness results in stabilizing
absolute instability. A discussion is then given in § 4 where we present a comparison
of the present linear stability analysis with previous experimental and numerical
studies for three-dimensional controls, the physical mechanism of the stabilization,
and the sensitivity of absolute instability to the spanwise wavy base-flow modification
compared with two-dimensional base-flow modification. A summary of the present
work is given in § 5 with several remarks.
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2. Problem formulation
2.1. Linear impulse response of streamwise-parallel and spanwise-periodic base flows

We first analyse the impulse response of the Navier–Stokes equation linearized around
a streamwise-parallel and spanwise-periodic base flow. The streamwise-parallel nature
of the base flow allows us to use a Fourier transform in this direction (e.g. Briggs
1964; Bers 1983; Huerre & Monkewitz 1985, 1990; Huerre & Rossi 1998), while in
the spanwise direction, we use Floquet theory proposed by Brevdo & Bridges (1996).
It is convenient to start from the following form of the linearized Navier–Stokes
equation (see appendix A):

M

(
y;−i

∂

∂x

)
∂ψ

∂t
+ ∂ψ
∂z
=L

(
y, z;−i

∂

∂x

)
ψ, (2.1a)

with the initial condition,

ψ |t=0 = ψ0, (2.1b)

where ψ(x, y, z, t) = [v (∂v/∂z) (∂2v/∂z2) (∂3v/∂z3) η (∂η/∂z)w (∂w/∂z)]T, η is the
transverse vorticity(=∂u/∂z − ∂w/∂x), x, y, and z are respectively the streamwise,
transverse and spanwise directions, and t the time. The linear operator M is constant
in z, while L contains coefficients periodic in z due the base flow considered, i.e.

L

(
y, z;−i

∂

∂x

)
=L

(
y, z+ λz;−i

∂

∂x

)
, (2.1c)

where λz is the spanwise period. Taking the Laplace–Fourier transform of (2.1) in
time and the streamwise direction, ψ̂(y, z;α, ω)= ∫∞0 ∫∞

−∞ ψ(x, y, z, t)e−i(αx−ωt) dx dt (α
and ω are the streamwise wavenumber and the frequency, respectively), yields the
following equation:

∂ψ̂

∂z
= [L (y, z;α)+ iωM (y;α)]ψ̂ +M (y;α)ψ̂0. (2.2)

It is convenient to assume that the transverse direction of (2.2) is projected onto a
finite-dimensional vector space. In practice, the projection may be done with truncated
series expansions or numerical discretization. This setting then enables us to use the
techniques developed for finite-dimensional linear systems. We first introduce the state
transition operator Ψ̂ (z;α, ω) of (2.2):

ψ̂(z;α, ω)= Ψ̂ (z;α, ω)ψ̂ |z=0, (2.3a)

where

∂Ψ̂ (z;α, ω)
∂z

= [L (z;α)+ iωM ]Ψ̂ (z;α, ω), Ψ̂ (0;α, ω)=I . (2.3b)

Here, I is the identity operator. We note that Ψ̂ (z;α, ω) is non-singular (see e.g.
Antsaklis & Michel 1997).

Now, we observe that L is a continuous and periodic matrix function in z.
Therefore, Floquet’s theorem gives the following form of the state transition operator
Ψ̂ (z;α, ω):

Ψ̂ (z;α, ω)= Q̂(z;α, ω)ezB(α,ω), (2.4a)
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where

Q̂(z;α, ω)= Q̂(z+ λz;α, ω), Q̂(0;α, ω)=I . (2.4b)

Here, the operator B in the matrix exponential of (2.4a) describes the spanwise
evolution of the solution of (2.1), and its eigenvalues are referred to as Floquet
exponents. Since Ψ̂ (z;α, ω) is not singular, it is also evident that Q̂ is non-singular
and invertible.

Equation (2.4a) suggests that ψ̂ is in a subspace of range of Q̂, which allows us to
write ψ̂ as follows:

ψ̂(z;α, ω)= Q̂(z;α, ω)φ̂(z;α, ω). (2.5)

Then, combining (2.2), (2.3b), (2.4a), and (2.5) gives

∂φ̂(z;α, ω)
∂z

−B(α, ω)φ̂(z;α, ω)= Q̂−1M ψ̂0. (2.6)

We now note that (2.6) turns out to be a z-invariant linear system. Therefore, this
enables us to use the Fourier transform in z: φ̃(α, β, ω)= ∫∞−∞ φ̂(z;α, ω)e−iβz dz, where
β is the spanwise wavenumber. This yields

φ̃(α, β, ω)= (iβI −B)
−1h̃0, (2.7a)

where

h̃0 ≡
∫ ∞
−∞

Q̂−1M ψ̃0e−iβz dz. (2.7b)

The physical-space solution ψ(x, z, t) is then constructed by inversion of the
Laplace–Fourier transform:

ψ(x, z, t)= 1

(2π)3

∫
Bω

∫
Cα

Q̂

∫
Cβ

S (α, β, ω)

D(α, β, ω)
ei(αx+βz−ωt) dβ dα dω, (2.8a)

where

S (α, β, ω)= det[iβI −B](iβI −B)
−1h̃0, (2.8b)

D(α, β, ω)= det[iβI −B(α, ω)]. (2.8c)

Here, Bω, Cα, and Cβ are respectively integral contours in the complex ω-,
α- and β-planes for the inverse Laplace–Fourier transform, and they are shown in
figure 1(a,d,g) respectively. We note that the integrand in (2.8a) becomes singular
when D(α, β, ω)= 0, implying that this gives the dispersion relation of (2.1).

The asymptotic solution of the integral (2.8a) is obtained using the method of
steepest descent (Briggs 1964; Huerre & Monkewitz 1985, 1990; Huerre & Rossi
1998) that was also adopted in Carriere & Monkewitz (1999) for the evaluation of
an integral similar to (2.8a). Following the same procedure in Carriere & Monkewitz
(1999), the asymptotic solution of (2.8a) for sufficiently large t is obtained as

ψ(x, z, t)∼ t−1

[
∂2ω

∂α2
(α0, β0)

∂2ω

∂β2
(α0, β0)

]−1/2

Q̂(z;α0, ω0)

× S (α0, β0, ω0)

∂D

∂ω
(α0, β0, ω0)

ei(α0x+β0z−ω0t), (2.9)
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(a)

(b)

(d) (g)

(e) (h)

(c) ( f ) (i)

FIGURE 1. Lowering of the Bromwich contour Bω in the complex ω-plane, and the
corresponding locus of spatial branches in the complex α- and µ-planes (from top to bottom).
(a–c) ω-, (d–f ) α-, and (g–i) µ-planes. In (g–i), the dotted circle indicates |µ| = 1.

where

∂ω

∂α
(α0, β0)= ∂ω

∂β
(α0, β0)= 0 and ω0 = ω(α0, β0). (2.10)

Here, α0 and β0 are respectively complex streamwise and spanwise absolute
wavenumbers, and ω0 is complex absolute frequency. The absolute wavenumbers, α0

and β0, characterize the dominant spatial wavelength of the initially driven wave
packet as t→∞, and the absolute frequency ω0 gives the frequency and growth rate
of the wave packet along the rays x/t = 0 and z/t = 0. We note that, in (2.10),
∂ω/∂β(α0, β0) = 0 additionally appears compared to the two-dimensional parallel
flow case (e.g. Huerre & Monkewitz 1985, 1990; Huerre & Rossi 1998; Chomaz
2005). This is essentially due to the three-dimensionality considered here: in three-
dimensional flows, the localized instability wave packet should exhibit growth along
the ray z/t = 0 as well as the ray x/t = 0 to be absolutely unstable.

In practice, it is convenient to use a criterion equivalent to (2.10) in terms of the
so-called monodromy operator Ψ (λz;α, ω)(=eλzB), which describes the evolution of
ψ over a spanwise period λz (see also § 2.3). Introducing the spanwise wavenumber
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associated with the monodromy operator, µ ≡ eiβλz , gives the following criterion for
absolute instability:

∂ω

∂α
(α0, µ0)= ∂ω

∂µ
(α0, µ0)= 0 and ω0 = ω(α0, µ0). (2.11)

It should be emphasized that the criterion in (2.10) or (2.11), which satisfies a
zero complex-group-velocity condition, is the so-called ‘pinching’ point (Briggs 1964;
Huerre & Monkewitz 1985, 1990; Huerre & Rossi 1998). The pinching point can
be rigorously detected by gradually lowering the Bromwich contour Bω, as shown in
figure 1. We note that the pinching point detection procedure described here is an
extension of the standard procedure for two-dimensional parallel base flows to that
for spanwise-periodic and streamwise-parallel ones. For details on the two-dimensional
parallel cases, the reader may refer to several reviews (e.g. Huerre & Monkewitz 1990;
Huerre & Rossi 1998). For illustrative purposes, here we assume that, for a given ω,
the dispersion relation gives two streamwise (α+ and α−) and two spanwise (µ+ and
µ−) spatial branches. First, we imagine that Bω is located sufficiently far above the
pinching point ω0 in the ω-plane (figure 1a). For a given µ(=µ+α or µ−α ), the images of
Bω in the α-plane form two streamwise spatial branches that are well separated from
each other (the dashed lines in figure 1d). This allows the contour Cα to safely pass
along the real axis in the α-plane without violating causality for proper evaluation of
(2.8a) (the solid line in figure 1d along the real axis). Similarly, the images of Bω for
a given α(= α+µor α−µ ) in the complex µ-plane appear as two well-separated spanwise
spatial branches. One of them for z < 0 (µ−) is located inside the unit circle (|µ| = 1)
and the other for z> 0 (µ+) is placed outside the circle by the definition of µ(≡eiβλz)

(figure 1g). The image of integration contour Cβ , which is a unit circle in the µ-plane
(solid line in figure 1g), therefore also safely passes through the space between two
branches without violating causality. Now, we gradually lower Bω toward the pinching
point ω0 (figure 1b). As Bω is lowered, the two spatial branches in the α-plane (α+

and α−) become closer to each other. In this circumstance, to enforce the causality
condition for evaluating (2.8a), the integral contour Cα in the α-plane should be
deformed so that it passes through the space between α+ and α− branches (figure 1e).
Similarly, in the complex µ-plane, the image of the integration contour Cβ should
also be deformed so that it lies on the space between µ+ and µ− branches, which
approach each other on lowering Bω (figure 1h). When Bω eventually passes through
the pinching point ω0 as it is lowered (figure 1c), the two branches in the α-plane
meet at α = α0 (figure 1f ) and those in the µ-planes also show the same behaviour
at µ = µ0 (figure 1i). It should be emphasized that Bω cannot be further lowered for
evaluation of (2.8a) because this leads to breakdown of the causality. Finally, we note
that the local topology of ωi near the pinching point in both the complex α- and
µ-planes forms saddle, which also allows one to use the method of steepest descent
for asymptotic evaluation of (2.8a) as in (2.9).

2.2. Equations of motion
As shown in appendix A, the linearized equations of motion for the base flow,
(U(y, z)= U(y, z+ λz), 0, 0), are the following:

∂u

∂x
+ ∂v
∂y
+ ∂w

∂z
= 0, (2.12a)

∂u

∂t
+ U

∂u

∂x
+ v ∂U

∂y
+ w

∂U

∂z
=−∂p

∂x
+ 1

Re
∇2u, (2.12b)
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∂v

∂t
+ U

∂v

∂x
=−∂p

∂y
+ 1

Re
∇2v, (2.12c)

∂w

∂t
+ U

∂w

∂x
=−∂p

∂z
+ 1

Re
∇2w, (2.12d)

where u, v, and w are respectively the streamwise, transverse and spanwise velocity
perturbations, and p is the pressure perturbation. Since the scope of the present study
is to understand the role of the given spanwise waviness in absolute instability of two-
dimensional wakes, we consider the simplest description of the base flow by assuming
that it is composed of a two-dimensional wake profile and a base-flow modification
with a single spanwise wave component:

U(x, y, z)= U0(y)+ A U1(y) cos
(

2π
z

λz

)
, (2.13)

where U0(y) is the profile of a typical two-dimensional wake, A the amplitude
of the base-flow modification, and U1(y) the normalized shape function for the
modification. We note that the description by (2.13) may be a ‘minimal’ representation
of the base flow modified by three-dimensional control (see also discussion in § 4.1).
Using the base-flow profile in (2.13), velocities in (2.12) are non-dimensionalized
by U

∗
0(= (U∗c + U∗∞)/2) (the superscript ∗ denotes a dimensional quantity), where

U∗c and U∗∞ are the centreline and free-stream velocities, respectively. The lengths
are made non-dimensional with the wake half-width h such that U∗|y∗=h = U

∗
0. The

non-dimensionalization gives the Reynolds number as Re= U
∗
0h/ν.

For U0(y) in (2.13), we consider a symmetric model wake proposed by Monkewitz
(1988). The wake profile is given as

U0(y)= 1−Λ+ 2ΛF(y), (2.14a)

where

Λ= (U∗c − U∗∞)/(U
∗
c + U∗∞), (2.14b)

F(y)= [1+ sinh2a{ysinh−1(1)}]−1
. (2.14c)

Here, Λ is a parameter controlling the depth of the wake and setting Λ = −1
generates profiles with zero centreline velocity. The parameter a ∈ [1,∞) determines
the ratio of shear-layer thickness to wake width, and a =∞ and a = 1 correspond to
a top-hat wake and the standard sech2y wake, respectively. The profiles of U0(y) for a
few values of a are shown in figure 2.

For the normalized shape function for the modification U1(y), we consider the
following two profiles:

U1(y)=
{

Uvar(y)/‖Uvar(y)‖ varicose modification
Usin(y)/‖Usin(y)‖ sinuous modification,

(2.15a)

where

Uvar(y)= exp
[−(y− ξ)2/2σ 2

]+ exp
[−(y+ ξ)2/2σ 2

]
, (2.15b)

Usin(y)= exp
[−(y− ξ)2/2σ 2

]− exp
[−(y+ ξ)2/2σ 2

]
. (2.15c)

Here, ‖ · ‖ ≡
√∫∞

−∞ (·)
2 dy, and σ and ξ are parameters determining the width of the

Gaussian and the distance between upper and lower extrema, respectively. We note that

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

27
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.270


354 Y. Hwang, J. Kim and H. Choi

a

2y

–10

–5

0

5

10

20 1

FIGURE 2. Profiles of the model parallel wake U0(y) for a= 1, 1.5, 3 (Λ=−1).
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FIGURE 3. Profiles of the normalized shape functions for base-flow modification U1(y)
(σ = 1 and ξ = 1): (a) varicose and (b) sinuous modifications.

these profiles are chosen from the control configurations in our previous studies (Kim
et al. 2004; Kim & Choi 2005; Park et al. 2006). For example, Kim et al. (2004)
and Kim & Choi (2005) considered a spanwise sinusoidal blowing and suction applied
at the upper and lower surfaces of a given bluff body. In particular, they introduced
two control strategies, one of which has no phase difference between the blowing and
suction profiles at the two slots (in-phase forcing) and the other has π (out-of-phase
forcing). A similar configuration was also considered in Park et al. (2006) in which
the control is implemented by small vertical tabs instead of the blowing and suction.
In the present study, we design the varicose modification to mimic the change of the
near-wake base flow by the in-phase forcing in Kim & Choi (2005), while the sinuous
modification is designed to describe the change by the out-of-phase forcing. The
profiles of U1(y) considered for varicose and sinuous modifications are respectively
presented in figures 3(a) and 3(b).
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We finally note that the base-flow profile described by (2.13) contains many control
parameters. Therefore, to minimize the number of parameters, some of them are
fixed throughout the entire paper. First, the parameter controlling the depth of the
unmodified base flow U0(y) is fixed as Λ = −1 so that the centreline velocity of
U0(y) becomes zero. We also fix σ = 1 and ξ = 1 for U1(y) from observations of the
near-wake base flows in one of the previous numerical experiments (Kim 2005; Kim &
Choi 2005).

2.3. Numerical methods
The dispersion relation of (2.12) is computed by formulating the transverse-velocity (v)
and vorticity (η) form (see also appendix A). In this case, the normal-mode solution is
given as follows:

v(x, y, z, t)= ei(αx+βz−ωt)
Nz/2∑

n=−Nz/2

ṽn(y)ei2π/λzz

︸ ︷︷ ︸
q̂v(y,z)

+ c.c, (2.16a)

η(x, y, z, t)= ei(αx+βz−ωt)
Nz/2∑

n=−Nz/2

η̃n(y)ein2π/λzz

︸ ︷︷ ︸
q̂η(y,z)

+ c.c, (2.16b)

where ṽn(y) and η̃n(y) are respectively the Fourier modes of the spanwise-periodic
variables q̂v(y, z) and q̂η(y, z), and Nz is the number of expansion coefficients.
For Nz →∞, the periodic nature of q̂v and q̂η in the spanwise direction implies
that the dispersion relation for β ∈ [−π/λz,π/λz) is identical to that for β ∈
[nπ/λz, (n+2)π/λz) (n is an integer). Introducing the spanwise wavenumber associated
with the monodromy operator (µ = eiβλz) enables us to map the dispersion relation in
the complex β-plane, which repeats with the period 2π/λz, onto the entire complex
µ-plane, resulting in a dispersion relation uniquely defined in the entire complex
µ-plane.

The normal-mode solution is computed by formulating a temporal eigenvalue
problem: ω is the eigenvalue for given complex α and µ. The transverse direction
is discretized using the standard Chebyshev-collocation method (Canuto et al. 1988).
The resulting discretized eigenvalue problems are then solved using Matlab. Most of
the computation in the present study is carried out with Ny × (Nz + 1) = 66 × 9. The
results for several cases have been checked with Ny × (Nz + 1) = 100 × 13, showing
no difference from those with the lower resolution. We note that the relatively small
number of grid points in the spanwise direction is due to the fact that the base flow
given by (2.13) contains only a single spanwise wave component. For details, see also
appendix C in which we examine the effect of the spanwise grid point Nz.

3. Results
3.1. The saddle points in complex wavenumber planes

To seek the applicability of the criterion (2.11) on the computed dispersion relation,
we first study the topology of the growth rate ωi in the complex µ-plane. Figure 4
shows ωi(α, µ) in the complex µ-plane for two sets of given parameters (the left and
right halves, respectively). For a given set of the parameters, two saddle points are
found in the complex µ-plane, and they are located at µ = ±1 respectively. Several
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FIGURE 4. Topology of ωi(α0, µ) in the complex µ-plane with varicose base-flow
modification (a = 1.5, A = 0.3, and Re = 50). The left and right halves of the contour are
respectively shown for λz = 10 (α0 = 0.893 − i0.559) and λz = 6 (α0 = 0.813 − i0.584).
The circle shown with a solid line indicates |µ| = 1; two saddle points appear at µ = 1
(fundamental mode) and µ=−1 (subharmonic mode), marked F and S respectively.

different sets of the parameters were also tested, but the choice of the parameters does
not change the location of the two saddle points in the complex µ-plane. Furthermore,
at least for the parameters tested, the saddle points in the complex µ-plane appear
only at these locations. The appearance of the two saddle points at µ = ±1 is an
interesting feature because they are respectively the so-called fundamental (µ= 1) and
subharmonic (µ = −1) modes in the temporal stability analysis using Floquet theory
(Herbert 1988; Reddy et al. 1998). However, given the fact that the governing system
does not have any spanwise advection biased by this base flow, this may not be so
surprising.

The location of the two saddle points in the complex µ-plane can be analytically
derived using the properties of the dispersion relation of the governing system. For
convenience, here we use the spanwise wavenumber β instead of µ for the dispersion
relation. As we discussed in § 2.3, the dispersion relation for β ∈ [−π/λz,π/λz) is
identical to that for β ∈ [nπ/λz, (n+ 2)π/λz), i.e.

ω(α, β)= ω(α, β + 2π/λz). (3.1a)
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FIGURE 5. Topology of ωi(α, µ0) in the complex α-plane with varicose base-flow
modification (a = 1.5, A = 0.3, and Re = 50): (a) λz = 6 (µ0 = 1, α0 = 0.813 − i0.584);
(b) λz = 10 (µ0 =−1, α0 = 0.893− i0.559).

The governing system (2.12) also exhibits even symmetry in the spanwise direction:
u(x, y, z, t) = u(x, y,−z, t), v(x, y, z, t) = v(x, y,−z, t), w(x, y, z, t) = −w(x, y,−z, t),
and p(x, y, z, t) = p(x, y,−z, t) (see also Schoppa & Hussain 2002). This leads to
the following property of the dispersion relation:

ω(α, β)= ω(α,−β). (3.1b)

Using (3.1a) and (3.1b), it is straightforward to show ∂ω/∂β|β=0 = ∂ω/∂β|β=π/λz = 0.
The equivalent relations in the complex µ-plane are given as

∂ω

∂µ

∣∣∣∣
µ=±1

= 0. (3.2)

This explains why the saddle points in the complex µ-plane appear at µ = ±1
independently of the choice of the parameters.

The appearance of saddle points at µ0 = ±1 in the complex µ-plane greatly
simplifies the search for the saddle point (2.11) defined in both the complex α- and
µ-planes. Since the spanwise absolute wavenumber is always given by either µ0 = 1
or µ0 =−1, one just needs to search for the saddle point only in the complex α-plane
by fixing µ0 at either one of them. Several methods for detecting the saddle point in
a complex plane are available, and, in the present study, we use the secant method
with the initial guess guided by the cusp-map procedure (Schmid & Henningson
2001). Figure 5 shows the topology of ωi(α, µ0) around a saddle point in the complex
α-plane with the given µ0. For both µ0 = ±1, a saddle point in the complex α-plane
is clearly found. Once the two absolute frequencies ω0 are found with µ0 = ±1, the
most unstable absolute mode is then determined by comparing their growth rates. In a
certain range of the parameters, the two absolute modes are found to strongly compete
with each other, and a detailed discussion on this issue is given in § 3.2.

3.2. The spanwise wavelength and amplitude of base-flow modifications
Using the procedure of finding the saddle points (2.11) given in the previous section,
the response of absolute instability to the spanwise waviness in the base flow is
tested for a number of different sets of the parameters. Figure 6(a) reports the
change of ω0,i with the spanwise wavelength and the amplitude of varicose base-flow
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FIGURE 6. Absolute growth rate ω0,i with respect to the spanwise wavelength and the
amplitude of the base-flow modification (a = 1.5 and Re = 50): (a) varicose and (b) sinuous
modifications. · · · · ··, A= 0; ——–, A= 0.1; - - - -, A= 0.2; – · – · –, A= 0.3; - ··- ·· -, A= 0.4.

modification. For small amplitudes, varicose base-flow modification attenuates absolute
instability in a wide range of relatively small λz(<10–15), while the instability
exhibits destabilization for large λz. As the amplitude A increases, the stabilizing effect
becomes more pronounced particularly at small λz(<6–8). However, the range of λz

attenuating absolute instability becomes narrower and the λz providing the maximum
stabilization also gradually becomes smaller. For large λz, the varicose modification
significantly destabilizes absolute instability with the increase of the amplitude A.
A similar tendency is also found for sinuous base-flow modification as shown in
figure 6(b). However, in this case, the amount of change in A is much smaller
than that in the case of varicose modification. Also, the λz yielding the maximum
stabilization is much smaller than that in varicose modification, and it changes very
little with the increase of A.

For varicose base-flow modification, the two absolute modes respectively from µ0 =
±1 are found to compete greatly with each other. Figure 7(a) shows a comparison
between absolute growth rates of the fundamental (µ0 = 1) and subharmonic
(µ0 = −1) modes. For short spanwise wavelengths (λz < 7), the fundamental mode
exhibits much larger growth rate than the subharmonic one. The subharmonic mode
experiences significant destabilization with the increase of λz, and it becomes more
unstable than the fundamental mode at λz ' 7. However, the difference between
the growth rates of the two modes quickly diminishes as the spanwise wavelength
increases. For sufficiently large λz(&10), the fundamental mode again becomes slightly
more unstable than the subharmonic one. As shown in figure 7(b), this tendency is
also found for all the amplitudes considered. In general, with the increase of the
amplitude A, the spanwise wavelength λz, at which the switch of the most unstable
mode appears (either from the fundamental to subharmonic or vice versa), becomes
gradually shorter (figure 7b). Finally, it should be emphasized that this competition
between the fundamental and subharmonic modes appears only for varicose base-flow
modification. In the case of sinuous modification, the most unstable mode is the
fundamental mode (µ0 = 1) for all the parameters tested in the present study.
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FIGURE 7. Competition between fundamental (µ0 = 1) and subharmonic (µ0 = −1) modes
in varicose base-flow modification (a= 1.5 and Re= 50). (a) Absolute growth rate ω0,i of the
fundamental (——–) and subharmonic (- - - -) modes with respect to the spanwise wavelength
for A = 0.3. (b) Absolute spanwise wavenumber µ0 of the most unstable mode with respect
to the spanwise wavelength and the amplitude: ——, A= 0.1; - - - -, A= 0.2; – · – · –, A= 0.3;
- ··- ·· -, A= 0.4.

3.3. Eigenfunctions
The spatial structures of eigenfunctions of absolute modes are visualized. In particular,
we focus on showing the transverse and spanwise velocity perturbations, that are
found to play an important role in the dynamics of vorticity perturbations (see § 4.2).
Figure 8 shows the transverse and spanwise velocity perturbations of the fundamental-
mode absolute instability (µ0 = 1) for varicose base-flow modification. For all the
λz considered, the transverse velocity perturbation of the absolute mode is relatively
intense near y = 0 (figure 8a,c,e). For the smallest λz (=2), the transverse velocity
perturbation is found to be intense near z = 0 where the base flow is faster than at
the other spanwise locations (figure 8a). On the other hand, the spanwise velocity
perturbation appears near the regions where both transverse and spanwise shear of the
base flow becomes largest (y = ±1, z ' ±λz/4) although it is fairly weak compared
to the transverse one (figure 8b). With the increase of λz (=6), the region showing
the largest transverse velocity perturbation spontaneously changes to z = ±λz/2 at
which the base flow is slower than at other spanwise locations (figure 8c). The
strength of the spanwise velocity perturbation relative to that of the transverse one also
becomes pronounced (figure 8d). For very large λz(=20) (figure 8e), the transverse
velocity perturbation near z = 0 is negligibly small and observed only near z = ±λz/2
(figure 8e). The strength of the spanwise velocity perturbation is seen to be a little
attenuated compared to that for λz = 6 (figure 8f ). We note that these features remain
essentially the same even at larger λz(=30).

The eigenfunction of the subharmonic-mode absolute instability (µ0 = −1) for
varicose base-flow modification is also shown in figure 9. Here, we only show
the eigenfunction for a value of λz at which the subharmonic mode becomes more
unstable than the fundamental mode. The spatial distribution of the transverse velocity
perturbation strength of the subharmonic mode is not very different from that of the
fundamental one. However, the spanwise velocity perturbation shows an important
difference: its spanwise extrema are located at z=±λz/2 where the base-flow velocity
is slower than at other spanwise locations.
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FIGURE 8. Cross-streamwise view of eigenfunctions of fundamental-mode absolute
instability (µ0 = 1) for varicose base-flow modification (a = 1.5, A = 0.3, and Re = 50):
(a,b) λz = 2, (c,d) λz = 6, and (e,f ) λz = 20. Here, (a,c,e) |v|/|v|max and (b,d,f ) |w|/|v|max.
The velocity of the base flow in the regions near z = 0 and z = ±λz/2 is respectively faster
and slower than its spanwise average.
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FIGURE 9. Cross-streamwise view of eigenfunction of subharmonic-mode absolute
instability (µ0 = −1) for varicose base-flow modification (a = 1.5, A = 0.3, Re = 50, and
λz = 10): (a) |v|/|v|max; (b) |w|/|v|max. The velocity of the base flow in the regions near z = 0
and z=±λz/2 is respectively faster and slower than its spanwise average.

Finally, the eigenfunction for sinuous base-flow modification is shown in figure 10.
Only the fundamental mode (µ0 = 1) is shown in this case, as it is more unstable than
the subharmonic one (see also § 3.2). Contrary to varicose modification, in this case,
the transverse velocity perturbation is fairly uniformly distributed along the spanwise
direction (figure 10a). The strength of the spanwise velocity perturbation relative to the
transverse one is also much weaker than that for varicose modification (figure 10b),
implying that the eigenfunction for the base flow with sinuous modification is not very
different from that for the unmodified one. This suggests that the sinuous modification
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FIGURE 10. Cross-streamwise view of eigenfunction of fundamental-mode absolute
instability (µ0 = 1) for sinuous base-flow modification (a = 1.5, A = 0.3, Re = 50, and
λz = 4): (a) |v|/|v|max; (b) |w|/|v|max. For y > 0, the velocity of the base flow in the regions
near z= 0 and z=±λz/2 is respectively faster and slower than its spanwise average.
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FIGURE 11. Effect of the shear-layer thickness parameter a on (a) the change of absolute
growth rate 1ω0,i by the base-flow modification and (b) the corresponding spanwise absolute
wavenumber µ0 for varicose modification (A = 0.2 and Re = 50): ——–, a = 1; - - - -, a = 2;
– · – · –, a= 3; - ··- ·· -, a= 4. In (b), for a= 4, µ0 = 1 for the given range of λz.

is much less effective than the varicose one in distorting the nature of two-dimensional
wake instability. This is also consistent with the behaviour of the growth rate shown in
figure 6.

3.4. Effect of shear-layer thickness of the base flow
The effect of the shear-layer thickness of the unmodified base flow U0(y) is also
studied for both varicose and sinuous base-flow modifications. To quantify the amount
of stabilization by the base-flow modification, we introduce the change of absolute
growth rate by the given base-flow modification:

1ω0,i = ω2D
0,i − ωmod

0,i , (3.3)

where ω2D
0,i and ωmod

0,i are absolute growth rates for the given unmodified base flow
U0(y) and the modified base flow U(y, z) respectively.

Figure 11(a) shows 1ω0,i with respect to the spanwise wavelength of varicose
base-flow modification for a few values of the shear-layer thickness parameter a of
the wake profile U0(y) (see (2.14). When the shear-layer thickness is large (i.e. small
a), varicose modification is quite effective in wide rages of λz. However, as the shear-
layer becomes thinner (i.e. large a), the stabilizing effect by varicose modification
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FIGURE 12. Effect of the shear-layer thickness parameter a on deviation of absolute growth
rate 1ω0,i for sinuous base-flow modification (A = 0.2 and Re = 50): ——–, a = 1; - - - -,
a= 2; – · – · –, a= 3; - ··- ·· -, a= 4. Here, µ0 = 1 for all the cases.

diminishes. For the thinnest shear-layer considered (a = 4), varicose modification only
slightly stabilizes absolute instability in a fairly short range of λz(<5). The shear-layer
thickness of the unmodified base flow is also found to affect the competition between
the fundamental and subharmonic modes. Figure 11(b) shows the spanwise absolute
wavenumber for the most unstable modes. As the shear layer becomes thinner, the
spanwise wavelengths at which the switch of the most unstable mode appears tend to
be longer. This suggests that the two modes may be competitive only for base flows
with relatively thick shear layers.

The change of absolute growth rate by base-flow modification is also reported
for the sinuous case. Figure 12 shows 1ω0,i versus the spanwise wavelength of a
sinuous modification for a few shear-layer thicknesses. As in varicose modification,
the shear-layer thickness significantly affects the stabilizing effect by sinuous base-flow
modification. With the decrease of the shear-layer thickness, the sinuous modification
becomes ineffective in stabilizing the flow. In particular, for a= 4, a range of spanwise
wavelengths which stabilizes the flow does not seem to exist.

The results from both figures 11 and 12 suggest that the stabilizing effect by
spanwise waviness in the base flow may diminish with the increase of shear-layer
thickness of the wake. In particular, for varicose base-flow modification the λz giving
the maximum stabilization becomes shorter with the decrease of the shear-layer
thickness, implying that the optimal λz for stabilization may be correlated with the
shear-layer thickness.

3.5. Effect of the Reynolds number
Finally, the effect of the Reynolds number is studied for both varicose and sinuous
base-flow modifications. Figure 13(a) shows the effect of the Reynolds number
on the change of absolute growth rate 1ω0,i for varicose base-flow modification.
For relatively small λz(<8), the stabilizing effect becomes slightly more prominent
with the increase of the Reynolds number. On the contrary, for large λz(>10), the
increase of the Reynolds number results in the decrease of 1ω0,i, implying that the
destabilizing effect by the base-flow modification becomes enhanced by the increase
of the Reynolds number. However, it is seen that the effect of the Reynolds number
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FIGURE 13. Effect of the Reynolds number on (a) deviation of absolute growth rate
1ω0,i and (b) the corresponding spanwise absolute wavenumber µ0 for varicose base-flow
modification (a = 1.5 and A = 0.2): ——–, Re = 50; - - - -, Re = 100; – · – · –, Re = 150;
- ··- ·· -, Re= 200.
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FIGURE 14. Effect of the Reynolds number on (a) deviation of absolute growth rate
1ω0,i and (b) the corresponding spanwise absolute wavenumber µ0 for sinuous base-flow
modification (a = 1.5 and A = 0.2): ——–, Re = 50; - - - -, Re = 100; – · – · –, Re = 150;
- ··- ·· -, Re= 200.

on the stabilization is not as critical as that of the shear-layer thickness. Furthermore,
as shown in figure 13(b), it rarely affects the competition dynamics between the
fundamental and subharmonic modes. For sinuous base-flow modification, the effect of
the Reynolds number is presented in figure 14. The increase of the Reynolds number
is seen to enhance the stabilizing effect by the base-flow modification at least for the
spanwise wavelengths considered (figure 14a). As in varicose base-flow modification,
the competition dynamics between the fundamental and subharmonic modes is found
to be hardly influenced by the Reynolds number (figure 14b).

4. Discussion
Thus far, we have shown how spanwise waviness in the base flow influences the

absolute instability in a two-dimensional wake. The most important finding in the
present study is probably that the spanwise wavy base-flow modifications attenuate
the absolute instability when they are introduced with a relevant range of waviness
(figure 6). In many three-dimensional controls, the spanwise wavy control inputs either
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by passive (Tombazis & Bearman 1997; Darekar & Sherwin 2001; Park et al. 2006)
or active (Kim et al. 2004; Kim & Choi 2005) means strongly affect the near-wake
region, leading to a non-negligible amount of modification of the near-wake base
flow. What the present finding implies is that such base-flow modification results in
stabilization of the near-wake absolute instabilities, which act as a wavemaker for
both linear and nonlinear global instabilities (Chomaz 2005; Giannetti & Luchini 2007;
Hwang & Choi 2008). The stabilized near-wake region is therefore likely to lead to
attenuation of wake global instabilities. This scenario, from the viewpoint of theory of
hydrodynamic stability, explains why many three-dimensional controls are successful
in regulating vortex shedding.

4.1. Comparison with laboratory and numerical experiments
In the present study, we have examined two types of base-flow modifications: varicose
and sinuous. The varicose modification models the cases in which the control input
leads to the spanwise wavy deformation of the given base flows without any phase
difference between its upper and lower parts. The relevant cases therefore include the
controls using a wavy trailing edge (Tombazis & Bearman 1997), a wavy stagnation
face (Darekar & Sherwin 2001), in-phase forcing of spanwise sinusoidal blowing and
suction (Kim et al. 2004; Kim & Choi 2005), and small tabs with a symmetric
configuration (Park et al. 2006). On the other hand, the sinuous modification mimics
the situation where the phase difference between the upper and lower parts of the
modified base flow is π. This case is comparable with the controls using out-of-phase
forcing of spanwise blowing and suction (Kim et al. 2004; Kim & Choi 2005) and a
staggered configuration of small tabs (Park et al. 2006).

It has been shown that the three-dimensional controls inducing varicose base-flow
modification are much more effective and efficient than those leading to sinuous
modification (Kim et al. 2004; Kim & Choi 2005; Park et al. 2006). In the present
study, varicose base-flow modification is found to much more effectively stabilize
absolute instability than the sinuous one, consistent with these previous observations.
Furthermore, the controls leading to varicose base-flow modification often result in
significant spanwise distortion of the vortical structures, while those inducing sinuous
modification show only little influence on them (Kim & Choi 2005). In particular,
for sufficiently large λz, the vortical structures from the controls yielding varicose
base-flow modification exhibit intense fluctuation of the wall-normal velocity at the
spanwise locations where the base (or mean) flow is slower than at the other spanwise
locations (e.g. the near-wake region behind the blowing location in Kim & Choi 2005).
These behaviours are also found in the structures of eigenfunction in the present linear
analysis (see figures 8 and 10), consistent with the previous observation.

The spanwise wavelengths providing stabilization of absolute instability are also
in good agreement with those stabilizing vortex shedding. Table 1 summarizes the
spanwise wavelength which have been found to most effectively stabilize vortex
shedding in previous laboratory and numerical experiments. We note that only the
cases resulting in varicose base-flow modification are presented due to the lack of
data for sinuous base-flow modification. Although the reported optimal spanwise
wavelength deviates a little depending on the geometry, control method, and the
Reynolds number, it firmly stays in the range of λz,opt ' D–6D. In the present study,
the varicose modification is found to stabilize absolute instability for λz ' 1–10 though
the range of the spanwise wavelength depends a little on the amplitude of modification
(see figure 6a). Since the length scale h defined in the present study is the half-width
of the wake, it would be reasonable to assume D ' 2h. This implies that the optimal
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Geometry Control method Re λz,opt References

Model vehicle Wavy trailing edge 40 000 3D–5D Tombazis &
Bearman (1997)

Rectangular cyl. Wavy stagnation face 40 000 3D–5D Bearman & Owen
(1998)

Square cyl. Wavy stagnation face 10–150 5D–6D Darekar & Sherwin
(2001)

Circular cyl. Blowing/suction 40–3900 4D–5D Kim & Choi (2005)
Model vehicle Small tabs 320–80 000 1.5D–2D Park et al. (2006)

TABLE 1. The spanwise wavelength most efficiently stabilizing vortex shedding in three-
dimensional controls. Here, Re = U∞D/ν, U∞ is the free-stream velocity, D is the
maximum height of the given bluff body.

spanwise wavelength reported in previous laboratory and numerical experiments would
be about λz ' 2–12, showing good agreement with the present linear analysis.

In spite of such good agreement, care should be taken in interpreting the present
results. First, although the base flow in the present study is chosen from a numerical
simulation result at low Reynolds numbers (Kim 2005), it is still a ‘minimal’
representation of real base flows modified by a spanwise-varying control input. For
example, describing the base flow with (2.13) may be reasonable if the input of
the designed three-dimensional control is purely sinusoidal and its amplitude is small
enough. However, in many cases, the control input is neither purely sinusoidal nor
very small. Therefore, the base flows in real cases are likely to be much more
complicated than that given by (2.13): for example, the spanwise uniformity of the
base flow could be deformed by the given control input, and the base flow may
contain multiple spanwise wave components. Therefore, real base flows obtained by
either numerical simulation or experiments should be studied by more precise analysis,
but this is beyond the scope of the present study.

Second, the present analysis is linear, thus it is strictly valid only for small
perturbations. This is particularly important for large λz, at which both the varicose
and sinuous base-flow modifications are found to destabilize absolute instability.
However, it is not clear whether such destabilization would enhance the strength
of the resulting vortex shedding. In fact, when three-dimensional control is applied
with sufficiently long spanwise wavelength, vortex shedding often exhibits multiple
frequencies interacting among themselves instead of the enhancement in its strength
(Darekar & Sherwin 2001; Kim & Choi 2005).

Finally, the present analysis assumes that the base flow is parallel, but it
is often strongly non-parallel in real cases. This difference may be important
particularly in interpreting the appearance of the subharmonic mode. We note that the
subharmonic mode appears only for sufficiently large amplitude of varicose base-flow
modification (see figure 7b) and that it is strongly damped for small amplitude of the
modification. This implies that, in real flows, the absolute instability associated with
the subharmonic mode would be only active in the near-wake region where the base
flow is strongly distorted by the given spanwise waviness, while it may be strongly
damped further downstream where the effect of the control input is expected to diffuse
out. As a result, the absolute growth rate of the subharmonic mode would experience
stronger non-parallelism along the streamwise direction than that of the fundamental
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mode. This suggests that the global instability from the subharmonic absolute mode
may be more stable than that from the fundamental mode.

4.2. Physical mechanism of stabilization
In this section, we discuss the physical mechanism of stabilization of the two-
dimensional wake instability by analyzing vortex dynamics. Taking the curl of (2.12)
gives the following equation for vorticity perturbations:

∂ωx

∂t
+ U

∂ωx

∂x
= ∂v
∂x

∂U

∂z
, (4.1a)

∂ωz

∂t
+ U

∂ωz

∂x
+ v ∂Ωz

∂y
+ w

∂Ωz

∂z
= ∂w

∂z
Ωz + ∂w

∂y

∂U

∂z
, (4.1b)

where ωx and ωz are respectively the streamwise and spanwise vorticity perturbations,
and Ωz = −dU/dy is the background spanwise vorticity given by the base flow. Here,
we note that all the terms associated with the transverse vorticity fluctuation are
neglected as the computed eigenfunctions exhibit negligibly small transverse vorticity
perturbation. The terms on the left-hand side of (4.1a) represent the advection of ωx

by the base flow, and the term on its right-hand side describes the tilting of ωz by
the spanwise base-flow shear. In (4.1b), the first two terms on the left-hand side are
the advection of ωz by the base flow, while the third and fourth terms respectively
represent the production of ωz by the transverse and spanwise base-flow shear. In
particular, the third term appears as a source term of the two-dimensional inflectional
instabilities. The two terms on the right-hand side of (4.1b) represent the stretching of
the base-flow vorticity and the tilting of ωx by the spanwise base-flow shear.

We first consider sufficiently large spanwise wavelength λz for base-flow
modification. Since ∂U/∂z ∼ 1/λz, this gives a negligibly small contribution to all
the terms involving the spanwise gradient of base flows: two vorticity tilting terms
respectively in (4.1a) and (4.1b), and the production term by spanwise base-flow shear
(the fourth term on the left-hand side of (4.1b)). In this case, the flow is found only
to be destabilized (figure 6), implying that these terms are likely to play a crucial
role in stabilizing absolute instability. Furthermore, as the shear layer becomes thinner
(i.e. the amplitude of ∂U/∂y becomes larger at the shear layer), the stabilizing effect
also diminishes (see figures 11 and 12). This suggests that the production term by
spanwise base-flow shear is not likely to be involved in stabilization either. From these
observations, the vortex dynamics associated with stabilization may be described by
the following equations:

Dωx

Dt
∼ ωzSxz, (4.2a)

Dωz

Dt
∼ ωxSxz, (4.2b)

where Sxz is the deformation-rate tensor originating from the spanwise shear of the
base flow.

To gain physical insight into the vortex dynamics described by (4.2), we consider
an evolution of a spanwise vortex tube as illustrated in figure 15. We set the spanwise
vortex tube such that ωz < 0 (the first vortex on the left in figure 15). Equation (4.2a)
suggests that the vortex tube is tilted downstream with generation of positive ωx in
the region where dU/dz (=Sxz) < 0. Similarly, in the region where dU/dz (=Sxz) > 0,
the vorticity vector is tilted upstream. This implies that the given spanwise vortex
gradually evolves into a 3-shaped vortex with a loop at the spanwise location where
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z

FIGURE 15. Evolution of a spanwise vortex obeying the dynamics described by (4.2). The
thickness of the vortex tube represents its strength.

the base flow is faster than its spanwise average. This explains the appearance of
the 3-shaped vortices observed in most previous experimental and numerical studies
(Darekar & Sherwin 2001; Kim et al. 2004; Kim & Choi 2005; Park et al. 2006), and
the location of its loop is consistent with these studies (see e.g. figure 2c in Kim &
Choi 2005). However, it should be pointed out that the dynamics of a single spanwise
vortex tube exhibits strengthening rather than attenuation with the generation of ωx: in
both regions dU/dz < 0 and dU/dz > 0, Dωz/Dt (=ωxSxz) < 0 for ωz < 0 (see (4.2b)).
Therefore, the appearance of 3-shaped vortices in itself does not explain the physical
mechanism of stabilization of the instability, the spatial structure of which constitutes
an array of counter-rotating spanwise vortices.

From these observations, the term ωxSxz in (4.2b), which probably acts differently
with the array of alternating 3-vortices from that with the single 3-vortex, turns out
to be the only term related to the physical mechanism of the stabilization. Importantly,
the eigenfunctions in the present analysis show that this term is strongly correlated
to the spanwise wavelength providing stabilization of absolute instability. In figure 16,
we visualize the intensity of the tilting term ωxSxz (=∂yw∂zU) for the fundamental
absolute mode. For λz = 2 and λz = 6, this tilting term has a very large value along
the centreline of the wake (figure 16a,b). In particular, the term for λz = 6, which
provides the maximum stabilization of absolute instability, is found even more intense
than that for λz = 2. On the contrary, for λz = 20, this term becomes very weak due to
the small spanwise shear in the base flow (figure 16c). This finding suggests that the
tilting of the streamwise vortices by spanwise shear is probably directly involved in
the attenuation of instability and/or vortex shedding.

Taking all these points together, the physical mechanism of stabilization constitutes
two key processes: (i) formation of streamwise vortices from tilting of the
two-dimensional spanwise Kármán vortices by spanwise base-flow shear (4.2a);
(ii) interaction of the array of counter-rotating spanwise vortices with tilting of the
streamwise vortices formed by the spanwise base-flow shear (4.2b). Since the present
analysis mainly relies on the long-time asymptotic response of the given linear system,
it is difficult to proceed further with analysis on transient vortex dynamics. However,
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FIGURE 16. Cross-streamwise view of |(∂w/∂y) (∂U/∂z)| normalized by |v|max for varicose
base-flow modification: (a) λz = 2; (b) λz = 6; (c) λz = 20.

it should be pointed out that the interaction among 3-shaped counter-rotating vortices
has been observed as an essential process for stabilization of vortex shedding. For
example, Kim & Choi (2005) and Park et al. (2006) observed that the controlled flow
field exhibits different oscillation phase depending on the spanwise location, which
is likely to be a consequence of the interaction among the counter-rotating 3-shaped
vortices.

4.3. Sensitivity of absolute instability to spanwise wavy base-flow modification

Three-dimensional controls have often been found to be much more efficient and
effective than two-dimensional ones in stabilizing wake instability and vortex shedding
(Kim et al. 2004; Kim & Choi 2005; Park et al. 2006). There are two possible origins
of this effectiveness and efficiency. First, the base (or mean) flow of a two-dimensional
wake might be very sensitively deformed by a small amount of control input, and
this subsequently results in such a very efficient stabilization of wake instability. The
second scenario is that the wake instability itself might be highly sensitive to spanwise-
periodic base-flow modification. We note that the present analysis, which studies linear
instability of the ‘prescribed’ base flow, enables us to examine the latter scenario. This
section is therefore aimed at examining whether modifying base flow with a given
spanwise periodicity yields highly sensitive change of absolute instability.

We first consider the normal-mode solution of (2.12) in the primitive variable
form: u(x, y, z) = q̂(y, z)ei(αx+βz−ωt), where u = [u v w p]T, and q̂ = [q̂u q̂v q̂w q̂p]T is a
z-periodic vector function. This gives the following eigenvalue problem leading to a
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dispersion relation of (2.12):

−iωH q̂=L2D

(
α,−i

∂

∂z
+ β;U0

)
q̂+ AL3D(α;1U)q̂, (4.3)

where the operators H , L2D and L3D are given in appendix B.
Now, we assume that the amplitude of the base-flow modification is small enough

(A � 1). In this case, the adjoint-based sensitivity analysis (e.g. Hwang & Choi
2006) provides a way to compute the leading-order variation of the complex absolute
frequency due to a small amount of base-flow modification. The complex absolute
frequency and the eigenmode of (4.3) are written using a regular asymptotic expansion
around the complex absolute frequency (ω2D

0 ) and the eigenmode (q2D
0 ) for two-

dimensional base flow U0:

ω0 = ω2D
0 + Aδω0 + O(A2), (4.4a)

q̂0 = q̂2D
0 (y)+ Aδq̂0(y, z)+ O(A2), (4.4b)

where δω0 and δq̂0(y) are the leading-order variations of the complex absolute
frequency and the eigenmode respectively. We introduce a standard inner product
〈f̂ , ĝ〉 ≡ (1/λz)

∫ λz
0

∫∞
−∞ f̂ HH ĝ dy dz where the superscript H indicates the complex-

conjugate transpose, and f̂ and ĝ are arbitrary vector functions defined in x and z
space. Then, the solvability condition gives the following leading-order variation of the
complex absolute frequency:

δω0 = 〈iL3D(α0;1U)q̂2D
0 , p̂

2D
0 〉

〈q̂2D
0 , p̂

2D
0 〉

, (4.5)

where p̂2D
0 is the adjoint absolute mode from the adjoint operator of L2D with respect

to the given inner product. We note that δω0 is not affected by the change of absolute
wavenumbers α0 and β0 due to the condition (2.10) (Hwang & Choi 2006).

It is interesting to observe that L3D(α0;1U) in (4.5) does not contain any spanwise-
uniform components (see also appendix B). This results in δω0 = 0, implying that
modifying the given base flow only sinusoidally along the spanwise direction does
not give any change in the absolute frequency ω0 at the leading order. In sharp
contrast, two-dimensional base-flow modification yields a leading-order change in the
absolute frequency (Hwang & Choi 2006). Consequently, the spanwise wavy base-flow
modification gives

1ω3D
0 ∼ O(A2), (4.6a)

while two-dimensional modification yields

1ω2D
0 ∼ O(A). (4.6b)

Here, 1ω3D
0 and 1ω2D

0 are the changes of absolute frequency, respectively, due to the
spanwise wavy and the two-dimensional modifications. We note that this analytical
result is seen throughout the present paper. For example, the change of absolute
growth rate due to a spanwise wavy base-flow modification is only O(A2) or less
(see figures 6 and 11–14), consistent with (4.6a). On the contrary, two-dimensional
modification exhibits O(A) changes in the absolute growth rate. To support these
analytical findings, in figure 17, we also compare the effect of a two-dimensional base-
flow modification with that of three-dimensional varicose modification by considering
the two-dimensional modification as U(y) = U0(y) + AU1(y), where U1(y) is the
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FIGURE 17. Comparison of change of the absolute growth rate 1ω0,i between
two-dimensional (U(y) = U0(y) + AU1(y)) and three-dimensional (U(y) = U0(y) +
AU1(y) cos(2π/λzy)) base-flow modifications (a= 1.5 and Re= 50): ——–, two-dimensional
modification; – – – – three-dimensional varicose modification with λz = 6; – · – · –, three-
dimensional varicose modification with λz = 20.

varicose modification defined in (2.15). It is seen that the two-dimensional base-flow
modification indeed yields a much larger change than the spanwise wavy modification
for small A and that the amount of change in the absolute growth rate is proportional
to O(A) consistent with (4.6b). Furthermore, the three-dimensional modification results
in 1ω3D

0 ∼ O(A2) for small A, consistent with (4.6a).
The finding in this section suggests that absolute instability of two-dimensional

wakes is much less sensitive to spanwise wavy base-flow modifications than to two-
dimensional modifications. This implies that the high effectiveness and efficiency of
several three-dimensional controls compared to the two-dimensional ones (Kim et al.
2004; Kim & Choi 2005; Park et al. 2006) is not due to the sensitive response of
wake instability itself to spanwise waviness of base flow, but to the sensitivity to the
modification of the base (or mean) flow by the given spanwise wavy control input.

5. Concluding remarks
In this paper, we have investigated the role of the spanwise-periodic base-flow

modification in the absolute instability of parallel wakes to understand the mechanism
by which three-dimensional controls stabilize vortex shedding in two-dimensional
bluff-body wakes. The main findings of the present study are summarized as follows.

(a) The spatio-temporal evolution of instabilities in streamwise-parallel and spanwise-
periodic base flows is studied by applying Floquet theory to a linearized
Navier–Stokes equation. The criterion for absolute instability of the given base
flow is analytically derived with a dispersion relation by extending the procedure
in Brevdo & Bridges (1996), and is numerically verified by searching for the
saddle points both in the complex streamwise plane and in the complex plane of
eigenvalues of the monodromy operator.

(b) Two types of spanwise-periodic base-flow modification are considered: varicose
and sinuous. The varicose base-flow modification is found to be much more
effective than the sinuous one, consistent with previous experimental and numerical
studies where the controls yielding the varicose modification are more effective
than those inducing the sinuous one. The optimal spanwise wavelengths of the
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varicose and sinuous modifications are about λz ' 6–10 and λz ' 2, respectively,
and the one for the varicose modification compares well with the spanwise
length of three-dimensional controls that provide the maximum stabilization of
vortex shedding. For both modifications, the optimal spanwise wavelengths slightly
depend on the amplitude of modification, and they are highly correlated to the
shear-layer thickness of the given base flow.

(c) The physical mechanism of stabilization is shown to involve two key processes:
(i) the formation of streamwise vortices from tilting of the two-dimensional
spanwise Kármán vortices by spanwise base-flow shear; (ii) the interaction of the
tilted Kármán vortex street with tilting of the streamwise vortices by the spanwise
base-flow shear. This finding is consistent with previous observations where the
interaction between bent Kármán vortices is shown to be an essential process for
stabilization of vortex shedding (e.g. Kim et al. 2004; Kim & Choi 2005; Park
et al. 2006).

(d) Finally, the sensitivity of the absolute instability to spanwise wavy base-flow
modification was studied. It is shown that the change of complex absolute
frequency due to spanwise wavy base-flow modification is proportional to the
square of the modification amplitude, whereas that due to two-dimensional base-
flow modification is found to be proportional to the modification amplitude itself.
This finding suggests that absolute instability in two-dimensional wakes is much
less sensitive to spanwise wavy base-flow modification than to two-dimensional
modification. This suggests that the high efficiency of several three-dimensional
controls (e.g. Kim et al. 2004; Kim & Choi 2005; Park et al. 2006) is probably
because the base (or mean) flow is highly distorted by the given control inputs.

The present study has shown the applicability of Floquet theory for understanding
spatio-temporal dynamics (absolute and convective nature) of instabilities in a
linearized Navier–Stokes system with spatially periodic base flows using a given
numerical eigenvalue solver. It is fortunate that the governing equation considered here
does not have any spanwise-biased base-flow advection, and this greatly simplifies the
searching process for the spanwise absolute wavenumber. However, it should also be
pointed out that this kind of linearized system is often encountered in many interesting
physical systems: for example, instability of streaks in wall-bounded flows (Waleffe
1995; Reddy et al. 1998; Schoppa & Hussain 2002; Brandt et al. 2003; Park, Hwang
& Cossu 2011). Therefore, the present analysis would provide a useful technical
framework for analysing the absolute and convective nature of the given instabilities in
a Navier–Stokes system.

Probably the most important finding in the present study is that the spanwise
waviness in the base flow of a two-dimensional wake results in stabilization of
absolute instability. Since the near-wake region, where the local base-flow profile
exhibits an absolutely unstable nature, has been understood as a wavemaker for
both linear and nonlinear global instabilities (Chomaz 2005; Giannetti & Luchini
2007; Hwang & Choi 2008; Marquet et al. 2008), the present study explains why
many three-dimensional controls stabilize two-dimensional vortex shedding. However,
it should be emphasized that absolute instability of the two-dimensional wake was
found not to be very sensitive to the spanwise waviness in the given base flow. This
therefore raises an important question for a future study: what is the mechanism of
such an effective base-flow modification by three-dimensional control inputs?

Although the present analysis is not capable of directly answering this question,
several recent studies suggest that there might be some effective base-flow
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modification mechanisms by spanwise wavy control inputs. First, the spanwise wavy
input may trigger a resonate response with the mode-A instability (Williamson 1996)
and this may significantly distort the base (or mean) flow. In fact, a similar mechanism
has been suggested by Darekar & Sherwin (2001), where they conjectured that the
optimal spanwise wavelength of vortex shedding suppression is associated with the
wavelength of the mode-A instability. However, it has remained not very clear why
such forcing of the mode-A instability induces suppression of vortex shedding rather
than destabilization. In the present study, we have shown that wake instability could
be suppressed when the base flow is highly modified with a given spanwise waviness.
Furthermore, the optimal spanwise wavelength providing the maximum suppression of
absolute instability is found to be not very far from the typical spanwise wavelength
of the mode-A instability (λz ' 4 ∼ 6D depending on the bluff-body geometry). This
suggests that when the control input leads to strong spanwise wavy distortion of the
base (or mean) flow through interaction with the mode-A instability, it would stabilize
wake instability instead of destabilizing. However, it is not clear whether such a
resonant interaction with the mode-A instability would also be active even at high
Reynolds numbers where the wake is completely turbulent (e.g. ReD > 1000), and we
should point out that many three-dimensional controls are also quite successful at high
Reynolds numbers.

It is, finally, interesting to note that several three-dimensional controls, which exhibit
fairly high efficiency, are often designed to directly inject a small amount of transverse
momentum: e.g. the spanwise blowing/suction (Kim et al. 2004; Kim & Choi 2005)
and small vertical tabs (Park et al. 2006). The large amount of base-flow modification,
required for highly efficient stabilization of vortex shedding, suggests that this injected
transverse momentum should experience a significant amount of amplification in a
separating shear layer while it is transformed into streamwise momentum. It is
interesting to note that this amplification process of the transverse momentum is
reminiscent of the so-called lift-up effect (Ellingsen & Palm 1975; Landahl 1980),
which describes amplification of the streaky structures of streamwise velocity from
streamwise vortical perturbations (particularly transverse velocity) under the mean
shear. The lift-up effect is often represented as a vortex tilting process,

Dωy

Dt
∼ ωx

∂U

∂y
, (5.1)

and it has been widely understood to play a key role in formation of the streaks
in bypass transition (Butler & Farrell 1992; Reddy & Henningson 1993; Schmid &
Henningson 2001) and fully-developed turbulent flows (Butler & Farrell 1993; del
Álamo & Jiménez 2006; Pujals et al. 2009; Hwang & Cossu 2010a,b). However,
in wall-bounded flows, the strong amplification of the streaky motions via this
mechanism is often observed at relatively high Reynolds numbers. Therefore, the
relevance of this mechanism at low Reynolds numbers remains an open question as
many three-dimensional controls are also often efficient in this case.
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Appendix A. Transformation of the linearized Navier–Stokes operator for
application of Floquet theory

We consider a Navier–Stokes equation linearized around a streamwise-parallel and
spanwise-periodic base flow. We neglect the transverse and spanwise components in
the base flow, resulting in (U(y, z), 0, 0) where U(y, z) = U(y, z + λz) and λz is the
spanwise period. We note that this assumption does not greatly limit the present
analysis as the transverse and spanwise components of the base (or mean) flow
induced by three-dimensional control are much smaller than the streamwise component
(Kim 2005; Kim & Choi 2005). The linearized equations of motion are then written as
follows:

∂u

∂x
+ ∂v
∂y
+ ∂w

∂z
= 0, (A 1a)

∂u

∂t
+ U

∂u

∂x
+ v ∂U

∂y
+ w

∂U

∂z
=−∂p

∂x
+ 1

Re
∇2u, (A 1b)

∂v

∂t
+ U

∂v

∂x
=−∂p

∂y
+ 1

Re
∇2v, (A 1c)

∂w

∂t
+ U

∂w

∂x
=−∂p

∂z
+ 1

Re
∇2w, (A 1d)

where u, v, and w are respectively the streamwise, transverse and spanwise velocity
perturbations, and p is the pressure perturbation.

Here, we show that these linearized Navier–Stokes equations (A 1) can be
transformed to the form of (2.1). It is convenient to consider the transverse velocity (v)
and transverse vorticity (η) form of (A 1) (Waleffe 1995; Reddy et al. 1998; Schmid &
Henningson 2001):(

∂

∂t
+ U

∂

∂x

)
∇2v + ∂

2U

∂z2

∂v

∂x
+ 2

∂U

∂z

∂2v

∂x∂z

− ∂
2U

∂y2

∂v

∂x
− 2

∂U

∂z

∂2w

∂x∂y
− 2

∂2U

∂y∂z

∂w

∂x
= 1

Re
∇4v, (A 2a)

∂η

∂t
+ U

∂η

∂x
− ∂U

∂z

∂v

∂y
+ v ∂

2U

∂y∂z
+ ∂U

∂y

∂v

∂z
+ w

∂2U

∂z2
= 1

Re
∇2η, (A 2b)

∂2w

∂x∂x
+ ∂2w

∂z∂z
=−∂η

∂x
− ∂2v

∂y∂z
. (A 2c)

Now, we introduce a state variable ψ as follows:

ψ(x, y, z, t)= [v v′ v′′ v′′′ η η′ w w′]T, (A 3a)

where

v′ ≡ ∂v
∂z
, v′′ ≡ ∂v

′

∂z
, v′′′ ≡ ∂v

′′

∂z
, w′ ≡ ∂w

∂z
, η′ ≡ ∂η

∂z
. (A 3b)
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Rewriting (A 2) in terms of ψ gives (2.1) with the following definitions of M and L :

M ≡



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

−Re

(
∂2

∂x2
+ ∂2

∂y2

)
0 −Re 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 −Re 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, (A 4a)

L

(
y, z;−i

∂

∂x

)
≡



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
Lvv Lvv′ Lvv′′ 0 0 0 Lvw 0
0 0 0 0 0 1 0 0
Lηv Lη

v′ 0 0 Lηη 0 Lηw 0
0 0 0 0 0 0 0 1

0 − ∂
∂y

0 0 − ∂
∂x

0 − ∂
2

∂x2
0


, (A 4b)

where

Lvv ≡ Re

[
U
∂

∂x

(
∂2

∂x2
+ ∂2

∂y2

)
+ ∂

2U

∂z2

∂

∂x
− ∂

2U

∂y2

∂

∂x

]
−
[
∂4

∂y4
− 2

∂4

∂x2∂y2
+ ∂4

∂x4

]
,

(A 4c)

Lvv′ ≡ 2Re
∂U

∂z

∂

∂x
, (A 4d)

Lvv′′ ≡
[

ReU
∂

∂x
− 2

(
∂2

∂x2
+ ∂2

∂y2

)]
, (A 4e)

Lvw ≡ Re

[
−2
∂U

∂z

∂2

∂x∂y
− 2

∂2U

∂y∂z

∂

∂x

]
, (A 4f )

Lηv ≡ Re

[
∂2U

∂y∂z
− ∂U

∂y

∂

∂y

]
, (A 4g)

Lη
v′ ≡ Re

∂U

∂y
, (A 4h)

Lηη ≡ ReU
∂

∂x
−
(
∂2

∂x2
+ ∂2

∂y2

)
, (A 4i)

Lηw ≡ Re
∂2U

∂z2
. (A 4j)

Here, we note that both M and L do not contain any ∂/∂z for ψ , consistent with the
derivation of the criterion of absolute instability in § 2.1.
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Appendix B. Operators for the sensitivity analysis to spanwise wavy base-flow
modification

In this section, we derive the operators used in the sensitivity analysis of complex
absolute frequency ω0 to spanwise wavy base-flow modification (§ 4.3). We first
write the base flow (2.13) as U(y, z) = U0(y) + A1U(y, z). Then, the linearized
Navier–Stokes equation (2.12) is rewritten by splitting it into its counterpart of the
two-dimensional base flow U0 and the rest of the term corresponding to modification
of the linearized operator by A1U(y, z):

H
∂u
∂t
=L2Du+ AL3Du, (B 1a)

where

H ≡


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 , (B 1b)

L2D

(
−i
∂

∂x
,−i

∂

∂z
;U0

)

≡



−U0
∂

∂x
+ 1

Re
∇2 −∂U0

∂y
0 − ∂

∂x

0 −U0
∂

∂x
+ 1

Re
∇2 0 − ∂

∂y

0 0 −U0
∂

∂x
+ 1

Re
∇2 − ∂

∂z
∂

∂x

∂

∂y

∂

∂z
0


, (B 1c)

L3D

(
−i
∂

∂x
;1U

)
≡


−1U

∂

∂x
−∂1U

∂y
−∂1U

∂z
0

0 −1U
∂

∂x
0 0

0 0 −1U
∂

∂x
−0

0 0 0 0

 . (B 1d)

Here, u= [u v w p]T and ∇2 = ∂2/∂x2+∂2/∂y2+∂2/∂z2. We now consider the normal-
mode solution of (B 1): u(x, y, z) = q̂(y, z)ei(αx+βz−ωt). It is then straightforward to
obtain (4.3) in which the operators L2D and L3D are obtained by substituting −i∂/∂x
and −i∂/∂z in (B 1) respectively with α and −i∂/∂z+ β:

L2D

(
−i
∂

∂x
,−i

∂

∂z
;U0

)
→L2D(α,−i

∂

∂z
+ β;U0), (B 2a)

L3D

(
−i
∂

∂x
;1U

)
→L3D(α;1U). (B 2b)

We note that when 1U = U1(y) cos(2πz/λz) as in (2.13), L3D does not contain a
spanwise-uniform component.
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FIGURE 18. Effect of the number of spanwise grid points Nz on the absolute growth rate for
varicose base-flow modification (Re= 50 and a= 1.5).

Appendix C. Convergence with the number of spanwise grid points
The number of spanwise grid points Nz is tested to save the computational cost.

Figure 18 shows the effect of the spanwise grid points Nz for the largest base-flow
modification amplitude A = 0.4 considered. If the number of spanwise grid points is
too small, there is a relatively large deviation of the absolute growth rate from the
converged one for large λz. However, the absolute growth rate tends to very rapidly
converge on increasing Nz, and the converged results are obtained with only Nz = 6.
We note that this behaviour is probably because the base flow contains only a single
Fourier mode: for example, even if we consider only a single Fourier mode in (2.16)
for the calculation (i.e. Ny × (Nz + 1)= 65× 3), the results are not very different from
the converged ones. We finally note that, in the case of the sinuous base modification,
the convergence is obtained with only Nz = 2.
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