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Abstract. A numerical method for a nonlinear system is presented. Formulation
of the electromagnetic behavior of the shielding current density in high-Tc super-
conductors (HTS) gives a system of time-dependent integro-differential equations.
The behavior can be determined by solving the initial-boundary-value problem
of the system using the element-free Galerkin (EFG) method and the complete
implicit difference method. After discretizing the problem, we obtain a nonlinear
equation. In the present study, the shielding current density in HTS is calculated by
applying the deaccelerated Newton method (DNM) and adaptively deaccelerated
Newton method (ADNM) for the solution of the nonlinear system. The results of
computation show that the DNM does not give a convergent solution in some cases.
On the other hand, the ADNM gives a convergent solution in a few iterations.

1. Introduction
Recently, applications of high-Tc superconductors (HTSs) such as magnetic lev-
itation and magnetic shielding have received a great deal of attention in various
engineering fields. Evaluation of the shielding current density in a HTS is essential
in analyses of its dynamic electromagnetic force and magnetic shielding. Formula-
tion of the electromagnetic behavior of the shielding current density in HTSs gives a
system of time-dependent integro-differential equations. The behavior can be easily
determined by solving the initial-boundary-value problem of the system using
the element-free Galerkin (EFG) method [1] and the complete implicit difference
method. After discretizing the problem, we obtain a nonlinear equation. Since the
equation is nonlinear, the Newton method is adopted for the solution. However, the
Newton method does not give a convergent solution.
The purpose of the present study is to introduce a new method for the nonlinear

system. Moreover, the new methods are applied to the solution of the shielding
current density in the HTS.
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2. Shielding current analysis in HTSs
Let us explain the governing equation of shielding current density in HTSs. First,
we assume that the shape of the target HTS is disk-type, and the area of the
circular cross-section is constant along the thickness direction. Thus, we can treat
the problem as axisymmetric. Furthermore, the HTS is placed in a homogeneous
AC magnetic field B whose direction is parallel to the thickness direction.
By taking the crystallographic anisotropy of the melt-powder-melt-growth pro-

cessed YBCO HTS into account, we apply the multiple-thin-layer approximation
[2]. Let us use the cylindrical coordinate (r, θ, z) by taking the symmetry axis of
the HTS as the z-direction throughout this paper. Under these assumptions, there
exists a scalar function Sp(r, t) for the pth layer such that the shielding current
density in this layer, jp, satisfies the following equation:

jp =
1
ε

∇Sp × ez. (2.1)

In addition, the flux-flow and flux-creep models for J − E constitutive relation
are adopted [3]. The behavior of shielding current density of axisymmetric HTS
can be express as the initial-boundary-value problem. By applying the backward
Euler method to the initial-boundary-value problem, the system is discretized with
respect to time, and we discretize the problem with respect to space by using the
EFG method [1, 4]. In this way, we can discretize the initial-boundary-problem
and the following nonlinear system is derived:

G(s,λ) ≡
[
W B
BT O

] [
s
λ

]
+ ∆t

[
e(s)
0

]
−

[
u
0

]
= 0, (2.2)

where the nodal vectors s, e(s) and λ correspond to the scalar function Sm
p , the

electric field E and the Lagrange multiplier λ, respectively. Here, superscript m
indicates the number of time steps and ∆t denotes the time step. The nodal vector
u is evaluated from the values of the scalar function Sm−1

p . Moreover, the matrixW
is calculated from the shape functions of the EFG and the integration kernel; the
matrixB is calculated from the shape functions of the EFG as well [4]. The behavior
of shielding current density in HTS is determined by solving the nonlinear system
(2.2). Throughout the present paper, values of parameters are fixed as follows:
B0 = 1.1 T and f = 7 Hz, where B0 denotes the magnitude of B and f denotes the
frequency of B.

3. Adaptively deaccelerated Newton method
As we discussed above, the behavior of shielding current density in HTS is de-
termined by solving the nonlinear system (2.2). Since the equation is nonlinear,
the Newton method is adopted for the solution. However, the Newton method does
not give a convergent solution. Therefore, we adopt another two methods for the
nonlinear system.
Let us first introduce the deaccelerated Newton method (DNM). In the DNM, the

solution of the nonlinear system is determined by using following two procedures.
• step 1. The linear system J(sn−1)δs = −G(sn−1) is solved to determine a δs.
• step 2. The approximate solution is corrected by sn = sn−1 + γδs.
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Figure 1. The residual histories of the DNM and the ADNM. Here, the nonlinear system is
solved at time t = 1/(2f). The inset is an enlarged plot for the same case: A, ADNM, B,
γ = 0.8; C, γ = 0.4; D, γ = 0.2.

Here, the superscript n denotes an iteration number of DNM and γ is a relaxation
factor whose range is 0 < γ � 1. J(s) denotes the Jacobian matrix of G(s). The
above two steps are iterated until the series {sn} converges.
Next, let us introduce the adaptively deaccelerated Newton method (ADNM).

The ADNM is prepared by modifying step 2 in the DNM [5].
• step 2a. The minimum non-negative integer m, which satisfies ||G(sn−1) +

βmδs|| < ||G(sn−1)||, is determined.
• step 2b. The relaxation factor γ is evaluated by γ = βm and subsequently, the

approximate solution is corrected by sn = sn−1 + γδs.
Here, β is a constant which satisfies 0 < β � 1.
The above two methods are adopted in the solution of the nonlinear system (2.2).

4. Convergence properties
Let us first investigate the convergence properties of the DNM and the ADNM. In
Fig. 1, we show the residual norm R = ||G(s)|| histories of the DNM and ADNM
as functions of the iteration number. The terminate condition is fixed as 10−10.
We see from this figure that the residual norm of DNM decreases, monotonously
to around 10−5 and falls into a limit cycle in both cases. As is apparent from the
inset in Fig. 1, the residual norm of DNM moves only several fixed values. By
the same token, the solution of the nonlinear system also moves only several fixed
approximate solutions. We refer to this fixed approximate solution as equilibrium
points. A similar tendency occurs when the conventional finite-element method
(FEM) is adopted as the method of the simulation code. This figure also indicates
that the residual of ADNM does not have an equilibrium point. The residual norm
decreases rapidly and terminates in a few iterations.
Next, we investigate how the distribution of the equilibrium points will change

with an increase in the relaxation factor γ. In Fig. 2, we show the equilibrium
points of the DNM as a function of the relaxation factor. We see from Fig. 2 that a
decrease in the relaxation factor will not always decrease the number of equilibrium
points.
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Figure 2. Equilibrium points of the DNM as a function of the relaxation factor γ. Here, the
nonlinear system is solved at time t = 1/(2f).

5. Conclusion
In the present study, we have introduced DNM and ADNM, and the two methods
were adopted for the nonlinear system obtained from the shielding current analysis
of HTS.
Our conclusions can be summarized as follows.
• The residual norm of DNM decreases monotonously to around 10−5 and falls

into a limit cycle in both cases. That is to say, the solution of the nonlinear system
moves only several equilibrium points.

• A decrease in the relaxation factor will not always decrease the number of
equilibrium points.

• The residual of ADNM decreases rapidly and terminates in a few iterations.
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