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Abstract

Motivated by considerations of the quadratic orthogonal bisectional curvature, we address the question of
when a weighted graph (with possibly negative weights) has nonnegative Dirichlet energy.
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To motivate a question about the nonnegativity of the Dirichlet energy of a weighted
graph, we first discuss some background on curvatures and flows on complex
manifolds.

DEFINITION 1. Let (Mn,ω) be a Hermitian manifold. The quadratic orthogonal
bisectional curvature (from now on, QOBC) is the function

QOBCω : FM × Rn\{0} → R, QOBCω : (ϑ, v) �→ 1
|v|2ω

n∑

α,γ=1

Rααγγ(vα − vγ)2,

where the Rααγγ denote the components of the Chern connection of ω with respect to
the unitary frame ϑ (a section of the unitary frame bundle FM).

This curvature first appeared implicitly in [1] and is the Weitzenböck curvature
operator (in the sense of [12, 13, 14]) acting on real (1, 1)-forms. (See [3] for alternative
descriptions of the QOBC.) From [9], the QOBC is strictly weaker than the orthogonal
bisectional curvature HBC⊥ω (the restriction of the holomorphic bisectional curvature
HBCω to pairs of orthogonal (1, 0)-tangent vectors). From [8], the Kähler–Ricci
flow on a compact Kähler manifold with HBC⊥ω ≥ 0 converges to a Kähler metric
HBCω ≥ 0. Hence, Mok’s extension [10] of the solution of the Frankel conjecture
[11, 16] shows that all compact Kähler manifolds with HBC⊥ω ≥ 0 are biholomorphic
to a product of Hermitian symmetric spaces (of rank ≥ 2) and projective spaces.
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In particular, although HBC⊥ω is an algebraically weaker curvature notion than HBCω,
the positivity of HBC⊥ω does not generate new examples.

Wu et al. [17] showed that if (M,ω) is a compact Kähler manifold with QOBCω ≥ 0,
then every non-Kähler class on the boundary of the Kähler cone affords a semi-positive
representative (which is certainly not true in general; see [7]). Further, Chau and Tam
[4] showed that all harmonic (1, 1)-forms are parallel on compact Kähler manifolds
with QOBCω ≥ 0.

In [2], I showed that the real bisectional curvature of Yang and Zheng [18] was best
understood as a Rayleigh quotient. Continuing this program, we find that the QOBC is
best understood as the Dirichlet energy of a certain weighted graph. In particular, we
realise the difference of the Hodge and metric Laplacians, acting on (1, 1)-forms, as
the Dirichlet energy of a weighted graph.

To analyse the QOBC, we recall the following definition. Let G be a finite weighted
graph, with vertices V(G) = {x1, . . . , xn}, and weighting specified by its adjacency
matrix A ∈ Rn×n. The Dirichlet energy for a weighted graph is defined by

E( f ) :=
n∑

i,j=1

Aij( f (xi) − f (xj))2,

where f : V(G)→ R is a function defined on the vertices of G.
To understand when the QOBC is nonnegative, we can ask the following (equally

natural) question.

QUESTION 2. Given a finite weighted graph (G, A), where A ∈ Rn×n is a real matrix,
what conditions on A are necessary or sufficient for the inequality E( f ) ≥ 0 to hold for
all f : V(G)→ R?

The main theorem of this note gives an answer to this problem. To this end, let us
recall some terminology arising from distance geometry.

DEFINITION 3. Let A = (Aij) ∈ Rn×n be a real symmetric matrix. We say that A is
a Euclidean distance matrix if there is a vector x = (x1, . . . , xn) ∈ Rn such that Aij =

(xi − xj)2 for each i, j = 1, . . . , n.

The set of all n × n Euclidean distance matrices (EDMs) forms a convex cone
that we denote by EDMn. Recall that the Frobenius inner product of two matrices
A, B ∈ Rn×n is defined by

(A, B)F := tr(ABt).

This dual pairing allows us to define the dual EDM cone (EDMn)∗.

DEFINITION 4. The dual EDM cone (EDMn)∗ is given by

(EDMn)∗ := {A ∈ Rn×n : (A, B)F ≥ 0 for all B ∈ EDMn}.

THEOREM 5. Let (G, A) be a weighted finite graph. Then the Dirichlet energy E is
nonnegative if and only if A lies in the dual EDM cone.

https://doi.org/10.1017/S0004972721001015 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972721001015


[3] The Dirichlet energy of a weighted graph 303

PROOF. If V(G) = {x1, . . . , xn} is the vertex set of some graph, then we may construct
a Euclidean distance matrix B( f ) from a graph function f : V(G)→ R by setting
B( f )ij = ( f (xi) − f (xj))2. In particular, since

tr(AB( f )) =
n∑

i,j=1

AijB( f )ij =

n∑

i,j=1

Aij( f (xi) − f (xj))2,

we see that the Dirichlet energy E of a weighted graph (G, A) is nonnegative if and
only if tr(AB) ≥ 0 for all Euclidean distance matrices B ∈ EDMn. �

It is natural to ask what is the relation (if any) between the EDM cone (and its dual)
and the PSDn cone, that is, the cone of (symmetric) positive semi-definite matrices.
Dattorro [5] has shown that

EDM
n = Sn

H ∩ ((Sn
C)⊥ − PSDn) ⊂ Rn×n

≥0 .

Here, Sn
H denotes the space of symmetric n × n hollow matrices, that is, symmetric

matrices with no nonzero entries on the diagonal, and Sn
C denotes the geometric

centring subspace

S
n
C := {A ∈ Sn : Ae = 0},

where e = (1, . . . , 1)t. It is more natural to refer to Sn
C as the annihilator of e =

(1, . . . , 1)t ∈ Rn. The orthogonal complement of Sn
C is then

(Sn
C)⊥ = {uet + eut : u ∈ Rn}.

In particular, standard properties of cones (see [6, page 434]) give the next proposition.

PROPOSITION 6. Let (G, A) be a weighted finite graph. The Dirichlet energy E is
nonnegative if and only if A lies in

(EDMn)∗ = Dn − Sn
C ∩ PSD

n,

where Dn is the cone of diagonal matrices.

REMARK 7. As discussed in [3], let us introduce the nonstandard terminology of
Perron weights. The well-known Schoenberg criterion [15] states that a symmetric
hollow matrix Σ is a Euclidean distance matrix if and only if it is negative semi-definite
on the hyperplane H = {x ∈ R : xte = 0}, where e = (1, . . . , 1)t. The Perron–Frobenius
theorem asserts that the largest eigenvalue (the Perron root) of the EDM Σ is positive
and occurs with eigenvector in the nonnegative orthant Rn

≥0. Therefore, if δ1 ≥ δ2 ≥
· · · ≥ δn denote the eigenvalues of a nontrivial Euclidean distance matrix Σ (that is, a
Euclidean distance matrix with δ1 > 0), then δ1 > 0 and δ2, . . . , δn ≤ 0.

DEFINITION 8. The Perron weights r2, . . . , rn of an n × n Euclidean distance matrix Σ,
with eigenvalues δ1 ≥ δ2 ≥ · · · ≥ δn, are the ratios rk := −δk/δ1.

With this terminology in mind, appealing to the eigenvalue characterisation of the
dual EDM cone given in [3] yields the following corollary.
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COROLLARY 9. Let A ∈ Rn×n be a real symmetric matrix with eigenvalues λ1 ≥ λ2 ≥
· · · ≥ λn. Then A ∈ (EDMn)∗ if and only if, for every Euclidean distance matrix Σ, the
Perron weights r2, . . . , rk of Σ satisfy

λ1 ≥
n∑

k=1

rkλk.

REMARK 10. Let us note that the Perron weights of a Euclidean distance matrix always
satisfy 0 ≤ r2 ≤ r3 ≤ · · · ≤ rn ≤ 1.
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