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Abstract. A Birkhoff billiard is a system describing the inertial motion of a point mass
inside a strictly convex planar domain, with elastic reflections at the boundary. The study
of the associated dynamics is profoundly intertwined with the geometric properties of
the domain: while it is evident how the shape determines the dynamics, a more subtle
and difficult question is the extent to which the knowledge of the dynamics allows one to
reconstruct the shape of the domain. This translates into many intriguing inverse problems
and unanswered rigidity questions, which have been the focus of very active research
in recent decades. In this paper we describe some of these questions, along with their
connection to other problems in analysis and geometry, with particular emphasis on recent
results obtained by the authors and their collaborators.
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1. Introduction
In this paper we would like to describe some recent results obtained by the authors and
their collaborators in the study of spectral and dynamical properties of the so-called
mathematical billiards. More specifically, a major thread running through them relies on
the attempt to understand the nature and the significance of important rigidity phenomena
appearing in the study of billiard dynamics, which translate into important problems at the
crossroads of dynamical systems, analysisand geometry.

A mathematical billiard is a dynamical model describing the motion of a billiard ball
inside a domain � ⊂ R2 with piecewise smooth boundary. The massless ball moves with
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unit velocity and without friction following a rectilinear path. If the ball hits the boundary
at a point of non-differentiability (a sort of ‘hole’), then the motion stops; otherwise, when
it hits the boundary, it reflects elastically according to the standard reflection law: the angle
of reflection is equal to the angle of incidence.

Billiards have been capturing the attention of researchers in various areas of math-
ematics. Despite their simple dynamical law, their qualitative dynamical properties are
extremely non-local and profoundly intertwined with the geometry (e.g., the shape) of
the domain. While it is clear how the shape of the domain completely determines the
billiard dynamics, a more subtle and intriguing question is the extent to which dynamical
information can be used to reconstruct the shape of the billiard domain.

In the following we will be interested in a special class of billiards, consisting of
strictly convex planar domains with smooth boundary; these billiards will henceforth
be called Birkhoff billiards. More specifically, we would like to address this question in
several different contexts, where it translates into unanswered questions and enthralling
conjectures that have been the focus of very active research in recent decades.
(A) Can a billiard be recovered from its length spectrum (that is the set of lengths of its

periodic orbits)?. In other words, can one hear the shape of a billiard? This question,
in fact, turns out to be tightly related to the classical spectral problem, can one hear
the shape of a drum?, as formulated in a very suggestive way by Kac [57]. See §3.

(B) Which billiards admit integrable dynamics? This is related to the celebrated Birkhoff
conjecture. More generally, what information on the geometry of the billiard domain
can be deduced from the existence of invariant curves for the corresponding billiard
map (e.g., caustics) or from their properties? See §4.

(C) Do action-minimizing properties of the billiard map (related to the so-called
Aubry–Mather theory) encode any information on the billiard domain and its
dynamical properties? See §5.

2. The billiard map
Let us first recall the definition of the billiard map and its main properties. We refer to
[87, 94, 95] for a more comprehensive introduction to the study of billiards.

Let � be a strictly convex compact domain in R2 with Cr boundary ∂�, r ≥ 3 (by strict
convexity of �, we mean that the curvature of ∂� is strictly positive at every point). The
phase space M of the billiard map consists of unit vectors (x, v) whose foot points x are on
∂� and which have inward directions. The billiard ball map B� : M −→ M takes (x, v) to
(x′, v′), where x′ represents the point where the trajectory starting at x with velocity v hits
the boundary ∂� again, and v′ is the reflected velocity, according to the standard reflection
law: the angle of incidence is equal to the angle of reflection (Figure 1).

Remark 2.1.
(i) The dynamical properties of billiards are strongly related to the geometric properties

of its shape. Besides the study of Birkhoff billiards, very active areas of research
focus on the study of polygonal billiards, in particular rational billiards, whose
dynamics can be related to geodesic flows on translation surfaces and Teichmüller
theory (see, for example, [34]) or billiards with concave boundary (so-called
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FIGURE 1. Example of billiard dynamics inside a planar domain.

dispersive billiards) of particular interest as models in statistical mechanics and
mathematical physics (see [88]).

(ii) More generally, one could consider a Riemannian manifold with smooth boundary
(M , ∂M , g): the trajectory starting at x ∈ ∂M with (inward) unit velocity v will
follow the corresponding geodesic: either the geodesic remains in M for all positive
times, or when it hits the boundary at x′ ∈ ∂M , it will ‘reflect’ with a new inward
velocity v′ determined in the following way: the normal component of the hitting
velocity instantaneously changes sign, while the tangential one stays unchanged.
Observe that in the Euclidean planar case, this gives exactly the standard reflection
law that we have described above.

(iii) Observe that if � is not convex, then the billiard map is not continuous.
(iv) As pointed out by Halpern [47], if the boundary is not at least C3 (actually, it is

enough for it to be C2 with bounded third derivative), then strange phenomena can
occur; for example, there might be orbits with infinitely many bounces, but of finite
total length (since we are considering unit velocities, this could be interpreted as a
sort of incompleteness of the billiard flow, namely the velocity becomes tangent to
the boundary in finite time/length).

Let us introduce coordinates on M . We suppose that ∂� is parametrized by arc length
s and let γ : R/�Z −→ R2 denote such a parametrization, where � denotes the length
of ∂�. Without loss of generality, fix an orientation of γ . Let ϕ be the angle between v

and the positive tangent to ∂� at x. Hence, M can be identified with the annulus A� =
R/�Z × (0, π) and the billiard map B� can be described as

B� : A� −→ A�

(s, ϕ) �−→ (s′, ϕ′).

Here are some properties of the billiard map.
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• B� ∈ Cr−1(A�) (see, for example, [59, Theorem 4.1]). Moreover, B� can be continu-
ously extended to A� = R/�Z × [0, π ] by fixing B�(s, 0) = (s, 0) and B�(s, π) =
(s, π) for all s ∈ R/�Z.

• B� is a symplectic map, that is, it preserves the exact symplectic form ω =
sin ϕ dϕ ∧ ds = −d(cos ϕ ds) =: −dα, namely B∗

�ω = ω, where B∗
� denotes the

pull-back (observe that the form ω becomes degenerate on ∂A�); see, for example, [95,
Theorem 3.1].

Moreover, B� is an exact symplectic map, that is, B∗
�α − α = dh is an exact

1-form; the corresponding generating function is given by

h(s, s′) := −‖γ (s) − γ (s′)‖,

which is minus the Euclidean distance between two points on ∂�. It is easy to check
that {

∂1h(s, s′) = cos ϕ,
∂2h(s, s′) = − cos ϕ′, (1)

where ∂i denotes the derivative with respect to the ith variable (i = 1, 2).
• If we lift B� to the universal cover of A� and introduce new coordinates (x, y) =

(s, − cos ϕ) ∈ R × (−1, 1), then the billiard map becomes a monotone twist map
with h as generating function and preserves the area form dx ∧ dy. See §5 and
[87, 94, 95] for more details.

Remark 2.2. It follows from (1) that {(si , ϕi)}i∈Z is an orbit of B� if and only if {si}i∈Z is
a ‘critical configuration’ for the action functional

{si}i∈Z �−→
∑
i∈Z

h(si , si+1),

in the usual sense of statistical mechanics and ϕi = arccos ∂1h(si , si+1); in fact, while this
latter sum is infinite, its derivatives are well defined:

∂

∂sn

( ∑
i∈Z

h(si , si+1)

)
= ∂1h(sn, sn+1) + ∂2h(sn−1, sn).

These critical configurations are not necessarily (global) minima. One could be won-
dering whether (global) minima exist and if they have special dynamical features. More
specifically, orbits that are global minimizers of the action functional, that is, every
finite segment minimizes the action functional among all configurations with the same
number of elements and the same end-points. This is the content of the so-called
Aubry–Mather theory (see §5 for more details). Observe that in the billiard case, since
the generating function (and hence the action) is given by minus the Euclidean length,
action minimization can be rephrased in terms of length maximization.

3. Periodic orbits and marked length spectrum: can you hear the shape of a billiard?
Periodic orbits and their properties are among the first dynamical features of billiards to
have been investigated. One of the first results in the theory of billiards, for example, can
be considered to be Birkhoff’s application of Poincaré’s last geometric theorem to show
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the existence of infinitely many distinct periodic orbits [18]. Since then, new phenomena
have been pointed out and many interesting questions have been raised.

How do we distinguish distinct periodic orbits? One could try to classify them in terms
of their period, that is, the minimal number of times that the ball reflects before going
back to the initial position in the initial direction. However, while in some cases this
quantity allows one to distinguish different periodic orbits, in many cases it is not sufficient
anymore: periodic orbits with the same periods may wind a different number of times
before closing; this will clearly translate into a different topological shape.

A better invariant that one should consider is the so-called rotation number. The rotation
number of a periodic billiard trajectory (respectively, a closed broken geodesic) is a rational
number

p

q
= winding number

number of reflections
∈ (

0, 1
2

]
,

where the winding number p ≥ 1 is defined as follows (see also [87, Definition 3.1.2]).
Fix the positive orientation of ∂� and pick any reflection point of the closed geodesic on

∂�; then follow the trajectory and count how many times it goes around ∂� in the positive
direction until it comes back to the starting point. Notice that inverting the direction of
motion for every periodic billiard trajectory of rotation number p/q ∈ (0, 1/2], we obtain
a trajectory with rotation number (q − p)/q ∈ [1/2, 1).

In [18], Birkhoff proved that for every p/q ∈ (0, 1/2] in lowest terms, there are at least
two closed orbits of rotation number p/q: one maximizing the total length and the other
obtained by min-max methods (see also [87, Theorem 1.2.4]). This result is clearly optimal:
in the case of a billiard in an ellipse (see §4.2), there are only two periodic orbits of period
2, also called diameters, which correspond to the two semiaxes of the ellipse. However,
it is easy to find cases in which there are more than two periodic orbits for any given
rotation number: think, for example, of a billiard in a disk where, due to the existence
of a one-dimensional group of symmetries (rotations), each periodic orbit generates a
one-dimensional family of similar ones; for example, all diameters are periodic orbits with
period 2 (see §4.1).

Remark 3.1. A famous conjecture by Ivrii [56] states that in every billiard with infinitely
smooth boundary in a Euclidean space of any dimension the set of periodic orbits has
measure zero. As was shown by Ivrii [56], this implies the famous Weyl conjecture on
the second-term asymptotics of the spectrum of the Laplacian. An interesting historical
survey of both conjectures with references can be found in [38]. The conjecture is still open,
although very interesting results towards its proof have been provided in [8, 82, 92, 99, 100]
(for triangular orbits) and [37, 38] (for quadrilateral orbits); see also the results in [35].

3.1. Laplace spectrum and length spectrum. We define the length spectrum of � as the
set

L� := N+ · {lengths of periodic orbits in �} ∪ N+ · �(∂�),

where �(∂�) denotes the length of the boundary, that is, the set of multiples of the lengths
of all periodic orbits and multiples of the perimeter of �.
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A remarkable relation exists between the length spectrum of a billiard in a convex
domain � and the spectrum of the Laplace operator in � with Dirichlet boundary
condition: {


f + λ2f = 0 in �,
f |∂� = 0.

From the physical point of view, the eigenvalues are the eigenfrequencies of the membrane
� with a fixed boundary. Denote by Spec
(�) = {0 < λ1 ≤ λ2 ≤ · · · } the Laplace
spectrum of eigenvalues solving this problem.

The famous question of M. Kac in its original version asks if one can recover the domain
from the Laplace spectrum. For general manifolds there are counterexamples (see [39]).

Anderson and Melrose [2] proved the following relation between the Laplace spectrum
and the length spectrum (see also [44, 76, 83]).

THEOREM 3.2. (Anderson and Melrose) Let � ⊂ R2 be a strictly convex compact domain
with smooth boundary and let L� denote its length spectrum. Then, the wave trace

w(t) := Re
( ∑

λn∈Spec
(�)

eiλnt

)

is well defined as a distribution and smooth away from the length spectrum:

sing.supp.(w(t)) ⊆ ±L� ∪ {0}. (2)

That is, if ξ > 0 belongs to the singular support of this distribution, then there exists either
a closed billiard trajectory of length ξ , or a closed geodesic of length ξ in the boundary of
the billiard table. Generically, equality holds in (2).

Remark 3.3.
(i) We have stated the above theorem in the case of convex planar domains (that is the

setting in which we are interested). However, the above inclusion also holds for more
general classes of domains, for example for non-convex C∞ domains in arbitrary
dimension (see [76, Theorem 5.4.6]).

(ii) An easy example to convince the reader of this relation is the following. Consider
� = (0, π) × (0, π); then, it is easy to check that its Laplace spectrum is given by

Spec(�) = {
√

n2 + m2 : (n, m) ∈ N × N \ {(0, 0)}}
which corresponds to the lengths of periodic orbits in �.

(iii) Observe that there are no known examples of domains in which the singular support
of the wave trace is strictly included inside the length spectrum: the equivalence
between these sets is strictly related to the problem whether Laplace spectral rigidity
implies length spectral rigidity. A very interesting result in this direction has recently
been provided in [49], where the authors prove that ellipses of sufficiently small
eccentricities are Laplace spectrally unique (up to isometry) among all smooth
domains (without any assumption on symmetry, convexity, or closeness to other
ellipses). A key result in their proof involves showing that for nearly circular
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domains, the lengths of periodic orbits of rotation number 1/q are contained in
the singular support of the wave trace [49, Theorem 1.4].

3.2. Laplace spectral rigidity. Given a class M of domains and a domain � ∈ M, we
say that � is spectrally determined in M if it is the unique element (modulo isometries)
of M with its Laplace spectrum: if �, �′ ∈ M are isospectral, that is, Spec
(�′) =
Spec
(�), then �′ is the image of � by an isometry (that is a composition of translations
and rotations).

Kac’s question can be thus formulated as follows, assuming we have fixed a class of
domains M: is every � ∈ M spectrally determined?

If M is the space of all planar domains, the answer is well known to be negative (see, for
example, [39], which generalizes some results previously obtained for compact manifolds
without boundary; see also [93, 98]). Remarkably, Sunada (see [93]) exhibits isospectral
sets (that is sets of isospectral manifolds) of arbitrarily large cardinality. However, all
known examples of domains that are not spectrally determined are not convex; moreover,
they are bounded by curves that are only piecewise analytic (e.g. plane domains with
corners). On the other hand, Zelditch proved in [101] that the inverse spectral problem has
a positive answer when M is a generic class of analytic Z2-symmetric convex domains
(that is symmetric with respect to reflection about a given axis). More recently, as we
have already mentioned, Hezari and Zelditch [49] (see also [50]) proved that ellipses of
sufficiently small eccentricities are Laplace spectrally unique (up to isometry) among all
smooth domains (without any assumption on symmetry, convexity, or closeness to other
ellipses).

The problem for non-analytic domains is substantially more challenging. In the C∞
category, Osgood, Phillips and Sarnak [72–74] showed that isospectral sets of surfaces
are necessarily compact in the C∞ topology. Sarnak (see [85]) also conjectured that an
isospectral set of surfaces consists of isolated domains. In other words, in dimension 2,
C∞-close to a C∞ domain there should be no isospectral domains, except those that can
be obtained by an isometry.

A weaker version of this conjecture can be stated as follows. A domain � is said to be
spectrally rigid in M if any C1-smooth one-parameter isospectral family (�τ )|τ |≤1 ⊂ M
with �0 = � is necessarily an isometric family. We can then ask: are all C∞ domains
spectrally rigid?

The problem of spectral rigidity is in principle much simpler than the inverse spectral
problem; yet it turns out to be extremely challenging. Hezari and Zelditch (see [48])
provided a result in the affirmative direction. Let �0 be bounded by an ellipse E . Then
any one-parameter isospectral C∞-deformation (�τ )|τ |≤1 which additionally preserves
the Z2 × Z2 symmetry group of the ellipse is necessarily flat (that is all derivatives have
to vanish for τ = 0) (results of this kind are usually referred to as infinitesimal spectral
rigidity). Popov and Topalov [78] recently extended these results (see also [79]).

Further historical remarks on the inverse spectral problem can also be found in [48] and
in the surveys [102, 103].

In the case of Riemannian manifolds, we mention that Guillemin and Kazhdan [43]
showed that any negatively curved surface is spectrally rigid among negatively curved

https://doi.org/10.1017/etds.2021.37 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.37


1030 V. Kaloshin and A. Sorrentino

surfaces. This result was later extended to compact manifolds of negative curvature
in [26].

3.3. Length spectral rigidity. The relation between the Laplace spectrum and the length
spectrum, immediately raises the following question: does the knowledge of the lengths of
periodic orbits determine the shape of the billiard domain?

In [30], the following dynamical problem corresponding to spectral rigidity was
investigated: we say that a domain �0 ∈ M is dynamically spectrally rigid in M
if any C1-smooth one-parameter dynamically isospectral family (�τ )|τ |≤1 ⊂ M is
necessarily an isometric family. More specifically, the authors proved the following
theorem.

THEOREM 3.4. (De Simoi, Kaloshin and Wei [30]) Let M be the set of strictly convex
domains with sufficiently (finitely) smooth boundary and axial symmetry and that are
sufficiently close to a circle. Then � ∈ M is dynamically spectrally rigid in M.

Remark 3.5. Let us point out that the above-mentioned results are concerned with spectral
rigidity for smooth domains. Some results in the analytic category, but for non-Birkhoff
billiards, are contained in:
• [29], where under suitable symmetry and genericity assumptions, it is proved that

the marked length spectrum determines the geometry of billiard tables obtained by
removing from the plane finitely many strictly convex analytic obstacles satisfying the
so-called non-eclipse condition;

• [24], where the dynamical spectral rigidity for piecewise analytic Bunimovich stadia
and squash-type stadia is established.

Remark 3.6. In the context of polygonal billiards, a positive answer to a related inverse
problem was studied in [32], in which the authors provide a complete characterization of
the relationship between the shape of a Euclidean polygon and the symbolic dynamics of
its billiard flow. In particular, they consider the so-called bounce spectrum, namely, the set
of all bounce sequences (sequences of letters from a given alphabet that identifies the sides
of the polygon) that can occur along billiard trajectories; as a result, they prove that the
only pairs of tables that can have the same bounce spectrum are right-angled tables that
differ by an affine map.

3.4. Some ideas on the proof of deformational spectral rigidity (Theorem 3.4). Here
we introduce the key elements of the proof of Theorem 3.4. Let (�τ )|τ |≤1 ⊂ M be a
isospectral family of domains.

The first step is to establish the existence of a countable family of maximal periodic
orbits given by q-gons for all q ≥ 2.

LEMMA 3.7. (See [30, Lemma 4.3]) Let � ∈ M. For any q ≥ 2, there exists a periodic
orbit of rotation number 1/q passing through the marked point of ∂� and having maximal
length among other periodic orbits passing through the marked point. We call such an
orbit a marked symmetric maximal periodic orbit and denote it by Sq(�).
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Let Sq = (sk
q , ϕk

q)
q−1
k=0 be the maximal symmetric periodic orbit. Associate to Sq and a

continuous function ν : T → R a linear functional

��,q(ν) =
q−1∑
k=0

ν(sk
q ) sin ϕk

q .

Given a parametrization γ of a family (�τ )|τ |≤1 in M, we define the infinitesimal
deformation function:

nγ (τ , ξ) = 〈∂τ γ (τ , ξ), Nτ (τ , ξ)〉,
where 〈·, ·〉 is the usual scalar product in R2 and Nτ (τ , ξ) is the outgoing unit normal
vector to ∂�τ at the point γ (τ , ξ). Observe that nγ is continuous in τ and nγ (τ , ·) is
smooth for any |τ | ≤ 1. By the normalization condition of (�τ )|τ |≤1, we conclude that
nγ (τ , ·) is an even function, that is, nγ (τ , ξ) = nγ (τ , −ξ), and nγ (τ , 0) = 0 for any
|τ | ≤ 1. Naturally the space of perturbations can be identified with the space of smooth
even functions on the circle denoted Csym.

PROPOSITION 3.8. (See [30, Proposition 4.6]) Let (�τ )|τ |≤1 be an isospectral family.
Then for any |τ | ≤ 1, q ≥ 2, and having fixed arbitrarily S̄

q
τ a maximal marked symmetric

periodic orbit for �τ , we have
��τ ,q(n(τ , ·)) = 0.

For any domain � (parametrized by the length s) with radius of curvature ρ, we define
the linear functional

��,0(ν) :=
∫ 1

0

ν(s)

ρ(s)
ds.

As shown in [30, (4.3)], if (�τ )|τ |≤1 is an isospectral family, then for any |τ | ≤ 1 we have
��,0(n(τ , ·)) = 0.

Define the following key notion. Call the linearized isospectral operator T� : Csym →
RN:

T�ν = (��,0(n(τ , ·)), ��,1(n(τ , ·)), . . . ��,q(n(τ , ·)), . . .).

In fact, T� has range in �∞, by definition of the functionals ��,q , since by [7, Lemma 8]
there exists some C > 0 so that for any q ≥ 2 we have sin ϕk

q ≤ (C/q).
The linearized isospectral operator bears a strong analogy with the X-transform (see

[41, §2.2]).

THEOREM 3.9. [30, Theorem 4.9] In the space of sufficiently smooth axis symmetric
domains there is a neighborhood of the circular domain such that the operator T� :
Csym → �∞ is injective.

This theorem implies the rigidity theorem above. In the case of the domain �0 being
the circle, the linearized isospectral operator T�0 is easy to compute. For j ≥ 1 and q ≥ 2.

�q(ej ) = δq|j ,

where δq|j = 1 is j is divisible by q and zero otherwise. For the circle T�0 is clearly
injective. In [30, Lemma B.1] we compute a perturbative expression for ��,q(ej ) when
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a domain � is close to the circle. In a proper sense perturbation of T�0 is also
injective.

3.5. Related prior results. The problem of isospectral deformations of manifolds with-
out boundary was considered in some early works on variations of the spectral functions
and wave invariants.

Let (M , g) be a compact boundaryless Riemannian manifold. A family (gτ )|τ |≤1 of
Riemannian metrics on M depending smoothly on the parameter |τ | ≤ 1 is called a
deformation of the metric g if g0 = g. A deformation is called trivial if there exists
a one-parameter family of diffeomorphisms ϕτ : M → M such that ϕ0 = id, and gτ =
(ϕτ )

∗ g0. For each homotopy class of closed curves in M , consider the infimum of
g-lengths of curves belonging to the given homotopy class. The length spectrum L(M , g)

is defined as the union of these lengths over all homotopy classes. The inverse spectral
problem in this setting is to show that two metrics with the same length spectrum are
isometric.

Likewise, a deformation (gτ )|τ |≤1 is said to be isospectral if L(M , gτ ) = L(M , g).
We say that a Riemannian manifold (M , g) is length spectrally rigid if it does not admit
non-trivial isospectral deformations.

It is worth mentioning that there is a partial solution of the inverse spectral problem due
independently to Croke [25] and Otal [75] which can be stated as follows: any negatively
curved manifold is uniquely determined by its marked length spectrum (see §3.6 for the
corresponding billiard problem) (The marked length spectrum in the case of negatively
curved surfaces without boundary consists of the set of pairs of free homotopy classes and
length of the shortest geodesic in that homotopy class.)

Recently, Guillamou and Lefeuvre [41] proved that in all dimensions, the marked length
spectrum of a Riemannian manifold (M , g) with Anosov geodesic flow and non-positive
curvature locally determines the metric in the sense that two close enough metrics with the
same marked length spectrum are isometric.

Remark 3.10. Observe that the inverse (length) spectral problem makes sense only under
additional assumptions on (M , g), such as no conjugate points or non-positive (respec-
tively, negative) curvature. Otherwise the union of the closed geodesics (minimizing in
their homotopy class) may not be dense in M so that one can arbitrarily increase the metric
outside this set without changing the length spectrum. More specifically, one can modify
a Riemannian manifold by strongly increasing an arbitrary metric in a ball around a given
point (see, for example, [17, Figure 1]); as a consequence, minimal (in the universal cover)
geodesics are not dense on the manifold and therefore the union of maximal geodesics
cannot determine the geometric of a manifold (they cannot determine this ‘big bump’).
Compare also with Remark 3.11.

Another example of deformational spectral rigidity appears in De la Llave, Marco and
Moriyón [28]. Recall that one can associate to a symplectic map a generating function.
Then, for each periodic orbit, one can define the corresponding action by summing the
generating function along the orbit. This value of the action is invariant under symplectic
coordinate changes. The union of the values of all these actions over all periodic orbits
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is called the action spectrum of the symplectic map. In [28, Theorem 1.3], it is proved
that there are no non-trivial deformations of exact symplectic mappings Bτ , τ ∈ [−1, 1],
leaving the action spectrum fixed, when Bτ are Anosov’s mappings on a symplectic
manifold. One of the reasons for symplectic rigidity in [28] is that all periodic points
of Bτ are hyperbolic and form a dense set.

3.6. Marked length spectral rigidity. One of the difficulties in working with the length
spectrum is that all of this information on the periodic orbits comes in a non-formatted
form. For example, we lose track of the rotation numbers corresponding to each length. A
way to overcome this difficulty is to ‘organize’ this set of information more systematically,
for instance, by labeling each length with corresponding rotation number. This new set is
called the marked length spectrum of � and is denoted by ML�:

ML� := {(length(γ ), rot(γ )) : γ periodic orbit of the billiard in �},

where rot(γ ) denotes the rotation number of γ .
One could also reduce this set of information by not considering the lengths of all orbits,

but selecting some of them. More precisely, for each rotation number p/q in lowest terms,
one could consider the maximal length among those having rotation number p/q. We call
this map the maximal marked length spectrum of �, namely MLmax

� : Q ∩ [0, 1/2] → R,
given by

MLmax
� (p/q) = max{lengths of periodic orbits with rotation number p/q}. (3)

Marked spectral Rigidity Question. Let �1 and �2 be two strictly convex planar domains
with smooth boundaries and assume that they are isospectral, that is, ML�1 ≡ ML�2 . Is
it true that �1 and �2 are isometric? Similarly, one could ask whether this same question
has an affirmative answer by asking only that MLmax

�1
≡ MLmax

�2
.

Remark 3.11.
(i) The above question could be reformulated—and remains meaningful and

interesting—by asking that the two domains are only isospectral near the
boundary, that is, MLmax

�1
(p/q) = MLmax

�2
(p/q) for all p/q ∈ Q ∩ [0, ε), for

some 0 < ε ≤ 1/2.
(ii) In this regard, it is interesting to notice that, according to Lazutkin’s result [61],

there does not exist a billiard table � (strictly convex and with a sufficiently smooth
boundary ∂�) with a non-empty open subset of the boundary U ⊂ ∂� such that
no maximal orbit hits U (in contrast to the Riemannian situation; see Remark 3.10).
On the other hand, for every ε > 0 there exist a table � and an open subset of the
boundary U ⊂ ∂�, such that no maximal orbit of rotation number larger than ε

hits U . In fact, given ε > 0, one can suitably deform a convex curve containing a
point x0 with curvature 0 to a (strictly convex) billiard. Since there are no maximal
orbits through x0 (see [68, Formula (4)]), one obtains examples analogous to the
Riemannian case (Remark 3.10), but only for rotation numbers greater than ε > 0.
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See §5 for a reformulation of this question in terms of what is known as Mather’s mini-
mal average action (or β-function) and for some partial answers to the marked length rigid-
ity question related to the proof of the perturbative Birkhoff conjecture (see Corollary 5.9).

4. Caustics: existence and integrability of the billiard map
In this section we would like to recall the concept of a caustic of a billiard and discuss its
relations with invariant curves for the billiard map. Let us introduce the concepts of caustic
and integrability by means of two examples; the definition of caustic will be given in §4.3.

4.1. Example 1: circular billiards. The easiest example of a billiard is given by a billiard
in a disc D (e.g. of radius R). It is easy to check in this case that the angle of reflection
remains constant at each reflection (see also [95, Ch. 2]). If we denote by s the arc-length
parameter (that is s ∈ R/2πRZ) and by ϕ ∈ (0, π/2] the angle of reflection, then the
billiard map has a very simple form (see Figure 2):

f (s, ϕ) = (s + 2R ϕ, ϕ).

In particular, ϕ stays constant along the orbit and represents an integral of motion for the
map; hence, the property of the orbit is determined by the corresponding angle ϕ = πω,
with ω ∈ (0, 1).
• If ω = (p/q) ∈ (0, 1/2] ∩ Q, in lowest terms, then the orbit is periodic with minimal

period q. In particular, it closes after q rebounces and it winds p times around the disc
before closing.

• If ω ∈ (0, 1/2] \ Q, then the orbit is not periodic and it hits the boundary ∂D on a
dense set of points (by Kronecker’s theorem).

Moreover, this billiard enjoys the peculiar property that all orbits with ϕ = πω are
tangent to the same concentric circle of radius R cos πω (see Figure 2); this concentric
circle is an example of caustics (see Definition 4.3) and it is related to the existence of
a homotopically non-trivial invariant curve for the corresponding billiard map, namely,
Cω = R/2πRZ × {πω} (this relation between caustics and invariant curves is more subtle;
see Remark 4.5). Observe that the whole phase space of the circular billiard map (which
is topologically a cylinder) is completely foliated by these Cω and, looking at the billiard
table, this is completely foliated by caustics (this foliation is a singular foliation, due to
the special role of the center of the disc): in this regard, circular billiards are example of
integrable billiards (see Figure 3).

4.2. Example 2: elliptic billiards. As a second example, let us consider the billiard
inside an ellipse

E =
{
(x, y) :

x2

a2 + y2

b2 = 1
}

with 0 < b ≤ a.
Optical properties of conics (an alternative way to consider the billiard ball motion

inside a conic) were already well known to ancient Greeks. We refer to [95] for a more
detailed discussion (see also [87]). In particular, each trajectory which does not pass
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FIGURE 2. Billiard in a disc.

(a) (b)

FIGURE 3. Circular billiard. (a) Phase space of the circular billiard map. (b) Foliation of the circular billiard table
by caustics.

through a focal point is always tangent to precisely one confocal conic section. More
specifically, billiard trajectories can be classified in the following way:
(a) trajectories that always intersect the open segment between the two foci,
(b) trajectories that never intersect the closed segment between the two foci, and
(c) trajectories that alternatively pass through one of the two foci.

In particular, each trajectory in (a) is tangent to a confocal hyperbola, each trajectory
in (b) is tangent to a confocal ellipse, while trajectories in (c) tend asymptotically to the
major semiaxis (which corresponds to a hyperbolic orbit of period 2). Confocal ellipses are
therefore examples of caustics and they foliate everything but the closed segment between
the two foci (see Figure 4). Hence, this could also be considered as an example of an
integrable billiard. Observe that hyperbolae can also be considered examples of caustics,
although, differently from concentric circles or confocal ellipses, they are not connected,
closed or convex; see §4.3 for a more precise discussion.
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(a) (b)

FIGURE 4. Elliptic billiard. (a) Phase space of an elliptic billiard map. (b) Dynamics inside an elliptic billiard
and caustics.

Analytic descriptions of the dynamics and the integral of motion are not as easy as in
the circular case, yet they can be done by means of elliptic functions and elliptic integrals;
we refer the reader to [23, 96] for more details.

4.3. Caustics. Let us introduce the concept of convex caustic and its relation to invariant
curves for the billiard map. (Caustic comes from the Greek word καυστικός (kaustikós),
meaning ‘burning’; this terminology is related to optics and refers to the envelope of
reflected or refracted rays of light, that is, the concentration of lights that can potentially
lead to burns.) We refer to [46] for a more detailed (and extended) presentation of these
topics. We also discuss some results and questions about their existence.

Let us start by recalling the definition of invariant circle for a billiard map.

Definition 4.1. We say that a curve γ ⊂ M is an invariant circle for the billiard map B�

(we recall that M denotes the phase space of the billiard map), if γ is isotopic to a boundary
component of M and B�(γ ) = γ .

Remark 4.2.
(i) Observe that both boundary components of M are trivial invariant circles. It follows

from Birkhoff’s theorem that invariant circles must be Lipschitz graphs (see [19] and
also [87, Theorem 1.3.3]).

(ii) Clearly, a billiard map may possess invariant curves that are not invariant circles: see,
for example, the billiard map in an ellipse (see §4.2) and its homotopically trivial
(disconnected) invariant curves, corresponding to orbits intersecting the segment
between foci).

In the spirit of what we have seen in the examples of circular and elliptic billiards (see
§§4.1 and 4.2), let us give the following definition.

Definition 4.3. A C1 simple closed curve � in the interior of � is called a convex caustic
for the billiard map B�, if γ bounds a convex set D� and any supporting line to D�

remains a supporting line to D� after the billiard reflection in �. In other words, every
time a trajectory is tangent to �, it remains tangent after every each reflection (Figure 5).
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PA

B

FIGURE 5. Caustic and Lazutkin invariant (from [87, Figure 3.6], used with kind permission).

FIGURE 6. Examples of non-convex caustics in billiards of constant width (from [60, Figure 6], used with kind
permission).

In our discussion, we will focus on convex caustics; however, one could consider a more
general notion of caustic that does not require the properties of bounding a convex region,
of being closed (see, for example, confocal hyperbolas for elliptic billiards in §4.2), or of
being necessarily C1. Since this will not be the object of our investigation, we refer to the
discussion in [4, 46, 60]. See Figure 6 for some examples.

Remark 4.4. An interesting example of billiard maps with invariant circles are billiards
whose boundary is a curve of constant width, that is, a curve that bounds a convex planar
region whose width (defined as the perpendicular distance between two distinct parallel
lines each having at least one point in common with the region’s boundary but none with
its interior) is the same regardless of the orientation of the curve (to construct such curves,
see, for example, [60, §4] and [95, Exercise 3.13]). The corresponding billiard map has an
invariant circle consisting of 2-periodic orbits. These curves correspond to caustics that,
in general, may have cusps; see [60, §4 and Figure 6]. Billiard tables (other than ellipses)
with a one-parameter family of 3-periodic trajectories have been constructed by Innami
in [54].

Remark 4.5. One could wonder about the relation between caustics for the billiard in �

and invariant circles for the corresponding billiard map B�. One can show that to a convex
caustic in � (not necessarily C1) there corresponds an invariant circle for the billiard map.
However, caustics corresponding to an arbitrary invariant circle may have a complicated
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structure and may not in general be convex or differentiable; we refer to [4, 46, 60] for
more details.

Remark 4.6.
(i) Observe that every convex caustic has a well-defined rotation number. In fact, the

dynamics tangent to it (that is the map that associates to each point on the boundary
the first point (with respect to a chosen orientation) such that the segment joining
these two points is tangent to the caustic) induces a circle homeomorphism from the
boundary to itself; the rotation number of the caustic corresponds to the Poincaré
rotation number of this circle homeomorphism.

(ii) The notion of caustics is often connected to the so-called whispering gallery, a
phenomenon that can be detected under some particular domes, in which whispers
can be clearly transmitted and received from distant parts of the gallery, as long as
the speaker and listener are close the wall.

(iii) If �ω is a convex caustic with rotation number ω ∈ (0, 1/2], then one can associate
to it an invariant, the so-called Lazutkin invariant Q(�ω). More precisely,

Q(�ω) = |A − P | + |B − P | − |AB| (4)

where | · | denotes the Euclidean length and |AB| the length of the arc on the caustic
joining A to B (see Figure 5). This quantity is connected to the value of Mather’s
α-function (see §5).

4.4. Existence of (convex) caustics. A natural question that one could ask is whether the
existence of (convex) caustics is a common or a rare phenomenon. As we have seen before,
circular and elliptic billiards possess many convex caustics.

Furthermore, are there other Birkhoff billiards with (convex) caustics? And given an
affirmative answer, how many of them is it reasonable to expect?

In the following we will often write ‘caustic’ in place of ‘convex caustic’ (unless
differently specified). However, most of these questions can be addressed for more general
notions of caustics.

Constructing a Birkhoff billiard with at least one caustic is easy: it is enough to
perform the so-called string construction, similarly to the well-known one of drawing
a circle as the set of points equidistant from a fixed center, or of constructing an
ellipse as the locus of points whose distances from two fixed points have a con-
stant sum. More specifically (see, for example, [95, Ch. 5] for a more precise con-
struction), given a curve γ , one could wrap a closed non-stretchable string around
it (of length longer than that of γ ), pull it tight at a point and move this point
around γ : the curve that one obtains corresponds to a billiard domain that has γ as a
caustic.

Are there other billiards with infinitely many caustics? Quite surprisingly, the answer is
affirmative: all (sufficiently smooth) Birkhoff billiards have infinitely many smooth convex
caustics that accumulate to the boundary of the billiard domain. In [61], in fact, Lazutkin
introduced a very special change of coordinates that reduces the billiard map B� to a very
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simple form. Let L� : R/�Z × [0, π ] → R/Z × [0, δ] with small δ > 0 be given by

L�(s, ϕ) :=
(

x = C−1
�

∫ s

0
ρ−2/3(s) ds, y = 4C−1

� ρ1/3(s) sin ϕ/2
)

,

where ρ denotes the radius of curvature of ∂�, and C� := ∫ �

0 ρ−2/3(s) ds (sometimes
called the Lazutkin perimeter). In these new coordinates the billiard map has a simpler
expression:

BL
�(x, y) = (x + y + O(y3), y + O(y4)).

In particular, near the boundary {y = 0}, this map can be seen as a small perturbation
of the integrable map (x, y) �−→ (x + y, y), and hence, under suitable regularity assump-
tions, the Kolmogorov–Arnold–Moser theorem can be applied (it is sufficient, for example,
that ∂� is C6, so that the map is at least C5). Hence, there exists a positive-measure Cantor
set of smooth invariant circles for the map which accumulates on {y = 0} and on which
the motion is smoothly conjugate to a rigid rotation with Diophantine rotation number (see
[61, 77] for a refined version); this translates into the existence of a positive measure set of
caustics, accumulating to the boundary of the billiard table.

Remark 4.7. Observe that in this context it is extremely important that � is strictly
convex. In [68], in fact, Mather proved the non-existence of caustics if the curvature of
the boundary vanishes at one point. An alternative proof of this result is provided by
Gutkin and Katok in [46], where the authors also investigate how the shape of the domain
determines the location of caustics, establishing the existence of open regions which are
free of caustics and estimating (from below) the size of these regions. More specifically,
given a caustic � with Lazutkin invariant L = L(�), if we denote by δmax(�, ∂�) the
maximum distance of � from the boundary ∂�, they prove the following estimates (see
[46, Propositions 1.2 and 1.3]):

δ2
max(�, ∂�)

d
≤ L ≤ min{2d3κ2, 2/K},

where d = d(�) denotes the diameter of �, while κ and K are respectively the minimum
and the maximum of the curvature of ∂�. It follows from this that if κ = 0 at some point,
then caustics cannot exist.

The next step then is to ask in which cases these caustics foliate the whole billiard table
or an open dense subset of it, as happens in the circular and elliptic cases. In other words,
are there other examples of integrable billiards? This apparently naïve question turns out
to be much more difficult to tackle, and has given rise to one of the most famous (and some-
how impenetrable) open problem in dynamical systems: the so-called Birkhoff conjecture.

4.5. Integrable billiards and Birkhoff conjecture. As we have seen in the previous
subsection, billiards in a disc or in an ellipse are examples of integrable billiards. A natural
question is the following: which Birkhoff billiards are integrable?

Birkhoff Conjecture. Circular and elliptic billiards are the only examples of integrable
Birkhoff billiards.
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Remark 4.8. Although some vague indications of this question can be found in [18],
to the best of our knowledge, its first appearance as a conjecture was in a paper by
Poritsky [80], where the author attributes it to Birkhoff himself. (Poritsky was a National
Research Fellow in Mathematics at Harvard University, presumably under the supervision
of Birkhoff. and [80] was published several years after Birkhoff’s death.) Thereafter,
references to this conjecture (as either the Birkhoff conjecture or the Birkhoff–Poritsky
conjecture) repeatedly appeared in the literature: see, for example, Gutkin [45, §1], Moser
[71, Appendix A] and Tabachnikov [94, §2.4].

Remark 4.9. We remark that the existence of caustics in dimension at least 3 is a much
rarer phenomenon. In fact, it was proved in [9, 40] that among all convex billiard tables in
Rd , d ≥ 3, only the solid ellipsoids have convex caustics, which are precisely the confocal
solid ellipsoids contained in their interiors and, moreover, the intersection of these. In
particular, the analog of the Birkhoff conjecture in dimension at least 3 trivially holds.

The above conjecture assumes very different connotations and levels of complexity,
according to the notion of integrability that one takes into account. Despite its long
history and the amount of attention that it has captured in recent decades, many interesting
formulations of this conjecture still remain unanswered.

We shall see in §5 how this conjecture/question can also be rephrased as a regularity
question for Mather’s minimal average action (or β-function).

4.5.1. Global integrability. In [12], Bialy proved the following result under the assump-
tion of full global integrability.

THEOREM 4.10. (Bialy) If the phase space of the billiard ball map is fully foliated by
continuous invariant circles, then it is a circular billiard.

Remark 4.11. An integral-geometric approach to proving Bialy’s result was proposed by
Wojtkowski in [100], by means of the so-called mirror formula. This approach was later
exploited by Bialy [13] for billiards on the sphere and the hyperbolic plane, as well as for
magnetic billiards.

Observe that Bialy and Wojtkowski’s result is not in contrast with what we have
discussed in the case of elliptic billiards. In fact, in that case the family of convex caustics
represented by confocal ellipses do not foliate the whole domain (the segment between the
two foci is left out) nor does the set of homotopically non-trivial invariant curves (invariant
circles) have full ω-measure in the phase space: the homotopically trivial invariant curves
corresponding to orbits tangent to confocal hyperbolae foliate a positive ω-measure set (in
the phase portrait—see Figure 4—this set corresponds to the area below the separatrix,
that is, the stable/unstable manifold of the hyperbolic 2-periodic orbit corresponding to
the major semiaxis of the ellipse).

What about other notions of integrability? In the study of integrable systems, in fact,
in most cases integrals of motion are non-degenerate not everywhere, but either on an
open-dense subset of the phase space (we shall refer to this as global integrability) or on
just a proper (non-trivial) open subset (we shall refer to this as local integrability).
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Remark 4.12.
(i) An interesting result by Innami [55] shows that the existence of convex caustics with

rotation numbers accumulating to 1/2 implies that the billiard must be an ellipse.
This regime of integrability is somehow opposite to the one we are interested in,
which is concerned with caustics near the boundary of the billiard table, that is, with
small rotation numbers. Innami’s proof is based on Aubry–Mather theory; a simpler
and more geometric proof of Innami’s result was recently given in [4]. Observe that
in this result it is decisive that the caustics are convex.

(ii) In this regard, Treschev [97] gave a numerical indication that there might exist
analytic billiards, different from ellipses, for which the dynamics in a neighborhood
of the elliptic period-2 orbit is conjugate to a rigid rotation. These billiards could be
seen as an instance of local integrability; however, as we have already remarked,
this regime is somehow complementary to the one usually considered for the
Birkhoff conjecture, since it is concerned with integrability in a neighborhood of an
elliptic periodic orbit of period 2. Very interestingly, this fact—if verified—would
provide an intriguing indication that these regimes of integrability are significantly
different.

4.5.2. Perturbative Birkhoff conjecture. Instead of considering all possible Birkhoff
billiards, one could restrict the analysis to what happens for domains that are sufficiently
close to ellipses and try to study the Birkhoff conjecture in this class of domains, which
can be considered as perturbations of ellipses. More specifically, we can state the following
perturbative version of Birkhoff conjecture.

Birkhoff Conjecture. (Perturbative version) A smooth strictly convex domain that is
sufficiently close (with respect to some topology) to an ellipse and whose corresponding
billiard map is integrable is necessarily an ellipse.

First results in this direction have been obtained:
• non-integrability of certain algebraic perturbations of elliptic billiards (Levallois [63]

and Levallois and Tabanov [64]);
• non-integrability of entire symmetric perturbations of ellipses (these perturbations

break integrability near the homoclinic solutions (Delshams and Ramírez-Ros
[31]).

More recently, Avila, De Simoi and Kaloshin proved in [7] that the claim of the
perturbative version of Birkhoff conjecture is true for domains that are sufficiently close
to a circular billiard. The complete proof for domains sufficiently close to an ellipse of any
eccentricity has been provided in [58].

Let us describe this result more precisely, starting with the following definition.

Definition 4.13. Let � be a strictly convex domain.
(i) We say � is an integrable rational caustic for the billiard map in �, if the

corresponding invariant circle � consists of periodic points; in particular, the
corresponding rotation number is rational.

https://doi.org/10.1017/etds.2021.37 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.37


1042 V. Kaloshin and A. Sorrentino

(ii) Let q0 ≥ 2 be a positive integer. If the billiard map inside � admits integrable
rational caustics for all rotation numbers 0 < (p/q) < (1/q0), we say that � is
q0-rationally integrable.

The main result proved in [58] is the following theorem.

THEOREM 4.14. (Kaloshin and Sorrentino [58]) Let Ee0,c be an ellipse of eccentricity 0 ≤
e0 < 1 and semifocal distance c; let k ≥ 39. For every K > 0, there exists ε = ε(e0, c, K)

such that if � is a 2-rationally integrable Ck-smooth domain, whose boundary ∂� is
• K-close to Ee0,c, with respect to the Ck-norm,
• ε-close to Ee0,c, with respect to the C1-norm,
then � is an ellipse.

Remark 4.15. Actually, it is sufficient to require only the existence of rational integral
caustics of rotation number 1/q, for all q ≥ 3.

4.5.3. Local integrability and Birkhoff conjecture. What can be said for locally inte-
grable Birkhoff billiards? As we have noticed in Remark 4.12, the correct regime that one
should consider seems to be integrability in a neighborhood of the boundary of the billiard
table, that is, for small rotation numbers.

Let us denote by Ee,c ⊂ R2 an ellipse of eccentricity e and semifocal distance c. We
state the following local version of Birkhoff conjecture.

Local Birkhoff Conjecture. For any integer q0 ≥ 3, there exist e0 = e0(q0) ∈ (0, 1), m0 =
m0(q0), n0 = n0(q0) ∈ N such that the following assertion holds. For each 0 < e ≤ e0

and c ≥ 0, there exists ε = ε(e, c, q0) > 0 such that if Ee,c is an ellipse of eccentricity e

and semifocal distance c, and � is a q0-rationally integrable Cm0 -smooth domain, whose
boundary ∂� is ε-close to Ee,c, with respect to the Cn0 -norm, then � must be an ellipse.

This conjecture has been studied in [52]. More precisely, the following results have been
proved.

THEOREM 4.16. (Huang, Kaloshin and Sorrentino [52])
(i) The local Birkhoff conjecture holds true for q0 = 2, 3, 4, 5, with m0 = 40q0 and

n0 = 3q0.
(ii) The local Birkhoff conjecture holds true for q0 > 5 with m0 = 40q0 and n0 =

3q0, subject to checking that q0 − 2 matrices (which are explicitly described) are
invertible.

Remark 4.17.
(i) Case q0 = 2 was proven in [7] (see also [55, 58]).

(ii) Smoothness exponents are probably not optimal.
(iii) Notice that in the proof we actually need only the existence of rationally integrable

caustics of rotation numbers, less than 1/q0, of the form j/q for j = 1, 2, 3.
(iv) The invertibility condition on finitely many matrices, to which the claim of

part (ii) of Theorem 4.16 is subject, is explicit and computable. In [53] it is
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described how to implement an algorithm to verify it by means of symbolic
computations. The coefficients of these matrices are completely determined by
the e-expansion of the action-angle parametrization of the ellipse, which, in turn,
is explicitly given by elliptic integrals; it turns out that the entries of these
matrices are either 0, 1 or of the form ξ cos−2j (wπ)e2j , where ξ ∈ Q, j ∈ N,
w ∈ {1/(2k + 1), 2/(2k + 1), 1/2k, 3/2k : k > j}.

4.5.4. Non-perturbative results? A possible strategy to extend our results to a
non-perturbative version of this conjecture involves the use of some geometric flow to
transform the domain into a small perturbation of an ellipse. Roughly speaking, the most
important features of this flow should be:

(i) preservation of strictly convexity and smoothness of the boundary;
(ii) convergence (possibly up to some renormalization of the length or the area) to the

set of elliptic domains, which must be an invariant set for the flow;
(iii) preservation of integrability.
It is clear that if such a flow exists, then (i)–(iii) imply that any integrable Birkhoff billiard
� can be mapped into an integrable Birkhoff billiard �′ close to an ellipse; using our
perturbative result, we can deduce that �′ must be an ellipse; since the set of ellipses is
invariant under the (backward) flow, it follows that � must also be an ellipse.

In [58, Appendix G] we suggested as a possible candidate the so-called affine length
shortening (ALS) flow a flow describing the evolution of plane curves in the direction of
the affine normal, with speed proportional to the affine curvature (see, for instance, [84] for
more details). This flow satisfies properties (i) and (ii) (see [84]); the main obstacle lies in
proving that property (iii) holds (if one believes in the Birkhoff conjecture, then it should
hold, since ellipses are an invariant set for the flow). In [58, Appendix G] we proposed
to prove this by introducing a family of functions measuring the non-integrability of the
domains, and conjecturing that they behave as Lyapunov functions for the ALS flow.

We remark that property (iii) for the classical Euclidean curve shortening flow
(that is the evolution is in the direction of the Euclidean normal with speed proportional to
the Euclidean curvature) does not hold in general, as proved in [27].

4.6. Some ideas on the proofs of the perturbative Birkhoff conjecture and its local version
(Theorems 4.14 and 4.16).

4.6.1. Perturbative Birkhoff conjecture (Theorem 4.14). Let us provide a description of
the strategy that we adopted in [58] to prove Theorem 4.14.

For small eccentricities, Theorem 4.14 was proven in [7]. Let us start by describing
the simplified setting of integrable infinitesimal deformations of a circle. This provides an
insight into the strategy of the proof in the general case.

Let �0 be a circle centered at the origin and with radius ρ0 > 0. Let �ε be a
one-parameter family of smooth deformations given in the polar coordinates (ρ, ϕ) by

∂�ε = {(ρ, ϕ) = (ρ0 + ερ(ϕ) + O(ε2), ϕ)}.
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Consider the Fourier expansion of ρ:

ρ(ϕ) = ρ′
0 +

∑
k>0

ρk sin(kϕ) + ρ−k cos(kϕ).

THEOREM 4.18. (Ramírez-Ros [81]) If �ε has an integrable rational caustic �1/q of
rotation number 1/q, for any ε sufficiently small, then ρkq = ρ−kq = 0 for any integer k.

Let us now assume that the domains �ε are 2-rationally integrable for all sufficiently
small ε and ignore for a moment the dependence on the parametrization. Then the above
theorem implies that ρ′

k = ρ′′
k = 0 for k > 2, that is,

ρ(ϕ) = ρ′
0 + ρ′

1 cos ϕ + ρ′′
1 sin ϕ + ρ′

2 cos 2ϕ + ρ′′
2 sin 2ϕ

= ρ′
0 + ρ∗

1 cos(ϕ − ϕ1) + ρ∗
2 cos 2(ϕ − ϕ2)

where ϕ1 and ϕ2 are appropriately chosen phases.

Remark 4.19. Observe that:
• ρ0 corresponds to a homothety;
• ρ∗

1 corresponds to a translation in the direction forming an angle ϕ1 with the polar axis
{ϕ = 0};

• ρ∗
2 corresponds to a deformation of the circle into an ellipse of small eccentricity,

whose major axis forms an angle ϕ2 with the polar axis.
This implies that, infinitesimally (as ε → 0), rationally integrable deformations of a circle
are tangent to the five-parameter family of ellipses.

In order to extend these ideas to the case of an integrable perturbation (not necessarily a
deformation) of an ellipse, a more elaborate strategy is needed, involving more quantitative
estimates and approximation procedure (we refer to [7, 58] for more technical details). In
particular, Fourier modes are replaced by new functions determined by the dynamics inside
the approximating ellipse, which we call dynamical modes {cq , sq}q≥3, given by

cq(ϕ) := cos(2πq/4K(kq)F (ϕ; kq))√
1 − k2

q sin2 ϕ

,

sq(ϕ) := sin(2πq/4K(kq)F (ϕ; kq))√
1 − k2

q sin2 ϕ,

where kq denotes the eccentricity of the confocal ellipse corresponding to the caustic of
rotation number 1/q, while

F(ϕ; k) :=
∫ ϕ

0

dθ√
1 − k2 sin2 τ

and K(k) := F

(
π

2
; k

)

are the elliptic integrals of first kind (see, for example, [1] for more details on these
functions and their properties).

The core of the proof consists in showing that these dynamical modes together with
the infinitesimal generators of homotheties, translations, rotations and hyperbolic rotations
(that is those transformations preserving the set of ellipses), form a basis of L2(R/2πZ).
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This is one of the main difficulties (perhaps the hardest) involved in the extension of the
perturbative result in [7] to the case of perturbations of any ellipse, as studied in [58]. While
in the former case one can take advantage of the fact that these functions can be considered
small perturbations of the Fourier modes, in the latter new strategies need to be exploited.
In [58] we consider analytic extensions of the action-angle coordinates of the elliptic
billiard, more specifically, of the boundary parametrizations induced by each integrable
caustic (these functions can be explicitly expressed in terms of elliptic integrals and Jacobi
elliptic functions). A detailed study of their complex singularities and the size of their
maximal strips of analyticity allowed us to deduce their linear independence (both for finite
and infinite combinations) and, by a suitable codimension argument, to show that they form
a complete set of generators, thus completing the proof that they are a basis of L2(R/2πZ).

4.6.2. Local Birkhoff conjecture for nearly circular domains (Theorem 4.16). The main
difficulty in this case (in comparison with the one discussed in Theorem 4.14 and §4.6.1) is
that we cannot use the preservation of integrable rational caustics for all rotation numbers
1/q, with q ≥ 3; hence, we need to recover the missing conditions on the corresponding
Fourier coefficients of the perturbation.

Our key idea is the following: for ellipses of small eccentricity e > 0, we study the
Taylor expansion, with respect to e, of the corresponding action-angle coordinates. Using
this expansion, we derive the necessary condition for the preservation of integrable rational
caustics, in terms of the Fourier coefficients of the perturbation, up to precision of order
e2N , for some positive integer N = N(q0).

Let us outline our strategy, starting from some special cases.
• Case q0 = 3. We lose a pair of conditions corresponding to Fourier coefficients of

order 3. We exploit the conditions obtained from the existence of integrable rational
caustics of rotation numbers 1/5, 1/7, 2/7: we use the corresponding expansions, with
respect to e, up to precision O(e6), to derive a system of linear equations for the third,
fifth and seventh Fourier coefficients. Solving this linear system will provide us with
the estimates needed for Fourier coefficients of order 3.

• Case q0 = 4. In this case we lose two pairs of conditions corresponding to Fourier
coefficients of order q = 3, 4. These will be recovered in two steps.
– To recover the one corresponding to Fourier coefficients of order 3, we study the

necessary conditions for the existence of integrable rational caustics of rotation
numbers 1/5, 1/7, 1/9, 2/9, written in terms of the Fourier coefficients of the
perturbation, and consider their expansions, with respect to e, up to order O(e8).
We then derive a linear system for the third, fifth, seventh and ninth Fourier
coefficients, whose solution will provide us with the estimates needed for the
Fourier coefficients of order 3.

– To recover the one corresponding to Fourier coefficients of order 4, we study the
necessary conditions for the existence of integrable rational caustics of rotation
numbers 1/6, 1/8, 1/10, 1/12, 1/14, 3/14, which give rise to a system of
linear equation for the fourth, sixth, eighth, tenth, twelfth and fourteenth Fourier
coefficients; as before, the solution of this linear system will give us the estimates
needed for the Fourier coefficients of order 4.
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• The general case. Along the same lines described in the previous two items, we
outlined in [53] a general (conditional) procedure to deal with this problem for any
q0 ≥ 3; the implementation of this scheme is based on the assumption that certain
explicit non-degeneracy conditions for the corresponding linear systems hold. We
remark, however, that all of these conditions are very explicit and the algorithm is
explicitly described for implementation on a computer.

4.7. Integrable Riemannian geodesic flows on the torus. We conclude this section by
drawing some connections between the Birkhoff conjecture and a problem in Riemannian
geometry. The Birkhoff conjecture can be also thought of as an analog, in the case of
billiards, to the task of classifying integrable (Riemannian) geodesic flows on T2. The
complexity of this question, of course, depends on the notion of integrability that one
considers. If one assumes that the whole phase space is foliated by invariant Lagrangian
graphs (that is the system is C0-integrable (see [3, Definition 4.19]), in particular, the
integral of motion is only assumed to be continuous), then it follows from Hopf’s result
[51] (see also [22] for the proof in dimension greater than 2) that the associated metric
must be flat. Bialy and Wojtkowski’s results in the billiard setting can be considered as the
analogs of this result.

However, the question becomes more challenging (and is still open) if one considers
integrability only on an open and dense set (global integrability), or assumes the existence
of an open set foliated by invariant Lagrangian graphs (local integrability). Examples of
globally integrable (non-flat) geodesic flows on T2 are those associated to Liouville-type
metrics, namely metrics of the form

ds2 = (f1(x1) + f2(x2)) (dx2
1 + dx2

2).

A folklore conjecture states that these metrics are the only globally (respectively, locally)
integrable metrics on T2, which, in some sense, can be interpreted as the analog of the
Birkhoff conjecture, in the realm of integrable geodesic flows on T2.

A partial answer to this conjecture (global case) is provided in [21], where the authors
prove it under the assumption that the system admits an integral of motion which is
quadratic in the momenta. Observe that while the case of quadratic integral of motion
reduces to a system of linear partial differential equations, the case of higher degree
integrals of motions is very challenging and it turns out to be equivalent to delicate ques-
tions on non-linear partial differential equations of hydrodynamic type (see, for example,
[14, 15]). This notion of integrability is related to the so-called algebraic integrability,
namely the existence of integrals of motion that are polynomial in the velocity. The
relation between this notion of integrability and the Birkhoff conjecture (algebraic Birkhoff
conjecture) has been studied and has lead to interesting results [16, 20]. Recently, using
previous results of [16], Glutsyuk [36] proved the algebraic Birkhoff conjecture.

Finally, we point out that the topological structure of the torus plays a fundamental
role in the above-mentioned conjectures and results. For example, on the two-dimensional
sphere there are plenty of non-trivial integrable metrics: the so-called Zoll surfaces. A
Zoll surface is a surface homeomorphic to the 2-sphere, equipped with a Riemannian
metric all of whose geodesics are closed and of equal length (the first non-trivial example
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was discovered by Zoll in [104]). While the usual unit-sphere metric on S2 obviously
has this property, there also exists an infinite-dimensional family of geometrically distinct
deformations that are still Zoll surfaces (see, for example, [42]). In particular, most Zoll
surfaces do not have constant curvature. See [11, 62] for more details.

5. Aubry–Mather theory and billiard dynamics
In this section we discuss how the study of action-minimizing properties of billiards can
be used to shed some light on their dynamical properties. In particular, we shall see how
many of the questions discussed in the previous sections can be rephrased in these terms.
Let us start by briefly recalling the main ideas at the heart of this approach.

5.1. Aubry–Mather theory for twist maps of the annulus. At the beginning of the 1980s
Serge Aubry and John Mather developed, independently, what nowadays is commonly
called Aubry–Mather theory. This novel approach to the study of the dynamics of twist
diffeomorphisms of the annulus pointed out the existence of many action-minimizing
orbits for any given rotation number. For a more detailed introduction, see, for example,
[33, 87, 90]).

Let a, b ∈ R ∪ {±∞}, with a < b, and let

f : R/Z × (a, b) −→ R/Z × (a, b)

be a monotone twist map, that is, a C1 diffeomorphism such that its lift to the universal
cover f̃ satisfies the following properties (we denote (x1, y1) = f̃ (x0, y0)).

(i) f̃ (x0 + 1, y0) = f̃ (x0, y0) + (1, 0) and x0 ≤ x1 < x0 + 1.
(ii) f̃ is orientation preserving and preserves the boundaries of R × (a, b):

y1(x0, y0) → a as y0 → a and y1(x0, y0) → b as y0 → b.

(iii) If a > −∞, then f̃ extends continuously to R × {a} by a rotation:

f̃ (x, a) = (x + ω−, a).

Similarly, if b < +∞, then f̃ extends continuously to R × {b} by a rotation:

f̃ (x, b) = (x + ω+, b).

(iv) (∂x1/∂y0) ≥ c > 0 (monotone twist condition).
(v) f̃ admits a (periodic) generating function h (that is it is an exact symplectic map):

y1 dx1 − y0 dx0 = dh(x0, x1).

We call the interval (ω−, ω+) ⊂ R the twist interval of f (we remark that if a = −∞
then ω− = −∞, and if b = +∞ then ω+ = +∞.

In particular, it follows from (v) that
⎧⎪⎨
⎪⎩

y1 = ∂h

∂x1
(x0, x1),

y0 = − ∂h

∂x0
(x0, x1).

(5)
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Remark 5.1. The billiard map is an example of monotone twist map (to fit with the above
definition, one can normalize the boundary length to be equal to 1). In particular, as
we have already pointed out, its generating function (see (1)) is given by h(x0, x1) =
−�(x0, x1), where �(x0, x1) denotes the Euclidean distance between the two points on
the boundary of the billiard domain corresponding to γ (x0) and γ (x1).

As follows from (5), orbits (xi)i∈Z of the monotone twist diffeomorphism f correspond
to ‘critical points’ of the action functional

{xi}i∈Z �−→
∑
i∈Z

h(xi , xi+1).

Aubry–Mather theory is concerned with the study of orbits that minimize this
action-functional among all configurations with a prescribed rotation number; recall that
the rotation number of an orbit {xi}i∈Z is given by ω = limi→±∞(xi/i), if this limit exists
(in the billiard case, this definition leads to the same notion of rotation number introduced
in §3). In this context, minimizing is meant in the statistical mechanical sense, that is,
every finite segment of the orbit minimizes the action functional with fixed end-points.

THEOREM 5.2. (Aubry [5, 6], Mather [33, 67]) A monotone twist map possesses minimal
orbits for every rotation number in its twist interval (ω−, ω+). Moreover, every minimal
orbit lies on a Lipschitz graph over the x-axis.

We can now introduce the minimal average action (or Mather’s β-function).

Definition 5.3. Let xω = {xi}i∈Z be any minimal orbit with rotation number ω. Then, the
value of the minimal average action at ω is given by

β(ω) := lim
N→+∞

1
2N

N−1∑
i=−N

h(xi , xi+1). (6)

This value is well defined, since it does not depend on the chosen orbit.

The function β : R −→ R enjoys many properties and encodes interesting information
on the dynamics. In particular:

(i) β is strictly convex and, hence, continuous (see [33]);
(ii) β is differentiable at all irrationals (see [69]);

(iii) β is differentiable at a rational p/q if and only if there exists an invariant circle
consisting of periodic minimal orbits of rotation number p/q (see [69]).

In particular, β being a convex function, one can consider its convex conjugate,

α(c) = sup
ω∈R

[ω c − β(ω)].

This function (which is generally called Mather’s α-function) also plays an important role
in the study of minimal orbits and in Mather’s theory (particularly in higher dimension;
see, for example, [66, 91]). We refer interested readers to the surveys [33, 87, 90].
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Observe that for each ω and c one has

α(c) + β(ω) ≥ ωc,

where equality is achieved if and only if c ∈ ∂β(ω) or, equivalently, if and only if ω ∈
∂α(c) (the symbol ∂ denotes in this case the set of ‘subderivatives’ of the function, which
is always non-empty and is a singleton if and only if the function is differentiable).

5.2. Action-minimizing properties of billiards. In the billiard case, since the generating
function of the billiard map is the Euclidean distance −�, the action of the orbit coincides
(up to sign) with the length of the trajectory that the ball traces on the table �. In particular,
these two functions encode many dynamical properties of the billiard (see [86, 87] for more
details).
• For each 0 < p/q ≤ 1/2, one has β(p/q) = −(1/q)MLmax

� (p/q); see (3) for the
definition of MLmax

� (p/q).
• β is differentiable at p/q if and only if there exists an invariant circle of rotation

number p/q foliated by periodic orbits.
• If �ω is a convex caustic with rotation number ω ∈ (0, 1/2], then β is differentiable

at ω and β ′(ω) = −length(�ω) =: −|�ω| (see [87, Theorem 3.2.10]). In particular, β

is always differentiable at 0 and β ′(0) = −|∂�|, where |∂�| denotes the length of the
boundary of �.

• If �ω is a convex caustic with rotation number ω ∈ (0, 1/2], then its Lazutkin invariant
Q(�ω) (see §4.3) can be related to the value of the α-function. In fact, one can show
that (see [87, Theorem 3.2.10])

Q(�ω) = α(β ′(ω)) = α(−|�ω|).

In [10, 70, 86, 87, 89] properties of Mather’s β- and α-functions have been studied
more in depth. In particular, explicit expressions for their (formal) Taylor expansions
at, respectively, ω = 0 and c = −|∂�| have been obtained. The coefficients in these
expressions will be obtained in terms of the curvature of the boundary and its derivatives.

THEOREM 5.4. Let � be a strictly convex planar domain with smooth boundary. Denote
by k(s) > 0 the curvature of ∂� with arc-length parametrization s. Let �0 := |∂�| be the
length of the boundary and denote

I1 :=
∫ �0

0
ds = �0,

I3 :=
∫ �0

0
k2/3 ds,

I5 :=
∫ �0

0

(
9 k4/3 + 8 k̇2

k8/3

)
ds,

I7 :=
∫ �0

0

(
9 k2 + 24 k̇2

k2 + 24 k̈2

k4 − 144 k̇2k̈

k5 + 176 k̇4

k6

)
ds,
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I9 :=
∫ �0

0

[
281

44800
k8/3 + 281 k̇2

8400 k4/3 + 167 k̈2

4200 k10/3 − 167 k̇2 k̈

700 k13/3 +
...
k

2

42 k16/3

+ 559 k̇4

2100 k16/3 − 473 k̈3

4725 k19/3 − 10
...
k k̇ k̈

21 k19/3 + 5
...
k k̇3

7 k22/3 + 13142 k̇2 k̈2

4725 k22/3

− 10777 k̇4 k̈

1575 k25/3 + 521897 k̇6

127575 k28/3

]
ds.

Then:
• the formal Taylor expansion of β at ω = 0, β(ω) ∼ ∑∞

k=0 βk(ω
k/k!), has coefficients

β2k = 0 for all k,

β1 = −I1,

β3 = 1
4 I3

3 ,

β5 = − 1
144

I4
3 I5,

β7 = 1
320

I5
3

(
14
81

I2
5 − I3I7

)
, = I5

3 (14 I2
5 − 81 I3I7)

25920

β9 = −7 I6
3

(
I2

3 I9 − 1
5600

I3 I5 I7 + 7
583200

I3
5

)
;

• the (formal) Taylor expansion of (c + �0)
−3/2α(c) at c = −�0 (note that α has

in fact a square-root type singularity at the boundary), (c + �0)
−3/2α(c) ∼∑∞

k=0 αk((c + �0)
k)/k!, has coefficients

α0 = 4
√

2
3

I−3/2
3 ,

α1 =
√

2
135

I−7/2
3 I5,

α2 = 1

56700
√

2

(
72 I3I7 + 7 I5

2

I3
11/2

)
,

α3 = 1

826686000
√

2

(
261273600 I3

2I9 + 21384 I3I5I7 + 1001 I5
3

I3
15/2

)
.

Remark 5.5.
(i) The techniques used in the proof of the Theorem 5.4, allow one to obtain explicit

expressions up to any arbitrary high order (we restrict to order 11 just for the sake of
this presentation).

(ii) The coefficients βk are algebraically related to the set of spectral invariants intro-
duced by Marvizi and Melrose [65] for strictly convex planar regions in order to
investigate and give some partial answers to Kac’s question on the isospectrality of
planar domains. These computations provide explicit expressions for those invariants
as well (see the expressions for the Ik).
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An easy consequence of these formulae is the following corollary, which is a direct
consequence of the isoperimetric inequality (see [89, Corollary 1] and [86, 87]).

COROLLARY 5.6. Let � be a strictly convex planar domain with smooth boundary. Then

β3 + π2β1 ≤ 0,

and equality holds if and only if � is a disc.

Proof. The proof easily follows from the expressions for β1 and β3, found in Theorem 5.4.
In fact, observe that

β3 + π2β1 ≤ 0 ⇐⇒ I3
3 − 4π2I1 ≤ 0.

Now, using Hölder’s inequality (with p = 3
2 and q = 3) and the Gauss–Bonnet theorem,

I3 =
∫ �0

0
k2/3 ds ≤

( ∫ �0

0
(k2/3)3/2 ds

)2/3( ∫ �0

0
13 ds

)1/3

= (2π)2/3�0
1/3 = (4π2I1)

1/3.

Moreover, equality holds if and only if it holds in the Hölder inequality. This means that k

must be constant (and strictly positive), and therefore the curve must be a circle.

Remark 5.7. In particular, the above corollary says that if the first two coefficients β1 and
β3 coincide to those of the β-function of a disc, then the domain must be a disc. Therefore,
the β-function univocally determines discs amongst all possible Birkhoff billiards. It would
be interesting to find a similar characterization for elliptic billiards. We can prove the
following result: the β-function determines univocally a given ellipse in the family of all
ellipses.

PROPOSITION 5.8. If E1 and E2 are two ellipses such that βE1 ≡ βE2 , then E1 and E2 are
the same ellipse. More generally, if the Taylor coefficients βE1,1 = βE2,1 and βE1,3 = βE2,3,
then the same conclusion remains true.

The proof easily follows from expressing these coefficients by means of elliptic integrals
(see [89, Proposition 1]).

5.3. Birkhoff conjecture and spectral rigidity questions (revisited). We can now
rephrase the spectral rigidity question for the maximal length spectrum (see §3.1) and
Birkhoff conjecture (see §4.5) in terms of these new objects.

Spectral Rigidity Question. (Revisited) Let �1 and �2 be two strictly convex planar
domains with smooth boundaries and assume that β�1 ≡ β�2 . Is it true that �1 and �2 are
isometric? More generally, if β�1(ω) = β�2(ω) for all ω ∈ (0, ε) for some small ε > 0, is
it true that �1 and �2 are isometric?

Similarly, keeping in mind the relation between the differentiability properties of
Mather’s β-function at rational rotation numbers and the existence of invariant circles
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foliated by periodic points (see §5.2), we can also rephrase Birkhoff conjecture in this
context.

Birkhoff Conjecture. (Revisited) Let � be a strictly convex planar domain with smooth
boundary and assume that β� is differentiable in [0, 1/2). Is it true that � is an ellipse?
More generally, if β� is differentiable in [0, ε) for some small 0 < ε < 1/2, is it true that
� is an ellipse?

In fact, if β� is differentiable in an open interval, then the billiard map is locally
integrable in an open set. In fact, β� will be differentiable at all rationals in that interval and
therefore there will be caustics corresponding to these rotation numbers. By semicontinuity
arguments, one obtains caustics corresponding to irrational rotation numbers and hence a
family of caustics that foliate an open set. Observe that if β is differentiable in the whole
domain of definition (0, 1/2], then it must be a circle by the aforementioned result of
Bialy.

The relation between the integrability of the billiard map and the differentiability of the
corresponding Mather β-function implies that a solution to the Birkhoff conjecture would
lead to a solution to the question whether ellipses are uniquely spectrally determined in
the class of convex domains. The final result follows from the proof of the perturbative
Birkhoff conjecture (see [58, Corollaries 13 and 14]).

COROLLARY 5.9. (Kaloshin and Sorrentino) Let � be a smooth strictly convex domain �

sufficiently close to an ellipse.
(i) If � has the same maximal marked length spectrum (or Mather’s β-function) as an

ellipse, then it is an ellipse.
(ii) If its Mather’s β-function is differentiable at all rationals 1/q with q ≥ 3, then � is

an ellipse.
(iii) Ellipses are (maximal) marked-length-spectrally rigid, meaning that if �t is

a smooth deformation of an ellipse which keeps the (maximal) marked length
spectrum fixed, then it consists of a rigid motion.

(iv) Ellipses are length-spectrally rigid, meaning that if �t is a smooth deformation
of an ellipse which keeps the length spectrum fixed, then it consists of a rigid
motion.

Remark 5.10.
(i) Compare this result with the previously mentioned result of Hezari and Zelditch

[49] (see §3.2), where it is proved that ellipses of sufficiently small eccentricities are
Laplace spectrally unique (up to isometry) among all smooth domains (without any
assumption on symmetry, convexity, or closeness to other ellipses).

(ii) In a recent paper [50], Hezari and Zelditch prove that, for any invariant curve for
the billiard map on the boundary phase space of an ellipse, there exists a sequence
of eigenfunctions whose Cauchy data (that is eigenfunctions of the semiclassical
eigenvalue problem; see [50, Formula (1)]) concentrate on the invariant curve; in
particular, they use this result to give a new proof that ellipses are infinitesimally
spectrally rigid among C∞ domains with the symmetries of the ellipse.
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