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Abstract
Neural Networks applied to Machine Translation need a finite vocabulary to express textual information
as a sequence of discrete tokens. The currently dominant subword vocabularies exploit statistically-
discovered common parts of words to achieve the flexibility of character-based vocabularies without
delegating the whole learning of word formation to the neural network. However, they trade this for
the inability to apply word-level token associations, which limits their use in semantically-rich areas and
prevents some transfer learning approaches e.g. cross-lingual pretrained embeddings, and reduces their
interpretability. In this work, we propose new hybrid linguistically-grounded vocabulary definition strate-
gies that keep both the advantages of subword vocabularies and the word-level associations, enabling
neural networks to profit from the derived benefits. We test the proposed approaches in both morphologi-
cally rich and poor languages, showing that, for the former, the quality in the translation of out-of-domain
texts is improved with respect to a strong subword baseline.
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1. Introduction
In Natural Language Processing (NLP) tasks, text is either received as input or generated as output
(e.g. machine translation, language modeling). In order to process text, it is common for neural
networks applied to NLP tasks to split the original character string into a sequence of substrings,
and to represent each substring as a discrete token. The granularity used to split the original text
into substrings is part of the design of any NLP system.

Languages themselves offer information packaged at different natural granularity levels:
sub-character information (e.g. radicals in Chinese characters), characters, morphemes, words,
multi-word expressions, sentences and documents. Apart from the linguistically natural infor-
mation packages, it is also possible to build synthetic partitions (e.g. statistically-discovered sub-
words Sennrich, Haddow, and Birch 2016, byte-level representations Costa-jussà, Escolano, and
Fonollosa 2017) as well as hybrid granularity levels (e.g. hybrid word-character representations
Luong and Manning 2016).

The representation granularity defines how to split a piece of text into a sequence of discrete
tokens and is a key design aspect in any NLP system because it determines the type of information
it can directly profit from. This way, a word-level system can profit from word-level informa-
tion (e.g. semantics), while a character-level system does not have direct access to such a type of
information.

C© The Author(s), 2020. Published by Cambridge University Press.

https://doi.org/10.1017/S1351324920000364 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324920000364
https://orcid.org/0000-0002-0248-899X
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1351324920000364&domain=pdf
https://doi.org/10.1017/S1351324920000364


486 N. Casas et al.

The set of all possible tokens is referred to as vocabulary and, normally, the higher the repre-
sentation granularity, the larger the size of the vocabulary. This way, the set of all possible words is
larger than the set of all possible characters. Nevertheless, given the open nature of language, any
finite size word-level vocabulary is to face the problem of words that are not part of the vocabulary
and hence cannot be properly represented.

The selection of an appropriate granularity level is also influenced by the capability of the
downstreamNLP system to handle the resulting vocabulary. This way, while symbolic systems can
handle very large vocabularies (i.e. several hundred thousand different tokens), current neural net-
works can only handle moderately large vocabularies (i.e. tens of thousand different tokens). This
makes it desirable for Neural network-based NLP systems to keep the vocabulary size constrained
while trying to maximize the representation ability.

The vocabulary is defined prior to the training of the neural network, normally by means of an
algorithmic approach that “extracts” the possible tokens from the training data according to the
chosen token granularity.

Character-level vocabularies define a token for each different character present in the train-
ing data. Their size ranges from tens to thousands of characters, depending on the language. In
English, this would include all letters, both lowercase and uppercase, punctuation symbols, blanks,
etc. A character-level vocabulary allows representing any text that contains the characters from the
vocabulary, not only the words from the training data.

Word-level vocabularies define a token for each different word present in the training data.
Given the huge amount of different words, only the N most frequent words are kept in the vocab-
ulary, dropping the less frequent ones. The selection of hyperparameter N is driven by different
factors, including hardware memory constraints, scaling limitations of the network architecture
(e.g. softmax for network output) and the scarceness of lower frequency words in the training
data (it is not useful to represent words whose frequency of appearance in the training data is not
enough for the network to learn how to use them). A frequent default value is N = 32K tokens. A
special token <UNK> is usually introduced in the vocabulary in order to represent words that are
not part of the vocabulary (i.e. unknown words, or out-of-vocabulary (OOV) words).

Multi-word level vocabularies extend word-based ones and try to find sequences of words that
form a single lexical unit or are part of an idiomatic construct (Mikolov et al. 2013).

Subword vocabularies (Mikolov et al. 2012) have word pieces as tokens, which are extracted sta-
tistically from the training data based on their frequency of appearance. For languages with regular
morphology, extracted subwordsmaymatchmorphological word parts, however, there is no guar-
antee of morphological soundness. Subword vocabularies normally do not have an <UNK> token
because, apart from the multi-character subwords, there are usually single-character subwords
that allow to represent any input text.

Despite their flexibility, character-level vocabularies delegate the learning of word formation to
the network and the resulting token sequences are very long, which, for some tasks like machine
translation (MT), leads to a decrease in the quality due to the model’s inability to handle long-
range dependencies. On the other hand, word-level vocabularies relieve the network completely
from learning word formation, but they frequently lead to OOV words and they aren’t aware of
the connection of different forms of the same word, leading to worse training data utilization,
especially for highly inflected languages and agglutinative languages. Subword vocabularies are a
compromise between both, and are indeed used in the current state of the art of several NLP tasks,
like MT.

Nevertheless, an asset of word-level vocabularies is that tokens can be associated with the word
they represent, which can be key to certain tasks related to the meaning of the word or setups
related to the word-level granularity (reuse of pretrained word embeddings for sentiment classi-
fication, induction of cross-lingual word embeddings); character and subword vocabularies lack
such a trait and this makes them less suitable for such tasks.
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1.1 Contribution
In this work, we propose the use of linguistic information to create vocabularies with the advan-
tages of word-level and multiword-level representations and the flexibility of subword-level
tokens. This work is in the line of recent efforts by the scientific communitya since our work
focuses on the interpretability of the subword units that our NMT systems are using while
profiting from the linguistic information available.

1.2 Manuscript organisation
In Section 2 we provide a review of the works in the area of incorporating linguistic information
into neural NLP systems, especially for NMT. In Section 3 we describe in detail our proposed
approach, while in Section 4 we describe the experimental setup used to evaluate it and explore
the obtained results, followed by the discussion in Section 5. Finally, in Section 6 we draw the con-
clusions of this work. Appendix A provides information about the specific linguistic engine used
as source for linguistic information used in this work and its relation to the proposed approach.

2. Related work
The first subword-based vocabularies were introduced by Schütze (1993), while their first suc-
cessful application to neural systems was with Byte-Pair Encoding (BPE) (Sennrich et al. 2016).
This approach consists in taking all words from the training data and building subwords starting
from a character-based vocabulary (with all characters present in the training data) and creating
new tokens by iteractively merging the two tokens that appear together most frequently. BPE and
some of its variants, such as word pieces (Wu et al. 2016), are the dominant subword vocabulary
definition strategy in the state of the art neural machine translation (NMT) architectures.

Linguistic information was first introduced in a neural NLP system by Alexandrescu and
Kirchhoff (2006), who proposed a language model (LM) where words are represented as a
sequence of factors, that is, the word itself plus pieces of linguistic information associated with
the word, like its POS tag or the its morphological characterization. Factors of different types are
embedded in the same continuous space and the sequence of the previous n− 1 embedded vectors
is fed to the LM, which consists in a multilayer perceptron. The LM then generates the probabil-
ity of the n-th token over the word space. In order to address the unknown word problem, they
compute the average of all words belonging to the same POS tag; this way, if an unknown noun is
to be fed to the network, all noun vectors in the embedded space would be averaged to compute
the average noun vector.

Shaik et al. (2011) study different morphologically-grounded subword partition schemes
applied to LM, including morpheme-based, syllable-based and grapheme-based, as well as their
mix in the same vocabulary with word-based representations for the most frequent words. Vania
and Lopez (2017) study the effects of subword vocabularies in language models, including BPE
and morphologically extracted subwords with Morfessor (Virpioja et al. 2013). In their work, the
predictions are normal words selected among the most frequent ones, but the input of the model
are aggregations of subwords, either by mere addition or by means of biLSTMs.

The use of linguistic information was first introduced in NMT in the work by Sennrich and
Haddow (2016) (with precedents in SMT in the work by Ueffing and Ney 2003 and Avramidis
and Koehn 2008), who incorporate several linguistic features as input to the encoder of a standard
sequence-to-sequence with attention model (Bahdanau, Cho, and Bengio 2015). These features
include the word’s lemma, POS tag and dependency type. The token granularity is subword
level, making use of BPE to split low frequency words. Word-level features are copied to each

aWorkshops on Subword and Character Level Models in NLP (Faruqui et al. 2017, 2018).

https://doi.org/10.1017/S1351324920000364 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324920000364


488 N. Casas et al.

token encoding phasevocabulary extraction phase

the dogs are in the house

training 

corpus 7 6 2 8 9 7 5 1
vocabulary

encoding
linguistic 
engine

linguistic 
engine

Figure 1. Vocabulary extraction and token encoding phases.

of the subwords in the associated word. Both subword and linguistic features are encoded as dis-
crete tokens from different representation spaces. Each token space is associated with a different
embedded representation space, which a pre-defined dimensionality. At encoding time, the sub-
word and the linguistic features are represented as their corresponding embedded vectors and
then all vectors associated to a subword are concatenated together into the final representation.

Ponti et al. (2018) further refined the approach by Sennrich and Haddow (2016) by inject-
ing Universal Dependency tags (de Marneffe et al. 2014) as linguistic features and modifying the
source analysis trees (e.g. by rearranging dependencies and introducing dummy nodes) to reduce
the level of anisomorphism between source and target languages, directly affecting syntactic
dependency tags. This improves translation quality, especially for typologically distant languages,
as the linguistic information preprocessing reduces the gap between the structures of source and
target languages.

In their work, Garcıa-Martınez et al. (2016) proposed to modify the decoder part of a stan-
dard word-level sequence-to-sequence model to generate two elements per position of the output
sentence: the first element is the lemma of the word, while the second element is the morphosyn-
tactic information of the original word, which is referred to as factors. Each of the two outputs per
position casts the probability over the lemma and factor space respectively. A similar approach
was proposed by Song et al. (2018) for the Russian language; they modify the decoder of a nor-
mal sequence-to-sequence with attention model to generate first the stem of the current word,
and then its suffix based on the internal states and output of the decoder units, and then using a
composite loss with separate terms for stems and for suffixes.

The generation of proper surface forms of morphologically rich languages has been studied
in the literature, especially in transduction from morphologically simpler languages (e.g. English
to German translation). With that purpose, Conforti et al. (2018) proposed to predict the mor-
phological information of a morphologically rich language from merely the lemmas and word
capitalization scheme.

Finally, Passban (2017) studies different word segmentation strategies and their influence over
NMT translation quality. Some of the word segmentation approaches evaluated include leveraging
Morfessor’s unsupervised morpheme discovery (Creutz and Lagus 2002) and devising its own
dynamic programming-based strategies.

3. Proposed approach
In this work we propose two different strategies that rely on linguistic information to provide
morphologically sound vocabulary definitions for their use in neural networks applied to NMT.

In the following sections we describe both the vocabulary extraction phase and the token
encoding phase for each of them, as illustrated in Figure 1. Note that the vocabulary extraction
phase takes place before training the network and the token encoding phase takes place both at
training time (to encode the training texts) and at inference time.
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Figure 2. Morphological subword vocabulary extraction.
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Figure 3. Token ID encoding process with the morphological unit vocabulary.

3.1 Morphological unit vocabulary
The goal of the Morphological Unit Vocabulary is to serve as a linguistically-grounded sub-
word vocabulary. This vocabulary definition strategy relies on the morphological analysis of a
sentence, which comprises a sequence of morphological units that may be lexical morphemes,
multi-morpheme stems, separate inflectional morphemes or even fixed/semiflexible multi-word
expressions, e.g. “in front of”.

During vocabulary extraction, all sentences in the training data are analyzed (see details about
such an analysis in Appendix A) and their morphological units are used to elaborate the vocabu-
lary, as shown in Figure 2. The specific information from the node that is incorporated as a token
comprises the string associated with the node (being it a lexical morpheme, a word or amulti-word
expression), together with its category, which is loosely analogous to the Part-of-Speech (POS) tag
(e.g. noun stem (NST), verb stem(VST), noun flexion (N-FLEX)).

In order to encode a text into a sequence of tokens, the text is analyzed by means of a linguis-
tic engine and the resulting morphological units are used as queries to find the associated token
indexes from the vocabulary table, as shown in Figure 3.

Given the high amount of possible tokens and the practical size limitations of a vocabulary
meant to be used with neural networks (described in Section 1), only the N most frequent tokens
from the training data are selected to be part of the vocabulary.

If the analysis is driven by a lexicon, like in our case, this constrained vocabulary implies a mis-
match with the unconstrained vocabulary used by the linguistic engine: when encoding the tokens
of a text, the parse tree may contain terminal nodes that we cannot encode because they are not
part of the vocabulary, either because they were not present in the training data or because their
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Figure 4. Overall distribution of the morphological units vocabulary table.

frequency of appearance was not enough to grant an entry in the final size-limited vocabulary. In
order to eliminate such a vocabulary mismatch, once the Morphological Subword Vocabulary is
extracted, the lexicon used by the linguistic engine (which drives the extraction of the morpholog-
ical units) is pruned to remove any entry that is not part of the extracted vocabulary. These results
in the removal of low-frequency words that, if encountered during the token encoding of a text,
will be encoded as unknown words.

Words that are not part of the training data are marked in the analysis as unknown words. In
order to cope with this OOV word situation, we can follow the approach by Luong and Manning
(2016) and reserve some of the tokens in the vocabulary for character-based tokens. This way,
any character found in the training data has its own token in the reserve character-based token
range. As with subword vocabularies, this character-based subvocabulary makes <UNK> tokens not
necessary for Mophologic Unit Vocabularies.

The resulting layout of the tokens table is outlined in Figure 4, with an initial range for special
tokens like the end of sequence token or the padding token, an optional small range for character-
level tokens, and finally the largest range for the morphological unit tokens.

Some examples of the resulting Mophological Unit tokenization are:

• The dogs are in the house: (the, DET), (dog, NST), (s, N-FLEX), (are, VST), (in, PREP), (the,
DET), (house, NST), 〈 /s 〉

• My mom said I mustn’t tell lies: (my, DET), (mom, NST), (sai, VST), (d, V-FLEX), (I, PRN),
(must, VST), (n’t, ADV), (tell, VST), (lie, NST), (s, N-FLEX) 〈/s〉

3.2 Lemmatized vocabulary
The goal of the Lemmatized Vocabulary is to decouple meaning frommorphological information
in each word. For this, each word generates two tokens: one for the lemma and one for the relevant
morphological traits of the word (e.g. gender, number, tense, case).

The source of linguistic information in this case is themorphosyntactic analysis of the sentence,
which provides information for each word about its POS tag and its morphological features, such
as gender, number, person, tense, case, etc. The presence of these features is language-dependent
(e.g. some languages lack case or gender). Note that the morphological features do not contain
information about the semantics of the word, but only about the morphological traits that, when
added to the lemma, conform the specific surface form of the word.

During the vocabulary extraction phase, all sentences in the training data are analyzed and the
resulting lemmas and morphological features are used to elaborate the vocabulary, as shown in
Figure 5. For each word, the lemma is added to a lemma frequency counter, and themorphological
features are added to an analogous morphological feature-set frequency counter.
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Figure 6. Token encoding phase with the lemmatized vocabulary.

In order to encode a text into a sequence of tokens, the text is analyzed bymeans of the linguistic
engine (see details about such an analysis in Appendix A). For each word, we obtain the lemma
and the set of its morphological features (e.g. verb in present tense first person singular). For
each lemma and for each morphological feature set we then query the vocabulary table for the
appropriate token ID. This is illustrated in Figure 6, where the reuse of morphological feature set
token IDs is highlighted in bold font.

As in the Morphological Unit Vocabulary (see Section 3.1), the mismatch between the
Lemmatized Vocabulary and the lexicon used for the morphosyntactic analysis is solved by prun-
ing the latter to only contain elements from the former. The same way, unknown words are
encoded by allocating a range of the token indexes for character-based tokens and using such
character-based subvocabulary to encode any string that is marked as unknown. The distribution
of the different elements present in a Lemmatized Vocabulary is illustrated in Figure 7.
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Figure 7. Overall distribution of the lemmatized vocabulary table.

In order to cope with out-of-vocabulary words, we can reserve a range of tokens for character-
level tokens so that any word or numeral can be encoded whether it was seen or not in the training
data. The layout of the Lemmatized Vocabulary table is outlined in Figure 7, where we can see an
initial range for special tokens, an optional range for character-based tokens, the largest range
for the lemma tokens and the final range for every possible morphological feature set found in
the training data. Note that another possibility to address the OOV words is to add the special
token <UNK> to represent them and have a post-processing step to handle such a token; a frequent
approach is to use the attention vector of sequence-to-sequence models to replace any <UNK>
token at the output with the word from the input sentence with the highest attention value.

The nature of the linguistic engine we use gives us a morphosyntactic analysis with some devi-
ations from the original sentence: first, the words in the sentence are rearranged to make turn its
structure into a projective parse, if it was not projective already. This way, the English sentence
“Who do you want me to talk to?” is rearranged as “You do want me to talk to who?”. A similar
rearrangement occurs for other cases like separable phrasal verbs, which are rearranged so that
the preposition sits next to the verb, and both form together a single multiword; this way “You
let me down” would be rearranged into “You let down me”, and “let down” would be a single
entity, with a single lemma and a single morphological feature set. This word rearrangements and
aggregations favor a semantical interpretation of the sentence when used to represent the input to
a neural system.

Given that the morphological information tokens always follow the lemma tokens, and that
there are words in natural languages that do only admit one surface form, the lemmatized vocab-
ulary can waste tokens that add no further information. In order to avoid such a situation, we only
include themorphological information tokens if they are actually needed, that is, if the lemma they
are associated to admits more than one surface form and hence can be subject to morphological
variations.

Some examples of the resulting Lemmatized tokenization are:

• The dogs are in the house
lemma: the,morpho:(DET:(NU (PL SG))),
lemma: dog,morpho:(NST:(NU (PL) PS (3))),
lemma: be,morpho:(VST:(MD (IND) NU (PL) PF (FIN) PS (3). . .)),
lemma: in,morpho:(PREP:()),
lemma: the,morpho:(DET:(NU (PL SG))),
lemma: house,morpho: (NST:(NU (SG) PS (3))),
〈/s〉

• My mom said I mustn’t tell lies:
lemma: my,morpho: (DET:(NU (PL SG)),
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Table 1. Hyperparameters of the Transformer model for the
NMT experiments

Attention layers 6
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Attention heads per layer 8
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hidden size (embedding) 512
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Batch size (in tokens) 4096 (× 4 GPU)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Training steps 20 epochs
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Vocabulary type word pieces
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Vocabulary size 32K
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Optimization algorithm Adam
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Learning rate Warmup+ Decay

lemma: mom,morpho: (NST:(NU (SG) PS (3)),
lemma: say, morpho: (VST:(MD (IND) NU (SG). . .),
lemma: I,morpho: (PRN:(CA (S) NU (SG) PS (1))),
lemma: must,morpho:(VST:(MD (IND) NU (SG). . .),
lemma: not,
lemma: tell,morpho:(VST:(MD (IND) NU (SG PL). . .),
lemma: lie,morpho:(NST:(NU (PL) PS (3)),
〈/s〉

4. Experiments
In order to evaluate the vocabulary definition strategies proposed in Section 3, we test them using
machine translation as downstream task.

Neural Machine translation models compute the translation of a source sequence of tokens
x1, . . . , xT by predicting token by token of the translation sequence y1, . . . , yT′ , which has a
potentially different length T′:

p
(
y1, . . . , yT′ |x1, . . . , xT

) =
T′∏

t=1
p

(
yt|x, y1, . . . , yt−1

)
(1)

The currently dominant NMT architecture is the Transformer model (Vaswani et al. 2017),
which surpasses in translation quality the original sequence to sequence models (Sutskever,
Martens, and Hinton 2011; Cho et al. 2014) and their variants with attention (Bahdanau et al.
2015; Luong, Pham, and Manning 2015). In our NMT experiments, we make use of the orig-
inal implementation of the Transformer architecture by their authors, who released it as part
of the tensor2tensor library. We use a standard configuration (transformer_base), with
the hyperparameter configuration shown in Table 1, together with parameter averaging after
convergence.

We performed experiments on English-German, French-English and Basque-Spanish datasets.
The purpose of choosing those languages is to test the proposed vocabulary definition strategies
both in morphologically rich languages (i.e. Basque, German) and in morphologically simpler
ones (i.e. English).

https://doi.org/10.1017/S1351324920000364 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324920000364


494 N. Casas et al.

Table 2. Statistics of the German-English training data

Corpus Sents. Words Vocab. Max.length Avg.length

German 4,520,620 96,159,821 3,181,111 2937 21.3
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

English 103,664,418 1,909,854 4225 22.9

Table 3. Statistics of the French-English training data

Corpus Sents. Words Vocab. Max.length Avg.length

French 2,085,044 64,894,699 145,953 245 31.1
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

English 58,984,908 117,311 237 28.3

German nouns are inflected for number (singular and plural), gender (masculine, feminine
and neuter) and case (nominative, accusative, genitive and dative). French nouns are inflected
for number (singular and plural) and gender (masculine and feminine). English nouns are only
inflected for number (singular and plural) and case (nominative and genitive). Spanish nouns are
inflected for number (singular and plural) and gender (masculine and feminine). Basque nouns
are inflected (or rather they take suffixes for) number (singular, plural and “mugagabe”) and case
(nominative, ergative, genitive, local genitive, dative, allative, inessive, partitive, etc.).

As far as verbs are concerned, German verbs have different inflections for 1st, 2nd and 3rd per-
son singular and 1st/3rd persons and 2nd person plural in the present. French verbs are inflected
for number and person, and gender in perfective compound tenses. English finite present tense
verbal forms are only inflected in the 3rd person singular. Spanish verbs are inflected for person
(1st, 2nd and 3rd), number (singular and plural), tense (present, past, future), aspect (perfec-
tive, punctual and progressive) and mood (indicative, subjunctive, conditional and imperative).
Basque verbs take different forms for person (1st, 2nd and 3rd, not only for the subject but also
for the direct and indirect objects), number (singular and plural), tense (present, past and future),
aspect (progressive and perfect) and mood (indicative, subjunctive, conditional, potential and
imperative).

Also, German presents compounds, that is, concatenation of words with no separation in
between:

Übersetzungsqualität → Übersetzung (translation) + s + Qualität (quality)
Speicherverwaltung → Speicher (memory) + Verwaltung (management)

For the English-German experiments, we make use of the WMT14 English-German news
translation data.b The characteristics of the used training dataset are summarized in Table 2.

For the French-English experiments, we make use of a combination of the News Commentary
corpus and the Europarl corpus. The characteristics of the resulting training corpus are shown in
Table 3

For the Basque-Spanish experiments, we use the EiTB news corpus (Etchegoyhen, Azpeitia,
and Pérez 2016). Its characteristics are shown in Table 4.

In order to evaluate the translation quality, we use BLEU (Papineni et al. 2002), which consists
of an aggregation of n-gram matches together with a penalty for sentences shorter than the refer-
ence translations. The BLEU scores shown were computed by means of the sacrebleu tool (Post
2018) with the lower case setting. Given the known problems BLEU presents (Callison-Burch,

bhttp://www.statmt.org/wmt14/translation-task.html.
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Table 4. Statistics of the Basque-Spanish training data

Corpus Sents. Words Vocab. Max.length Avg.length

Basque 552,752 10,102,635 345,351 318 18.3
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Spanish 15,643,597 225,038 317 28.3

Table 5. German-English and English-German translation quality (case-insensitive BLEU score) with
different source vocabulary strategies

de-en en-de

Vocabulary BLEU METEOR BLEU METEOR

Word pieces 31.81 0.3537 26.35 0.4800 (baseline)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Sennrich and Haddow 2016) 30.20 0.3386 25.90 0.4653 (baseline)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lemmatized 31.14∗ 0.3521 25.49∗ 0.4697
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Morpho.units 31.33∗ 0.3505 25.89∗ 0.4764

∗p< 0.05

Table 6. French-English and English-French translation quality (case-insensitive BLEU score) with
different source vocabulary strategies

fr-en en-fr

Vocabulary BLEU METEOR BLEU METEOR

Word pieces 32.01 0.3554 34.36 0.5707 (baseline)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Sennrich and Haddow 2016) 27.60 0.3288 31.90 0.5430 (baseline)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lemmatized 29.66∗ 0.3404 33.68 0.5677
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Morpho.units 31.30∗ 0.3516 34.82 0.5758

∗p< 0.05

Osborne, and Koehn 2006), we also include theMETEOR (Banerjee and Lavie 2005) scores, except
for Basque, which is not supported by METEOR.

In Tables 5, 6 and 7 we can see the BLEU scores obtained by using different source vocabulary
definition strategies, for German↔English, English↔French and Basque↔Spanish respectively.
As baselines, we used a word piece vocabulary (Wu et al. 2016) and the linguistic factored
approach by Sennrich and Haddow (2016). The word piece vocabulary was used for the origi-
nal implementation of the Transformer model (Vaswani et al. 2017). The factored approach by
Sennrich and Haddow (2016) is the standard way for incorporating linguistic information; we
used the same extra linguistic features as the authors, namely the lemma, POS tag and syntac-
tic dependency label; as a subword vocabulary is used, each feature is copied to all subwords in
the same word, and the position of the subword within the word (beginning, end, middle) is
also added as feature; all feature embeddings are concatenated together with the token embed-
ding to form the subword representation. In order to make this baseline comparable to the word
piece baseline and to our own work, we added the linguistic features to the Transformer model
instead of the original LSTM-based sequence-to-sequence with attention model from Sennrich
and Haddow (2016), keeping all the hyperparameters from the word piece baseline, while using
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Table 7. Basque-Spanish and Spanish-Basque translation quality (case-insensitive BLEU score)
with different source vocabulary strategies

eu-es es-eu

Vocabulary BLEU METEOR BLEU METEOR

Word pieces 28.89 0.5072 24.48 – (baseline)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Sennrich and Haddow 2016) 24.16∗ 0.4654 21.45∗ – (baseline)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lemmatized 27.32∗ 0.4945 22.39∗ –
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Morpho.units 28.52 0.5045 23.83∗ –

∗p< 0.05

Table 8. German-English and English-German translation quality in out-of-domain text

de-en en-de

Vocabulary BLEU METEOR BLEU METEOR

Word pieces 40.77 0.4059 36.75 0.5547 (baseline)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Sennrich and Haddow 2016) 37.64 0.3723 33.86 0.5160 (baseline)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lemmatized 41.35∗ 0.4059 36.04 0.5496
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Morpho.units 41.57∗ 0.4076 36.67 0.5549

∗p< 0.05

the same linguistic feature-related hyperparamers from Sennrich and Haddow (2016), namely the
feature embedding dimensionalities.

We used the implementation of the factored NMT Transformer from OpenNMT-py (Klein et
al. 2017) with custom improvements in order to support specifying vocabulary sizes and embed-
ding dimensions for the linguistic features. For the linguistic annotations we used Stanford’s
corenlp (Manning et al. 2014) for English and French, ParZu (Sennrich et al. 2009; Sennrich,
Volk, and Schneider 2013) for German, like in the original work by Sennrich and Haddow
(2016), LucyLT (Alonso and Thurmair 2003) for Basque and Spacy (Honnibal and Montani to
appear) for Spanish. Note that the Morphological Units and Lemmatized vocabularies include the
character-level subvocabulary described in Section 3 to handle OOV words.

In all cases, the target language vocabulary strategy are word pieces in order to ensure a proper
comparison.

As part of the experiments carried out, we also evaluate the influence of the proposed
morphologically-based vocabularies on the translation quality for out of domain texts. For this,
we use the WMT17 biomedical test sets, namely the English-German HimL test setc the French-
German EDP test sets,d and a sample of 1000 sentences of theOpenData Euskadi IWSLT18 corpus
(Jan et al. 2018), which contains documents from the Public Administration.

Given that these benchmarks are not included in sacrebleu, we usedMoses’ multi-bleu.pl
script, together with the standard tokenizer. The out-of-domain results are summarized in
Tables 8, 9 and 10.

In order to assess the statistical significance of the differences between our proposed
approaches and the word pieces baselines for the in-domain and out-of-domain test, we made

chttp://www.himl.eu/test-sets.
dhttps://www.statmt.org/wmt17/biomedical-translation-task.html.
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Table 9. French-English and English-French translation quality in out-of-domain text

fr-en en-fr

Vocabulary BLEU METEOR BLEU METEOR

Word pieces 16.85 0.2122 19.58 0.3763 (baseline)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Sennrich and Haddow 2016) 14.89 0.1993 18.02 0.3607 (baseline)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lemmatized 15.74∗ 0.2086 18.34∗ 0.3681
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Morpho.units 16.25 0.2146 19.36 0.3749

∗p< 0.05

Table 10. Basque-Spanish and Spanish-Basque translation quality in out-of-domain text

eu-es es-eu

Vocabulary BLEU METEOR BLEU METEOR

Word pieces 16.94 0.4439 5.78 – (baseline)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Sennrich and Haddow 2016) 13.80∗ 0.3715 7.01∗ – (baseline)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lemmatized 19.85 0.4348 8.75 –
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Morpho.units 20.66 0.4423 9.06 –

∗p< 0.05

use of the bootstrap resampling approach (Koehn 2004; Riezler and Maxwell 2005),e taking 95%
as significance level (p< 0.05). Statistical significance is reflected in the result tables with a ∗mark
next to the BLEU score.

The obtained English↔German results suggest that, while for the morphologically poor lan-
guage (English) the translation quality is the same as the strong subwords baseline, the quality
for the morphologically rich language (German) is improved in a statistically significant way. On
the other hand, for English↔French results are weaker in the case of the lemmatized vocabu-
lary, while the morphological units vocabulary presents comparable performance to the word
pieces baseline. For Basque and Spanish, we see a very large improvement of both lemmatized
and morphological unit vocabulary, with to 3.5 BLEU points more than the word pieces base-
line for Basque→Spanish and 3.2 BLEU points for Spanish→Basque. We conclude that for the
morphologically poor language, the use of linguistic vocabularies actually harms the translation
quality for in-domain data, while for a morphologically rich language there is statistical evidence
that the quality is higher than the strong subword baseline for out-of-domain data for German
and comparable for French. This way, for the morphologically rich language with in-domain test
data and for the morphologically poor language with out of domain data there is no statistical
evidence to distinguish the quality of our proposed approaches from the strong subword baseline.

Table 11 shows some examples comparing the German-to-English outputs from out-of-domain
text of the baseline and the Morphological Unit Vocabulary. The examples show that our
linguistically-driven morphological segmentation has a clear impact on choosing more appropri-
ate lexical units. Improvements come either from infrequent or specific words (e.g. glaucoma,
irridotomy) or from generic words that are adequate for the particular context (e.g. units,
administering).

eMoses script bootstrap-hypothesis-difference-significance.pl was used to compute the significance tests.
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Table 11. German-to-English out-of-domain examples

1 Baseline (. . .) and were treated in intensive care stations
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Morpho.units (. . .) and were treated in intensive care units
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Reference (. . .) and were receiving care in intensive care units
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 Baseline (. . .) pest printing was regularly monitored
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Morpho.units (. . .) the skull pressure was regularly monitored
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Reference (. . .) had regular monitoring of pressure in the skull
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 Baseline Our objective was to investigate whether the number of
people who died changed by the appointment of
antithrombin

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Morpho.units Our objective was to investigate whether the number of
people who died changed by administering antithrombin

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Reference Our goal was to investigate whether the number of people
who died changed by giving antithrombin

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 Baseline it is not known whether the peripheral Iridium inhibits people
who died changed by giving antithrombin

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Morpho.units it is not known whether peripheral irridotomy inhibits the
development or progress of pigment glaucoma

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Reference it is unknown whether peripheral iridotomy reduces the
development or progression of pigmentary glaucoma

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 Baseline (. . .) the use of Neuamine inhibitors
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Morpho.units (. . .) the use of neuraminidase inhibitors
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Reference (. . .) the use of neuraminidase inhibitors

5. Discussion
The proposed linguistic knowledge-based vocabulary definition strategies offer a way to profit
from morphosyntactic information for downstream tasks like MT. The two main differences
with other approaches like factored NMT (Sennrich and Haddow 2016) derive from the use
of a semantics-aware linguistic engine and from its non-aggregative management of linguistic
information.

About the linguistic engine used, given that its ultimate goal is to perform rule-base translation,
it needs to analyze the semantics of the input sentence, and uses it to disambiguate when multiple
possible interpretations of a word are possible. When the disambiguation is not possible (e.g.
when the subject of a sentence is not present and the verb conjugation admits more than one
interpretation), the uncertainty is reflected in the analysis and our proposed vocabularies use such
an information to compose the encoded representation. Another peculiarity of the used linguistic
engine is that its analyses are driven by a lexicon. This makes it possible to adjust it to match the
neural vocabulary in order to avoid mismatches between word and multi-word representations in
both sides.

The non-aggregative encoding strategy makes it possible for the systems addressing the down-
stream tasks to directly use linguistic information, but also makes the resulting sequences longer.
In order to further characterize the impact in sequence length, we computed the distribution of
the ratio of the sequence lengths of both the Morphological Unit Vocabulary and the Lemmatized
vocabulary with respect to a normal space and punctuation-based tokenization. The vocabularies
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Figure 8. Distribution of the ratio of sequence length with the Morphological Unit Vocabulary and a standard word-based
tokenization.

are extracted from the training data, while the distribution is computed over a sample of 1000
sentences of the same dataset. We compute such a distribution for a configuration of our vocabu-
laries where the OOV words are encoded as an <UNK> token and also where they are handled by
a character-level subvocabulary, in order to understand the influence of this type of words over
the final sequence length. The distribution of the same ratio for a word pieces vocabulary is also
computed as reference. Figure 8 shows the distributions for the Morphological Unit Vocabulary,
while Figure 9 shows it for the Lemmatized Vocabulary.

As we can see in Figures 8 (Morphological Units) and 9 (Lemmatized), the sequence length with
the proposed morphologically-grounded vocabularies with respect to the number of words in the
sentence is higher than with word pieces (Wu et al. 2016), especially when the character-level
subvocabulary is used to cope with the OOV words.

As shown in the figures, the differences in length depend on the morphological characteristics
of the specific language. For English, with a simpler morphology, the ratio of sequence length
with the proposed morphology-based vocabularies with respect to word pieces is higher than with
German, French or Basque, which have richermorphology and hence needs alsomore word pieces
for a single sentence.

This difference in length may affect the quality depending on the model’s ability to handle
long-range dependencies. For instance, when multi-head attention mechanisms are known to be
able to properly handle such type of dependencies, while RNNs present problems in that regard
(Hochreiter 1991; Bengio, Simard, and Frasconi 1994).

The non-aggregative encoding strategy also allows using neural architectures without any
modification, unlike the factored approaches like those by Sennrich and Haddow (2016) and
Garcıa-Martınez et al. (2016), which need to account for the different representation spaces for
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Figure 9. Distribution of the ratio of sequence length with the Lemmatized Vocabulary and a standard word-based
tokenization.

lemmas and factors and keep separate embedding tables, which multiply the number of hyper-
parameters to tune, namely the vocabulary size and embedding dimensionality for each of the
linguistic features. In this sense, the results obtained by factored approaches using the same
hyperparameter configuration as Sennrich and Haddow (2016) offer inferior translation quality
compared to the word piece vocabulary; this can be attributed to the non optimality of the hyper-
parameters for our specific datasets and the usage of the Transformer architecture instead of the
original LSTM sequence-to-sequence with attention model from Sennrich and Haddow (2016).

Therefore, compared to word piece approaches and to the linguistic approach by Sennrich and
Haddow (2016), themophological vocabularies approach is suitable for scenarios where the source
language is a morphologically rich language like German, where the chosen neural architecture
can handle long-range dependencies, like the Transformermodel (in order to cope with the longer
sequences), and where the available training data does not match the domain of the text the model
is going to be fed as input at inference time.

6. Conclusion
Our experiments show that the proposed morphology-based vocabulary definition strategies pro-
vide improvements or maintain comparable quality in the translation of out-of-domain texts for
languages that present a rich morphology like German and Basque. We also observe that no
significant loss is suffered in translation quality for morphologically poor languages like English
in that type of texts. Further work will consist of testing in other low-resourced NLP tasks which
can benefit from more linguistic information.
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Qualitatively, whenever we inject linguistic information in our neural systems, we are progress-
ing in the interpretability of such systems. In this work we propose to do a linguistically-driven
segmentation of our vocabulary, which enables morphologically-aware interpretation of the per-
formance in downstream tasks. This is a line of research to be pursued in the future, especially in
relation to the use of linguistic vocabularies for text generation, for instance, using the proposed
vocabularies for the target side in NMT tasks.
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Appendix A. Rule-basedmachine translation as source for linguistic knowledge
In this work, we propose to make use of linguistic information to define vocabularies that confer
certain desirable properties to the neural networks that use them.

There are multiple possible sources of linguistic information that could help define NMT
vocabularies. Some options include using stemming algorithms, lemmatizers, POS-taggers and
syntactic analyzers. While there exist several tools offering such capabilities, their availability
is normally constrained to a single language, and their foundations are heterogeneous, includ-
ing statistically-grounded, dictionary-based, or using machine learning approaches. In this work,
we opt for the Rule-based Machine Translation (RBMT) Lucy LT system (Alonso and Thurmair
2003). This tool relies on knowledge distilled and formalized by human linguists in the form of lex-
icons and rules, and provides a consistent source of linguistic knowledge across several languages,
including English, German, Spanish, French, Russian, Italian, Portuguese and Basque. Apart from
translations, it provides linguistic analysis byproducts at different levels, which are used here as
sources of linguistic information to devise the vocabularies proposed.

The Lucy RBMT system divides the translation process into three sequential stages: analysis,
transfer and generation, as illustrated in Figure A1.

The analysis phase receives a sentence in the source language. After being tokenized, the
sentence is morphologically analyzed, leveraging amonolingual lexicon to obtain all possible mor-
phological readings of each word in the sentence. For instance, for the English word “works”, the
two valid morphological readings are:

“work” (NST) + “s” (N-FLEX)
“work” (VST) + “s” (V-FLEX)

where NST stands for Noun Stem, N-FLEX for Nominal Inflectional Suffix, VST for Verb Stem
and V-FLEX for Verbal Suffix.

A chart parser together with an analysis grammar converts the sequence of valid morphological
readings of the words comprising the sentence and outputs a parse tree. The terminal nodes of
the parse tree (i.e. the leave nodes) depend on the monolingual lexicon used during the parse
phase. Based on entries in such a lexicon, the parser tries to find inflectional and derivational
constructions.

An example of parse tree is shown in Figure A2.
The terminal nodes of the parse tree are the source of the morphologic analysis used to create

the Morphological Unit Vocabulary described in Section 3.1.
The parse tree is then applied a second set of rules that annotate, rearrange and mutate the

original parse tree nodes, to output an analysis tree, which resembles a projective constituency
tree (non projective constructs are rearranged into projective versions). In this tree, words are no
longer separated into different nodes representing their morphological parts, but are assembled
into a single node with features expressing its morphological traits (e.g. gender, number, verbal
tense, person, case).
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Figure A1. Workflow of rule-basedmachine translation systems.

There is an extra post-processing sub-stage calledmirification that performs the final retouches,
outputting the MIR (Metal Interface Representationf) tree. An example of MIR tree is show in
Figure A3. While there is a noticeable depth reduction in comparison with the parse tree for the
same sentence shown in Figure A2, there are also other non-evident differences: flexions have been
merged with their associated lemmas, and the morphological information has been condensed as
node features, which are not show in these tree representations.

The whole analysis phase is only dependent on the source language and can therefore be reused
for language pairs with the same source language. This phase relies in a monolingual lexicon
that contains entries for words in the source language, together with metainformation that allows
their inflection and morphological derivation. It also relies in an analysis grammar, that is, a set
of declarative rules that are matched to the input tokens and structures and allow the iterative
construction of the parse and analysis trees.

The terminal nodes (i.e. leaves) of the MIR tree are used as the source of the morphosyntactic
analysis of the sentence used to create the Lemmatized Vocabulary described in Section 3.2. In the
MIR tree, terminal nodes represent at least one word: during the analysis phase, any flexion node
is merged with the main word node and such a node gets annotated with morphological features
like gender, number, person, tense, case, etc. The presence of these features is language-dependent
(e.g. some languages lack case or gender). The morphological features are disambiguated as much
as possible taking information from other parts of the sentence (e.g. the person of a verbal form
may be disambiguated by the sentence subject). Where not possible, the uncertainty is expressed
(e.g. stating all the possible persons the verbal form can be in).

The Lucy analysis takes into account the presence of multi-word expressions (MWE) and han-
dles them as a single element when they are included in the lexicon. This helps in capturing the
semantics of such constructs during the translation process. This includes not only fixed MWEs
(e.g. “in front of”), but also flexible MWEs. For instance, verbal constructions like “take into
account” are identified and grouped into a single element.

In the transfer stage, the MIR tree is annotated and mutated into a transfer tree that is suit-
able as input for the generation phase. There are different types of transfer operations, such as
language-pair dependent operations (e.g. mapping of idiomatic expressions), contextual transfer
and lexical transfer.

fMetal MT is the name of the system developed by the University of Texas and Siemens on which the Lucy RBMT system
was initially based (Lamiroy and Gebruers 1989).
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Figure A3. MIR tree for sentence “The dogs stopped barking”.

The transfer stage is language-direction dependent. It relies on a bilingual lexicon that contains
word and expression translations, together with their context-dependent applicability criteria. It
also relies on a transfer grammar, that is, a set of imperative rules that implement the needed
transformations and annotations.
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The generation stage receives as input the transfer tree and generates the final translation,
performing any needed reorderings and adaptations. This stage is only dependent on the target
language (i.e. it can be reused for any source side language). It relies on a monolingual target lan-
guage lexicon, together with a generation grammar, that is, a set of imperative rules to generate the
output sentence.
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