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The thermal conductivity of a molecular gas consists of the translational and internal parts.
Although in continuum flows the total thermal conductivity itself is adequate to describe
the heat transfer, in rarefied gas flows they need to be modelled separately, according to the
relaxation rates of translational and internal heat fluxes in an homogeneous system. This
paper is dedicated to quantifying how these relaxation rates affect rarefied gas dynamics.
The kinetic model of Wu et al. (J. Fluid Mech., vol. 763, 2015, pp. 24–50) is adapted to
recover the relaxation of heat fluxes, which is validated by the direct simulation Monte
Carlo method. Then the model of Wu et al., which has the freedom to adjust the relaxation
rates, is used to investigate the rate effects of thermal relaxation in problems such as the
normal shock wave, creep flow driven by Maxwell’s demon and thermal transpiration. It
is found that the relaxation rates of heat flux affect rarefied gas flows significantly, even
when the total thermal conductivity is fixed.

Key words: rarefied gas flow

1. Introduction

When the ratio between the molecular mean free path and the characteristic flow length
becomes appreciable, the Navier–Stokes–Fourier equations fail to describe the rarefied gas
dynamics and the gas kinetic equation is used instead. For a monatomic gas, the Boltzmann
equation and the direct simulation Monte Carlo (DSMC) method provide equivalent and
successful predictions of rarefied gas dynamics (Wagner 1992; Bird 1994). For a molecular
gas, however, an internal energy (owing to the excitation of rotational, vibrational or
electronic degrees of freedom) other than translational energy exists, which makes the
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collision dynamics much more complicated than that of a monatomic gas. Wang-Chang
& Uhlenbeck (1951) extended the Boltzmann equation by treating the internal degree of
freedom quantum mechanically and assigning each internal energy level an individual
velocity distribution function. However, it is obvious that the analytical and numerical
methods for the Wang-Chang & Uhlenbeck equation become difficult and expensive.
For example, Tcheremissine & Agarwal (2009) found that in a hypersonic flow, the
computational cost for a molecular gas is two orders of magnitude higher than that for
a monatomic gas.

Compared with a dilute monatomic gas, a unique feature of the molecular gas is that it
exchanges the translational and internal energies during binary collisions. On an averaging
sense, in spatial-homogeneous systems, the relaxation of rotational temperature Trot (for
simplicity, we assume the molecule has only a rotational mode excited, and the rotational
degree of freedom is dr = 2 for a diatomic and linear molecule, and 3 for all other
nonlinear molecules) is described by the Jeans–Landau equation

∂Trot

∂t
= ptr

μ

T − Trot

Z
, (1.1)

where t is the time, ptr is the kinetic pressure, μ is the shear viscosity of the gas, T is the
total temperature and Z is the rotational collision number. Meanwhile, the relaxation of
the translational and rotational heat fluxes (qtr and qrot, respectively) are found to satisfy
(Mason & Monchick 1962; McCormack 1968):

∂

∂t

[
qtr
qrot

]
= −ptr

μ

[
Att Atr
Art Arr

] [
qtr
qrot

]
, (1.2)

where the matrix of relaxation rates A = [Aij] with i, j = t, r determines the translational
and internal thermal conductivities, see § 2.2. From the physical point of view, the matrix
should have two positive eigenvalues.

The DSMC has become the prevailing method to simulate the rarefied dynamics of
molecular gases, by using the phenomenological collision model of Borgnakke & Larsen
(1975). While the success of DSMC in modelling monatomic gas dynamics lies in its
recovery of viscosity and thermal conductivity, and the accurate update of post-collision
velocities as per a Boltzmann collision operator, the simulation of molecular gas flow in
DSMC is not perfect. That is, in DSMC, the attention is only paid to realize the correct
exchange rate between the translational and internal energies (1.1), which guarantees
the exact recovery of the bulk viscosity (Boyd 1991; Haas et al. 1994; Gimelshein,
Gimelshein & Lavin 2002). However, it cannot always recover the thermal conductivity
(Wu et al. 2020), either the total value or its translational and internal components. So
far, the consequence of this overlooked problem remains unknown as, to the best of our
knowledge, no one has considered (or there is no mechanism to recover) the relaxation of
heat fluxes (1.2) in DSMC, which determines the thermal conductivity of gas.

The relaxation rates play important roles in the gas dynamics (Candler 2018). Although
in DSMC and other kinetic models (Morse 1964; Holway 1966; Rykov 1975; Gorji & Jenny
2013; Wu et al. 2015; Kolluru, Atif & Ansumali 2020) the effect of temperature relaxation
(1.1), or equivalently the bulk viscosity, has been extensively studied, e.g. by Frezzotti &
Ytrehus (2006), Taniguchi et al. (2014) and Kosuge & Aoki (2018), the role of thermal
relaxation of heat fluxes (1.2) has seldom been investigated. In experiments, the total
thermal conductivity can be measured straightforwardly, and sometimes its translational
part (Mason 1963; Gupta & Storvick 1970; Porodnov, Kulev & Tuchvetov 1978;
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Wu et al. 2020) can also be measured; we will show in the following section that there
are still at least two elements in the thermal relaxation rates of heat fluxes A that are
not determined. Therefore, it is the aim of the present work to quantify these uncertainties
caused by the variation of A in rarefied gas flows, although they rarely affect the continuum
flow described by the Navier–Stokes–Fourier equations when the shear viscosity, bulk
viscosity and total thermal conductivity are fixed.

To fulfil this goal, a kinetic model which is able to recover the relaxation rates in (1.1)
and (1.2) is urgently needed. In this paper, the model of Wu et al. (2015) is first introduced,
which is then modified to include the general relaxations for both temperatures and heat
fluxes. The modified model is validated by DSMC when both models have the same
relaxation rates. Finally, the new kinetic model is used to study the influence of thermal
relaxation rates in rarefied gas flows, by keeping other parameters unchanged. Note that
here we do not use DSMC because when the shear viscosity, bulk viscosity and Schmidt
number (i.e. Sc = μ/ρD, where ρ is the mass density and D is the diffusion coefficient)
are fixed, the matrix A in DSMC is fixed, but the resulting thermal conductivities may
not be equal to the experimentally measured values (Wu et al. 2020), not to mention its
translational and internal components.

2. Thermal relaxation and transport coefficients

The essential difference between monatomic and molecular gases is that molecules exhibit
internal relaxation that exchanges the translational and internal energies, which lead
to several new transport coefficients including the bulk viscosity and internal thermal
conductivity. For simplicity, we consider the case where only rotational modes are
activated and treated in the way of classical mechanics.

2.1. Bulk viscosity
In dilute gas, the exchange of translational and internal energy through inelastic collisions
leads to a resistance in the compression or expansion of the gas, which is quantified by the
bulk viscosity μb. According to the expansion of Chapman & Cowling (1970) , when the
relaxation time Zμ/ptr between the translational and rotational energies is much shorter
than the characteristic time of gas flow, the bulk viscosity is expressed as

μb = 2drZ
3(dr + 3)

μ. (2.1)

The most widely used phenomenological model for molecular gas in DSMC is the model
of Borgnakke & Larsen (1975), in which the relaxation rate is controlled by making a
fraction of collisions inelastic. This fraction gives the inverse of the rotational collision
number in DSMC, denoted as ZDSMC. Note that when the variable-soft-sphere model is
used in DSMC, ZDSMC is related to the rotational collision number Z in (1.1) as

Z = α(5 − 2ω)(7 − 2ω)

5(α + 1)(α + 2)
ZDSMC, (2.2)

where ω is the viscosity index such that μ(T) = μ(T0)(T/T0)
ω, T0 is the reference

temperature and α is the parameter that determines the scattering angle after binary
collision; it can be chosen freely, but in the variable-soft-sphere model it is usually
determined by the Schmidt number (to simulate the diffusion process) through the
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following equation (Bird 1994):

Sc = 5(2 + α)

3(7 − 2ω)α
. (2.3)

Therefore, the bulk viscosity of the molecular gas can be exactly recovered by adjusting
the value of ZDSMC in DSMC simulations.

2.2. Thermal conductivity
Compared with the monatomic gas, the thermal relaxations not only reduce the value of the
translational thermal conductivity κtr, but also result in the rotational thermal conductivity
κrot. According to the expansion of Chapman & Cowling (1970), the translational and
rotational thermal conductivities satisfy (Mason & Monchick 1962)[

κtr
κrot

]
= kBμ

2m

[
Att Atr
Art Arr

]−1 [
5
dr

]
, (2.4)

where kB is the Boltzmann constant and m is the molecular mass.
It will be convenient to express the thermal conductivity κ of a molecular gas in terms

of the dimensionless factors reported by Eucken (1913):

κm
μkB

= 3
2

ftr + dr

2
frot = 3 + dr

2
fu, (2.5)

where fu is the total Eucken factor, while ftr and frot are the translational and internal
Eucken factors, respectively,

ftr = 2
3

mκtr

kBμ
, frot = 2

dr

mκrot

kBμ
. (2.6a,b)

From (2.4) and (2.6a,b), it is clear that the Eucken factors are determined by the
four relaxation rates in the matrix A. However, the values of these relaxation rates are
difficult to be obtained experimentally. For monatomic gas, Atr = Art = Arr = 0 and
Att = 2/3, so the translational Eucken factor is 2.5. In molecular gas, the energy exchange
between translational and rotational energy makes the off-diagonal components Atr and
Art negative, which leads to a translational Eucken factor ftr lower than 2.5.

In DSMC, as the only parameter modifying the energy exchange between different
energy modes, the collision number Z determines the values of relaxation rates A (and
hence the thermal conductivities). Considering the discussion in § 2.1, both bulk viscosity
and thermal conductivity of a molecular gas are determined by Z, so that they cannot be
adjusted independently in DSMC. Therefore, in general, these two transport coefficients
cannot be matched to the experimental values simultaneously in the conventional DSMC
method with the Borgnakke–Larsen model.

2.3. Extraction of thermal relaxation rates in DSMC
Because DSMC does not allow free adjustment of A but only the collision number ZDSMC,
here we extract the relaxation rates A by varying ZDSMC. To this end, we consider both
nitrogen and hydrogen chloride, which have only classical rotational motions excited (with
dr = 2) at room temperature.

We extract the thermal relaxation rates A in the spatial-homogeneous relaxation
problem: 106 simulation particles are generated over a cubic cell of the size (10 nm)3,
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Figure 1. The initial distribution of (a) molecular velocity and (b) rotational energy of nitrogen molecules in
DSMC (the open-source code SPARTA is used), where the abscissas are normalized by

√
2kBT0/m and kBT0,

respectively. (c,d) The evolution of heat fluxes and their time derivatives, where the circles in (d) represent the
numerical fitting used to extract the relaxation rates A from DSMC. (e–h) Extracted A from DSMC for nitrogen
(squares) and hydrogen chloride (circles). DSMC simulation parameters are summarized in table 1.

where the periodic condition is employed at all the boundaries. The gas density is
n0 = 2.69 × 1025 m−3 and the temperature is T0 = 300 K. At the beginning of the DSMC
simulation, simulation particles with positive velocity in the x direction are generated
from the Maxwell velocity distribution of T = 200 K, while the rest are generated from
the Maxwell velocity distribution of T = 400 K, see figure 1(a); similarly, the rotational
energy assigned to the particles with vx > 0 is generated from the Maxwell distribution of
T = 200 K, while those moving to the opposite direction obey the Maxwell distribution of
T = 400 K, see figure 1(b). In this manner, we generate an initial velocity and energy
distribution, which leads to initial non-zero values of translational and rotational heat
fluxes. Then, the system with prescribed initial heat fluxes evolves with respect to time,
and both the translational and rotational heat fluxes are monitored until the entire system
reaches thermal equilibrium. Both nitrogen and hydrogen chloride are simulated to extract
the relaxation rates A with the variable-soft-sphere molecular collision model and the
corresponding parameters are listed in table 1. One hundred independent runs were
conducted to get smooth results.

Figure 1(c,d) plots the evolution of the translational and rotational heat fluxes and their
time derivatives for nitrogen with ZDSMC = 4.0. It can be seen that the time derivative
of the translational heat flux is significantly increased, owing to its strong coupling with
the rotational heat flux: from (1.2), it can be inferred that Atr is negative. And the time
derivative of rotational heat flux decreases monotonically with respect to the time, which
implies that |Art| is very small if Art is negative.

We adopt the least squares method to solve the linear regression problem (1.2) to extract
the relaxation rates A, and the results in figure 1(e–h) show that these parameters exhibit a
linear dependence with 1/ZDSMC. When the collision number ZDSMC is increased, the
energy exchange between translational and internal motions vanishes gradually, hence
the relaxation rates Atr and Art approach zero, while Att and Arr approach 2/3 and Sc,
respectively. According to (2.4), Arr approaching Sc means that the translational thermal
conductivity is proportional to the diffusion coefficient. This is comprehensible because
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Parameters N2 HCl

Molecular mass: m (×10−26 kg) 4.65 6.14
Viscosity index: ω 0.74 1.0
Diameter: d (×10−10 m) 4.11 5.59
Schmidt number: Sc 1/1.34 1/1.33
Scattering parameter: α 1.36 1.59
Simulation time step (×10−12 s): 4.74 5.45

Table 1. Parameters in the variable-soft-sphere model of DSMC, for N2 and HCl, which are collected from
tables A1 and A3 in the book of Bird (1994). In this case and all the following cases, the simulation time step
is chosen to be one-fifth of the minimum cell size divided by the most probable speed

√
2kBT0/m, which is

much smaller than the average collision time of gas molecules. It follows the standard procedure in DSMC
simulations to guarantee the convergence in terms of time step (Bird 1994).

the diffusion of gas molecules transports the heat; the detailed discussion can be seen in
Appendix A.

Given the thermal relaxation rate A, the Eucken factors can be calculated by
(2.4) and (2.6a,b). We find that to match the experimental thermal conductivity
(or equivalently fu = 1.993) of nitrogen at T0 = 300 K, the collision number
has to be chosen as ZDSMC = 4.0, and the corresponding relaxation rates are
Att = 0.786, Atr = −0.201, Art = −0.059 and Arr = 0.842; hence we have ftr = 2.365
and frot = 1.435. Note that this value of ZDSMC may not lead to the correct value of the
bulk viscosity. However, for hydrogen chloride, no matter what is the value of ZDSMC,
the calculated total thermal conductivity from DSMC can never recover the experimental
value (Wu et al. 2020). This is the problem of DSMC which, in general, cannot
recover the bulk viscosity and translational/internal thermal conductivity of molecular gas
simultaneously in the phenomenological Larsen–Borgnakke collision model.

3. The modified Wu model and its validation

Owing to the limitation of the DSMC method, a kinetic model is developed in this section,
which allows free adjustment of relaxation rates (and hence free adjustment of the bulk
viscosity and translational/internal thermal conductivities). To this end, we modify the
model of Wu et al. (2015) so that it can reflect the general relaxations for temperature and
heat flux. Then, we validate the accuracy of the proposed model by comparing its solutions
for the normal shock wave and creep flow driven by Maxwell’s demon with the DSMC
results. To make a consistent comparison, the relaxation rates in the modified model of
Wu et al. (2020) should be the same as those in the DSMC simulations.

3.1. The modified kinetic model
Like the equation of Wang-Chang & Uhlenbeck (1951), all the kinetic models divide the
binary collision into the elastic and inelastic collisions. The elastic collision conserves the
translational energy, while the inelastic collision exchanges the translational and rotational
energies. The linearized kinetic model for molecular gas is developed by Hanson & Morse
(1967), while one of the practical models for nonlinear flows is proposed by Rykov (1975).
As an extension of the Rykov model, the kinetic model equation developed by Wu et al.
(2015) also treats the elastic and inelastic collision separately. While to improve the
modelling accuracy, the Wu model replaces the elastic collision operator in the Rykov
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model with the Boltzmann collision operator for a monatomic gas, and thus introduces a
more realistic elastic collision relaxation time that is dependent on the molecular velocity
(i.e. in the limit without translational–internal energy exchange, it is reduced to the
Boltzmann equation for a monatomic gas).

In the original model of Wu et al. (2015), two velocity distribution functions, G(x, v, t)
and R(x, v, t), where x and v are respectively the spatial coordinates and molecular
velocity, are used to describe the translational and rotational motions of gas molecules;
their evolutions are governed by the following kinetic equations:

∂G
∂t

+ v · ∂G
∂x

+ a · ∂G
∂v

= Q(G) + Grot − Gtr

Zτ
,

∂R
∂t

+ v · ∂R
∂x

+ a · ∂R
∂v

= R′
tr − R
τ

+ Rrot − Rtr

Zτ
,

⎫⎪⎪⎬
⎪⎪⎭ (3.1)

where a is the external acceleration, τ = μ/ptr is the characteristic collision time related
to the translational motion of gas molecules and Q(G) is the Boltzmann collision operator
for monatomic gases (Wu et al. 2013; Wu, Reese & Zhang 2014). The four reference
distribution functions Gtr, Grot, Rtr and Rrot are modelled as

Gtr = n
(

m
2πkBTtr

)3/2

exp
(

− mc2

2kBTtr

) [
1 + 2mq0 · c

15kBTtrptr

(
mc2

2kBTtr
− 5

2

)]
,

Grot = n
(

m
2πkBT

)3/2

exp
(

− mc2

2kBT

)[
1 + 2mq′

0 · c
15kBTp

(
mc2

2kBT
− 5

2

)]
,

Rtr = drkBTrot

2
Gtr +

(
m

2πkBTtr

)3/2

exp
(

− mc2

2kBTtr

)
mq1 · c
kBTtr

,

Rrot = drkBT
2

Grot +
(

m
2πkBT

)3/2

exp
(

− mc2

2kBT

)
mq′

1 · c
kBT

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.2)

and R′
tr in the elastic collision operator is

R′
tr = drkBTrot

2
[τQ(G) + G] +

(
m

2πkBTtr

)3/2

exp
(

− mc2

2kBTtr

)
mq1 · c
kBTtr

, (3.3)

where c = v − U is the peculiar velocity, and

q0 = qtr, q′
0 = ω0qtr,

q1 = (1 − Sc)qrot, q′
1 = (1 − Sc)ω1qrot,

}
(3.4)

where ω0 and ω1 are the constants to recover both the translational and rotational thermal
conductivity coefficients of molecular gases. Further, the macroscopic quantities, number
density n, flow velocity U , translational temperature Ttr, rotational temperature Trot,
translational heat flux qtr, the rotational heat flux qrot and pressure tensor pij are calculated
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from the velocity moments of the two distribution functions G and R:

n =
∫

Gdv, U = 1
n

∫
Gvdv,

Ttr = 1
3nkB

∫
mGc2dv, Trot = 2

drnkB

∫
Rdv,

qtr = 1
2

∫
mGc2cdv, qrot =

∫
Rcdv, pij =

∫
mGcicjdv.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.5)

The total temperature T , total pressure p and its translational counterpart are T = (3Ttr +
drTrot)/(3 + dr), p = nkBT and ptr = nkBTtr, respectively. It can be verified that (1.1) and
(1.2) are satisfied in the kinetic model.

Considering the general expression of thermal conductivity coefficients (or Eucken
factors equivalently) based on (2.4) and (2.6a,b), there are still two unknown values in
relaxation rates A even when both ftr and frot have been fixed. This implies that the
coefficients ω0 and ω1 in the kinetic model above, which is determined by the thermal
conductivities, may not able to give a full recovery of all the transport information in
molecular gases. Therefore, we modify the kinetic model by incorporating the relaxation
rates A into the reference distribution functions as

q0 = qtr, q′
0 =

[
−3Z

(
Att − 2

3

)
+ 1

]
qtr − 3ZAtrqrot,

q1 = 0, q′
1 = −Z

[
Artqtr + (Arr − 1)qrot

]
,

⎫⎪⎬
⎪⎭ (3.6)

so that (1.1) and (1.2) are exactly recovered.

3.2. Numerical validation
Now we assess the accuracy of the kinetic model (3.1) with (3.2) and (3.6), by comparing
its numerical solutions of a normal shock wave and thermal creep flow in nitrogen with
the DSMC results. To make fair comparisons, the relaxation rates A are equal to those
extracted from the DSMC. Therefore, the collision number and relaxation rates take the
values determined in § 2.3, and the rotational collision number in (3.1) is Z = 2.6671
according to (2.2).

The obtained macroscopic flow quantities will be shown in non-dimensional values:
the number density, temperature, spatial coordinate, velocity, pressure and heat flux
are normalized by n0 = 2.69 × 1025 m−3, T0 = 300 K, the characteristic length L0, the
most probable speed vm = √

2kBT0/m, n0kBT0 and n0kBT0vm, respectively. The Knudsen
number is defined as

Kn = μ(T0)

n0L0

√
π

2mkBT0
. (3.7)

3.2.1. Normal shock wave
First, we consider the normal shock wave when the Mach number is Ma = 4 and the
upstream mean free path (L0 = 59.59 nm) is chosen as the characteristic length. The
simulation domain used in both the kinetic model and DSMC is 30L0 in the x direction
with the wavefront in the centre of it, so that the equilibrium states determined by
the Rankine–Hugoniot relation can be applied at both ends of the domain. The kinetic
model equation is solved by the discretize velocity method with the fast spectral method
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Figure 2. Comparison between the DSMC (circles) and the modified Wu model (lines) for a normal shock
wave in nitrogen with Ma = 4. The macroscopic quantity Q = ρ, u, T is normalized by (Q − Qu)/(Qd − Qu),
where the subscripts u and d represent the upstream and downstream, respectively. Note that the shock wave is
shifted so that the density at x = 0 is (ρd + ρu)/2, and other profiles are shifted accordingly.

dealing with its Boltzmann collision term (Wu et al. 2015). The entire domain is
divided into 150 non-uniform cells, with more cells located around the shock centre.
Additionally, 48 × 32 × 32 discrete velocities, which are uniformly distributed within
the range [−7.5vm, 7.5vm], are used. In the DSMC simulation, 360 uniform spatial cells
with size of 5 nm are applied, and there are 7.2 × 105 simulation particles in the whole
computational domain. When the steady state is reached, by time averaging over 2500
sampling steps, we get the final results as the reference for comparison. The accuracy is
guaranteed because the cell size is much smaller than the molecular mean free path and
there are approximately 2000 simulation particles per cell.

Figure 2 compares the structures of the normal shock wave obtained from the kinetic
model and the DSMC simulation. Good agreement in macroscopic quantities demonstrates
the accuracy of the proposed kinetic model.

3.2.2. Creep flow driven by the Maxwell demon
Second, we consider the microflow. In the thermal creep along an infinite channel, the
gas flow is driven by a temperature gradient at the wall, which is equivalent to applying a
small external acceleration. Here, as a thought test, we consider the creep flow driven by
the Maxwell demon, where each molecule is subject to an external acceleration based on
its kinetic energy:

ay = a0

(
v2

v2
m

− 3
2

)
(3.8)

see figure 3. It can be seen that the direction of the acceleration is determined by the
magnitude of molecular velocity. We solve this creep flow in a one-dimensional domain,
which is bounded by two parallel walls with a fully diffuse boundary condition at the same
temperature. Here, the characteristic length L0 is the distance between the walls and a0 is
a small value set by 2a0L0/v

2
m = 0.0718 to guarantee that the gas flow deviates slightly

from the global equilibrium.
The modified Wu model is solved by the general synthetic iterative scheme (Su, Zhu

& Wu 2020; Su, Zhang & Wu 2021). There are 100 spatial cells inside the computational
domain, with more cells located in the vicinity of the solid walls to capture the Knudsen
layer structure. Additionally, 48 × 48 × 48 non-uniformly distributed discrete velocities
within the range [−6vm, 6vm] are applied, with dense velocity grids around zero velocity
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Figure 3. Comparison between the DSMC (markers) and the modified Wu model (lines) in the creep flow
driven by the Maxwell demon. The velocity and heat flux are further normalized by the dimensionless
acceleration 0.0718.

to capture the discontinuity of velocity distribution function therein. In the DSMC
simulations, there are 100 uniform cells and 2 × 104 simulation particles between two
walls, and both time and ensemble averaging are used which include 10 independent runs
with 2.5 × 106 sampling times for each one.

The results of kinetic model and DSMC are compared in figure 3, for typical Knudsen
numbers. It is observed that the flow velocity and heat fluxes obtained from the kinetic
model are in good agreement with those from the DSMC. Furthermore, the rotational heat
flux is negligibly small, when compared with the translational heat flux. This implies that
the translational thermal conductivity plays the dominant role in the flow velocity in this
problem.

4. Uncertainty quantification: rate effect of thermal relaxation

It can be learned from (2.4) that, even when the translational and rotational thermal
conductivities (i.e. κtr and κrot) are determined, two elements in the matrix A remain
unknown; and there will be three undetermined elements if only the total thermal
conductivity is known as in many experiments. Here we investigate the effects of these
uncertain values based on the modified Wu model, as the DSMC does not have the
capability to adjust the thermal relaxation rates once the rotational collision number and
Schmidt number are fixed. The uncertainties in rarefied gas flows will be quantified in the
following two ways. First, we vary the values of Aij when the translational and rotational
Eucken factors (i.e. ftr and frot) are given. Second, we fix the total Eucken factor fu, Atr and
Art, but vary the translational and rotational Eucken factors.

4.1. Normal shock wave
When ftr and frot are fixed on top of the fixed shear viscosity and bulk viscosity, the gas
dynamics is uniquely determined in the continuum flow. However, different values of Aij
could lead to different results in rarefied gas flows. The normal shock wave of nitrogen
is first studied to demonstrate this uncertainty. Specifically, Atr and Art are selected to
vary within [−5/6Z, 0] and [−1/3Z, 0], respectively, while Att and Arr are determined
according to (2.4) and (2.6a,b) to recover the assigned values of ftr = 2.365 and frot =
1.435. Given Z = 2.6671, the considered minimum values of Art and Atr are −0.3124 and
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Figure 4. Influence of the thermal relaxation rates in a normal shock wave. The red solid lines are the results
of the modified Wu model with A extracted from DSMC, while the blue shaded regions show the results from
the modified Wu model, with Art ∈ [−0.3124, 0.0], Atr ∈ [−0.1250, 0.0], ftr = 2.365 and frot = 1.435.

−0.1250, respectively, which are approximately 1 ∼ 2 times larger, in magnitude, than
those extracted from the DSMC simulation in § 2.3.

Figure 4 shows the density, temperature and heat flux in the normal shock wave of
Mach number Ma = 4, where the red solid lines illustrate the reference solutions with A
extracted from the DSMC, while blue shaded regions show the divergences caused by the
variations of A. It can be seen that the variation of thermal relaxation rates slightly shifts
the profiles of rotational temperature and heat fluxes, mainly in the regions x ∈ [−2, −1]
and x ∈ [0.5, 2]. However, the thermal relaxation rates have almost no influence on the
profiles of the density (hence velocity owing to mass conservation) and normal pressure
(not shown here). Therefore, there is also little change in the thickness of the shock wave.

Now we consider different values of ftr and frot, but a fixed value of total thermal
conductivity. Figure 5 summarizes the numerical results from the modified Wu model with
ftr = 1.5, 2.0, 2.5, while Atr and Art take the values of −5/6Z and −1/3Z, respectively.
Note that small values of ftr are possible, especially in polar gases where the translational
Eucken factor can be much smaller than 2.5, e.g. ftr = 1.78 for water and ftr = 0.41 for
CH3OH (Mason & Monchick 1962). Significant discrepancies in macroscopic quantities
with different values of ftr are observed, especially in the profiles of temperature. First,
larger ftr makes the translational temperature rise earlier to its maximum value, and then
decrease faster to the equilibrium value downstream; the same trend is also observed in
the deviation pressure

Pxx = m
2

∫ (
c2

x − c2

3

)
Gdv, (4.1)

and the magnitude of total heat flux. Second, the influence of Eucken factors on the
rotational temperature, however, concentrates around the centre of the shock structure:
lower ftr and hence higher frot result in larger rotational temperature. Third, larger ftr results
in a faster rise of density.

4.2. Creep flow driven by the Maxwell demon
The same sets of values of A in normal shock wave cases are used here to study
the influence on the velocity and heat flux in the creep flow driven by the Maxwell demon,
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Figure 5. Influence of the translational Eucken factor in normal shock waves. All cases have the same total
Eucken factor fu, but the translational Eucken factor ftr for the green dash-dot, blue dashed and red solid lines
are 1.5, 2 and 2.5, respectively; the rotational Eucken factor is changed accordingly to make fu fixed. The
modified Wu model is used.

and the results with Kn = 0.2 are shown in figure 6 when ftr and frot are fixed. In contrast to
the situations in a normal shock wave, a significant variation in the results with different
relaxation rates A is observed: the maximum relative uncertainty is 16.7 % and 17.6 %
for the velocity and translational heat flux, respectively. Meanwhile, it is seen that the
uncertainty occurs in the middle part of the creep flow, while the velocity slip and heat
flux in the vicinity of the wall rarely change.

To further investigate the influence of the translational Eucken factor, ftr = 1.5, 2.0, 2.5
are considered in the modified Wu model with Kn = 0.2 and fu = 1.993, while Atr and
Art take the values of −5/6Z and −1/3Z, respectively. As shown in figure 7, both the
velocity and translational heat flux vary significantly with ftr: the values of velocity and
translational heat flux of ftr = 2.5 are 68 % larger than those of ftr = 1.5. In contrast to the
results in figure 6, where the velocity slip and heat flux around the solid wall do not change
with fixed ftr, figure 7 shows a significant dependence of the velocity and heat flux on ftr,
i.e. both velocity and heat flux on the walls increase with ftr. Thus, it can be concluded
that the translational Eucken factor ftr plays a dominant role in this problem.

The importance of the translational Eucken factor in this problem can be understood as
follows. It can be seen from (1.2) that the elements Atr and Art are related to the energy
exchange between the translational and rotational motions. Therefore, when Atr (or Art) is
zero, the relaxation of the translational (or rotational) heat flux will not be affected by the
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Figure 6. Influence of the thermal relaxation rates in the creep flow driven by the Maxwell demon. Red solid
lines are the results with A obtained from the DSMC, the blue shaded region shows the results from the
modified Wu model, with Art ∈ [−0.3124, 0.0] and Atr ∈ [−0.1250, 0.0]. Other parameters are Kn = 0.2, ftr =
2.365 and frot = 1.435.
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Figure 7. Influence of the translational Eucken factor in the creep flow driven by the Maxwell demon. All
cases have the same total Eucken factor fu and Kn = 0.2, while the translational Eucken factor ftr for the green
dash-dot, blue dashed and red solid lines are 1.5, 2.0 and 2.5, respectively. The modified Wu model is used.

other one. For instance, by varying A, it is found that when Art = 0, the rotational heat flux
is always zero. The reason is that in the creep flow driven by the Maxwell demon, only
translational energy is changed directly by the external driving force, thus the rotational
energy and flux are only affected via the energy exchange, which are determined by Atr,
Art and Z. Because Art is very small compared with the other three relaxation rates in the
matrix A, qrot ≈ 0 and qtr (or ftr) is dominant.

4.3. Thermal transpiration in a cavity
Thermal transpiration is a classical phenomenon that has many applications, such as
the Knudsen pump (Vargo et al. 1999), where the mass flow and pressure difference
are the quantities of interest. To study this problem, a two-dimensional cavity with an
aspect ratio of 5 is considered. The temperature of the left and right walls are 200 ◦C
and 400 ◦C, respectively, while the temperature of the horizontal walls increases linearly
from 200 ◦C to 400 ◦C. Owing to symmetry, only the lower half of the cavity is simulated,
and the results of Kn = 0.5959 are shown in figure 8. At the initial stage, owing to the
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Figure 8. Comparison between the DSMC and the modified Wu model in the thermal transpiration inside a
closed cavity. (a) Horizontal velocity. Solid lines are results from the kinetic model, while dots are from the
DSMC. (b) Normal pressure Pxx = (m/2)

∫
c2

xGdv along y = 0.5. (c) Flow field in the lower half of the cavity;
from top to bottom, the translational Eucken factors are ftr = 2.37, 2.0, 1.75, respectively.

thermal transpiration, the gas molecules are moved towards the hot ends by the temperature
gradient along the solid surfaces, which increases the pressure there. As a consequence, the
pressure driven flow is formed in the opposite direction and several vortices are eventually
generated in the steady state. Comparisons in the flow velocity and normal pressure in
figure 8(a,b) support that the modified Wu model can give good agreement with DSMC
simulations.

Similar to the one-dimensional creep flow, the flow fields are expected to be determined
by ftr other than fu in thermal transpiration, where both the normal pressure and the
velocity magnitude increase with ftr, see figure 8(b,c). Therefore, the mass flow rate
follows the same trend. For the situations with small ftr, which may happen for some
polar molecular gases, the flow pattern and flow rate could be very different from those of
non-polar molecular and monatomic gases.

4.4. Uncertainty in different flow regimes
In the above cases, the gas flows are in the transition regime, for example, Kn = 0.2 in the
creep flow driven by the Maxwell demon. In this section, we investigate the uncertainties
of thermal relaxation rates when the gas flow is in the near-continuum and free molecular
regimes. To this end, Kn = 0.001, 0.1, 10 are considered for the case of creep flow driven
by Maxwell’s demon, and the translational Eucken factors are ftr = 1.5, 2.0, 2.5 with
fu = 1.993. The thermal relaxation rates A are chosen in the same way as that in § 4.2.
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Figure 9. Influence of the Knudsen number Kn in the creep flow driven by Maxwell’s demon. All cases have
the same fu, while ftr for green dash-dot, blue dashed and red solid lines are 1.5, 2.0 and 2.5, respectively.
Additionally, the Knudsen number are 0.001, 0.1 and 10 from (a,d), (b,e) and (c, f ), respectively.

Both the velocity and heat flux distribution are examined in figure 9. In the
near-continuum regime with Kn = 0.001, the thickness of Knudsen layers becomes
negligible and the velocity and heat flux are uniformly distributed in the bulk regime.
However, the difference caused by different values of ftr is still significant. Specifically,
the magnitude of velocity and translational heat flux increases by 77.3 % and 73.6 % when
ftr is changed from 1.5 to 2.5. However, it should be noted that although the relative error
is large, the variation of thermal relaxation rates in A is not so important because the flow
velocity and heat flux approaches zero along with the Knudsen number.

When Kn = 0.1, the variations of velocity and heat flux caused by different ftr are
approximately the same as those when Kn = 0.001, which are 76.1 % and 72.3 % when
ftr changes from 1.5 to 2.5. However, the magnitudes of these macroscopic quantities
increase by 100 times, compared with those when Kn = 0.001. This implies a roughly
linear dependence of the Knudsen number. It can be concluded that the rarefaction effects
disappear gradually when the system approaches the continuum limit, while the relative
uncertainty becomes even larger instead.

However, at large Knudsen numbers (e.g. Kn = 10), the magnitudes of the velocity and
heat flux become even larger, but the relative uncertainty caused by the changing of ftr
reduces to 7.4 % and 7.3 % for the velocity and translational heat flux, respectively. This
is comprehensible, because the effect from collisions between gas molecules is weakened
when Kn approaches infinity. Therefore, the uncertainty caused by the thermal relaxation
rates of collision becomes negligible at large Kn, though the rarefaction effect is more
significant at this regime.

Based on these results, we conclude that the uncertainties in thermal relation rates are
only important in the transition flow regime, where, roughly, 0.01 � Kn � 10.

917 A58-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

33
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.338


Q. Li, J. Zeng, W. Su and L. Wu

5. Conclusions

In summary, the relaxation rates of translational and rotational heat fluxes play an
important role in rarefied flows of molecular gas. Because in experiment only the
translational and rotational thermal conductivities are measured (in most cases only the
total thermal conductivity is known), there are two (three) underdetermined coefficients.
For the first time, these uncertainties are properly quantified in this paper. First, a kinetic
model which is able to describe the relaxations of energy and heat fluxes is designed.
Second, the kinetic model is validated by the DSMC method with the Borgnakke–Larsen
collision rule, which can only reflect some fixed values of relaxation. Finally, by varying
the thermal relaxation rates in the modified Wu model, we study the influence of thermal
relaxation rates on the normal shock wave structures, the creep flow driven by Maxwell’s
demon and the thermal transpiration in a cavity.

This work demonstrates the importance to obtain exact values of the thermal relaxation
rates used in the kinetic model for rarefied gas flow simulations, and to develop a better
collision model in DSMC that is able to recover realistic relaxation rates. Research in
this direction will help to build correct models for thermal conductivity of molecular
gas, especially for molecular gas mixtures and non-equilibrium chemical reactions. In the
future work, we plan to investigate whether the molecular dynamics simulation can be
used to reduce or remove the uncertainties.

Acknowledgements. This work is supported by the UK’s Engineering and Physical Sciences Research
Council under grant EP/R041938/1, and Guangdong-Hong Kong-Macao Joint Laboratory for Data-Driven
Fluid Mechanics and Engineering Applications in China under grant 2020B1212030001.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Lei Wu https://orcid.org/0000-0002-6435-5041.

Appendix A. The Schmidt number and internal thermal conductivity

The internal thermal conductivity is related to the diffusion coefficient, or the Schmidt
number. This can be understood approximately from the simple kinetic theory, although
more accurate calculation of transport coefficients, however, should be based on the
Chapman–Enskog expansion (Mason & Monchick 1962). Considering the simplest case
where the translational and internal energies do not exchange, every molecule travels with
the average speed c̄ and the number density of molecules travels in the positive x-direction
is n/6. Within one mean free path λ, there is no collision, therefore, the number flux is

J = c̄
6

n(x − λ) − c̄
6

n(x + λ) ≈ − c̄
3
λ

dn
dx

. (A1)

Thus, the diffusion coefficient is

D = c̄
3
λ. (A2)

Similarly, the rotational heat flux is

qrot = mnc̄
6

[
dr

2
kB

m
T(x − λ) − dr

2
kB

m
T(x + λ)

]
≈ −nkBdrc̄

6
λ
∂T
∂x

, (A3)

which gives the expression for the rotational thermal conductivity

κrot = nkBdrc̄
6
λ. (A4)
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Therefore, we have

κrot = μkBdr

2m
× ρD

μ
= μkBdr

2m
× 1

Sc
. (A5)

Based on (2.4), it can be seen that if there is no cross-exchange coefficients, we have

κrot = μkBdr

2m
× 1

Arr
. (A6)

Therefore, in § 2.3, it is stated that Arr = Sc when ZDSMC is large (i.e. effectively no
exchange of translational and internal energies).
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