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We investigate the spatial stability of compressible, viscous pipe flows with
radius-dependent mean density profiles, subjected to solid body rotations. For a
fixed Rossby number ε (inverse of the rotational speed), as the Reynolds number
Re is increased, the flow transitions from being stable to convectively unstable,
usually leading to absolute instability. If flow compressibility is unimportant and
Re is held constant, there appears to be a maximum Re below which the flow
remains stable irrespective of any rotational speed, or a minimum azimuthal Reynolds
number Reθ (= Re/ε) is required for any occurrence of absolute instabilities. Once
compressible forces are significant, the effect of pressure–density coupling is found
to be more severe below a critical Re, where as rotational speeds are raised, a
stable flow almost directly transitions to an absolutely unstable state. This happens
at a critical Reθ which reduces with increased flow Mach number, pointing to
compressibility aiding in the instability at these lower Reynolds numbers. However,
at higher Re, above the critical value, the traditional stabilizing role of compressibility
is recovered if mean density stratification exists, where the gradients of density play
an equally important role, more so at the higher azimuthal modes. A total disturbance
energy-based formulation is used to obtain mechanistic understanding at these stability
states, where we find the entropic energy perturbations to dominate as the primary
instability mechanism, in sharp contrast to the energy due to axial shear, known to
play a leading role in incompressible swirling flows.

Key words: absolute/convective instability, compressible flows, instability

1. Introduction
The process of fuel injection in aeroengine combustion chambers typically relies

on the azimuthal component of mean flow with swirl to enhance flame anchoring via
appropriate recirculation zones that promote mixing (Candel et al. 2014). Inside the
combustion chamber, for sufficiently high rotation rates, this could yield complex
hydrodynamic structures (see Gallaire & Chomaz 2003; Loiseleux & Chomaz
2003; Liang & Maxworthy 2005; Gallaire et al. 2006) that may enhance flame
stabilization (e.g. Huang & Yang 2009). However, there is also the distinct possibility
of resonant coupling between such hydrodynamic structures with the lower-frequency
acoustic waves further upstream, inside any of the multiple swirler ducts of a modern
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aeroengine fuel injection system. In fact, instabilities in swirl-stabilized combustion
chambers, which are sometimes manifested in the form of three-dimensional helical
structures with a precessing vortex core (e.g. Huang & Yang 2009), have often been
traced to conditions inside the injector tube (see e.g. figure 3c in Candel et al. 2014).
In this work, the compressible rotating Hagen–Poiseuille flow (CRHPF) with variable
mean density is used as a model for the near-sonic-speed premixed flow inside such
air swirler ducts. In the air-assisted atomizer designs, for example, high-velocity air
jets are introduced to aid in the fuel atomization process, especially at the lower
fuel flow rates when the corresponding flow Mach numbers could be potentially high
enough (perhaps close to choked; see e.g. Lefebvre & Ballal 2010) for compressibility
effects to be significant. The stratification in mean density of such flows could be a
result of imperfect internal mixing of the multiple fuel and air streams, the former
also likely to be differentially heated, a direct consequence of modern multi-swirler
designs (e.g. the General Electric TAPS; see Mongia 2003), where the main air
stream gets intermixed with multiple secondary fuel streams and also fuel vapours,
normally at different temperatures (e.g. Swaminathan & Bray 2011). Typically, such
injection systems are required to adapt over wide ranges of fuel flow rates, yielding
variations in flow Mach and Reynolds numbers, forcing a stable CRHPF to potentially
transition into a state of convective instability, perhaps even yielding an absolutely
unstable state at higher Re and rotation rates. In this work, we analyse these different
stability states via specifically focusing on the roles played by the various competing
disturbance energy mechanisms.

The study of instabilities in swirling flow has a long history, tracing back to the
linear stability analyses of Rayleigh and Synge (Rayleigh 1916; Synge 1933), yielding
the classical Rayleigh–Synge criterion, which showed a solid-body swirling flow with
no axial and radial velocity components to be linearly stable at all swirl levels. Later
studies included the missing axial velocity component and were further extended for
non-axisymmetric disturbances (see Howard & Gupta 1962; Lessen & Paillet 1974;
Leibovich & Stewartson 1983), all of which essentially concluded that increased swirl
improves the flow stability (see also Wang & Rusak 1996). This directly contrasts
with the observation that vortex breakdown in swirling flow is reached as the swirl
crosses a certain threshold (see e.g. Leibovich 1984; Escudier 1988; Sarpkaya 1995).
Starting with Wang & Rusak (1996), a different approach for swirling flows in finite-
length pipes was proposed to connect the vortex breakdown phenomenon with flow
instability, which for the first time clearly demonstrated that beyond a critical swirl,
the flow becomes linearly unstable, manifested via an axisymmetric vortex breakdown.
It has been subsequently argued that for a swirling flow in a ‘short-length’ pipe with
a vortex generator present, the overall flow dynamics is strongly coupled to specific
inlet and exit conditions, which invalidates a classical stability analysis (see e.g. Wang
& Rusak 1996; Wang et al. 2016).

A rotating Hagen–Poiseuille flow (RHPF) with a non-uniform axial speed has
also been frequently used to model the mean flow inside a pipe, which by virtue
of being a fully developed profile is independent of any effects from the pipe ends.
Moreover, the absence of a jet-like or wake-like mean profile resembling that of
classical vortex flows points to the difficulty in linking any vortex breakdown of
RHPF with its instability, which is also something not pursued here. In practice,
such profiles are applicable to a ‘narrow pipe’, where the pipe length is typically an
order of magnitude larger than the pipe diameter (see e.g. the experimental set-up
of Shrestha et al. 2013) or the length is comparable to the wavelength of the most
dominant stability mode (see e.g. Sugimoto 2010). The dimensions of typical swirler
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ducts, as discussed above, are such that they tend to qualify as narrow tubes and
hence RHPF is a good model for the swirling flow inside. In contrast, in a full-length
combustion chamber, for example, this is unlikely to be a good model as has been
already demonstrated by Wang & Rusak (1996) and Wang et al. (2016). Linear
stability analysis has been used to predict the breakdown of such swirling pipe flows,
using both temporal (e.g. Pedley 1968, 1969; Mackrodt 1976; Cotton & Salwen
1981; Maslowe & Stewartson 1982) and spatial models (Fernandez-Feria & del Pino
2002), where the otherwise unconditionally linearly stable pipe flows are shown to
be unstable to non-axisymmetric perturbations once swirl is introduced. For higher
rotation rates, i.e. at small Rossby numbers ε (inverse of the swirl parameter L),
the critical Reynolds number Rec for convective instability appears to be surprisingly
low (compared to flows that use vortex models), and becomes independent of ε
once a certain rotation rate is exceeded (see Fernandez-Feria & del Pino 2002).
Beyond the appearance of the convectively unstable regime, spatial stability analysis
has been used by e.g. Fernandez-Feria & del Pino (2002) to trace the boundary of
convective to absolute transition via the well-known Briggs–Bers theory (see Briggs
1964; Bers 1983), bypassing a potentially more-involved spatio-temporal analysis
(e.g. Olendraru et al. 1999). Their results show that at the incompressible limit, for
a given Re, the transition from convective to absolute instability occurs at rotation
rates higher than when the convective instability first appears, but only if the rotation
rate exceeds a minimum L (or is below a maximum εmax), irrespective of Re. As the
solid-body rotation rate is further increased so that ε reduces by approximately one
order of magnitude from εmax to εmin, the convectively unstable zone now disappears
and the flow transitions directly from a stable to an absolutely unstable state at
critical Reynolds number Ret = Rec, essentially independent of ε for ε < εmin (see
Fernandez-Feria & del Pino 2002; Shrestha et al. 2013). Even for non-axisymmetric
perturbations of higher azimuthal order this critical number varies only little and the
swirling pipe flow reaches unconditional stability as Re<Rec (the low-Rossby-number
limit; see Pedley 1969).

As compressibility is introduced, in free shear flows this is well known to reduce the
modal growth rates, yielding flows that are now less unstable (higher Rec and Ret) (e.g.
Papamoschou & Roshko 1988). In the case of vortical flows inside a pipe, Herrada,
Pérez-Saborid & Barrero (2003) also found compressibility to generally improve flow
stability and delay the transition to breakdown states (see also Rusak, Choi & Lee
2007; Rusak et al. 2015). However, in flows where the mean density (or temperature)
varies appreciably with radius along with a non-uniform axial velocity, it is not easy
to anticipate how the critical Re might change with compressibility, especially since
the nature of density stratification is likely to have an effect. For example, inviscid,
incompressible but radially stratified swirling flow with monotonically increasing
density has been shown by Fung & Kurzweg (1975) to be unconditionally stable to
all disturbances provided the radial variations of axial and angular velocities are small.
In our analysis, we also include mean densities that are decreasing functions of the
pipe radius, a distinct possibility during the complex mixing process in multi-swirlers
of aeroengines, yielding more interesting stability configurations, which we discuss
in this work.

In contrast to the downstream-propagating, spatially growing convective instabilities,
disturbances that are absolutely unstable may grow along all spatial directions and
in time. In most situations, this imposes a self-sustaining global mechanism on
the growth of instabilities, including in swirling flows (see e.g. Di Pierro, Abid &
Amielh 2013), and because of the general spatio-temporal nature of this mechanism,
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it is far more critical to the overall flow dynamics than any other instability
models. In this work, the goal is to gain mechanistic understanding of the origin of
absolutely unstable flows, with particular reference to a CRHPF, using a generalized
disturbance energy equation (see Chu 1965; Lu & Lele 1999) that includes all
possible energy mechanisms governing such instability states. This approach directly
generalizes the classical Reynolds–Orr equation for incompressible flows (see e.g.
Wang et al. 2016), via including contributions from the acoustic and entropy waves.
For example, the stability of incompressible, inviscid swirling flows is essentially
influenced by the coexistence of a shear in the axial and azimuthal velocities
(Panda & McLaughlin 1994; Oberleithner, Paschereit & Wygnanski 2014), which is
augmented by additional disturbance mechanisms if viscosity and compressibility are
also included, e.g. entropic perturbations or viscous and scalar dissipations (see § 2.3
for details). In this work, we quantify the relative contributions from these additional
energy mechanisms along with their role as sources or sinks to demonstrate their
complex interplay with the incompressible, inviscid production terms to finally yield
the overall convective or absolute stability of the flow under consideration. It should
be noted that if the incompressibility assumption holds, e.g. in certain geophysical
flows, instabilities of stratified density flow are commonly studied via a linearized
vorticity equation where the appearance of a baroclinic torque often explains the
flow dynamics (see e.g. Heifetz & Mak 2015). However, in flows with significant
compressibility effects, pressure and density are inherently coupled via the energy
equation, which is then the natural choice to study such mechanisms, as we do here.

This paper is organized as follows. Section 2 introduces the theoretical and
numerical methods used in this work, with § 2.1 describing the compressible
equations and their linearization, § 2.2 the mean and boundary conditions and
§ 2.3 the disturbance energy equations forming the basis of this work. Section 2.4
briefly discusses some numerical details, while § 2.5 highlights the procedure used
to track the convective–absolute instability boundary. The main results, including the
various neutral curves and the disturbance energy budgets, appear in § 3, with further
discussion and conclusions in § 4. Some validation studies are reported in appendix A
and the full matrix operators are listed in appendix B.

2. Problem formulation and numerical methods
2.1. Compressible stability equations

The viscous, compressible equations and the equation of state are formulated in
cylindrical polar coordinates (r, θ, z), non-dimensionalized for a CRHPF of mean
density ρ̄c, mean temperature T̄c and mean axial velocity ūc inside a pipe of radius R,
rotating at a constant angular speed of Ω , with (∗)c denoting the respective centreline
quantities, to yield

Dρ
Dt
+ ρL= 0, (2.1a)

ρ

(
Dur

Dt
−

u2
θ

r

)
=−

∂p
∂r
+

1
Re

(
1ur −

ur

r2
−

2
r2

∂uθ
∂θ
+

1
3
∂L
∂r

)
, (2.1b)

ρ

(
Duθ
Dt
+

uruθ
r

)
=−

1
r
∂p
∂θ
+

1
Re

(
1uθ −

uθ
r2
+

2
r2

∂ur

∂θ
+

1
3r
∂L
∂θ

)
, (2.1c)

ρ
Duz

Dt
=−

∂p
∂z
+

1
Re

(
1uz +

1
3
∂L
∂z

)
, (2.1d)
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ρ
DT
Dt
= (γ − 1)Ma2 Dp

Dt
+

1
Re Pr

1T + (γ − 1)
Ma2

Re
Φ, (2.1e)

γMa2p= ρT, (2.1f )

where D/Dt, ∆, L and Φ are respectively the material derivative, the Laplacian
operator, the dilatation term and the scalar dissipation function, given by

D
Dt
=
∂

∂t
+ ur

∂

∂r
+

uθ
r
∂

∂θ
+ uz

∂

∂z
, (2.2a)

L≡∇ · u=
∂ur

∂r
+

ur

r
+

1
r
∂uθ
∂θ
+
∂uz

∂z
, (2.2b)

∆=
∂2

∂r2
+

1
r
∂

∂r
+

1
r2

∂2

∂θ 2
+
∂2

∂z2
, (2.2c)

Φ = 2

[(
∂ur

∂r

)2

+

(
1
r
∂uθ
∂θ
+

ur

r

)2

+

(
∂uz

∂z

)2

−
1
3

L2

]
+

[
r
∂(uθ/r)
∂r

+
1
r
∂ur

∂θ

]2

+

[
1
r
∂uz

∂θ
+
∂uθ
∂z

]2

+

[
∂ur

∂z
+
∂uz

∂r

]2

, (2.2d)

with γ = 1.4 being the ratio of specific heats, Re = ūcR/ν the Reynolds number,
Pr= ν/α the Prandtl number and Ma= ūc/āc the Mach number, where ν and α are,
respectively, the kinematic viscosity and thermal diffusivity of the mean flow, taken
here as constants, and āc is the mean acoustic speed.

The linear stability equations are obtained from (2.1) via separating the flow
variable q = [ρ ur uθ uz p T]T into a mean q̄ and a fluctuating q′, with the latter
modelled to possess travelling-wave-like solutions along the axial z and azimuthal θ
directions with a periodic time t, by defining

q′(r, θ, z, t)= q̂(r) exp(iαz+ imθ − iωt), (2.3)

where q̂(r) is the unknown complex eigenfunction, α and m are respectively the axial
and azimuthal wavenumbers and ω is the frequency. Standard analytical results are
used for the mean q̄, described in § 2.2. Using (2.3) in (2.1a)–(2.1f ) and linearizing
for small fluctuations yields the compressible stability equations, written here as

L · q̂1 = 0, (2.4)

where q̂1 = [ρ̂ ûr ûθ ûz p̂]T and L= L1 + αL2 + L3/Re+ αL4/Re+ α2L5/Re. Each of the
operators Li, i= 1–5, is a 5× 5 matrix, whose details are given in appendix B.

2.2. Mean flow and boundary conditions
In general, both α and ω in (2.3) can be complex numbers in a spatio-temporal
analysis. In this work, we track the convective instability boundary via a spatial
analysis which imposes α= αr + iαi, where αr is the streamwise wavenumber and αi
is the growth rate, while ω and m are now specified real numbers. The mean q̄1 is
specified as

q̄1 =
[
ρ̄(r) 0 r/ε (1− r2) p̄(r)

]T
, (2.5)
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Cases ρ̄(r) ρ̄ ′(r) ρ̄ ′′(r)

A 1 0 0
B exp(−r2) −2r exp(−r2) 2(2r2

− 1) exp(−r2)

C (1+ r)−2
−2(1+ r)−3 6(1+ r)−4

C1 (1+ r)2 2(1+ r) 2

TABLE 1. Mean density cases considered.

0

2

4

–2
0 0.2 0.4 0.6 0.8 1.0

r

FIGURE 1. Mean profiles with radius-dependent density ρ̄(r), showing —— case B, – – –
case C and – · – · – case C1 of table 1. The corresponding grey curves are the gradients
ρ̄ ′(r).

where ε is the Rossby number defined as ε= ūc/ΩR, the inverse of the swirl number,
used to specify ūθ , while ūz is from standard results of laminar pipe flow. The mean
density ρ̄(r) is specified, as discussed next, which yields via (2.1b) a mean pressure

p̄(r)=
∫
ρ̄(r)
ε2

r dr+ p̄0, (2.6)

where p̄0 = 1/γMa2, the mean pressure at the pipe centreline. Note here that the
Rossby number may also be included to define an azimuthal Reynolds number Reθ =
ūcR/εν, which we use extensively in this work.

Studies of inviscid, incompressible swirling flows by Fung & Kurzweg (1975) with
monotonically increasing ρ̄(r) and ρ̄ ′(r) have shown unconditional stability at all
disturbance frequencies, while a density stratification that is radially decreasing is
likely to induce instabilities. Physically speaking, this is unlikely to be straightforward
for compressible viscous flows with more options for energy mechanisms available
(see (2.11)), where the nature of density stratification along with the corresponding
gradients are expected to be equally important in deciding the overall stability, besides
the effects of core compressibility via the chosen Mach number. To assess the role
of stratification, four types of mean density profile are considered in this work,
summarized in table 1 and figure 1. The motivation behind such choices comes
from the air-assisted and air blast atomizers of the modern gas turbine fuel injection
systems, introduced in § 1, which have surprisingly wide design variations that in
most cases amount to multiple swirling jets of fuel and air introduced at different
locations (often at different temperatures) to better control the mixing between fuel
and oxidizer ahead of the combustion zone. Case A in table 1, a constant mean
density case, models uniform (or perfect) mixing between fuel and air. This case,
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in its compressible and incompressible forms (of Fernandez-Feria & del Pino 2002),
also serves as a benchmark for the other compressible cases. These cases introduce
different types of heterogeneities in ρ̄(r), likely when mixing remains incomplete, of
which cases B and C of table 1, having higher densities near the centre, may be the
result of configurations that introduce greater fractions of the usually higher-density
air near the swirler core. Conversely, case C1 of table 1, similar to the monotonically
increasing density case of Fung & Kurzweg (1975), may be due to a fuel bias
near the central region. Additionally, we use different mathematical models for the
decreasing density cases, where case B has an exponential variation and case C
models algebraic changes. The choice of such functions introduces differences in
density gradients ρ̄ ′(r), where the algebraic case has a monotonically increasing
density gradient while the gradient in the exponential case decreases monotonically
until r = 0.7, beyond which it rises a little (see figure 1). As noted before, in spite
of similarly decreasing densities, differing density gradients are expected to yield
dissimilar effects on the flow stability due to the presence of these gradient terms
in (2.11). Finally, note that in practical configurations, the density stratification is
perhaps a combination of all or some of these cases, but as we shall see in § 3, a
better understanding of the associated energy mechanisms is obtained by considering
them individually.

The boundary conditions are specified at the pipe axis r= 0 (see e.g. Batchelor &
Gill 1962; Khorrami, Malik & Ash 1989):

m= 0 :
∂ρ̂

∂r
= χ1, ûr = 0, ûθ = 0,

∂ ûz

∂r
= 0,

∂ p̂
∂r
= χ2,

m=±1 : ρ̂ = 0, ûr ± iûθ = 0, 2
∂ ûr

∂r
± i
∂ ûθ
∂r
= 0, ûz = 0, p̂= 0,

m> 1 : ρ̂ = 0, ûr = 0, ûθ = 0, ûz = 0, p̂= 0,

 (2.7)

and at the pipe wall r= 1:

∀m :
∂ρ̂

∂r
= χ1, ûr = 0, ûθ = 0, ûz = 0,

∂ p̂
∂r
= χ2, (2.8a−e)

where χ1 and χ2 are constants, set here to zero, which has been found to yield no
loss of accuracy while obtaining numerical solutions (see also Khorrami et al. 1989).

2.3. Disturbance energy equation
Unlike incompressible flows, where a linearized vorticity equation may provide
important clues on instability mechanisms, a total energy-based formulation is required
to paint a more complete picture for compressible flows like the CRHPF considered
here. In this section, we develop the total disturbance energy equation following the
lines of e.g. Chu (1965) and Lu & Lele (1999) to obtain the energy budget of the
different instability mechanisms yielding the observed stability states. In particular,
as the instability transitions from a convective to absolutely unstable state or from
a stable to convectively unstable state, the focus would be on understanding the
varying roles of the component energy mechanisms. It may be noted here that the
incompressible version of this equation is the classical Reynolds–Orr equation (see
e.g. Wang et al. 2016).

The kinetic energy k represents the energy from the vortical modes via

k= 1
2(uru∗r + uθu∗θ + uzu∗z ), (2.9)
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which satisfies the kinetic energy equation that may be formed by combining
(2.1b)–(2.1d), while the total disturbance energy (e.g. Chu 1965)

Etotal = k+
pp∗

2γ p̄
+

γ p̄ss∗

2(γ − 1)
(2.10)

also includes contributions from the acoustic and entropy modes, governed directly
by (2.1a) and (2.1e), respectively. Here, the entropy s = p/γ p̄ − ρ/ρ̄ is non-
dimensionalized by cp, the specific heat capacity at constant pressure. The total
disturbance energy equation for a given mean flow can now be formed from
(2.1a)–(2.1f ), which on using (2.10) yields

2
D̄Etotal

D̄t
= −ρ̄u∗r uz

∂ ūz

∂r︸ ︷︷ ︸
Euz

−ρ̄u∗r uθ

(
∂ ūθ
∂r
−

ūθ
r

)
︸ ︷︷ ︸

Euθ

−

[
∂(u∗r p)
∂r
+

u∗r p
r
+

1
r
∂(u∗θp)
∂θ
+
∂(u∗z p)
∂z

]
︸ ︷︷ ︸

Ep

+
1

Re

[
u∗r

(
1ur +

1
3
∂L
∂r

)
+ u∗θ

(
1uθ +

1
3r
∂L
∂θ

)
+u∗z

(
1uz +

1
3
∂L
∂z

)
−

u2
r

r2
−

u2
θ

r2
−

2u∗r
r2

∂uθ
∂θ
+

2
r2

∂u∗r
∂θ

uθ

]
 Eν

+
γ

γ − 1
u∗r s
(

p̄
ρ̄

∂ρ̄

∂r
−
∂ p̄
∂r

)
+

1
Re

[
1

(γ − 1)Ma2Pr
s∗1T + s∗Φ

]
︸ ︷︷ ︸

Es(=Esi+Esv)

+
1

γ p̄Re

[
1

Ma2Pr
p∗1T + (γ − 1)p∗Φ

]
︸ ︷︷ ︸

EΦ

+ c.c., (2.11)

where

D̄
D̄t
=
∂

∂t
+

ūθ
r
∂

∂θ
+ ūz

∂

∂z
, (2.12)

with ()∗ denoting the complex conjugate operation and c.c. representing the sum of all
complex conjugate terms on the right of (2.11). Written in this way, (2.11) is valid for
any compressible viscous flow with the mean ūr= 0 (see (2.5)), true for most swirling
mean flow models. The different components of (2.11), as labelled, are as follows:
Euz is the production term due to shear of axial velocity uz, Euθ is due to shear of
azimuthal velocity uθ , Ep is a term that redistributes energy from near the source of
unstable energy to the interior of the pipe, Eν accounts for the momentum dissipation
from viscous terms, EΦ accounts for the dissipation from thermal conduction and Φ
of (2.1e) and finally Es is the entropy fluctuation term, including the inviscid entropy
fluctuation Esi, a non-zero term for all swirling flows irrespective of the density
stratification; Euz is the predominant source of instability for incompressible swirling
flows and at higher ε but is of diminishing importance, as we shall see, at higher Reθ .
A rigid-body rotation (see (2.5)) rules out Euθ , while Ep usually promotes instability
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by moving energy from near the wall, if available, toward the centre of the pipe. The
entropy fluctuations Es, which in the way defined in (2.11) directly include the density
stratification and the pressure–density coupling via Esi, are expected to be important,
while the viscous part Esv may turn out to be a major stabilizing mechanism. The
viscous dissipation term Eν always acts as a sink of energy, resisting unstable growth
and thus providing the traditional stabilizing role. The contribution from EΦ is usually
very small for all the cases considered and will not be shown separately. Note that
in (2.9)–(2.11), we have removed the primes from fluctuations for clarity. While
computing (2.11), it is worth remembering that as the fluctuations are modelled via
(2.3), the sign of the total energy Etotal(r) is automatically fixed via the sign of −αi,
so that for a spatially unstable mode (−αi > 0), the total energy is positive at all
radial locations and conversely is negative for a stable mode. Importantly, in § 3,
the components of equation (2.11) are reported after normalizing each case with the
corresponding maximum total energy Etotal(r)|max at r= rmax.

2.4. Numerical solution of stability equations
Equation (2.4) is numerically solved using a standard Chebyshev spectral collocation
technique before transforming to a linear companion matrix (e.g. Bridges & Morris
1984) to yield [

L2 L1 + L3/Re
I 0

] [
q̂2
q̂1

]
= α

[
−L5/Re −L4/Re

0 I

] [
q̂2
q̂1

]
, (2.13)

where q̂2 = αq̂1 and I is the 5 × 5 identity matrix. The −1 6 s 6 1 interval of the
Chebyshev polynomials is mapped to a 0 6 r 6 1 interval, as required here, via the
transformation s= 2r− 1. Equation (2.13), discretized at the N Gauss–Lobatto points,
is solved along with the boundary conditions (2.7) and (2.8) using standard eigen
solvers. Spurious eigenvalues are discarded by setting a convergence criterion for all
the eigenvalues. A value of N = 50 was found to be sufficient for the convergence of
all physical eigenvalues up to at least seven decimal places.

Note that in (2.3), since α(m, ω)=−α∗(−m,−ω), we follow a convention where
we set m6 0 and allow ω to take any sign, so that as m< 0 and ω< 0, (2.3) yields

q′(r, θ, z, t)= q̂∗(r) exp(−iα∗z+ imθ − iωt), (2.14)

where for a spatially unstable mode we still require −αi > 0. The sign of the
corresponding phase speed cp = ω/αr is decided by the relative signs of ω and αr.
Note here that in this work we only consider the azimuthal modes m = −1, −2, as
the axisymmetric m = 0 mode is known to be convectively stable for all rotations
(see e.g. Pedley 1968, 1969), while the same is also checked to be true for our
compressible cases with imposed density stratifications.

2.5. Tracking the onset of absolute instability
In the Briggs–Bers formalism (e.g. Briggs 1964; Bers 1983; Huerre & Rossi 1998;
Schmid & Henningson 2001), absolute instability of a mode is tracked via its spatio-
temporal behaviour, where the occurrence of pinch points in the complex α-plane,
together with branch points in a specific half of the complex ω-plane, renders the
mode absolutely unstable. However, if the details of the absolute modal growth rate
are not sought, a simpler spatial stability-based method, as described here (following
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FIGURE 2. The onset of absolute instability for the most unstable mode in case A of
table 1 at ε = 0.85 and Ma = 0.8 is tracked by monitoring (a) the spatial growth rate
αi and (b) the real group velocity cr as a function of the disturbance frequency ω for
successive values of Re (– – – Re= 217, – · – · – Re= 222 and —— Re= Ret = 227) until
a pinch point is found at ω=−0.971 for the last Reynolds number.

e.g. Fernandez-Feria & del Pino 2002), may be used to predict the onset of absolute
instability.

Here, the complex group velocity

c=
∂ω

∂αr
+ i

∂ω

∂αi
= cr + i

∂ω

∂αi
(2.15)

is zero when an unstable pinch/branch point is reached (see Schmid & Henningson
2001), which is an alternative to solving the corresponding complex dispersion relation.
In this process, the real group velocity cr(ω) and αi(ω) are tracked by varying Re
so that at Re= Ret when the absolute instability is reached, c= 0, which via (2.15)
yields cr = 0 and ∂αi/∂ω→∞, the basic requirements for pinching. Figure 2, for
example, demonstrates this for the most unstable mode in case A of table 1, where
with Re gradually increased for a given ε until Re=Ret = 227, a pinching appears in
figure 2(a) and simultaneously cr= 0 (figure 2b) at ω=ωt=−0.971. In addition, it is
checked (not shown here) that the pinch point in the complex α-plane is formed by
two spatial branches α+ and α− such that the negative branch always lies in the lower
half-plane (αi< 0), while the positive branch moves to the upper half-plane as ωi, the
imaginary part of a complex ω, is increased from zero. This process is repeated for all
ε, yielding the stability boundaries between the respective convective and absolutely
unstable states.

3. Results and discussion

While a few validation studies of our linear stability method against incompressible
RHPF results of Fernandez-Feria & del Pino (2002) and other standard non-rotating
pipe flows appear in appendix A, the incompressible RHPF neutral curves recomputed
in § 3.2 also yield checks for some of the important critical parameters, as we discuss
next.
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FIGURE 3. (Colour online) Solutions of (2.13) for Re= 100, ε = 0.5, Ma= 0.8, m=−1,
ω = −1 and ρ = 1 showing (a) the eigenvalue spectrum, with (u) being the marginally
unstable mode, and (b) absolute magnitude of the eigenfunctions with —— ũz, – – – ũθ ,
– · – · ũr and – ·· – ·· p̃ shown.

3.1. Eigenspectra and mode shapes
Figure 3(a) shows the eigenspectrum for parameters satisfying case A of table 1 with
Re= 100, ε= 0.5 and Ma= 0.8. Only the physical eigenvalues with αr > 0 are shown,
while unphysical solutions that appear naturally in Chebyshev spectral collocation
methods may be arbitrarily shifted away from the physical ones by a capacitance
matrix method (e.g. Hagan & Priede 2013), if needed. The flow of figure 3(a) is only
marginally unstable, since it has a mode with a small negative αi. The corresponding
mode shapes are in figure 3(b), where the observed variation in ũr may couple with a
favourable mean density gradient to generate strong entropy waves (see inviscid Es in
(2.11)) or it may act in tandem with p̃ to cause redistribution of shear energy within
the pipe flow (see Ep in (2.11)); ũθ rises close to the wall, generating a fluctuating
centrifugal force characteristic of swirling flows. The fluctuating ũz, ρ̃ (not shown)
and p̃ all attain their respective peaks inside the core region of the pipe flow, away
from the wall.

A detailed understanding of the flow instability mechanisms is incomplete unless
the fluctuating quantities are considered in conjunction with the mean flow parameters,
which is precisely what the disturbance energy formulation (2.11) aims at, and this
will be our focus in § 3.3.

3.2. Effect of density stratification and compressibility on neutral curves
Neutral curves marking the onset of convective and absolute instabilities for the first
and second asymmetric azimuthal modes m = −1, −2 at a fixed Mach number of
Ma = 0.8 are shown in figure 4 for the mean density cases A, B and C of table 1,
with the incompressible case of Fernandez-Feria & del Pino (2002) plotted alongside
for reference. Note here that the unconditionally stable case C1 does not possess
a neutral curve. Further, for swirling flows, the neutral curves may be plotted in
at least two different ways: as functions of Re versus ε or Re versus Reθ , both of
which include ūc and Ω (the latter via ε), the two mean quantities known to act
as potential sources of instability at the incompressible limit. However, as we shall
see, once compressibility is introduced, mean pressure (and density) dominates at
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FIGURE 4. (Colour online) Neutral curves showing regions of convective stability,
convective instability and absolute instability for —— m = −1 and – – – m = −2
perturbations for (a,b) constant mean density (case A), (c) exponentially varying mean
density (case B) and (d) algebraically varying mean density (case C) (for cases see
table 1), all at Ma= 0.8 with the grey curves showing the incompressible case (Ma→ 0).
In (a,b), the set points described in table 2 are marked with black dots, while labels
against the dotted lines in (b–d) indicate the respective limiting values of Re and Reθ .
In all figures, the thicker curves denote the convective–absolute boundary.

certain parametric configurations, especially at lower ε, when it is more prudent to
use Reθ as the independent variable since it better describes the different limiting
configurations.

Figure 4(a,b) show neutral curves for case A, when the mean density is constant
and Ma = 0.8. As the rotational speed Ω is gradually raised for this Mach number,
the m = −1, −2 neutral curves for convective instability follow the corresponding
incompressible curves until ε≈ 2, before breaking away (see figure 4a). In figure 4(b),
at lower Re / 45, the convectively unstable neutral curves asymptotically approach
Reθ =Reθc'80.3 for m=−1 and Reθc'75.0 for m=−2 (labelled in figure 4b), cutoff
values below which the flow is convectively stable at these conditions. Meanwhile,
the incompressible curves follow a completely different path as ε is lowered, instead
asymptotically approaching Re= Rec ' 82.9 for m=−1 and Rec ' 91.0 for m=−2
(also labelled in figure 4(b), confirming previous findings of e.g. Mackrodt 1976;
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Set points ε Reθ Re Ma Stability characteristic

SP1 20 15 300 0.8 Convectively stable (CS)
SP2 1.5 200 300 0.8 Convectively unstable (CU)
SP3 0.23 1304 300 0.8 Absolutely unstable (AU)

TABLE 2. Disturbance energy set points considered. Stability characteristic refers to
cases A–C of table 1, except case C1, which is CS at all the set points.

Cotton & Salwen 1981; Fernandez-Feria & del Pino 2002), respectively, below
which unconditionally stable states are reached. At the higher Re ' 200, both the
constant-density compressible and incompressible curves approach Reθ = Reθc ' 27.0
for m=−1 and Reθc' 43.5 for m=−2, identical to the previous spatial and temporal
analysis findings for incompressible conditions. The neutral curves marking the onset
of absolute instability show similar trends. As discussed by Fernandez-Feria & del
Pino (2002), incompressible swirling pipe flow demonstrates a minimum Reθ below
which absolute instability is impossible for any Re. Here, for m = −1, this limit is
found to be Reθ = Reθ t ' 254.2, while for m=−2 it is at Reθ t ' 326.9. In figure 4,
the compressible curves are not seen to possess any such clear limits (although at
lower Mach numbers there appears to be one; see especially figure 5a), and instead
at lower Re→ 0 these asymptotically approach the respective convective instability
curves (as per their azimuthal orders), and thus a convectively stable compressible
swirling pipe flow directly transitions to a state of absolute instability at this Reθ
(= Reθc = Reθ t) once Re is sufficiently low, as described.

The neutral curves of the exponential mean density case B of table 1, shown in
figure 4(c), are not too dissimilar to case A, except perhaps for an earlier break away
from the incompressible curve for the m=−1 convective instability as Re is lowered.
The m=−2 curve for this case is shifted rightwards (see figure 4c for the limiting Reθ
values), and this coupled with the shape of the m=−1 curve points to the little extra
convective stability provided via such a density stratification at these higher Re values
as compared to case A. As Re is lowered, the absolute instability curves along with
the convective ones asymptotically approach Reθ ' 90.3 for m = −1 and Reθ ' 83.6
for m = −2. Thus, as in case A, the higher azimuthal mode actually seems to be
slightly less stable at these lower Re numbers, and this effect increases dramatically
for case C, as we discuss next.

The stability of the algebraic mean density case C of table 1 is significantly different
at higher Re (see figure 4d), which directly follows from the nature of this density
stratification (see figure 1), where stronger density gradients at r→ 0 are unlike those
of cases A and B. As we shall see in § 3.3.3, this brings about a strong change in
the viscous entropy fluctuations even as ε→∞, yielding greater convective stability
at higher Re (check the limiting Reθ values in figure 4d), but especially at the higher
azimuthal order of m=−2. In contrast, as Re→0 (or at sufficiently low Re), the lower
azimuthal-order perturbations (here, m = −1) are more convectively stable (i.e. Reθc

higher), as is clear from the figure.
Although as Re → ∞ the convective stability is improved via stratification,

especially in case C, the boundary of absolute instability remains unaltered and
simply follows that of the incompressible case. Hence, density stratification plays no
role at the convective–absolute boundary for sufficiently high Re and, as we shall see
next, neither does flow compressibility.
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FIGURE 5. (Colour online) Same as in figure 4, the flow Mach number Ma is varied for
(a) the constant density case A (m=−1) and (b) the algebraic density case C (m=−2)
of table 1, with – · · – · · – Ma= 0.01, — — — Ma= 0.2, – · – · – Ma= 0.4, – – – Ma= 0.6
and —— Ma= 0.8.

The surprising evolution of the neutral curves at lower Re requires further
investigation. Accordingly, in figure 5, we plot the same neutral curves but with
compressibility now varied via changing the mean flow Mach number. Two cases
from table 1 are shown: the constant density case A for m=−1 in figure 5(a) and
the algebraic density case C for m = −2 in figure 5(b), since these are the furthest
apart in terms of their respective variations with Reynolds number, as seen in figure 4.
The results for the other cases, not shown, are essentially in between the two shown.
As compressibility is gradually raised from the incompressible Ma→ 0 limit, neutral
curves are seen to dramatically shift in such a way as to settle in a state increasingly
governed by the azimuthal Reynolds number Reθ over any constant Re. For a given
Ma and Re, as Reθ is gradually raised, or as swirl rates go up, the mean pressure
starts to dominate via (2.6). If the flow Mach number is low, say Ma = 0.01, the
background (centreline) pressure p̄0 = 1/γMa2 can be a relatively large quantity,
which then requires the Rossby number ε to be significantly low (i.e. very high Reθ )
for the integral term in (2.6) to exceed p̄0. In figure 5 this translates to convective
instability curves following the incompressible curve up to a higher Reθ for lower
Ma, but breaking away at much lower Reθ as the compressible effects increase at
higher Ma. Now, if there is density stratification as in figure 5(b), the convective
stability curves show the stability to be radically altered even if the flow is close to
incompressible, where the corresponding Ma= 0.01 curve evolves very differently to
the m=−2 incompressible curve (without any stratification). In this case, the effect
of the Mach number seems to start a little higher at Re' 205, and although increased
compressibility via increasing Ma still shrinks the region of convective stability, this
effect is much less than in figure 5(a).

To summarize, the overall stability of compressible swirling pipe flow turns out to
be quite interesting. Whereas for incompressible pipe flows, if the Reynolds number
is below a critical value (Rec' 82.9 for case A at m=−1 and Rec' 91.0 at m=−2)
the flow is convectively stable for all rotation rates, increased compressibility seems
to make it unstable, especially more absolutely unstable with fast disappearance of the
convectively stable zones. The swirling pipe flow now almost immediately transitions
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to an absolutely unstable state from an initially convectively stable state as Reθ is
raised beyond a critical value, which is increasingly lower for higher M. In this case,
compressibility actually promotes the onset of instability, which is in direct contrast
to prior findings on vortex flows, which were seen to be stabilized with increased
compressibility (see e.g. Herrada et al. 2003; Rusak et al. 2007, 2015). Further, if
Re is above this critical value, there seems to be hardly any effect of compressibility.
Density stratification alters this, where a radially increasing mean density (case C1)
can make the flow convectively stable at all Mach numbers, including when the flow
is treated as incompressible. If this stratification nature is flipped, the stabilizing
role of compressibility is now recovered, but only above a critical flow Reynolds
number (e.g. Re ' 205 for case C at m = −2), and even then it depends on the
nature of mean density stratification (e.g. the gradient of density) and the order of
the azimuthal modes, with the higher modes becoming more stable. Finally, at these
higher Reynolds numbers, for a convectively unstable flow, the onset of absolute
instability is independent of compressibility and stratification levels.

In the next section, we discuss the reasons behind such observations, but before
introducing the energy mechanisms it may be useful to reflect upon the Re and Ma
ranges, as plotted in figures 4 and 5, for the purpose of trying to relate these to
practical configurations. Flow Reynolds numbers in standard swirler designs are of the
order of 104 (see e.g. Wang et al. 2007), which could significantly alter depending
upon the viscosities of the fuel–air mixture or in the case of compact combustors
where swirler diameters are of the order of millimetres. Nevertheless, in figures 4
and 5(b,d) the neutral curves for convective instability are clearly independent of Re at
Re> 103, while the absolute instability curves follow a linear trend (in log scale) that
is easily extrapolated. As far as the Mach numbers go, as discussed previously, for
certain atomizer designs with air-assisted fuel breakup, this can be potentially high,
perhaps reaching near-choking conditions near the nozzle exit (see e.g. Lefebvre &
Ballal 2010).

3.3. Energy mechanisms
In this section, instability mechanisms for the m = −1 and m = −2 modes are
discussed with reference to the set points defined in table 2 and marked in
figure 4(a,b), which represent all three stability states for cases A, B and C of
table 1. The set point SP1 with a high Rossby number (or low Reθ ) ensures all the
cases of table 1 are convectively stable (CS). At SP2, all the cases except case C1
are convectively unstable (CU) and at SP3 these are absolutely unstable (AU). As
we shall see in the following subsections, the way in which the energy budget due
to (2.11) reaches identical stability states is quite distinct for the different stratified
density cases. In what follows, for the CS cases (at SP1) the least stable modal
solution is shown while unstable solutions refer to the most unstable mode. Table 3
summarizes the disturbance waves for cases A, B and C of table 1, shown next in
figures 6–9.

3.3.1. Constant mean density (case A)
Figure 6 depicts the role of energy mechanisms as labelled in (2.11) for the

homogeneous-density compressible case A, as Reθ is gradually increased via set point
SP1 to SP3 while holding Re = 300 and Ma = 0.8 constant. The fact that SP1 is a
convectively stable state is quickly understood from the negative sign of Etotal, which
is positive at the unstable set points SP2 and SP3 (see also table 3 for signs of
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FIGURE 6. (Colour online) Disturbance energies for case A (constant mean density) of
table 1 for (a,c,e) m=−1 and (b,d, f ) m=−2, at the set points (a,b) SP1 (c,d) SP2 and
(e, f ) SP3 of table 2, showing the following components of (2.11): – · – · – Euz , – – – Eν , —
— — Ep, —— Es. The components of Es, – • – • – Esi and – ◦ – ◦ – Esv , are only shown in
some important cases. The thick solid grey line in each panel represents the total energy.

αi). At SP1, the viscous dissipation Eν acts as the primary stabilizing mechanism,
peaking almost near r ≈ 0.5 (see figure 6a,b), successfully negating the instabilities
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m SP Constant (case A) Exponential (case B) Algebraic (case C)

ω αr αi ω αr αi ω αr αi

1 0.13 0.314 0.035 0.28 0.519 0.041 0.40 0.714 0.064
−1 2 −0.36 0.420 −0.222 −0.25 0.490 −0.280 −0.30 0.387 −0.248

3 −3.65 0.861 −0.528 −3.60 0.936 −0.772 −4.20 0.142 −0.666

1 0.10 0.375 0.093 0.23 0.565 0.131 0.30 0.726 0.240
−2 2 −0.90 0.668 −0.300 −0.75 0.795 −0.396 −0.95 0.504 −0.268

3 −7.75 1.298 −0.639 −8.35 0.335 −0.938 −7.80 1.292 −1.122

TABLE 3. Frequencies and wavenumbers of the perturbation waves calculated at the set
points of table 2. Negative αi (growth rates) are unstable. Cases in parenthesis refer to
those of table 1.
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FIGURE 7. (Colour online) Same as figure 6 but when the flow is modelled as
incompressible, shown at set point SP3 only.

from the axial shear Euz . As the rotational speed is raised to reach SP2 (figure 6c,d),
the viscous dissipation Eν drops significantly relative to Euz , as compared to SP1
(especially for the m = −1 cases of figure 6a,c), yielding a source of net unstable
energy located half-way between the pipe wall and its axis. The unstable shear energy
is now rapidly transported by the redistribution term Ep, whose peaks and valleys
are always out of phase with the major instability mechanism, to the interior of the
flow; this effect is more prominent for the m=−1 case, yielding an accumulation of
net unstable energy Etotal nearer to the pipe axis. The entropic energy perturbation Es

also appears in figure 6(c,d), although at SP2 this is quite insignificant. In contrast, at
SP3 (see figure 6e, f ), characterized by a very low ε, Es takes over as the dominant
mechanism. On considering the inviscid and viscous components of Es from (2.11),
this is quite expected, since for example Esi ∼ p̄/ρ̄∂ρ̄/∂r − ρ̄r/ε2 (on using (2.6)),
which for constant mean density reduces to Esi ∼ r/ε2, a quantity that dominates
as ε → 0. At the same time, its viscous part Esv is now the principal stabilizing
mechanism. It may also be noted that for the absolutely unstable cases, there is a
distinct shift of the peak unstable energy toward the centre of pipe, visible here in
figure 6(e, f ).
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It is interesting to note how entropic energy mechanisms dominate at higher Ω ,
via a compressible pressure–density coupling, even in the absence of any density
stratification, as seen for case A. To analyse this point further, in figure 7 we show
the disturbance energy budgets at SP3 where the flow is modelled as incompressible
and thus lacks any entropy perturbations. On comparing with figure 6, it is clear that
in the absence of Es, the competition is between Euz and Eν , with the redistribution
term even more dominant in moving the large unstable energies produced at SP3 as
compared to e.g. the SP2 cases of figure 6(c,d). As the compressibility effects are
turned on, the entropic energy mechanisms dominate, leading to a complete rebalance
of the energy budget as seen in figure 6(e, f ). This domination happens increasingly at
lower rotation rates (higher ε), as mean density stratifications are imposed, as we shall
see next. In fact, the near disappearance of axial shear energy Euz coupled with the
inviscid entropy perturbations Esi acting as the primary source of instability and the
latter’s redistribution inside the flow via Ep appears to be the defining characteristic
of compressible flows with constant (or zero) swirl.

3.3.2. Exponential mean density (case B)
On revisiting the neutral curves of figure 4(b,c), we note that the homogeneous

and exponentially stratified mean density cases look quite similar, yet as we show in
this section, their underlying energy budgets are significantly different. The particular
exponential stratification we consider decreases the mean density from the centre of
the pipe (see figure 1), yielding (inviscid) entropy fluctuations which now include
contributions from ∂ρ̄/∂r and vary as Esi ∼ 2r, still negligible near r → 0 but
independent of ε, yielding a mechanism now active at all of the rotation rates.

The radial variation of net disturbance energy for case B is shown in figure 8.
Even at SP1 (see figure 8a,b) the axial shear is no longer the major source of
flow instability, which is instead taken over by the inviscid entropy fluctuations Esi,
significant even at this low Reθ . Here, the primary stabilizing role comes from the
large viscous entropy fluctuations Esv, along with Eν providing secondary support.
However, this stabilizing role of total Es is completely reversed at the other set points,
where entropy fluctuations act as the primary destabilizing mechanism via their larger
inviscid components, while their now smaller viscous components are still the main
stabilizer with Eν relegated to relative insignificance (see figure 8c–f ). The fluctuating
energy components at the absolutely unstable SP3 set point are characterized by the
appearance of multiple peaks in Etotal, with the maximum of these appearing quite
close to the axis (r ≈ 0.2), as seen in figure 8(e, f ). The redistribution Ep, as always,
appears out of phase to the main source of unstable energy, which in this case is Esi
(see especially figure 8f ), clearly pointing to the former’s role of ‘redistributing’ this
unstable energy source.

3.3.3. Algebraic mean density (cases C and C1)
Neutral curves for case C have previously shown (in figure 4d) that a CRHPF with

algebraically stratified density of the form in table 1 can dramatically improve its
convective stability at the higher Re. In this case, the inviscid entropy perturbations
Esi ∼ p̄/ρ̄∂ρ̄/∂r− ρ̄r/ε2 reduce to

Esi ∼
2

1+ r
+

2(1+ r) ln(1+ r)− r
ε2(1+ r)2

, (3.1)

which as r→ 0 yields Esi ∼ 2, and even as ε→∞ this results in Esi ∼ 2/(1 + r),
following directly from the nature of ∂ρ̄/∂r near the axis (see figure 1). This yields

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

33
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.335


The stability of compressible swirling pipe flows with density stratification 707

0

1

2

E

–2

–1

0 0.2 0.4 0.6 0.8 1.0

0

1

2

E

–1

0 0.2 0.4 0.6 0.8 1.0

0

1

2

E

–1

0 0.2 0.4 0.6 0.8 1.0

0

1

2

–2

–1

0 0.2 0.4 0.6 0.8 1.0

0

1

2

–1

0 0.2 0.4 0.6 0.8 1.0

0

1

2

–1

0 0.2 0.4 0.6 0.8 1.0
r r

(a) (b)

(c) (d )

(e) ( f )

FIGURE 8. (Colour online) Same as figure 6 but for case B (exponential mean density)
of table 1.

strong peaks of Esi near the pipe axis at all the set points of case C, but especially
at SP1 and SP2, where case C appears to possess more unstable entropic energy Esi

than the other cases at all cross-sections of the pipe. Its viscous part, Esv, is an even
larger fraction of Etotal, and at SP1 for m=−1 (see figure 9a), Esv effectively counters
Esi, creating a state which is more stable than both in cases A and B (compare αi at
SP1 for all the cases in table 3). The other mechanisms including Euz and Eν are
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FIGURE 9. (Colour online) Same as figure 6 but for case C (algebraic mean density) of
table 1.

completely overshadowed by Es as a whole, and the total energy curve Etotal almost
faithfully follows Es at SP1. The situation is similar at SP2 (see figure 9c,d), where it
is still a competition between the two components of the entropy perturbations, with
the balance now tilting toward Esi, making these cases convectively unstable. At SP3,
the second term of (3.1) dominates, which yields an Esi that falls behind the Esi of,
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FIGURE 10. (Colour online) Same as figure 6 but for case C1 (algebraic mean density)
of table 1, at the set points (a,b) SP2 and (c,d) SP3.

say, case A (relative to the respective Etotal, of course) as r ' 0.31 (see figure 9e),
where a sharp decay of Esi may be noted after an initial peak closer to the pipe axis.
In contrast, in figure 6(e), Esi is relatively active until a higher radial location. Finally,
redistribution of the energy Ep has a comparatively greater effect at SP3, shown in
figure 9(e, f ), than for the other cases.

We briefly note here that the improved convective stability for algebraic ρ̄ is
possibly due to the near absence of secondary instability mechanisms at lower Reθ ,
beyond the entropic fluctuations, while its components are balanced in such a way
that the dissipative Esv dominates the inviscid Esi over an extended range of Rossby
numbers.

Finally, for case C1 of table 1, with a mean density (and its gradient) increasing
with radius (see figure 1), all the set points are found to be convectively stable. In
figure 10, the perturbation energy balance at set points SP2 and SP3 is shown for
case C1, which now clearly indicates the stabilizing role of the entropy fluctuations
via Esv, along with the viscous dissipation Eν . This combination easily overwhelms
the axial shear Euz and inviscid entropy term Esi at all disturbance frequencies for
the specific mean flow considered here, similar to observations made with inviscid,
incompressible swirling flows (see Fung & Kurzweg 1975).
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4. Summary and conclusions
In this work, we explored the role of compressibility in altering the stability of

inhomogeneous-density, rotating Hagen–Poiseuille flows by comparing the stability
boundaries between convectively stable, unstable and absolutely unstable states.
Further mechanistic understanding is obtained by focusing on the interactions between
different energy-based processes in these respective states.

If the mean density is an increasing algebraic function of pipe radius, then the
swirling pipe flow is found to be convectively stable to both the first and second
non-axisymmetric perturbations at any level of compressibility, similar to observations
made at the incompressible limits. Once the mean density is a decreasing function
of radius and depending upon the corresponding density gradient, the effect of
compressibility appears to be far more complex, which sometimes contrasted with
observations from other related swirling flows. Here, below a critical Re, as rotational
speeds are raised, almost direct transition to an absolutely unstable state from an
initially stable state is observed, bypassing any intermediate convectively unstable
state, at a Reθ that progressively drops with increased flow Mach number. These
results are consistent for all such density stratifications considered here, but the effect
of decreased stability with increased Mach number is more pronounced when, in fact,
the mean density is homogeneous. At these Reynolds numbers, compressibility acts
as a facilitator to absolute instability, but at Re higher than this critical value, the
algebraically decreasing mean density with a rising gradient with radius is found to
be markedly more convectively stable, irrespective of the compressibility and more so
for the higher azimuthal mode investigated. As Re→ 0, this case is still more stable
than all the other cases studied in terms of higher Reθc to absolute instability, but
now the higher asymmetric mode transitions at the lower Reθc. As Re→∞, the onset
of absolute instability only slightly depends upon the order of the azimuthal modes,
while neither the degree of compressibility nor the nature of density stratification
plays any role.

Regarding the role of mechanisms, it was known that the inviscid instability of
incompressible swirling flows is due to a balance between two mechanisms: shear
due to axial velocity and shear due to azimuthal velocity, the latter often referred
to as the centrifugal mechanism. In addition, a pressure redistribution mechanism
exists which transports unstable energy away from the production location. Once a
rigid-body swirl is introduced, like we do here, the centrifugal term disappears but
compressibility effects introduce an entropy production term solely due to inviscid
mechanisms. Viscous forces introduce three stabilizing mechanisms: a momentum
dissipation term, an entropy dissipation term and a term containing other forms
of dissipation including thermal effects. We show the last dissipation term to be
negligible in this work, while the primary stabilizing role is provided via momentum
and entropy dissipation which together are shown to easily overwhelm the unstable
mechanisms when the mean density is an increasing function of pipe radius. For all
other cases, the entropy dissipation acts as the main stabilizing mechanism, especially
at the lower rotation rates, except perhaps when the mean density is uniform. We
find inviscid entropy perturbations to play the crucial role of generating instabilities
in such constant-Ω swirling pipe flows, and as these fluctuations peak more near
the pipe axis, the flow progressively switches from a convectively unstable to an
absolutely unstable state. The redistribution mechanism is prominent for the absolute
cases, while the essentially incompressible mechanism of axial shear production
becomes completely overshadowed, except for uniform-density pipe flows rotating at
relatively high Rossby numbers.
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m Garg & Rouleau (1972) Khorrami et al. (1989) Present method

0 0.51998925173+ 0.02083549388i 0.51998925171+ 0.02083549388i 0.51998925171+ 0.02083549388i
1 0.5352510831+ 0.0172276439i 0.53525108+ 0.01722763i 0.53525108303+ 0.01722764392i

TABLE 4. Comparison with spatial stability of (non-swirling) Posieuille flow results.
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2 (b)

0 0.5 1.0–1.0 –0.5
–1

0

1

2

0 0.5 1.0–1.0 –0.5

(a)

FIGURE 11. Incompressible solutions of (2.4) (lines) compared with Fernandez-Feria &
del Pino (2002) (symbols) for (a) Re= 90, ε= 1, m=−1 and (b) Re= 100, ε= 2, m=−1
with the following shown: (——, E) cr, (– – –, u) cp, (——, @) αr, (– – –, p) αi. The
vertical dashed lines are discontinuities in cp (see text).

In conclusion, we have demonstrated the primary role of entropic energy fluctuations
in the hydrodynamic stability of compressible swirling pipe flows, with the computed
stability boundaries shown to be significantly different from other swirling flows.
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Appendix A. Validation of the linear stability solver

Our first validation check is carried out against the non-swirling, incompressible
Hagen–Poiseuille pipe flow results of Garg & Rouleau (1972) and Khorrami et al.
(1989) at Ma = 0.01 and Re = 10 000 for the ω = 0.5 perturbations. The respective
complex spatial growth rates for the least stable m= 0 and m= 1 modes are shown
in table 4 up to eleven decimal places along with computed values using the present
solver. The eigenvalues of Garg & Rouleau (1972) are reported to be accurate to
at least nine significant digits, whereas our computations show perfect match up
to ten decimal places for m = 0 and nine decimal places for the m = 1 mode. On
comparing with results of Khorrami et al. (1989), who use a different numerical
method (Chebyshev collocation, similar to § 2.4 of this work), this match is seen
up to eleven decimal places for m = 0 and eight decimal places for m = 1. In fact,
Khorrami et al. (1989) report data only up to eight decimal places for m = 1 and
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comment on a loss in accuracy of Garg & Rouleau (1972) beyond this, while our
calculations show the latter to be correct up to nine decimal places, even for the
m= 1 mode.

Next, we compare with two incompressible swirling pipe flow cases of Fernandez-
Feria & del Pino (2002), shown in figure 11 for the least stable (or most unstable)
mode at the particular frequency ω. The real group velocities cr in both cases are
always positive, indicating the direction of wavepacket propagation, as well as the
direction of energy travel. The phase speeds cp can have either sign, and also have a
discontinuity as αr→ 0, shown by the vertical asymptotes in the figure. Both cases are
barely unstable, with the lower-ε case leading to instabilities at lower frequencies. The
overall match obtained between our linear stability solver results and Fernandez-Feria
& del Pino (2002), as demonstrated in figure 11, is excellent.

Appendix B. Details of stability equation operators
Details of the operators Li of (2.4) are given in this appendix.

L1 =



i (mūθ −ωr) r
∂ρ̄

∂r
+ (rD+ 1)ρ̄ imρ̄ 0 0

−rū2
θ irρ̄(mūθ −ωr) −2rρ̄ūθ 0 r2D

0 rρ̄
(

ūθ + r
∂ ūθ
∂r

)
irρ̄(mūθ −ωr) 0 irm

0 r2ρ̄
∂ ūz

∂r
0 irρ̄(mūθ −ωr) 0

−i(mūθ −ωr)T̄ rρ̄
∂T̄
∂r
− (γ − 1)Ma2r

∂ p̄
∂r

0 0 iMa2(mūθ −ωr)


(B 1)

L2 =


irūz 0 0 irρ̄ 0

0 ir2ρ̄ūz 0 0 0

0 0 ir2ρ̄ūz 0 0

0 0 0 ir2ρ̄ūz ir2

−irūzT̄ 0 0 0 iMa2rūz

 (B 2)

L3 =



0 0 0 0 0

0 −
4r
3
(rD2
+D)+m2

+
4
3

im
3
(7− rD) 0 0

0 −
im
3
(7+ rD) −r(rD2

+D)+
4m2

3
+ 1 0 0

0 0 0 −r(rD2
+D)+m2 0

L51 −2im(γ − 1)Ma2Lθ −2(γ − 1)Ma2(rD− 1)Lθ −2(γ − 1)Ma2rD
∂ ūz

∂r
L55


(B 3)
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L4 =



0 0 0 0 0

0 0 0 −
i
3

r2D 0

0 0 0
m
3

r 0

0 −
i
3

r(rD+ 1)
m
3

r 0 0

0 −2ir(γ − 1)Ma2 ∂ ūz

∂r
0 0 0


(B 4)

L5 =



0 0 0 0 0
0 r2 0 0 0
0 0 r2 0 0

0 0 0
4
3

r2 0

−
1

Pr
rT̄
ρ̄

0 0 0
γMa2

Pr
r
ρ̄


, (B 5)

where D= d/dr, D2
= d2/dr2, Lθ = (∂ ūθ/∂r− ūθ/r),

L51 =
1

Pr

[(
rD2
+D−

m2

r

)
T̄
ρ̄
+ (2rD+ 1)

∂(T̄/ρ̄)
∂r

+ r
∂2(T̄/ρ̄)
∂r2

]
, (B 6)

and

L55 =−
γMa2

Pr
1
ρ̄

[(
rD2
+D−

m2

r

)
− (2rD+ 1)

1
ρ̄

∂ρ̄

∂r
−

r
ρ̄

∂2ρ̄

∂r2
+ 2

r
ρ̄2

(
∂ρ̄

∂r

)2
]
. (B 7)
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