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Abstract

Batch service has a wide application in manufacturing, communication networks, and
cloud computing. In batch service queues with limited resources, one critical issue is
to properly schedule the service so as to ensure the quality of service. In this paper we
consider an M/G[a,b]/1/N batch service queue with bulking threshold a, max service
capacity b, and buffer capacity N , where N can be finite or infinite. Through renewal
theory, busy period analysis and decomposition techniques, we demonstrate explicitly
how the bulking threshold influences the system performance such as the mean waiting
time and time-averaged number of loss customers in batch service queues. We then
establish a necessary and sufficient condition on the optimal bulking threshold that
minimizes the expected waiting time. Enabled by this condition, we propose a simple
algorithm which guarantees to find the optimal threshold in polynomial time. The
performance of the algorithm is also demonstrated by numerical examples.
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1. Introduction

Batch service queues, also referred to as bulk service queues, have been analyzed for decades.
The model can be applied to many applications, ranging from manufacturing to communication
networks to transportation to service delivery to cloud computing. Neuts [14] stated the basic
idea of bulking: at the time of a bulk service departure, if the number of customers in the
queue is less than the bulking threshold a, the server will wait until there are a customers and
then serve them in a bulk; if the number of customers in the queue is larger than the bulking
threshold a, the server will serve as many customers as its capacity b allows. The queue has
buffer capacity N , where N can be finite or infinite. The above queue-length-based threshold
policy has been shown to be optimal in the sense of minimizing the mean delay for Poisson
arrivals and infinite buffer capacity [9]. Such batch service queues have been studied mainly
from two aspects: steady-state analysis and optimal control.

In this paper we focus on the optimal control aspect. We aim at finding the optimal bulking
threshold a so as to minimize the average waiting time of customers in a batch service queue.
Compared with buffer space or service capacity, the bulking threshold is the most easily
controllable parameter. However, to the best of the authors’ knowledge, no previous research
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has explicitly demonstrated how the system performance would change as a function of the
bulking threshold. Moreover, an efficient way to obtain the optimal threshold is essential in
practice. For example, in cloud computing it is critical to schedule the bulk services effectively
so as to meet the service level agreement [11].

In the literature, much attention has been directed to the steady-state analysis of batch
service queues. An analytical solution to the steady-state distribution of the M/G[a,b]/1 queue
was derived by Neuts [14] in 1967. Numerous extensions have then been made, focusing on
various phenomenons with either finite buffers [7], [10], [12] or more complicated arrival [4]
or server vacations [1], [15] or batch-size-dependent service [2]. See [8] for a background
review. Research on the optimal control of bulk queueing systems is more limited. Deb and
Serfozo [9] proposed a method to find the optimal threshold for M/M[a,b]/1 queues with the
objective of minimizing a linear holding cost. They believed that the most general case was
intractable, as the format of the holding cost function made the trend of the objective function
unpredictable under different thresholds. Tadj and Tadj [19] developed the optimal threshold
to minimize a expected total cost for M/Dr/1 queues with constant service times, where r

denotes both the bulking threshold and the service capacity. The result was later generalized
to the case with general service times and N -policy in Tadj and Ke [17] and to the case with
batch arrivals in Tadj and Ke [18]. Efforts on the optimal control of other parameters such as
the buffer size include [3] and [5]. For a detailed survey on the topic of optimal control of batch
service queues, we refer the reader to [16].

In this paper we study the optimal control of the bulking threshold a for M/G[a,b]/1/N batch
service queues under the most general setting. We assume that the arrival process is Poisson,
the service times are independent and identically distributed (i.i.d.) of a general distribution,
and 0 < a ≤ b ≤ N ≤ ∞. Our work is strongly motivated by Gold and Tran-Gia [10], who
modelled the departure point queue length of an M/G[a,b]/1/N queue as an embedded Markov
chain and proposed a method to calculate the average waiting time in the queue through the
arbitrary point queue length. We adopt the same approach and extend their steady-state analysis
to the aspect of optimal control. We model the departure point queue length as a Markov chain,
and set the regeneration point to be the service starting point with no customer in the queue.
Through renewal theory and busy period analysis, we demonstrate explicitly how the bulking
threshold influences the system performance such as the mean waiting time and time-averaged
number of loss customers (loss rate) in bulking service queues. The loss rate analysis further
indicates that the objective of minimizing the loss rate is a trivial one. We therefore focus on
the objective to minimize the expected waiting time (in queue) of customers.

The main contributions of this work can be summarized as follow:

• we show that the expected waiting time E[W(a)] as a function of the bulking threshold a is
monotonically decreasing before reaching the optimal threshold aopt and monotonically
increasing after reaching aopt. This guarantees the existence and the uniqueness of the
optimal threshold;

• we prove that aopt = min{�λE[W(aopt)]�, b} is a necessary and sufficient condition on
the optimal threshold;

• we propose a simple algorithm that guarantees to find the optimal threshold aopt in
polynomial time.

Specifically, the above results are achieved via the following roadmap. First, we show that
the busy period ending point queue length is a censored Markov chain of the departure point
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queue length Markov chain. More importantly, the limiting distributions of both Markov chains
are independent of the bulk threshold a. We then show that the expected total waiting time
experienced by all customers in the busy period is also independent of the bulk threshold a.
Only the expected total waiting time experienced by customers in the idle period depends on a.
This allows us to derive an important decomposition of the average waiting time in the queue and
calculate the key component that depends on threshold a. The optimality condition is derived
by comparing the difference between the average waiting time under threshold a and a + 1.
This enables us to develop a search algorithm to identify the optimal bulking threshold. We
further demonstrate the efficiency of our search algorithm via numerical examples.

Since our study is under the most general setting with 0 < a ≤ b ≤ N ≤ ∞, most
prior optimal control related studies become special cases. The corresponding results in
special cases such as M/G[a,b]/1/∞, M/G[a,∞]/1/∞, and M/G[a,∞]/1/N (or, equivalently,
M/G[a,N ]/1/N) queues can then be easily derived. Our main result is valid as long as the
renewal theory works.

The rest of the paper is organized as follows. In Section 2 we establish the model and some
analysing techniques. In Section 3 we decompose the average waiting time of customers in
the queue. In Section 4 we show the optimal threshold condition. In Section 5 we present an
algorithm to achieve the optimal threshold. Section 6 contains simulation results and Section 7
concludes our research.

2. The model and preliminary analysis

Consider an M/G[a,b]/1/N batch service queueing system. Customers arrive according to a
Poisson process with arrival rate λ. A single server serves a bulk of customers simultaneously
in a round of service. The server has bulking threshold a and service capacity b. The queue
has buffer size N . The service times for all batches are i.i.d. and independent of the bulking
threshold a. No priority rule is applied and the service is nonpreemptive.

The bulking mechanism works as follows: every time when the server is free, it will check
whether the number of customers in the queue has reached the threshold. If not, it will wait until
the number in queue reaches threshold and then start service; otherwise, it will immediately
start a new service round to serve as many customers in the queue as the capacity permits. The
customers who arrive after the start of this service round must wait for the next service round.

Let W denote the waiting time for an arbitrary customer in the queue (before the service
begins). Our objective is to find the optimal threshold aopt that minimizes the average waiting
time E[W ] for given parameters b, N, λ, and given service time distribution

aopt = arg min
a

E[W(a)].
In order to make the problem nontrivial, we assume that 0 < a ≤ b ≤ N ≤ ∞, where

a, b, and N must be integers. Under the above setting, the systems including M/G[a,b]/1/∞,

M/G[a,∞]/1/∞, and M/G[a,∞]/1/N can all be considered as special cases.

2.1. Embedded Markov chain

To analyze an M/G[a,b]/1/N system, we use the following notation:

• Q(t) denotes the number of customers in the queue (not including those in service) at
time t ;

• An denotes the number of new arrivals (including those who are rejected due to full
buffer) during the nth service round;
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• Xn denotes the number of customers in the queue upon the nth service completion
(departure point queue length);

• S denotes the random variable for the service time.

According to the bulking service mechanism, the departure point queue length process {Xn}
must evolve as

Xn+1 =
{

min{An+1, N} if Xn ≤ b,

min{An+1 +Xn − b, N} otherwise.
(2.1)

Let pi denote the probability that there are i arrivals in one round of service. Since the
arrival process is Poisson, we have pi = E[e−λS(λS)i/i!]. Clearly, the distribution of An is
given by {pi, i = 0, 1, . . .}. Therefore, {Xn}∞n=1 is a discrete-time Markov chain embedded in
the stochastic process {Q(t), t ≥ 0}. Denote Pij = P{Xn+1 = j | Xn = i} as the transition
probability and let P = [Pij ], then

Pij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pj , i = 0, 1, . . . , b, j = 0, 1, . . . , N − 1,
∞∑

k=N

pk, i = 0, 1, . . . , b, j = N,

pj−i+b, i = b + 1, . . . , N, j = i − b, . . . , N − 1,
∞∑

k=N−i+b

pk, i = b + 1, . . . , N, j = N,

0, otherwise.

(2.2)

It is easily checked that the Markov chain {Xn}∞n=1 is irreducible and aperiodic. When
N < ∞, the limiting distribution π always exists. When N = ∞ and b < ∞, the stationary
condition λE[S] < b is needed to guarantee the existence of π .

When π exists, it can be computed by solving π = πP ,
∑N

i=0 πi = 1. Chaudhry and
Templeton [8] thoroughly discussed the case for N = ∞ and derived the probability generating
function of π . Even in this case, explicit results of π are only available when the service times
are exponentially distributed [8, p. 223].

2.2. Regenerative cycle

Consider the evolution of the stochastic process {Q(t), t ≥ 0}. The system regenerates
every time when the service starts with no customer left in the queue. These time epochs can be
set as regeneration points. The time interval between two adjacent regeneration points forms
a regenerative cycle. One regenerative cycle contains one busy period and one potential idle
period. Denote by B the duration of the busy period; by I the duration of the idle period. One
busy period consists of one or more service rounds.

Let N(a) be the total number of admitted arrivals in one regenerative cycle, and T (a) the
total amount of waiting time in the queue experienced by all customers in a regenerative cycle,
both under threshold a. By renewal reward theory, the average waiting time in the queue is
given by

E[W(a)] = E[T (a)]
E[N(a)] . (2.3)
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2.3. Limiting distribution

Let Hm denote the total number of service rounds in the mth busy period. Let tj be the time
epoch of the j th service completion in the busy period, j = 1, . . . , Hm. The departure point
queue length must satisfy Q(t−1 ) > b, . . . , Q(t−Hm−1) > b, Q(t−Hm

) ≤ b.
Let Ym denote the queue length immediately before the end of the mth busy period. Then

the busy period ending point queue length process {Ym}∞m=1 is a censored Markov chain by
censoring {Xn}∞n=1 from the state set {b+ 1, b+ 2, . . . }. The limiting distribution of {Ym}∞m=1,
denoted by π�, is then given by normalizing π , the limiting distribution of {Xn}∞n=1, over the
censored state space {0, 1, . . . , b}; see [13].

π� = (π�
i ), π�

i = lim
m→∞P{Ym = i} = πi∑b

j=0 πj

, i = 0, 1, . . . , b.

Since P is given by (2.2), and all entries of P are independent of threshold a, the following
lemma is then immediate.

Lemma 2.1. Both π and π� are independent of the bulking threshold a.

3. Dependency analysis

In this section we study how the bulking threshold would impact the system performance.
We first present important decomposition results for the expected total/average waiting time
experienced by customers in a regenerative cycle, which help identify the key components
that depend on the threshold in calculating the expected waiting time. We then demonstrate
the dependency relationship between time-average number of lost customers and the bulking
threshold.

3.1. Decomposition of the total waiting time

To calculate E[W(a)], we need E[T (a)], the expected total waiting time experienced by all
customers in one regenerative cycle under bulking threshold a.

Observe that E[T (a)] can be decomposed into two parts: E[TB(a)] and E[TI(a)], the
expected total waiting time experienced by all customers in the busy period, and that in the idle
period. Since the busy period and the idle period do not overlap, we have

E[T (a)] = E[TB(a)] + E[TI(a)]. (3.1)

Considering first E[TB(a)], we make the following claim.

Lemma 3.1. It holds that E[TB(a)] is independent of the bulking threshold a, i.e.

E[TB(a)] = E[TB] ⊥ a. (3.2)

Proof. Recall that Hm is the number of services in the mth regenerative cycle. From the
perspective of departure point queue length Markov chain {Xn}, Hm indicates the first time
inside the mth regenerative cycle that Xn ≤ b. Since the evolution of {Xn}∞n=1 (given by (2.1)),
does not depend on a, the evolution of {Hm}∞m=1 does not depend on a either. Duration B is the
summation of Hm i.i.d. service times and, hence, is also independent of a. Waiting time TB(a)

is determined by Hm, B, and the arrival process, all of which are independent of a. Thus the
expected value of TB(a) is independent of a. �
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We next compute E[TI(a)]. Recall that the queue length at the end of a busy period is
associated with the limiting distribution of {Ym}∞m=1 which is given by π�. An idle period
occurs only when Ym is below the bulking threshold a.

Suppose that Ym = i < a. Then the duration of the idle period is E[I ] = (a − i)/λ. Each of
the i customers (who are already in the queue) will have to wait for the entire idle period before
entering service. The a − i customers who arrive during the idle period, except the last one
who triggers the batch service, will experience average waiting time E[I ]/2. This is because,
for a Poisson arrival process, given that there are exactly a− i−1 arrivals in period I , the event
times are uniformly distributed over I . Therefore,

E[TI(a)] =
a−1∑
i=0

π�
i

[
i
a − i

λ
+ (a − i − 1)

(a − i)

2λ

]
= 1

λ

a−1∑
j=0

j

j∑
i=0

π�
i . (3.3)

3.2. Decomposition of the average waiting time

We are now ready to compute the average waiting time using (2.3). First, let us compute
E[N(a)], the expected total number of admitted arrivals in one regenerative cycle.

At service completion time epoch tj , j = 1, . . . , Hm − 1, the server will take b customers
from the queue. At time epoch tj , j = Hm, if Ym < a, then an idle period starts until a

customers fill a bulk; if Ym ≥ a then the server takes Ym customers immediately. Therefore,

E[N(a)] = b(E[H ] − 1)+
b∑

i=a

π�
i i +

a−1∑
i=0

π�
i a. (3.4)

Define the following function:

σ(a) := E[N(a)]
λ

=
a−1∑
i=0

π�
i

a

λ
+

b∑
i=a

π�
i

i

λ
+ (E[H ] − 1)

b

λ
. (3.5)

Combining (2.3)–(3.5) yields the following theorem.

Theorem 3.1. In an M/G[a,b]/1/N queue, the average waiting time in queue is

E[W(a)] = E[TB]
λσ(a)

+ 1

λ2σ(a)

a−1∑
j=0

j

j∑
i=0

π�
i . (3.6)

In the following special cases, we can derive E[W(a)] in closed form.

Theorem 3.2. In an M/G[a,∞]/1/N queue, the average waiting time in queue is

E[W(a)] = 1

λ2σ(a)

a−1∑
j=0

j

j∑
i=0

pi + 1

λσ(a)

N∑
i=0

E

[
e−λS (λS)i

i! S

]
i

2

+ 1

λσ(a)

∞∑
i=N+1

E

[
e−λS (λS)i

i! S

][
1− N + 1

2(i + 1)

]
N, (3.7)

where

σ(a) =
a−1∑
i=0

pi

a

λ
+

N−1∑
i=a

pi

i

λ
+
∞∑

i=N

pi

N

λ
, pi = E

[
e−λS (λS)i

i!
]
. (3.8)

Proof. See Appendix A. �
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Theorem 3.3. In an M/G[a,∞]/1/∞ queue, the average waiting time in queue is

E[W(a)] = E[S2]
2σ(a)

+ 1

λ2σ(a)

a−1∑
j=0

j

j∑
i=0

pi,

where

σ(a) =
a−1∑
i=0

pi

a

λ
+
∞∑

i=a

pi

i

λ
. (3.9)

Proof. See Appendix B. �
In the most general case of an M/G[a,b]/1/N queue with finite buffer and service capacity,

Gold and Tran-Gia [10] proposed a procedure to compute E[W(a)]. However, our Theo-
rem 3.1 is different. We decompose E[W(a)] and give the part that depends on threshold a.
Equation (3.6) has not been given before and it helps us to determine the optimal bulking
threshold in Section 4.

In the special case where b = N < ∞, the Laplace–Stieltjes transform of E[W(a)] under
a Markovian arrival process was given by [6]. However, the results are given in forms that are
computationally less convenient than the above closed-form results.

3.3. Time-averaged number of losses

In this subsection we discuss how the bulking threshold a would impact the loss rate of a
batch service queue when the buffer capacity N is finite. We make the following claim.

Lemma 3.2. Consider an M/G[a,b]/1/N queue with 0 < a ≤ b ≤ N < ∞. Denote by l(a)

the time-averaged number of losses under bulking threshold a. Then l(a) is a strictly decreasing
function in a.

Proof. Let L(a) denote the total number of customers lost in one regenerative cycle under
threshold a. Based on renewal theory, the time-average number of lost customers is given by
l(a) = E[L(a)]/E[B(a)+ I (a)], where B(a) (respectively, I (a)) represents the length of a
busy period (respectively, an idle period) in one regenerative cycle under threshold a.

As we discussed in Section 3.1, the evolution of the queue length in each busy period is
independent of the threshold a. Since customers can only be lost in the busy period, E[L(a)],
the expected total number of customers lost in each regenerative cycle is independent of a.

Recall that H , the number of service rounds in one busy period, is independent of a. Since
B(a), the length of a busy period is simply the sum of H i.i.d. service times, E[B(a)] must
also be independent of a. Observe that

E[I (a)] =
a−1∑
i=0

π�
i

a − i

λ
,

which is strictly increasing in a. Thus, l(a), the time-average number of lost customers is
strictly decreasing in a. �

The following theorem is then immediate.

Theorem 3.4. When the objective is to minimize the time-averaged number of lost customers
for an M/G[a,b]/1/N queue with N <∞, the optimal policy is a trivial one, namely aopt = b.

In the remainder of the paper, we therefore focus on the more interesting objective to
minimize the expected waiting time in bulking service queues.
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4. Optimal threshold

We next investigate how to find the optimal bulking threshold a in M/G[a,b]/1/N queue.
Our objective is to minimize the expected waiting time given by (3.6).

Based on previous discussions, we know that E[TB(a)] and π�
i are independent of threshold

a. As a increases, both σ(a) and the double summation term
∑a−1

j=0 j
∑j

i=0 π�
i inside (3.6)

increase. Note, from (3.5), that σ(a) is proportional to the expected total number of customers
arrived in a regenerative cycle. The double summation term is proportional to the expected
total waiting time in the idle period. Thus, the idea behind the optimal threshold is to include as
many customers in a regenerative cycle as possible but not to make them wait too long during
the idle period.

In order to find the optimal threshold, we first analyze the difference between E[W(a)] and
E[W(a + 1)]. First we make the following claim.

Lemma 4.1. The difference between E[W(a)] and E[W(a + 1)] is given by

�E[W(a)] = E[W(a + 1)] − E[W(a)] = g(a)

λ2σ(a + 1)
f (a), (4.1)

in which f (a) and g(a) are defined as

g(a) =
a∑

i=0

π�
i , f (a) = a − λE[W(a)].

Proof. Move σ(a) to the left-hand side of (3.6). We have

σ(a + 1)E[W(a + 1)] − σ(a)E[W(a)] = ag(a)

λ2 . (4.2)

Note that σ(a) can be rewritten as

σ(a) =
a−1∑
i=0

π�
i

a − i

λ
+

b∑
i=0

π�
i

i

λ
+ (E[H ] − 1)

b

λ
. (4.3)

It has the following property:

σ(a + 1)− σ(a) =
a∑

i=0

π�
i

a + 1− i

λ
−

a−1∑
i=0

π�
i

a − i

λ
= g(a)

λ
. (4.4)

Then we can rewrite (4.2) as

σ(a + 1)(E[W(a + 1)] − E[W(a)])+ g(a)

λ
E[W(a)] = ag(a)

λ2 .

Thus,

�E[W(a)] = g(a)

λ2σ(a + 1)
(a − λE[W(a)]) = g(a)

λ2σ(a + 1)
f (a). �

The next lemma reveals the increasing property of the function f (a).
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Lemma 4.2. The function f (a) is strictly increasing as threshold a increases from 1 to b.

Proof. Since f (a+ 1)−f (a) = 1−λ�E[W(a)], it suffices to show that λ�E[W(a)] < 1
for all 1 ≤ a ≤ b.

From (4.1) and (4.4), we have

λ�E[W(a)] = g(a)
a/λ− E[W(a)]
σ(a)+ g(a)/λ

< g(a)
a/λ

σ(a)
.

Based on (4.3), we have

σ(a) ≥
a−1∑
i=0

π�
i

a

λ
+

b∑
i=a

π�
i

i

λ
>

b∑
i=0

π�
i

a

λ
= a

λ
. (4.5)

It then follows that

λ�E[W(a)] < g(a) =
a∑

i=0

π�
i ≤ 1.

Hence, f (a + 1)− f (a) > 0 and f (a) is a strictly increasing function in a. �
Observe that, from (4.1), since g(a) and σ(a + 1) are both positive, the sign of �E[W(a)]

is the same as that of f (a). We have the following three situations:

• if f (a) > 0 then E[W(a + 1)] > E[W(a)] and we prefer a to a + 1;

• if f (a) < 0 then E[W(a + 1)] < E[W(a)] and we prefer a + 1 to a;

• if f (a) = 0 then E[W(a + 1)] = E[W(a)].
Since f (0) < 0 and f (a) is strictly increasing, the first point at which f (a) turns nonnegative

yields the optimal threshold. Before this point, we have f (a) < 0 and E[W(a)] decreases; on
this point, we have f (a) ≥ 0 and E[W(a)] is no smaller than E[W(a + 1)]; after this point,
we have f (a) > 0 and E[W(a)] increases. In the special case when f (a) = 0, we have two
adjacent points a, a + 1 that minimize the average waiting time. We will take the smaller one,
i.e. a as the optimal threshold. The next lemma summarizes these properties.

Lemma 4.3. The optimal bulking threshold aopt is the first point at which f (a) turns nonneg-
ative. The average waiting time E[W(a)], as a function of a, is strictly decreasing on [0, aopt],
monotonically increasing on [aopt, aopt + 1] and strictly increasing on [aopt + 1,∞].

We are now ready to present the main theorem on the optimal threshold.

Theorem 4.1. In system M/G[a,b]/1/N, a necessary and sufficient condition on the optimal
threshold is

aopt = min{�λE[W(aopt)]�, b}, (4.6)

where �x� denotes the ceiling function and returns the smallest integer that is larger than or
equal to x.

Proof. See Appendix C. �
Theorem 4.1 establishes the property that the optimal bulking threshold should satisfy the

condition a = �λE[W(a)]� and it should not be larger than the server capacity b. The logic
behind this result can be briefly interpreted as follows. Suppose we are tuning the bulking
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threshold a at customer arriving epochs. Under PASTA (Poisson arrivals see time averages),
a new (tagged) arrival is expected to see λE[W(a)] customers waiting in the queue. Upon
his/her arrival, the expected queue length is then λE[W(a)] + 1. Suppose that λE[W(a)] is
not an integer. We have λE[W(a)] + 1 < �λE[W(a)]� + 1. If the bulking threshold is set
to be �λE[W(a)]� + 1, �λE[W(a)]� + 2, . . . , then the threshold is not crossed and the tagged
customer on average has to wait for more arrivals before being served. As we continue to
increase the bulking threshold, by the discussion of Lemma 4.3, the expected waiting time also
increases. On the other hand, if the threshold is set to be �λE[W(a)]�−1, �λE[W(a)]�−2, . . . ,
then the tagged customer is likely to see a busy server and has to wait for service completions.
Only when the threshold is set so that the tagged customer on average gets served immediately,
which is exactly �λE[W(a)]�, the expected waiting time is minimized. Hence, the solution
becomes optimal. A similar discussion applies to the case when λE[W(a)] is an integer. In this
case, λE[W(a)] and λE[W(a)] + 1 lead to the same average waiting time and �λE[W(a)]� is
again optimal.

5. Algorithm for optimal threshold

We next present a simple algorithm to search for the optimal bulking threshold a that
minimizes the expected waiting time in M/G[a,b]/1/N queues. We show that the algorithm
guarantees to find the optimal solution in polynomial time.

Define a1 = min{�λE[W(1)]�, b}. We propose the following algorithm to search for the
optimal threshold.

Algorithm 5.1. Thus,

(I) a← a1;

(II) Check if a = min{�λE[W(a)]�, b};
(III) If true, return aopt = a;

(IV) If false, a← �λE[W(a)]�, and go back to step (II).

In each iteration, E[W(a)] can be computed theoretically (by Theorem 3.2 and 3.3 for special
cases; by Gold and Tran-Gia (1993) for general cases) or estimated by simulation.

The performance of the algorithm is established in the next theorem.

Theorem 5.1. Algorithm 5.1 converges to the optimal bulking threshold aopt within a1 steps
and takes polynomial time.

Proof. Based on Theorem 4.1, (4.6) is the necessary and sufficient condition for optimality.
Therefore, once the check result in step (II) is true, we have found the optimal solution.

To discuss the convergence of the algorithm, we assume that the check result of step (II) is
always false so that the algorithm always takes step (IV) and keeps running.

For the initial threshold a1, we have

a1 = min{�λE[W(1)]�, b} ≥ min{�λE[W(aopt)]�, b} = aopt.

In order to enter step (IV), a1 must be strictly larger than the optimal threshold. Based on
Lemma 4.3 , we must have f (a1) = a1 − λE[W(a1)] > 0. Since a1 is not optimal, we also
have a1 �= �λE[W(a1)]�. Thus, a1 > �λE[W(a1)]� = a2,in which a2 is the threshold we
obtain after the first iteration.
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For threshold a2, we also have

a2 = min{�λE[W(a1)]�, b} ≥ min{�λE[W(aopt)]�, b} = aopt.

Repeat the above argument, if the ith iteration enters step (IV), we will obtain a value ai+1
such that

aopt ≤ ai+1 < ai ≤ a1.

Since a1 is finite, the algorithm has to enter step (III) and return the optimal threshold aopt in
no more than a1 steps.

We next show that the running time of the algorithm is polynomial.
Observe from (3.3), (3.5), and (3.6) that, as a→∞, we have

σ ∼ a

λ
, E[W(a)] ∼ a

2λ
.

Thus, for large ai , we have
ai+1

ai

≈ λE[W(ai)]
ai

→ 1

2
.

Thus, the algorithm takes at most O(log2 a1) iterations to find the optimal threshold, which is
polynomial. �

6. Numerical examples

In this section we present two numerical examples to demonstrate the performance of
Algorithm 5.1.

Example 6.1. Consider an M/G[a,∞]/1/N queue with parameter settings λ = 8, N = 500,
and service time following exponential distribution with mean 50. In this case, under a given
threshold a, the corresponding expected waiting time E[W(a)] can be calculated in closed
form using (3.7) in Theorem 3.2. In Table 1 we show the iterations of running Algorithm 5.1
in searching for the optimal bulking threshold that minimizes the expected waiting time. Each
row presents the values of E[W(a)] and min{�λE[W(a)]�, b} under given threshold a. The
optimality condition is checked according to Theorem 4.1, i.e. if a = min{�λE[W(a)]�, b}
then threshold a is optimal. If the condition is not met, the value of min{�λE[W(a)]�, b} is
then used as the threshold for the next iteration. Observe that at iteration two, the optimality
condition is met, thus the algorithm terminates and the optimal bulking threshold is aopt = 279.

Example 6.2. Consider an M/G[a,b]/1/N queue with parameter settings λ = 3, N = 40,
b = 35, and service time distribution �(scale=20, shape=0.05). In this case, we do not have
a closed-form formula to compute E[W(a)]. In order to find the optimal threshold using
Algorithm 5.1, in each iteration under a given threshold a, the expected waiting time E[W(a)]
is estimated by discrete-event simulation. In order to estimate the steady-state performance of
this batch service queue, for each simulation run, we set the replication length to be 100,000
time units out of which the first 10,000 time units were used as the warm-up period. We choose
the number of replications so that the half width of the simulated average waiting time is smaller
than 0.01. In Table 2 we show the iterations of running Algorithm 5.1, where column three
presents the confidence interval for the estimated E[W(a)] under a given threshold a. Observe
that the algorithm terminates at iteration three when the optimality condition is met. The optimal
bulking threshold is therefore aopt = 20.

Overall, we see that Algorithm 5.1 is highly efficient in finding the optimal threshold.
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Table 1: Iterations of Algorithm 5.1.

Iteration a E[W(a)] min{�λE[W(a)]�, b} Optimal

0 1 37.4403 300 –
1 300 34.8525 279 No
2 279 34.8306 279 Yes

Table 2: Iterations of Algorithm 5.1.

Iteration a E[W(a)] min{�λE[W(a)]�, b} Optimal

0 1 9.726 ± 0.01 30 –
1 30 7.047 ± 0.01 22 No
2 22 6.646 ± 0.01 20 No
3 20 6.627 ± 0.01 20 Yes

7. Conclusion

In this paper we have studied the optimal control of batch service queues. In particular,
we considered the M/G[a,b]/1/N batch service queueing system and focused on finding the
optimal setting of the bulking threshold so as to minimize the average waiting time. Using busy
period analysis and the renewal argument, we presented a useful decomposition of the average
waiting time and derived the part that depends on the bulking threshold a. The optimal threshold
that minimizes the average waiting time was proven to possess the following necessary and
sufficient condition:

aopt = min{�λE[W(aopt)]�, b}.
Using this condition, we proposed an algorithm that can obtain the optimal threshold in
polynomial time. Numerical results were presented to demonstrate the algorithm’s efficiency.

Although these results were established with the restriction to Poisson arrivals and i.i.d.
service times, they can be applied as good approximations to capture the high-level queueing
dynamics of more general systems. Future research could focus on the optimal threshold
analysis of batch service queueing systems with other types of arrival processes or with more
servers. Another area of interest may be to study the bulking and resource allocation when there
are multiple classes of jobs. These variations may pose additional difficulty in the analysis and
are left for future investigations.

Appendix A.

Proof of Theorem 3.2. In an M/G[a,∞]/1/N queue, the initiation of each batch service
would result in an empty buffer thus a regeneration point. Hence,

E[N(a)] =
a−1∑
i=0

pia +
N−1∑
i=a

pii +
∞∑

i=N

piN,

where pi is the probability of i arrivals in one service round. Apply σ(a) = E[N(a)]/λ. We
obtain (3.8).

Next, we compute the total waiting time of all customers in the queue conditioning on the
service time S = s and AS the number of arrivals during the service time. Given that there
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are i arrivals in s amount of time, the expected arriving epochs of these i customers evenly
divide the service time s into i + 1 intervals with equal mean length � = s/(i + 1). Since at
most N customers can join the queue, we only count the waiting time of the first m = min(i, N)

customers. Thus,

E[TB | AS = i, S = s] = (s −�)+ (s − 2�)+ · · · + (s −m�) =
[

1− m+ 1

2(i + 1)

]
ms.

Hence,

E[TB | S = s] =
∞∑
i=0

e−λs (λs)i

i!
[

1− (i ∧N)+ 1

2(i + 1)

]
(i ∧N)s. (A.1)

For generally distributed S, we have

E[TB] = E[E[TB | S = s]]

=
N∑

i=0

E

[
e−λS (λS)i

i! S

]
i

2
+

∞∑
i=N+1

E

[
e−λS (λS)i

i! S

][
1− N + 1

2(i + 1)

]
N, (A.2)

where the summation and expectation is interchanged by Fubini’s theorem since the terms are
nonnegative. Then E[W(a)] can be obtained by (3.6). �

Appendix B.

Proof of Theorem 3.3. In an M/G[a,∞]/1/∞ queue, E[N(a)] = ∑a−1
i=0 pia +∑∞

i=a pii,
which yields (3.9).

Equations (A.1) and (A.2) can be further simplified as

E[TB | S = s] = s

2

∞∑
i=0

e−λs (λs)i

i! i = λs2

2
, E[TB] = E[E[TB | S = s]] = λE[S2]

2
.

Then E[W(a)] can be obtained by (3.6). �

Appendix C.

Proof of Theorem 4.1. When �λE[W(aopt)]� > b, we have

f (b − 1) = b − 1− λE[W(b − 1)] < b − �λE[W(b − 1)]� ≤ b − �λE[W(aopt)]� < 0.

Thus, E[W(1)] > E[W(2)] > · · · > E[W(b)]. The optimal threshold is aopt = b.
It remains to prove the necessity and sufficiency of (4.6) under the condition that

�λE[W(aopt)]� ≤ b.

Necessity. If aopt = 1 then we have

�E[W(1)] = E[W(2)] − E[W(1)] ≥ 0.

Then f (1) = 1− λE[W(1)] ≥ 0, and �λE[W(aopt)]� = �λE[W(1)]� = 1.
If aopt > 1 then based on the definition of optimality, we have

�E[W(aopt)] ≥ 0 and �E[W(aopt − 1)] < 0.
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Hence,
f (aopt) ≥ 0 and f (aopt − 1) < 0,

which then yield
aopt ≥ λE[W(aopt)]. (C.1)

On the other hand, from inequality (4.5), we have

σ(a) >
a

λ
≥ 1

λ
>

g(a − 1)

λ
. (C.2)

Since f (aopt − 1) < 0, we have

λ�E[W(aopt − 1)] = g(aopt − 1)/λ

σ(aopt)
f (aopt − 1) > f (aopt − 1).

Thus,
λE[W(aopt)] − λE[W(aopt − 1)] > aopt − 1− λE[W(aopt − 1)].

Eliminating λE[W(aopt − 1)] on both sides, we have

λE[W(aopt)] + 1 > aopt. (C.3)

Combining (C.1) and (C.3), we then have

λE[W(aopt)] ≤ aopt < λE[W(aopt)] + 1.

Therefore, aopt = �λE[W(aopt)]�.
Sufficiency. If �λE[W(1)]� = 1 then f (1) = 1− λE[W(1)] ≥ 0. Thus, aopt = 1.
Suppose that aopt > 1 and we have �λE[W(a)]� = a for a threshold a, then

λE[W(a)] ≤ a < λE[W(a)] + 1.

The first part yields
f (a) = a − λE[W(a)] ≥ 0.

The second part yields
a − 1 < λE[W(a)].

Subtracting λE[W(a − 1)] from both sides, we have

f (a − 1) = a − 1− λE[W(a − 1)] < λ�E[W(a − 1)] = g(a − 1)/λ

σ(a)
f (a − 1).

Applying (C.2), we obtain f (a − 1) < 0. Since f (a) is strictly increasing, we know that a is
optimal. �
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