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Stabilization of the kinetic internal kink mode
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The effects of a sheared poloidal flow on the m = 1 (poloidal mode number) and
n = 1 (toroidal mode number) kinetic internal kink mode are simulated by the
linearized version of the gyro-reduced MHD code, GRM3D-2F, based on a two-field
and two-fluid gyro-reduced MHD model, including the kinetic effects of electron
inertia and the perturbed electron pressure gradients along the magnetic field. A
parameter study for different values of de (collisionless electron skin depth) with
a fixed value of ρs = 0 (ion Larmor radius estimated by the electron temperature)
shows that the smaller-de case, which has the smaller growth rate, is stabilized by
the smaller sheared poloidal flow. When ρs is raised to ρs > de for a fixed value of
de, the instability is stabilized by the smaller shear flow compared with the case of
ρs < de, although the growth rate without the flow is larger for ρs > de. Since de
is very much less than the minor radius, and ρs > de for the existing and future
experiments, it is possible that even a quite small sheared poloidal flow may have
a crucial influence on the kinetic internal kink mode.

1. Introduction
The physics of sawtooth oscillation in tokamaks is still far from completely un-
derstood. The suppression of the sawtooth crash, the sawtooth crash on a rapid
time scale, and the physics of q0 < 1 (where q0 is the safety factor at the magnetic
axis) after the sawtooth crash are some examples. It is believed that the nonlinear
development of the m = 1 (poloidal mode number) and n = 1 (toroidal mode num-
ber) (collisionless) kinetic internal kink mode is closely related to the sawtooth
oscillation.

For the numerical study of these phenomena, it is necessary to develop an ex-
tended MHD simulation model that is the kinetic extension of the conventional
MHD model. The development of such an extended model and the simulation of
kinetic MHD phenomena in fusion plasmas using massively parallel computers
are among the main objects of the NEXT (Numerical EXperiment of Tokamak)
project in JAERI that was begun in 1996 (Tokuda 1996). We have developed a
gyrokinetic particle code (GYR3D) (Naitou et al. 1995, 1996) a gyro-reduced MHD
code (GRM3D-2F) (Naitou et al. 1997) and a particle–fluid hybrid code (Hybrid3D)
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(Tokuda et al. 1998). These three codes, which have the exact energy invariances,
are based on the nonlinear gyrokinetic Vlasov–Poisson–Ampère system (Hahm et
al. 1988) and/or its moment equations.

It is important to develop several codes with different orders of physical accu-
racy and to benchmark those codes for the same physical phenomena. The nonlinear
phenomena of the kinetic m = 1 and n = 1 internal kink mode have been stud-
ied using GYR3D, GRM3D-2F and Hybrid3D. Fast full reconnection (collisionless
magnetic reconnection) followed by a second phase in which the configuration with
q0 < 1 is re-formed has been observed by these three codes. (This two-step model of
reconnection was first predicted by the simulation by Biskamp and Drake (1994).)

Although previous studies have concentrated on the unstable internal kink mode,
the mode can be linearly or nonlinearly stabilized. The stabilization of the inter-
nal kink mode is related to the suppression of the sawtooth oscillation and to
the partial reconnection model in which the unstable internal kink mode is sat-
urated at low amplitude; the shifted core plasma coexists with the m = 1 island
(quasi)stationarily. The partial reconnection model can explain the experimental
results for q0 < 1 after the sawtooth collapse if some physical model to explain
the fast flattening of the density and temperature is introduced (Lichtenberg et al.
1992). It is therefore important to investigate the stabilization mechanism of the
internal kink mode. There are many candidates for the stabilization of the internal
kink mode, such as the effects of pressure gradient (Rogers and Zakharov 1995),
energetic trapped ions (White et al. 1988), a flat current profile around the q = 1
magnetic surface, and a sheared poloidal flow. Stabilization of the collisional inter-
nal kink mode by a sheared poloidal flow was studied by Kleva (1992). Here we
treat the collisionless case in which the kinetic effects of electrons are responsible
for the destabilizing mechanism.

In this paper a linear stability analysis of the m = 1 and n = 1 kinetic internal
kink mode with the sheared poloidal flow is performed using the GRM3D-2F code.
A brief summary of the gyro-reduced MHD model is given in Sec. 2. The simulation
results for the kinetic m = 1 and n = 1 internal kink mode with a sheared poloidal
flow are presented in Sec. 3. Concluding remarks and a discussion are given in Sec. 4.

2. Gyro-reduced MHD model
We assume a rectangular system with dimensions Lx, Ly and Lz. There is a strong
and constant magnetic field (toroidal magnetic field), BT = B0b, where b is the unit
vector in the z direction. The compressional component of the longitudinal magnetic
field is neglected in the low-β approximation. A periodic boundary condition is
assumed in the z direction. The system is bounded by a perfectly conducting wall
in the x and y (poloidal) directions.

The moment equations of the gyrokinetic Vlasov equations are used to derive the
gyro-reduced MHD model. Because the terminology ‘gyro-fluid’ is usually used for
the gyro-Landau model (Hammett and Perkins 1990; Waltz et al. 1992), we call our
model ‘gyro-reduced MHD’ because it corresponds to the extension of the reduced
MHD model given by Strauss (1976). This model is basically a two-fluid model;
hence electron inertia as well as the electron pressure gradient along the magnetic
field are included in the system of equations.

The gyro-reduced MHD model comprises two equations for the electrostatic po-
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tential φ and the z component of the vector potential Az:

d

dt
(∇2
⊥φ) = −v2

A b∗ ·∇(∇2
⊥Az) , (1)

∂

∂t
Az = −b∗ ·∇φ + d2

e

d

dt
(∇2
⊥Az) + ρ2

s b∗ ·∇(∇2
⊥φ) , (2)

where vA = c ωci/ωpi (with c the speed of light in vacuum, and ωci and ωpi the
ion cyclotron and plasma angular frequencies respectively) is the Alfvén velocity,
de = c/ωpe (with ωpe the electron plasma angular frequency) is the collisionless
electron skin depth, ρs = (Te/mi)1/2/ωci (with mi the ion mass and Te the electron
temperature) is the ion Larmor radius estimated in terms of the electron temper-
ature, b∗ is the unit vector of the magnetic field,

b∗ = b +
∇Az × b

B0
, (3)

and d/dt is the convective derivative, defined by

d

dt
=
∂

∂t
+

b×∇φ
B0

·∇ . (4)

Equation (1) represents the vorticity equation, while the generalized Ohm’s law in
the direction parallel to the magnetic field is described by (2).

In order to derive (2), we have replaced the pressure term pe in the electron
moment equation by assuming pe = neTe and Te = constant (isothermal model);

∇pe = Te∇ne =
ε0Te
e

ω2
pi

ω2
ci

∇(∇2
⊥φ) , (5)

where the gyrokinetic Poisson equation is used in the second equality by assuming
δni = 0, which is consistent with assuming Ui = 0 (with Ui the ion fluid velocity
parallel to the magnetic field) in the zeroth-order moment equation (continuity
equation) of the ions.

3. Simulation results
The system is filled with a plasma with uniform equilibrium density and tempera-
ture. The equilibrium profile of Az is chosen to be

Az(x, y) =
2LxLyB0

πq0Lz
sin

πx

Lx
sin

πy

Ly
, (6)

where q0 is the safety factor at the magnetic axis. The q profile corresponding to
the above Az is given by (Strauss 1976)

q(x, y) =
2
π
q0K(sinψ), (7a)

cosψ = sin
πx

Lx
sin

πy

Ly
, (7b)

where K is the elliptic integral of the first kind. The value of q increases monotoni-
cally from the axis to the wall, where q is infinite. The central value of q = q0 = 0.85
is selected for the equilibrium.

Figure 1 shows the equilibrium electrostatic potential profile given by

φ(x, y) = φ0

(
sin

πx

Lx
sin

πy

Ly

)4

. (8)
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(a)

(b)

Figure 1. The equilibrium profile of the electrostatic potential φ(x, y): (a) three-dimensional
view; (b) two-dimensional view.

The profile of the sheared poloidal flow, which is generated by the E× B drift due
to the radial electric field (−∇φ) and the toroidal magnetic field, is presented in
Fig. 2. Note that the sheared flow velocity used in the calculation is much less than
the poloidal Alfvén velocity.

The simulation was performed using the linearized version of the GRM3D-2F
code, which includes only n = ±1 modes in addition to the equilibrium n = 0 mode.
A two-dimensional 256×256 mesh is used for the numerical calculation because the
modes are expressed in Fourier series in the z-direction. The equations were solved
by a pseudospectral method. A filtering technique in Fourier space was employed to
reduce the highest-wavenumber modes. The smoothing function for the filtering was
selected so as not to change the linear growth rate. No other artificial techniques
such as a numerical viscosity were utilized.

The cases without a sheared poloidal flow were studied by Naitou et al. (1997).
It was found that the dependence of the growth rates on de and ρs agrees with the
theory of Zakharov et al. (1993):

2πq′de
vA
Lz

(de� ρs), (9)

2πq′d1/3
e ρ2/3

s

vA
Lz

(de� ρs), (10)
γ ∼


where q′ = dq/dr.

The linear mode structures for the cases with and without a sheared poloidal flow
are compared in Figs 3 and 4. For both cases, de = 12∆ and ρs = 0 were chosen,
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Figure 2. The profile of the sheared poloidal flow: the y component of the E× B drift
velocity estimated at y = 1

2Ly and 0 < x < Lx.

where ∆ denotes the width of the spatial mesh. Figure 3 represents the typical
mode structures of the pure m = 1 and n = 1 kinetic internal kink mode. We can
see the dipole potential profile in Fig. 3(a). Figure 3(b) shows a negative current-
density layer on the semicircle of the q = 1 surface as well as a positive layer on the
semicircle at the opposite side. Both layers have width of order de. A thin m = 1
double-layer profile of the charge density is observed in Fig. 3(c); the positive layer
faces the negative layer across the surface q = 1. When a sheared poloidal flow
with φ̃0 = 0.04 is added, where φ̃ is the normalized electrostatic potential defined
by (Lz/vAL2

xB0)φ, the mode structures of Fig. 3 are deformed as shown in Fig. 4.
Here the mode structures are rotating in the poloidal direction. The growth rate for
the case φ̃0 = 0.04 is 0.33 vA/Lz, which is smaller than the value of γ = 0.39 vA/Lz
for the case without a sheared flow. Although the rigid rotation of the mode does
not affect the mode structure, the difference in the poloidal angular velocity tends
to modify the typical mode structure of the internal kink mode, and hence has a
stabilizing effect. The case with a sheared flow has a finer mode structure in the
radial direction; a finer mesh is required to resolve such a mode structure.

Figure 5 summarizes the φ̃0 dependence of the linear growth rate. To see the
effects of de on the growth rate, we have fixed ρs = 0. It is clear that a sheared
poloidal flow has a stabilizing effect on the kinetic internal kink mode. When the
growth rate is small, i.e. de is small with ρs = 0 (see (9)), the unstable mode is
stabilized by a lower value of φ̃0. This result is different from the case of a resistive
internal kink mode, in which stabilization ocurs at a fixed value of the sheared flow
in spite of the growth rate (i.e. resistivity) (Kleva 1992). Figure 6 shows the φ̃0

dependence of the linear growth rate for ρs = 0 and ρs = 16∆ for a fixed value of
de = 8∆. The growth rate without a sheared flow is higher for larger values of ρs
when ρs > de (see (9) and (10)). The instability, however, is stabilized by a small
value of φ̃0 for ρs > de.
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(a)

(b) (c)

Figure 3. The linear mode structure at the poloidal cross-section z = 0 without a sheared
poloidal flow for (a) the electrostatic potential, (b) the current density, and (c) the charge
density. Here de = 12∆ and ρs = 0.

4. Conclusions and discussion

A linear stability analysis of the m = 1 and n = 1 kinetic internal kink mode with a
sheared poloidal flow has been performed using the linearized version of GRM3D-
2F, which is a two-field and two-fluid gyro-reduced MHD code including the kinetic
effects of electron inertia and the perturbed electron pressure gradients along the
magnetic field. The numerical results verify that the unstable kinetic internal kink
mode is stabilized by a sheared poloidal flow with typical velocity less than the
poloidal Alfvén velocity. The stress due to the differential angular velocity of the
flow deforms the typical mode structure of the pure internal kink mode, and hence
has a stabilizing effect.
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(a)

(b) (c)

Figure 4. The linear mode structure at the poloidal cross-section z = 0 with a sheared poloidal
flow with φ̃0 = 0.04 for (a) the electrostatic potential, (b) the current density and (c) the
charge density. Here de = 12∆ and ρs = 0.

A parameter study for different values of de with a fixed value of ρs = 0 shows
that the smaller-de case, which has the smaller growth rate, is stabilized by a smaller
sheared poloidal flow. Note that the growth rate without flow is proportional to
de/Lx or de/a (a is the minor radius) for de > ρs. We can see that the parameter
study performed here is limited to relatively large values of de/a because of the
limitation of computer resources, although de/a� 1. Therefore a further parameter
study is needed in order to know whether this tendency can be extrapolated to the
case of much smaller de/a corresponding to a tokamak experiment. When ρs is
increased so that ρs > de for a fixed value of de, the instability is stabilized by a
smaller shear flow compared with the case of ρs < de, although the growth rate
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Figure 5. The growth rate as a function of the strength of the sheared poloidal flow, φ̃0. The
cases of de = 8∆ and de = 12∆ are shown, for a fixed value of ρs = 0. A 256∆× 256∆ mesh
has been used.
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Figure 6. The growth rate as a function of the strength of the sheared poloidal flow, φ̃0. The
cases of ρs = 0 and ρs = 16∆ are shown for a fixed value of de = 8∆. A 256∆ × 256∆ mesh
has been used.

without a poloidal shear flow is larger for the case of ρs > de. Since de/a is very
much less than unity, and ρs > de for existing and future experiments, it is possible
that even a small sheared poloidal flow (i.e. a small radial electric field) may have
a dominant influence on the kinetic internal kink mode.

The effects of E×B velocity shear on turbulence and transport in magnetic con-
finement devices have been widely discussed. The rough criterion for the stability
of the unstable mode (or suppression of turbulence and transport) is that the E×B
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shear rate is greater than the growth rate without the E×B velocity shear (Burrell
1997). Here we compare this criterion with the simulation results. The E×B shear
rate for flute-like modes is defined by the following equation (Hahm and Burrell
1995):

ωE =
Lr
Lθ

(RBθ)2

B

∂2φ

∂ψ2 , (11)

where Lr and Lθ are the correlation lengths of the mode in the radial and poloidal
directions respectively, Bθ is a poloidal magnetic field and ψ is the poloidal flux
function. Note that the flux function ψ is RAz (where R = Lz/2π) for our case.
Approximating Bθ ≈ rB0/Rq and B ≈ B0, we have the following estimate for ωE
at the q = 1 rational surface:

ωE ≈ 26.4
Lr
Lθ
φ̃0
vA
Lz

. (12)

The growth rate without a sheared poloidal flow for the case of de = 8∆ and ρs = 0
is γ = 0.25vA/Lz. This case is stabilized when φ̃0 ≈ 0.1. We may approximate Lθ
by r0, where r0 is the minor radius of the q = 1 magnetic surface. There are two
choices for the estimation of Lr. When the radial extent of the layer at the q = 1
surface, de, is used for Lr, we have ωE ≈ 0.33vA/Lz which is slightly greater than
γ. If we approximate Lr by r0 we have ωE ≈ 2.6vA/Lz, which is much greater than
γ. While the former estimate of ωE cannot explain the de dependence (for ρs = 0)
of the simulation results, the latter estimate can. It is possible that the former
estimate may explain the ρs dependence for ρs > de if we use Lr ≈ ρs. The latter
estimate, however, cannot explain the ρs dependence. These differences between the
criterion and the simulation results may come from the fact that we used only the
local value of ωE , although a internal kink mode is a global mode. Anyway, further
study is needed before drawing a decisive conclusion.

The study in this paper has been limited to a linear mode analysis. A nonlinear
simulation of them = 1 and n = 1 kinetic internal kink mode with a sheared poloidal
flow using the nonlinear version of the GRM3D-2F is the subject of a forthcoming
paper. Also, a comparison of the simulation results from the GRM3D-2F, GYR3D
and Hybrid3D codes will be reported in the near future.
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