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Abstract. An action of Z
k is associated to a higher rank graph � satisfying a mild

assumption. This generalizes the construction of a topological Markov shift arising from
a non-negative integer matrix. We show that the stable Ruelle algebra of � is strongly
Morita equivalent to C∗(�). Hence, if � satisfies the aperiodicity condition, the stable
Ruelle algebra is simple, stable and purely infinite.

1. Introduction
The shift map defines a homeomorphism on the space of two-sided infinite paths in a
finite directed graph, a compact zero-dimensional space when endowed with the natural
topology. Such dynamical systems, called topological Markov shifts or shifts of finite
type, form a key class of examples in symbolic dynamics. Higher-dimensional analogues
which exhibit many of the same dynamical properties include axiom A diffeomorphisms
studied by Smale [Sm]. The local hyperbolic nature of the homeomorphisms in many of
the examples has led to the axiomatization of Smale spaces (see [Ru1]). In [Ru2, Pt1]
(see also [KPS] for a short survey and [Pt2] for extended notes) certain C∗-algebras were
associated to a Smale space making use of the asymptotic, stable and unstable equivalence
relations engendered by the homeomorphism. The Ruelle algebras, crossed products of the
stable and unstable algebras by the canonical automorphism, may be regarded as higher-
dimensional generalizations of Cuntz–Krieger algebras (see [CK, Pt2, PtS]). If the graph
is irreducible, the stable Ruelle algebra associated to the Markov shift is strongly Morita
equivalent to the Cuntz–Krieger algebra associated to the incidence matrix of the graph
(cf. [CK, Theorem 3.8] and [KPS, Proposition 3.7] for similar results).

Following [KP] a k-graph is defined to be a higher rank analogue of a directed graph.
The definition of a k-graph is motivated by the geometrical examples of Robertson and
Steger arising from group actions on buildings (see [RSt1, RSt2]). Given a k-graph �,
we define a universal C∗-algebra, C∗(�), the Cuntz–Krieger algebra of �. Under a mild
assumption we form the ‘two-sided path space’ of �, a natural zero-dimensional space
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associated with a k-graph on which there is a Z
k action by an analogue of the shift.

We establish that the key dynamical properties identified by Ruelle (see [Ru1]), when
properly interpreted, hold for this action. Our program then follows the one set out by
Putnam. If � is irreducible and has finitely many vertices, then, as in [Pt1, Pt2], we
construct C∗-algebras from the stable and unstable equivalence relations on which there
are natural Z

k actions. We then form the resulting crossed products, the Ruelle algebras,
Rs and Ru. Furthermore, we show that the Ruelle algebra Rs is strongly Morita equivalent
to C∗(�). Then, if � satisfies the aperiodicity condition, the Ruelle algebra Rs is a
Kirchberg algebra; that is, Rs is simple, nuclear and purely infinite (a similar result holds
for Ru). See [PtS] for general results on the Ruelle algebras of Smale spaces.

The paper is organized as follows. In §2 we establish our notation and collect facts for
later use. We define a k-graph (�, d) to be a small category � equipped with a degree
map d satisfying a certain factorization property. When (�, d) satisfies the standing
assumption, every vertex of � receives and emits a finite but non-zero number of edges
of any given degree; we form �	 the one-sided infinite path space of �. Pairs of shift-
tail equivalent paths in �	 give rise to elements in the path groupoid G�. The groupoid
C∗-algebra C∗(G�) is naturally isomorphic to C∗(�) (see [KP, Corollary 3.5]). There is
a canonical gauge action α of T

k on C∗(�) whose fixed point algebra C∗(�)α is an
AF-algebra (approximately finite dimensional C∗-algebra) which coincides with the C∗-
algebra of a subgroupoid �� of G� under this identification. We conclude the section by
stating some facts about principal proper groupoids.

In §3 we build a topological dynamical system from a k-graph which is generated by
k commuting homeomorphisms. We show that it satisfies analogues of the two conditions
(SS1) and (SS2) for a Smale space defined in [Ru1, §7.1]. The two-sided path space ��

of � has a zero-dimensional topology generated by cylinder sets which is also given by
a metric ρ; it is compact if �0 is finite. For n ∈ Z

k the shift σn : �� → �� gives
rise to an expansive Z

k-action which is topologically mixing if � is primitive. We show
that condition (SS1) is satisfied, in particular there is a map (x, y) �→ [x, y], defined for
x, y ∈ �� with ρ(x, y) < 1 taking values in ��, which endows the space �� with
a local product structure. For x ∈ �� there are subsets Ex and Fx of �� such that
Ex × Fx is homeomorphic to a neighbourhood of x (under this bracket map). Moreover,
if e = (1, . . . , 1) ∈ Z

k then the shift σe contracts the distance between points in Ex and
expands them on Fx . This is our analogue of condition (SS2) for a single homeomorphism.
As in [Pt1] we define the stable and unstable relations which may be characterized in
terms of tail equivalences on ��, since the topology of �� is generated by cylinder sets.
The stable and unstable relations give rise to the stable and unstable groupoids, Gs and Gu.
Since the unstable relation for �� is exactly the stable relation for the opposite k-graph
�op (the k-graph formed by reversing all the arrows of �), we focus our attention on the
stable case. Finally, we examine the internal structure of the stable groupoid Gs; it is the
inductive limit of a sequence of mutually isomorphic principal proper groupoids Gs,m, for
m ∈ Z

k .

In §4 we associate certain C∗-algebras to an irreducible k-graph � with �0 finite.
First we state a suitable version of the Perron–Frobenius Theorem, which gives rise to
a shift-invariant measure µ on ��. The measure µ decomposes in a manner which
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respects the local product structure; this in turn gives rise to Haar systems for Gs and Gu.
The stable and unstable C∗-algebras may then be defined: S = C∗(Gs) and U = C∗(Gu).
The Z

k-action on �� induces actions βs on S and βu on U which scale the canonical
densely-defined traces. The Ruelle algebras are defined to be the corresponding crossed
products, Rs = S ×βs Z

k and Ru = U ×βu Z
k .

In the last section we prove our main results. Suppose that � is an irreducible k-graph
which has finitely many vertices. Then:
(i) S is strongly Morita equivalent to C∗(�)α (see Theorem 5.3);
(ii) Rs is strongly Morita equivalent to C∗(�) (see Theorem 5.6).
Similar assertions hold for U and Ru when � is replaced by �op. We establish our main
results using the notion of equivalence of groupoids (in the sense of [MRW]). From the
established properties of C∗(�) flow many important consequences. The stable algebra S

is an AF-algebra and if � is primitive then S is simple. The Ruelle algebra Rs is nuclear
and in the bootstrap class N for which the UCT (Universal Coefficient Theorem of [RSc])
holds. Further, if � satisfies the aperiodicity condition then Rs is simple, stable and purely
infinite. The Kirchberg–Phillips Theorem therefore applies, so the isomorphism class of
Rs is completely determined by its K-theory (see [Ki, Ph]).

2. Preliminaries
In this section we first give a little background, then we establish our notation and
conventions about a k-graph � and its path groupoid G� which are taken from [KP].
We define the C∗-algebra of a k-graph, C∗(�), which may be realized as C∗(G�). Finally,
we state some results concerning principal proper groupoids and their Haar systems which
are taken from [Rn2, MW1, KMRW].

We use N to denote the set of natural numbers {0, 1, 2, . . . }; Z, R, T denote the sets of
integers, real numbers and complex numbers with unit modulus, respectively. For k > 0
we endow N

k and Z
k with the coordinatewise ordering.

A category is said to be small if its morphisms form a set; the objects are often identified
with a subset of morphisms (x �→ 1x). A groupoid is a small category � in which every
morphism is invertible. For γ ∈ G we have r(γ ) = γ γ−1 and s(γ ) = γ−1γ , then
r, s : � → �0 where �0 is the unit space (or space of objects) of �. If the groupoid
� is furnished with a topology for which the groupoid operations are continuous then
� is called a topological groupoid. We assume that our groupoids are equipped with a
locally compact, Hausdorff, second countable topology. If the groupoid � has a left Haar
system µ = {µx : x ∈ �0}, an equivariant system of measures on the fibres r−1(x),
then we may form the full and reduced C∗-algebras, C∗(�) and C∗

r (�). Since we only
deal with left Haar systems we henceforth omit the qualifier left. If � is amenable then
its full and reduced C∗-algebras coincide. The groupoid � is called r-discrete if r is a
local homeomorphism; in this case the counting measures form a Haar system. For more
definitions and properties of groupoids and their C∗-algebras, consult [Rn1, M]. For the
most part we have followed the conventions of [Rn1], with the exception that s replaces
d for the source map. A good reference for amenable groupoids may be found in [AR].
We shall frequently invoke the notion of equivalence of groupoids [MRW, Definition 2.1]
which (in the presence of Haar systems) gives rise to the strong Morita equivalence of their
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C∗-algebras [MRW, Theorem 2.8]. A good reference for C∗-algebras and their crossed
products is [Pd].

Let k be a positive integer. Recall the notion of k-graph (see [KP]).

Definition 2.1. A k-graph is a pair (�, d), where � is a countable small category and
d : � → N

k is a morphism, called the degree map, such that the factorization property
holds: for every n1, n2 ∈ N

k and λ ∈ � with d(λ) = n1 + n2, there exist unique elements
ν1, ν2 ∈ � with

λ = ν1ν2, n1 = d(ν1), n2 = d(ν2).

For n ∈ N
k write �n = {λ ∈ � : d(λ) = n}. It will be convenient to identify �0 with the

objects of �. Let r, s : � → �0 denote the range and source maps.

Let E = (E0, E1) be a (countable) directed graph. Then the set of finite paths E∗
together with the length map defines a 1-graph (the roles of r and s must be switched).

If � is a k-graph then the opposite category �op can also be made into a k-graph by
setting d(λop) = d(λ).

The k-graph which gives us the prototype for a (one-sided) infinite path is

	 = 	k = {(m, n) : m,n ∈ N
k : m ≤ n}.

The structure maps are given by

r(m, n) = m, s(m, n) = n, ($, n) = ($,m)(m, n), d(m, n) = n − m (1)

where the object space is identified with N
k (see [KP, Example 1.7ii]). For other examples

of k-graphs consult [KP].

Definition 2.2. A k-graph � is said to be irreducible (or strongly connected) if, for every
u, v ∈ �0, there is λ ∈ � with d(λ) �= 0 such that u = r(λ) and v = s(λ). We say that �
is primitive if there is a non-zero p ∈ N

k so that for every u, v ∈ �0 there is λ ∈ �p with
r(λ) = u and s(λ) = v.

Suppose that � is primitive, then there is an N such that, for all p ≥ N and every
u, v ∈ �0, there is λ ∈ �p with r(λ) = u and s(λ) = v. Moreover, under the following
Standing Assumption 2.3, �0 must be finite.

To ensure that the analogue of the two-sided infinite path space (to be discussed in
the next section) is non-empty and locally compact we shall need the following standing
hypothesis.

STANDING ASSUMPTION 2.3. For each p ∈ N
k the restrictions of r and s to �p are

surjective and finite to one.

The standing hypothesis used here is equivalent to the requirement that both � and
�op satisfy the condition of [KP, §1]. Recall from [KP] the definition of the universal
C∗-algebra of a k-graph.

Definition 2.4. Let � be a k-graph. Then C∗(�) is defined to be the universal C∗-algebra
generated by a family {sλ : λ ∈ �} of partial isometries satisfying:
(i) {sv : v ∈ �0} is a family of mutually orthogonal projections;
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(ii) sλµ = sλsµ for all λ,µ ∈ � such that s(λ) = r(µ);
(iii) s∗

λsλ = ss(λ) for all λ ∈ �;
(iv) for all v ∈ �0 and n ∈ N

k , we have sv = ∑
λ∈�n(v) sλs

∗
λ .

Let � be a k-graph and set

�	 = {x : 	 → � : x is a k-graph homomorphism}; (2)

note that a k-graph morphism must preserve degree, so that for x ∈ �	, we have
d(x(m, n)) = n − m. In [KP] the set �	 was denoted �∞. By Standing Assumption 2.3,
�	 �= ∅. For each λ ∈ � we put

Z(λ) = {x ∈ �	 : x(0, d(λ)) = λ} (3)

then again by Standing Assumption 2.3, Z(λ) �= ∅. The collection of all such cylinder sets
forms a basis for a topology on �	 under which each such subset is compact. For p ∈ N

k

define a map σp : �	 → �	 by

(σpx)(m, n) = x(m + p, n + p) (4)

note that σp is a local homeomorphism. Now we form the path groupoid (for more details
see [KP])

G� = {(x, n, y) : x, y ∈ �	, n ∈ Z
k, σ $x = σmy, n = $ − m for some $,m ∈ N

k},
with structure maps

r(x, n, y) = x, s(x, n, y) = y and (x,m, y)(y, n, z) = (x,m + n, z),

where we have identified �	 with the unit space by x �→ (x, 0, x).
By [KP, Corollary 3.5(i)], C∗(G�) = C∗(�). There is a canonical gauge action

α : T
k → Aut(C∗(�)) which is realized on the dense subalgebra Cc(G�) by

αt (f )(x, n, y) = tnf (x, n, y)

where tn = ∏
i t

ni

i . The fixed point algebra for this action C∗(�)α is the closure of the
subalgebra of Cc(G�) consisting of functions which vanish at points of the form (x, n, y)

with n �= 0. Hence C∗(�)α is isomorphic to C∗(��) where �� is the open subgroupoid
of G� given by

�� = {(x, 0, y) : x, y ∈ �	, σmx = σmy for some m ∈ N
k}.

Recall that
C∗(�)α = F� = lim

m→∞Fm

where
Fm

∼=
⊕
v∈�0

K($2({λ ∈ �m : s(λ) = v})),

hence, C∗(��) = C∗(�)α is an AF-algebra (see [KP, Lemmas 3.2 and 3.3]).
Let �i be a ki graph for i = 1, 2, then �1 × �2 is a (k1 + k2)-graph in a natural way

(see [KP, Proposition 1.8]). By [KP, Corollary 3.5iv] we have

C∗(�1 × �2) ∼= C∗(�1) ⊗ C∗(�2).
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If k1 = k2 = k then we may form a k-graph

�1 � �2 = {(λ1, λ2) ∈ �1 × �2 : d(λ1) = d(λ2)}
with d(λ1, λ2) = d(λ1) and the other structure maps inherited from �1 × �2. Note that
�1 � �2 = f ∗(�1 × �2) where f : N

k → N
k × N

k is given by f (m) = (m,m) (cf. [KP,
Example 1.10iii]).

Let G be a compact Abelian group and for i = 1, 2 let αi : G → Aut(Ai) be a strongly
continuous action of G on the C∗-algebra Ai . Let A1 ⊗GA2 denote the fixed-point algebra
(A1 ⊗ A2)

η where η : G → Aut(A1 ⊗ A2) is given by ηg(a ⊗ b) = α1
g(a) ⊗ α2

g−1(b).

This is the natural notion of tensor product in the category of C∗-algebras with a given
G-action, see [OPT, §2]. Now with �i as above and taking αi to be the gauge action on
C∗(�i) for i = 1, 2 we have

C∗(�1 � �2) ∼= C∗(�1) ⊗Tk C∗(�2). (5)

This follows by an argument similar to the proof of [Ku2, Proposition 2.7].
In the remainder of this section we state some standard facts concerning principal proper

groupoids in a convenient form. Recall that a groupoid G is said to be principal, if it is
isomorphic to an equivalence relation; that is, if r × s : G → G0 × G0 is an embedding.
If, in addition, the image is a closed subset of G0 ×G0, it is said to be proper (see [MW1]).

LEMMA 2.5. Let π : X → Y be a continuous open surjection between two locally
compact Hausdorff spaces. Then

X 6π X = {(x, y) ∈ X × X : π(x) = π(y)}
is a principal proper groupoid, with structure maps r(x, y) = x, s(x, y) = y and
(x, y)(y, z) = (x, z). Moreover, X is an (X 6π X, Y )-equivalence.

Proof. Evidently X6π X is a principal groupoid; since X6π X is a closed subset of X×X,
it is proper. By [MRW, Example 2.5] X is a (X 6π X, Y )-equivalence. ✷

The following definition is taken from [Rn2, §1] (see also [M, Definition 5.42]).

Definition 2.6. With π as above, a π-system consists of a family

µ = {µy : y ∈ Y }
of positive Radon measures on X such that the support of µy is contained in π−1(y) for
each y ∈ Y and the function

µ(f )(y) =
∫

f (x) dµy(x)

lies in Cc(Y ) for each f ∈ Cc(X). If the support of each µy is all of π−1(y) for all y ∈ Y ,
then the π-system is said to be full.

Note that a Haar system on a groupoid is an equivariant r-system. A full π-system gives
rise to a Haar system for X 6π X.
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PROPOSITION 2.7. Let π be as above and µ = {µy : y ∈ Y } be a full π-system. Then, for
x ∈ X,

µ̃x = δx × µπ(x)

defines a Haar system µ̃ = {µ̃x : x ∈ X} for X 6π X. Moreover, C∗(X 6π X) is strongly
Morita equivalent to C0(Y ). There is a densely defined C0(Y )-valued trace on C∗(X6π X)

given by

τµ(f )(y) =
∫
X

f (x, x) dµy(x) (6)

for f ∈ Cc(X 6π X).

Proof. The first assertion follows from [KMRW, Proposition 5.2] (see also
[M, Theorem 5.51]). The Morita equivalence now follows from [MRW, Theorem 2.8]
and Lemma 2.5 (see also [MW1, Proposition 2.2]). A routine computation shows that
τµ(fg) = τµ(gf ) for f, g ∈ Cc(X 6π X). ✷

3. Z
k actions

In this section we adapt the methods of [Pt1] for the Z-action associated to shifts of finite
type to analyze an analogous Z

k action on a topological space associated to a k-graph.
Many of the constructions of [Ru1, Pt1] can be generalized to this setting. Following
[Pt1, Pt2], we provide a description of the stable, unstable and asymptotic relations for our
Z

k action and the topology of the associated groupoids.
There is a natural Z

k action on the analogue of the two-sided path space of a k-graph
satisfying Standing Assumption 2.3. First, we form a k-graph which gives us the prototype
of a two-sided infinite path. Set

� = �k = {(m, n) : m,n ∈ Z
k,m ≤ n},

with structure maps given as in (1), it is straightforward to check that (�, d) is a k-graph.
Next we use � to form the two-sided infinite path space (cf. (2)). Set

�� = {x : � → � : x is a k-graph morphism},
then by Standing Assumption 2.3, �� �= ∅. We endow �� with a topology as follows
(cf. (3)): for each n ∈ Z

k and λ ∈ � set

Z(λ, n) = {x ∈ �� : x(n, n + d(λ)) = λ}.
Again by Standing Assumption 2.3, Z(λ, n) �= ∅. The collection of all such cylinder sets
forms a basis for a topology on �� for which each such subset is compact. It follows
that �� is a zero-dimensional space and if �0 is finite, then �� is itself compact (since
�� = ⋃

v∈�0 Z(v, 0)). Now for each n ∈ Z
k we define a map σn : �� → �� by

σn(x)($,m) = x($ + n,m + n).

Note that σn is a homeomorphism for every n ∈ Z
k , σn+m = σnσm for n,m ∈ Z

k and σ 0

is the identity map.
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We define a metric on �� as follows. We set e = (1, . . . , 1) ∈ Z
k and for j ∈ N, let

θj ∈ � denote the element (−je, je); note that θ0 = 0. Given x, y ∈ ��, set

h(x, y) =
{

0 x(0) �= y(0)

1 + sup{j : x(θj ) = y(θj )} otherwise.

Fix 0 < r < 1; we may define a metric ρ on �� by the formula ρ(x, y) = rh(x,y) for
x, y ∈ �� (note that ρ(x, x) = r∞ = 0). The topology induced by this metric is the same
as the one above.

PROPOSITION 3.1. The Z
k-action n �→ σn on �� is expansive in the sense that there

is an ε > 0 such that for all x, y ∈ �� if ρ(σn(x), σn(y)) < ε for all n then x = y.
Moreover, if � is primitive then σ is topologically mixing in the sense that for any two
non-empty open sets U and V in �� there is a Q ∈ Z

k so that U ∩ σq(V ) �= ∅ for all
q ≥ Q.

Proof. To show that the action is expansive, observe that ε = r will suffice (if x

(n − e, n + e) = y(n − e, n + e) for all n ∈ Z
k , then x = y). If � is primitive, there is

an M ∈ N
k such that for all m ≥ M and every u, v ∈ �0 there is λ ∈ �m with r(λ) = u

and s(λ) = v. To show that for any two non-empty open sets U and V in �� there is a
Q ∈ Z

k so that U ∩ σq(V ) �= ∅ for all q ≥ Q, it suffices to demonstrate this for cylinder
sets. So, let U = Z(λ, $) and V = Z(ν, n). Set Q = M +d(ν)+n−$; then given q ≥ Q,
there is λ′ ∈ � with d(λ′) = M +q −Q such that r(λ′) = s(ν) and s(λ′) = r(λ). Observe
that

Z(νλ′λ, n − q) ⊂ Z(λ, $) ∩ σq(Z(ν, n)).

Therefore, U ∩ σq(V ) �= ∅ for all q ≥ Q, as required. ✷

Remark 3.2. Consider the 1-graph obtained by restricting consideration to powers of �e;
note that this 1-graph may be regarded as the k-graph f ∗(�) where f : N → N

k is given
by f (j) = je (see [KP, Definition 1.9]). By arguing as in [KP, Proposition 2.9] it follows
that the restriction map �� → f ∗(�)� is a homeomorphism. Under this identification
the generator of the action of Z on f ∗(�)� is identified with σe. Many attributes of this
restricted dynamical system are reflected in the action of Z

k , as we shall see below.

The space �� decomposes locally into contracting and expanding directions for the
shift. For x ∈ �� set

Ex = {y ∈ �� : x(m, n) = y(m, n), for all 0 ≤ m ≤ n}
Fx = {y ∈ �� : x(m, n) = y(m, n), for all m ≤ n ≤ 0}.

Observe that for j ∈ N we have (see [Ru1, §7.1], also [Pt1])

ρ(σ je(y), σ je(z)) ≤ rjρ(y, z) for y, z ∈ Ex

ρ(σ−je(y), σ−je(z)) ≤ rjρ(y, z) for y, z ∈ Fx.

For p ≥ 0 a simple calculation shows that σpEx ⊆ Eσpx and σ−pFx ⊆ Fσ−px .
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PROPOSITION 3.3. (cf. [Ru1, Pt1]) There exists a unique map

[·, ·] : {(x, y) ∈ �� × �� : ρ(x, y) < 1} → ��

satisfying

[x, y](m, n) = x(m, n) if m ≤ n ≤ 0

[x, y](m, n) = y(m, n) if 0 ≤ m ≤ n.
(7)

Moreover, [·, ·] is continuous, Fx ∩ Ey = {[x, y]} if ρ(x, y) < 1 and the following hold:

[x, x] = x, [[x, y], z] = [x, z], [x, [y, z]] = [x, z], [σnx, σny] = σn[x, y], (8)

wherever both sides of each equation are defined. Furthermore, for x ∈ �� the restriction
of [·, ·] to Ex × Fx induces a homeomorphism Ex × Fx

∼= Z(x(0), 0).

Proof. By the factorization property, a consistent family of elements

{x(−p,p) ∈ �2p : p ≥ 0} with x(−q, q) = λx(−p,p)µ,

for some λ,µ when q ≥ p, will determine a unique element x ∈ �� (cf. [KP,
Remarks 2.2]). For p ≥ 0 and x, y with ρ(x, y) < 1 (so that x(0) = y(0)) set

[x, y](−p,p) = x(−p, 0)y(0, p).

It is straightforward to check that this results in the unique map satisfying (7); moreover it is
continuous. If z ∈ Fx ∩Ey , then z(m, n) = x(m, n) for m ≤ n ≤ 0 and z(m, n) = y(m, n)

for 0 ≤ m ≤ n; hence, z = [x, y] by (7).
The properties (8) are straightforward to verify. For the last assertion, it is clear that

the restriction of [·, ·] to Ex × Fx is one-to-one. To see that the image is Z(x(0), 0), let
z ∈ Z(x(0), 0); then [z, x] ∈ Ex , [x, z] ∈ Fx and z = [[z, x], [x, z]]. The restriction is
clearly continuous as is its inverse z �→ ([z, x], [x, z]). ✷

Note that if ρ(x, y) < 1, then y ∈ Ex if and only if [x, y] = x and similarly y ∈ Fx if
and only if [y, x] = x.

As in [Pt1] we define the stable and unstable equivalence relations on �� as follows.
Given x, y ∈ �� define

x ∼s y if lim
j→∞ ρ(σ je(x), σ je(y)) = 0

x ∼u y if lim
j→−∞ ρ(σ je(x), σ je(y)) = 0.

Note that x ∼s y if and only if there is m ∈ Z
k such that for all n ∈ Z

k with m ≤ n we
have x(m, n) = y(m, n). Similarly x ∼u y if and only if there is n ∈ Z

k such that for all
m ∈ Z

k with m ≤ n we have x(m, n) = y(m, n).
These equivalence relations give rise to two locally compact groupoids: the stable

groupoid,
Gs = Gs(�) = {(x, y) ∈ �� × �� : x ∼s y}

and the unstable groupoid,

Gu = Gu(�) = {(x, y) ∈ �� × �� : x ∼u y};
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the unit space of each is identified with �� and the structure maps are the natural ones.
The topology on Gs is given as follows. For m ∈ Z

k , set

Gs,m = {(x, y) ∈ �� × �� : x(m, n) = y(m, n) for all n ≥ m}.
Note that Gs,m is a subgroupoid of Gs. We endow Gs,m with the relative topology and
Gs = ⋃

m Gs,m with the inductive limit topology. The topology on Gu is defined similarly.
None of these groupoids are r-discrete in general.

There is an natural inclusion map 	 ↪→ � which gives rise to a surjective map
π : �� → �	 given by restriction: π(x)(m, n) = x(m, n) for x ∈ �� and (m, n) ∈ 	.
It is straightforward to verify that π is continuous and open. Observe that for x ∈ �� and
p ∈ N

k we have
π ◦ σp(x) = σp ◦ π(x). (9)

We now collect some facts about the topology of Gs for future use.

PROPOSITION 3.4. Let � be a k-graph and Gs the groupoid defined above. Then, for all
m ∈ Z

k , Gs,m is a closed subset of �� × ��; indeed

Gs,m = �� 6π◦σm �� = {(x, y) ∈ �� × �� : π(σmx) = π(σmy)}
and hence Gs,m is a principal proper groupoid. For all m,n ∈ Z

k we have that
Gs,m+n = (σ−m × σ−m)Gs,n; in particular, Gs,m are all isomorphic to �� 6π ��.
Moreover, for m ≤ n, Gs,m is an open subset of Gs,n.

Proof. For the first part, observe that π(σmx) = π(σmy) if and only if x(m, n) = y(m, n)

for all n ≥ m; so Gs,m = �� 6π◦σm �� which is a principal proper groupoid by
Lemma 2.5. For the second assertion, note that x(n + m, $) = y(n + m, $) for all
$ ≥ n + m if and only if σmx(n, $′) = σmy(n, $′) for all $′ ≥ n and that (σ−m × σ−m)

is a homeomorphism of �� × ��. To show that Gs,m is an open subset of Gs,n for
m ≤ n, it suffices to consider the case when m = 0. Suppose that (x, y) ∈ Gs,0, then
we have x, y ∈ Z(λ, 0) where λ = x(0, n) = y(0, n). Put U = Z(λ, 0) × Z(λ, 0),
then (x, y) ∈ Gs,0 ∩ U . If (x ′, y ′) ∈ Gs,n ∩ U then x ′(0, n) = λ = y ′(0, n) and since
(x ′, y ′) ∈ Gs,n, we have x ′(n, $) = y ′(n, $) for $ ≥ n. Hence x ′(0, $) = y ′(0, $) for all
$ ≥ 0 and so (x ′, y ′) ∈ Gs,0 ∩ U , which shows that Gs,0 is open in Gs,n as required. ✷

Remark 3.5. There is a homeomorphism �� → (�op)� given by x �→ xop where

xop(m, n) = x(−n,−m)op.

Note that for n ∈ Z
k and x ∈ �� we have (σ op)n(xop) = σ−n(x)op, where σ op is the shift

action of Z
k on (�op)�. For every x, y ∈ �� we have x ∼s y if and only if xop ∼u yop

and x ∼u y if and only if xop ∼s yop. Hence Gu(�) = Gs(�
op) and Gu(�

op) = Gs(�).

Remark 3.6. As in [Pt1] (cf. [Ru2]) we define the asymptotic relation on �� as follows.
For x, y ∈ �, we put x ∼a y if x ∼s y and x ∼u y. Observe that x ∼a y if and only if
there is m ∈ N

k so that for all n ≥ m we have

x(m, n) = y(m, n) and x(−n,−m) = y(−n,−m). (10)
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Let Ga denote the groupoid derived from this equivalence relation. We endow it with a
topology that makes it an r-discrete groupoid. Given (x, y) ∈ Ga , there is an m ∈ N

k

so that (10) holds; set λ = x(−m,m) and ν = y(−m,m). There is a unique map
ϕν,λ : Z(λ,−m) → Z(ν,−m) such that ϕν,λ(x) = y and

ϕν,λ(z)(m, n) = z(m, n) and ϕν,λ(z)(−n,−m) = z(−n,−m)

for all z ∈ Z(λ,−m) and n ≥ m. Note that the map ϕν,λ is a homeomorphism and
z ∼a ϕν,λ(z) for all z ∈ Z(λ,−m). We let Uν,λ ⊂ Ga be the graph of ϕν,λ

Uν,λ = {(ϕν,λ(z), z) : z ∈ Z(λ,−m)}.
The collection {Uν,λ}ν,λ forms a basis for the topology of Ga in which Uν,λ are compact
open sets. Evidently the restriction of the range map to each Uν,λ is a homeomorphism
onto Z(ν,−m); hence Ga is r-discrete.

4. Ruelle algebras
As in [Pt1] the stable and unstable C∗-algebras are given by S := C∗(Gs) and U :=
C∗(Gu). The Ruelle algebras, Rs and Ru, are defined as the crossed products of S and U

by the natural Z
k actions (see [PtS]). We need to show that Gs and Gu have Haar systems;

for this it will be necessary to invoke a suitable version of the Perron–Frobenius Theorem,
for an irreducible k-graph � with �0 finite (cf. [Pt2]). As in [Pt1] we show that there is a
densely-defined trace on S and U which is scaled by the Z

k action. Finally, we discuss the
corresponding facts in the asymptotic case.

Let � be a k-graph. For u, v ∈ �0, p ∈ N
k set

�p(u, v) = {λ ∈ �p : u = r(λ) and v = s(λ)},
then for each p ∈ N

k, we obtain a non-negative integer valued matrix |�p| indexed
by �0 given by |�p|(u, v) = |�p(u, v)| for u, v ∈ �0. For p, q ∈ N

k , we have
|�p+q | = |�p||�q |. Let R+ denote the collection of positive real numbers.

LEMMA 4.1. (cf. [Pt2]) Suppose that � is irreducible and �0 is finite. Then there exist
t ∈ R

k+, a : �0 → R+ and b : �0 → R+ with
∑

v∈�0 a(v)b(v) = 1 such that for all
p ∈ N

k we have ∑
u∈�0

a(u)|�p|(u, v) = tpa(v) for all v ∈ �0 (11)

∑
v∈�0

|�p|(u, v)b(v) = tpb(u) for all u ∈ �0. (12)

Proof. Since � is irreducible, there is an integer matrix A with all positive entries which
may be written as a sum of matrices of the form |�p| for various p ∈ N

k . By the
Perron–Frobenius Theorem (see [Se, Theorem 1.5] for example) there are functions
a, b : �0 → R+ satisfying

∑
v∈�0 a(v)b(v) = 1 and a number T ∈ R+ such that∑

v∈�0

a(u)A(u, v) = T a(v) for all v ∈ �0,

∑
u∈�0

A(u, v)b(v) = T b(u) for all u ∈ �0.
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For i = 1, . . . , k let ei denote the canonical generators of N
k , then since A commutes with

|�ei | for each i there exist non-negative ti such that the same formulas hold with A replaced
by |�ei | and T replaced by ti ; formulae (12) and (11) now follow with t = (t1, . . . , tk).

It remains to show that ti > 0 for each i. Let u ∈ �0, then by Standing Assumption 2.3
|�e|(u, v) > 0 for some v ∈ �0; applying (12) we have∑

v∈�0

|�e|(u, v)b(v) = t1 . . . tkb(u).

Since the left-hand side is evidently positive, t1 . . . tk > 0; hence ti > 0 for all i as
required. ✷

We construct the analogue of the Parry measure µ on �� as follows (cf. [Pt2]).

PROPOSITION 4.2. Suppose that � is irreducible and �0 is finite. Then there is a shift
invariant probability measure µ on �� such that

µ(Z(λ, n)) = t−d(λ)a(r(λ))b(s(λ)),

for all λ ∈ � and n ∈ Z
k .

Proof. We must show that µ is well defined on cylinder sets. Given λ ∈ � and n ∈ Z
k ,

observe that for m ≥ 0 we may write Z(λ, n) as a disjoint union by expanding on the right:

Z(λ, n) =
∐

ν∈�m

r(ν)=s(λ)

Z(λν, n).

Then we compute µ of the right-hand side (using (12))∑
ν∈�m

r(ν)=s(λ)

µ(Z(λν, n)) =
∑
ν∈�m

r(ν)=s(λ)

t−d(λν)a(r(λ))b(s(ν))

= t−d(λ)a(r(λ))
∑
v∈�0

t−m
∑

ν∈�m(s(λ),v)

b(s(ν))

= t−d(λ)a(r(λ))
∑
v∈�0

t−m|�m|(s(λ), v)b(v)

= t−d(λ)a(r(λ))b(s(λ)) = µ(Z(λ, n)).

If we write Z(λ, n) as a disjoint union by expanding on the left,

Z(λ, n) =
∐

ν∈�m

s(ν)=r(λ)

Z(νλ, n − m),

then a similar calculation (using (11)) shows that µ of each side is the same and completes
the demonstration that µ is well defined. Thus µ extends to a probability measure which
is invariant under the action of Z

k . ✷

Our next task is to decompose µ locally into measures which give rise to Haar systems
for Gs and Gu.

Fix x ∈ ��; then for λ ∈ � with s(λ) = x(0), we define

Z−(λ, x) = Ex ∩ Z(λ,−d(λ)).
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Likewise, for λ ∈ � with r(λ) = x(0), we define

Z+(λ, x) = Fx ∩ Z(λ, 0).

PROPOSITION 4.3. (cf. [Pt2]) Suppose that � is irreducible and �0 is finite. Then for
each x ∈ �� there is a measure µx

s on Ex and a measure µx
u on Fx , such that

µx
s (Z

−(λ, x)) = t−d(λ)a(r(λ)) and µx
u(Z

+(λ, x)) = t−d(λ)b(s(λ))

for all λ ∈ �. The restriction of µ to Z(x(0), 0) is µx
s ×µx

u after identifying Ex ×Fx with
Z(x(0), 0) as in Proposition 3.3. Moreover for p ∈ N

k we have

µx
s = tpµσpx

s ◦ σp and µx
u = tpµσ−px

u ◦ σ−p (13)

on Ex and Fx , respectively.

Proof. The first assertion is clear. For the next part it suffices to consider cylinder sets
of the form Z(λ, n) where λ = λ−λ+ ∈ � with r(λ+) = x(0) and n = −d(λ−).
After identifying Z+(λ+, x) × Z−(λ−, x) with Z(λ,−d(λ−)) (as in Proposition 3.3) we
have

µx
s × µx

u(Z(λ,−d(λ−))) = µx
s (Z

−(λ−, x))µx
u(Z

+(λ+, x))

= t−d(λ−)a(r(λ−))t−d(λ+)b(s(λ+))

= t−d(λ)a(r(λ))b(s(λ))

= µ(Z(λ,−d(λ−))),

hence the restriction of µ to Z(x(0), 0) is µx
s × µx

u as required. From the definitions it is
straightforward to verify that for p ∈ N

k

σpZ−(λ, x) = Z−(λx(0, p), σpx) and σ−pZ+(λ, x) = Z+(x(−p, 0)λ, σ−px).

Hence,

µσpx
s (σpZ−(λ, x)) = t−pµx

s (Z
−(λ, x)),

µσ−px
u (σ−pZ+(λ, x)) = t−pµx

u(Z
+(λ, x)),

equations (13) then follow on Ex and Fx respectively. ✷

Note that for x ∈ �� we have that Ex = {y : π(y) = π(x)}; evidently, if π(y) = π(x)

then Ey = Ex and µ
y
s = µx

s . For z = π(x), let µz
s,0 denote the extension of µx

s to

�� (µz
u,0 is defined similarly). Observe that µs,0 = {µz

s,0 : z ∈ �	} is a full π-system.
The continuity of the system follows from the fact that

µs,0(χZ(λ,n))(z) = t−d(λ)a(r(λ))

is locally constant. By Propositions 2.7 and 3.4 we obtain a Haar system

µ̃s,0 = {µ̃x
s,0 : x ∈ ��}

for Gs,0. Recall from Proposition 3.4 that for p ≥ 0, we have Gs,p = �� 6π◦σp ��.
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PROPOSITION 4.4. Let � be an irreducible k-graph with �0 finite. For p ≥ 0 and
x, y ∈ �� if π ◦ σpx = π ◦ σpy, then

σ−pEσpx = σ−pEσpy and µσpx
s ◦ σp = µ

σpy
s ◦ σp. (14)

For z = π◦σp(x), let µz
s,p denote the extension of the measure tpµσpx

s ◦σp from σ−pEσpx

to ��. Then µs,p = {µz
s,p : z ∈ �	} is a full π ◦ σp-system and we obtain a Haar system

µ̃s,p = {µ̃x
s,p : x ∈ ��} for Gs,p. If 0 ≤ p ≤ q , the restriction of µ̃x

s,q to Gs,p agrees
with µ̃x

s,p for all x ∈ ��. We thereby obtain a Haar system for Gs, µ̃s = {µ̃x
s : x ∈ ��}.

A Haar system for Gu is obtained in a similar way.

Proof. Note that for p ≥ 0 and x, y ∈ ��, y ∈ σ−pEσpx if and only if π◦σpx = π◦σpy;
hence, formulae (14) hold. By arguments similar to those given immediately prior to the
statement of this proposition, µs,p is a full π ◦ σp-system and µ̃s,p is a Haar system for
Gs,p. The compatibility of the Haar systems now follows from a short calculation involving
(13). The Haar systems µs,p for p ≥ 0 may therefore be patched together to give a Haar
system for Gs: µ̃s = {µ̃x

s : x ∈ ��}. ✷

Now we may define the stable and unstable algebras associated with an irreducible
k-graph � with finitely many vertices

S = S(�) = C∗(Gs(�)) and U = U(�) = C∗(Gu(�)).

For n ∈ Z
k , the map σn×σn yields an automorphism of the stable and unstable equivalence

relations but it rescales the Haar systems by (13); indeed

µ̃x
s ◦ (σ−n × σ−n) = tnµ̃σnx

s and µ̃x
u ◦ (σ−n × σ−n) = t−nµ̃σnx

u . (15)

This induces actions βs, βu of Z
k on both S and U given for n ∈ Z

k by

βn
s (f )(x, y) = tnf (σ−n(x), σ−n(y)) where f ∈ Cc(Gs),

βn
u (f )(x, y) = t−nf (σ−n(x), σ−n(y)) where f ∈ Cc(Gu),

and extending by continuity to the completions.
The measure µ on �� gives rise to a densely-defined trace on S as follows.

PROPOSITION 4.5. Let � be an irreducible k-graph with �0 finite, µ the Parry measure
and Gs the stable groupoid. For f ∈ Cc(Gs), set

τs(f ) =
∫
��

f (x, x) dµ(x).

Then τs is a densely-defined trace on C∗(Gs). A densely-defined trace τu on C∗(Gu) is
defined similarly. Moreover, for n ∈ Z

k we have

τs ◦ βn
s = tnτs and τs ◦ βn

u = t−nτu. (16)

Proof. Formulae (16) follow from (15). We show that τs is a densely-defined trace; the
case of τu is similar. It suffices to show that τs satisfies the trace property (τs is clearly
densely-defined, linear and positive). For f, g ∈ Cc(Gs), there is p ≥ 0 such that the
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supports of f and g are contained in Gs,p (by Proposition 3.4, {Gs,p : p ≥ 0} forms an
open cover of Gs). Since µ decomposes locally as a product measure as in Proposition 4.3
with tpµσpx

s ◦ σp in place of µx
s , there is a measure νs,p on �	 such that∫

��

h(x) dµ(x) =
∫
�	

µs,p(h) dνs,p

for all h ∈ C(��). It follows that

τs(fg) =
∫
��

(fg)(x, x) dµ(x) =
∫
�	

∫
(fg)(y, y) dµz

s,p(y) dνs,p(z)

=
∫
�	

τµs,p (fg) dνs,p =
∫
�	

τµs,p (gf ) dνs,p = τs(gf ),

where the penultimate equality follows from Proposition 2.7. ✷

Let � be an irreducible k-graph with finitely many vertices. The Ruelle algebras
associated with � are defined to be the corresponding crossed products (cf. [PtS, Pt2])

Rs = Rs(�) = S(�) ×βs Z
k and Ru = Ru(�) = U(�) ×βu Z

k.

We express the Ruelle algebras as C∗-algebras of the semidirect product groupoids Gs×Z
k

and Gu × Z
k . The unit space is identified with �� via the map x �→ ((x, x), 0). The

structure maps are given by

r((x, y), n) = x, s((x, y), n) = σny, ((x, y), n)((σny, σnz),m) = ((x, z), n + m).

The structure maps of Gu × Z
k are defined similarly.

LEMMA 4.6. If � is an irreducible k-graph with �0 finite, then both Gs ×Z
k and Gu ×Z

k

have Haar systems. Moreover, we have Rs ∼= C∗(Gs × Z
k) and Ru ∼= C∗(Gu × Z

k).

Proof. Let ϑ be the measure on Z
k given by ϑ({n}) = t−n; then a direct computation using

(15) shows that {µ̃x
s × ϑ : x ∈ ��} is a Haar system for Gs × Z

k . ✷

Remark 4.7. Let � be an irreducible k-graph with �0 finite, then by Remark 3.5 we
have Gu(�) = Gs(�

op) and Gs(�) = Gu(�
op). Note that �op is also irreducible

and (�op)0 = �0 is finite. We have U(�) = S(�op) and S(�) = U(�op), similarly
Ru(�) = Rs(�

op) and Rs(�) = Ru(�
op). Henceforth, we focus our attention on the

stable case.

Remark 4.8. The asymptotic C∗-algebra may also be defined,

A = A(�) = C∗(Ga(�)).

Note that since Ga is r-discrete, it has a Haar system consisting of counting measures.
The asymptotic Ruelle algebra is defined as the crossed product

Ra = Ra(�) = A(�) ×βa Z
k = C∗(Ga(�) × Z

k).

Suppose that � is irreducible and �0 is finite. With notation as in Remark 3.6,

µ(Z(λ,−m)) = t−2ma(r(λ))b(s(λ)) = t−2ma(r(ν))b(s(ν)) = µ(Z(ν,−m)),
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hence µ is invariant under Ga . Thus we may define a unital trace on A by

τa(f ) =
∫

f (x, x) dµ(x)

for f ∈ Cc(Ga). The Z
k action σ on �� induces an action σ × σ on Ga and, hence, we

get an action βa : Z
k → AutA. Since τa is invariant under βa , we also obtain a trace

on Ra .

5. Morita equivalence
In this section we prove our main results. If � is irreducible and �0 is finite, we show that
the stable algebra S is strongly Morita equivalent to C∗(�)α and that Rs is strongly Morita
equivalent to C∗(�). Hence, if � satisfies the aperiodicity condition, then Rs is a stable
Kirchberg algebra.

We begin by stating a groupoid equivalence result that will be useful in both cases.
This result is no doubt well known to the experts but, as we are unable to find an explicit
reference, we provide a proof.

Let � be a locally compact Hausdorff groupoid. Given a right principal �-space Y , one
may construct the imprimitivity groupoid Y 6� Y op where Y op is the corresponding left
principal �-space. By [MW2, Theorem 3.5] (see also [M, Theorem 5.31]), Y implements
an equivalence between the imprimitivity groupoid and � in the sense of [MRW,
Definition 2.1].

Let X be a locally compact Hausdorff space and let ψ : X → �0 be a continuous open
surjection. Set

Z = X 6 � = {(x, γ ) : x ∈ X, γ ∈ �,ψ(x) = r(γ )}. (17)

We define a right action of � on Z as follows: s : Z → �0 is given by s(x, γ ) = s(γ ) and
the map Z 6 � → Z by ((x, γ1), γ2) = (x, γ1γ2). There is a corresponding left action of
� on Zop = � 6 X.

LEMMA 5.1. With the above structure maps, Z is a right principal �-space. Moreover
the imprimitivity groupoid Z 6� Zop is isomorphic to

�ψ := {(x, γ, y) : x, y ∈ X, γ ∈ �,ψ(x) = r(γ ), ψ(y) = s(γ )},
equipped with the relative topology. Therefore Z implements an equivalence between the
groupoids � and �ψ .

Proof. To show that Z is a right principal �-space, we must show that the action is free
and proper. The action is clearly free (because the action of a groupoid on itself is free).
It suffices to show that the map Z 6 � → Z × Z, given by

((x, γ1), γ2) �→ ((x, γ1γ2), (x, γ1)),

is a homeomorphism onto a closed set (see [MW2, Lemma 2.2]). This follows from
a similar fact for the right action of a groupoid on itself. By [MW2, Theorem 3.5],
Z is a groupoid equivalence between the imprimitivity groupoid Z 6� Zop and �.
The isomorphism from Z 6� Zop to �ψ is given by the map

((x, γ1), (γ2, y)) �→ (x, γ1γ2, y).

The result now follows from this identification. ✷

https://doi.org/10.1017/S0143385702001670 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385702001670


Actions of Z
k associated to higher rank graphs 1169

The construction of �ψ above appears in [Ku1, Proposition 5.7] (though in a more
specialized setting). Recall that the restriction map π : �� → �	 is a continuous open
surjection.

LEMMA 5.2. Let � be a k-graph and Gs be the stable groupoid associated to �. Then the
map (x, y) �→ (x, (π(x), 0, π(y)), y) gives an isomorphism Gs ∼= (��)π .

Proof. Recall that (x, y) ∈ Gs,m precisely when π(σmx) = π(σmy). For m ≥ 0 the given
map restricts to a homeomorphism from Gs,m to (��,m)π where ��,m is the subgroupoid
of �� formed by those (x, 0, y) where σm(x) = σm(y). Since the topology on �� is
equivalent to the inductive limit topology from these subgroupoids, the given map is a
homeomorphism. It is routine to check that the map is a groupoid morphism. ✷

The groupoid equivalence (in the sense of [MRW]) between Gs and �� now follows.

THEOREM 5.3. The space Z = �� 6 �� is a (Gs, ��)-equivalence. In particular,
Gs is amenable in the sense of [AR]. Moreover, if � is irreducible and �0 is finite, then the
stable algebra S is strongly Morita equivalent to C∗(�)α and, therefore, is an AF-algebra.

Proof. The first part follows from Lemmas 5.1 and 5.2. That Gs is amenable now follows
from [AR, Theorem 2.2.17]. If � is irreducible and �0 is finite, then by Proposition 4.4,
Gs has a Haar system (�� has a Haar system consisting of counting measures) so that by
[MRW, Theorem 2.8], S is strongly Morita equivalent to C∗(��) = C∗(�)α . The final
assertion then follows from [KP, Lemma 3.2]. ✷

We could have deduced that S = C∗(Gs) is AF more directly. It follows from the fact
that

C∗(Gs) = lim
m→∞ C∗(Gs,m)

and that C∗(Gs,m) is strongly Morita equivalent to the Abelian AF-algebra C(�	) for each
m (see Propositions 2.7 and 3.4). If � is primitive then we can say more.

COROLLARY 5.4. Let � be a primitive k-graph, then C∗(�)α is a simple AF-algebra and,
hence, so is S.

Proof. Suppose that � is primitive, then by Standing Assumption 2.3, �0 is finite.
Moreover, there is an n > 0 (i.e. all coordinates are positive) such that for every u, v ∈ �0

there is λ ∈ �n with u = s(λ) and v = r(λ). It follows that all the entries of the
matrix |�n| are positive. Since the sequence {jn : j ∈ N} is cofinal in N

k , we have that
C∗(�)α = limj→∞ Fjn. The multiplicity matrix of the inclusions may be identified with
|�n| and the result now follows from [B, Corollary 3.5]. ✷

Analogous assertions hold for U when � is replaced by �op (see Remark 4.7).

LEMMA 5.5. Let � be a k-graph, Gs be the associated stable groupoid and Gs × Z
k be

the semidirect product groupoid (see Lemma 4.6). Then the map

ϕ : ((x, y), n) �→ (x, (π(x), n, π(σny)), σny)

gives an isomorphism Gs × Z
k ∼= (G�)π .
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Proof. That (π(x), n, π(σny)) ∈ G� follows from (9), so ϕ is well defined and evidently
injective. Given (x, (π(x), n, π(z)), z) ∈ (G�)π , we have

(x, (π(x), n, π(z)), z) = ϕ((x, σ−nz), n),

hence ϕ is surjective. Recall that Gs × Z
k is given the product topology and observe that

the restriction of ϕ to Gs × {0} agrees with the homeomorphism defined in Lemma 5.2.
Similarly, the restriction to Gs × {n} is a homeomorphism onto the set

{(x, (π(x), n, π(y)), y) : x, y ∈ ��, σ$π(x) = σmπ(y), n = $ − m}.
The reader is invited to check that the map is a groupoid morphism. ✷

Recall that a k-graph is said to satisfy the aperiodicity condition if for every vertex v

there is x ∈ �	 with x(0) = v which is not eventually periodic (see [KP, Definition 4.1]).
Let N denote the bootstrap class of C∗-algebras to which the UCT applies (see [RSc]).

THEOREM 5.6. The space Z = �� 6 G� is a (Gs × Z
k,G�)-equivalence. Therefore,

if � is irreducible and �0 is finite, then the stable Ruelle algebra Rs is strongly Morita
equivalent to C∗(�) and, hence, is nuclear and lies in the bootstrap class N . If, in
addition, � satisfies the aperiodicity condition, then Rs is simple, stable and purely
infinite. Hence, the isomorphism class of Rs is completely determined by K∗(Rs) =
K∗(C∗(�)).

Proof. The first part follows from Lemmas 5.1 and 5.5. If � is irreducible and �0 is finite,
then by Lemma 4.6, Gs × Z

k has a Haar system (G� has a Haar system consisting of
counting measures) so that by [MRW, Theorem 2.8], Rs is strongly Morita equivalent to
C∗(G�) = C∗(�). By [KP, Theorem 5.5], Rs is nuclear and lies in the bootstrap class
N (since strong Morita equivalence preserves these properties). If � is irreducible then
it is clearly cofinal and if, in addition, � satisfies the aperiodicity condition, it follows
from [KP, Proposition 4.8] that C∗(�) is simple. For every vertex v ∈ �, there is a
morphism λ ∈ � with d(λ) �= 0 such that r(λ) = s(λ) = v and so C∗(�) is purely infinite
by [KP, Proposition 4.9]. By Zhang’s dichotomy, a simple purely infinite C∗-algebra is
either unital or stable (see [Z, Theorem 1.2]); since Rs is not unital it must be stable.
The Kirchberg–Phillips Theorem applies and the isomorphism class of Rs is completely
determined by K∗(Rs) (see [Ki, Theorem C] and [Ph, Corollary 4.2.2]). ✷

An analogous assertion holds for Ru when � is replaced by �op. The aperiodicity
condition is necessary in the statement of the above theorem. There is an
irreducible 2-graph � with one vertex which is not aperiodic—every path has period
(1,−1). Furthermore, C∗(�) ∼= O2 ⊗ C(T) is neither simple nor purely infinite
(see [KP, Example 6.1]).

The restriction of Theorem 5.6 to the case k = 1 is certainly well known, but we have
been unable to find a reference.

COROLLARY 5.7. Let A ∈ Mn(N) be irreducible and Rs be the stable Ruelle algebra of
the associated Markov shift. Then Rs is strongly Morita equivalent to OA.
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Remark 5.8. Suppose that � is an irreducible k-graph with �0 finite. Then the 2k-graph
� × �op is irreducible and (� × �op)0 = �0 × (�op)0 is finite. We have (� × �op)� =
�� × (�op)� and

Gs(� × �op) = Gs(�) × Gs(�
op) ∼= Gs(�) × Gu(�),

hence
S(� × �op) ∼= S(�) ⊗ U(�).

Moreover, A(�) is strongly Morita equivalent to S(�) ⊗ U(�) as in [Pt1, Theorem 3.1].
The ‘same’ argument applies: define a map φ : �� → �� × (�op)� by x �→ (x, xop),
then N = φ(��) is an abstract transversal of the groupoid Gs(� × �op) in the sense of
[MRW, Example 2.7]. Furthermore, Ga(�) is isomorphic to the reduction Gs(�×�op)NN
(for x ∼a y if and only if x ∼s y and xop ∼s yop; that is, (x, xop) ∼s (y, yop)). It follows
that A(�) is an AF-algebra and if � is primitive then A(�) is simple. However, Ra(�) is
not purely infinite since it has a trace (see Remark 4.8).
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