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Abstract

Several industrial systems are characterized by high nonlinearities with wide operating ranges and large set point changes.
Identification and representation of these systems represent a challenge, especially for control engineers. Multimodel tech-
nique is one effective approach that can be used to describe nonlinear systems through the combination of several sub-
models, where each is contributing to the output with a certain degree of validity. One major concern in this technique, espe-
cially for systems with unknown operating conditions, is the partitioning of the system’s operating space and thus the
identification of different submodels. This paper proposes a three-stage approach to obtain a multimodel representation
of a nonlinear system. A reinforced combinatorial particle swarm optimization and hybrid K-means are used to determine
the number of submodels and their respective parameters. The proposed method automatically optimizes the number of
submodels with respect to the submodel complexity. This allows operating space partition and generation of a parsimonious
number of submodels without prior knowledge. The application of this approach on several examples, including a contin-
uous stirred tank reactor, demonstrates its effectiveness.
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1. INTRODUCTION

In the past years, great efforts have been devoted to modeling
and identification of nonlinear systems due to the inherent
nonlinearities in real-life industrial plants and processes.
For such systems, assumption of linearity fails, and an accu-
rate mathematical model based on the physics of the system is
infeasible due to large number of parameters, some of which
can be unknown (Ronen et al., 2002). Researchers have pro-
posed several nonlinear identification methods (e.g., De-
Veaux et al., 1993; Kashiwagi & Rong, 2002; Billings,
2013; de Costa Martins & de Araujo, 2015; Scarpiniti
et al., 2015; Pan et al., 2016), and demonstrated that these
methods are capable of identifying nonlinear systems with
different degrees of performance. However, they have several
drawbacks. An excellent review on these methods can be
found in Yassin et al. (2013).

A multimodel-based alternative approach to modeling and
identification of these systems has attracted many researchers
recently. In contrast to the conventional modeling technique,
a system is represented by a set of models that are combined,

with different degree of validity, to form the global model.
Each model represents the system in a specific region of op-
eration. Owing to its potential benefits, this effective field of
research has received several contributions, and has gained
lots of interest in many fields of application such as biochem-
ical (Dunlop et al., 2007), process control (Xue & Li, 2005),
communication (Abbas & Tufvesson, 2011), and power sys-
tems (Gan & Wang, 2011). Despite its benefits, the approach
still faces several challenges.

One main challenge of the multimodel approach is the par-
titioning of the system’s operating space to a number of sub-
spaces. This further raises the question of how many submod-
els are required to adequately represent the entire operating
region of the nonlinear system when combined within the
multimodel framework. One solution to this problem is the
design of identification experiments for known operating
spaces (e.g., Dunlop et al., 2007; Gregorčič & Lightbody,
2007; Novak et al., 2009; Wernholt & Moberg, 2011). Data
are collected for each operating space, and a submodel is
identified for each a priori known region.

However, the knowledge involved in any industrial sys-
tems and processes, especially chemical process, is often
incomplete. In addition, they may be subjected to unknown
parameter variations and exhibit wide operating ranges.
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Therefore, in such situations, partitioning of the operating
space and identification of the submodels can be very chal-
lenging due to lack of prior information on the system’s oper-
ating conditions.

The problem of identifying the parameters of the submod-
els is coupled with the data partition problem, whereby
each data point needs to be associated with the most suitable
submodel. In the partitioning process, optimization of num-
ber of submodels and their parameters is very crucial for
the correct identification of the system. While too few sub-
models can deteriorate the systems, increasing the number
of submodels does not necessarily improve the performances
obtained (Ksouri-Lahmari et al., 2004).

In the literature, many interesting algorithms have been
proposed to address this challenge. Ronen et al. (2002)
used fuzzy clustering for operating space partition and uti-
lized both cluster and model validities methods to find the op-
timal number of clusters. The approach repeats the procedure
for a number of submodels until a satisfactory number is ob-
tained. Venkat et al. (2003) proposed a loss function, linear
model based reconstruction error, to determine the optimal
number of clusters resulting in minimum model error. Samia
et al. (2002, 2008) utilized a heuristic method based on the
number of neurons in the output layer of a Kohonen network.
In their approach, the network has to be trained repeatedly un-
til a satisfactory number of clusters is obtained. Moreover, the
training of the network is very slow and increases with the
number of data samples. Ltaief et al. (2008), Mohamed
et al. (2011), and Bedoui et al. (2012) utilized subtractive
clustering that automatically determines the number of clus-
ters. The accuracy of their algorithm was known to depend
on proper selection of its parameters (Demirli et al., 2003).

In Gugaliya and Gudi (2010) and Novak et al. (2011) large
number of clusters was initially assumed and later reduced by
merging similar clusters. Teslic et al. (2011) proposed an
iterative incremental partitioning algorithm using G-K clus-
tering. Numbers of clusters are iteratively increased by split-
ting the worst modeled cluster if its standard deviation error is
greater than a certain threshold. Elfelly et al. (2010) proposed
the use of a separate clustering algorithm called the rival pe-
nalized competitive learning neural network. Adequate num-
bers of clusters are determined by visual consideration of only
clusters’ centers that are enclosed by the data distribution
when the initial number of clusters is larger than the real num-
ber of operating clusters. In general, all the aforementioned
methods partitioned the operating space and/or determined
the number of adequate submodels based on data distribution
only, which may not reflect the complexity of the system’s
behavior.

In this paper, an efficient three-stage algorithm is proposed
to obtain a multimodel representation of nonlinear systems
without prior knowledge of the operating conditions. In the
first stage, estimation of the initial parameters and the number
of submodels are both obtained through a reinforced combi-
natorial particle swarm optimization (RCPSO). To identify
more efficient submodels, hybrid K-means is used to obtain

the final submodels in the second stage. Finally, based on a
constrained Kalman filter, the identified submodels are inter-
polated to form the multimodel output that has the capability
to approximate the real system. The main advantage of the
proposed framework is its automatic optimization of the re-
quired number of submodels with respect to submodel com-
plexity. This implies that the operating space of the system
can be partitioned into a parsimonious number of submodels,
and the structure of the submodels can be assumed without
prior knowledge. Thus, the algorithm can automatically con-
verge to a good compromise between the number of submod-
els and complexity. Another interesting advantage is that the
partition and selection of number of submodels is based not
only on data distribution but also on the linearity of the oper-
ating region and that of the assumed model structure. Bench-
mark simulation examples, including a continuous stirred
tank reactor system, are provided to illustrate the effectiveness
of the proposed method.

The rest of this paper is organized as follows: Section 2
describes the multimodel framework and problem formula-
tion. In Section 3, the first stage of the proposed multimodel
approach is discussed, followed by the second and third
stages in Sections 4 and 5, respectively. Simulation examples
are provided in Section 6, to demonstrate the effectiveness of
the proposed method. Finally, a brief conclusion is given in
Section 7.

2. MULTIMODEL FRAMEWORK AND
PROBLEM FORMULATION

Multimodel representation of complex nonlinear system gen-
erally involves interpolation of a number of submodels to
form the global system (see Fig. 1). Considering a nonlinear
system of the form

y(k) ¼ F( y(k � 1), y(k � 2), . . . , y(k � na),

u(k � 1), u(k � 2), . . . , u(k � nb)), (1)

where u(k) and y(k) are the input and output of the system re-
spectively at instant k. The integers nb and na are the time lag
of the input and output, respectively. The multimodel repre-
sentation of the system can be described by

y(k) ¼
Xm
i¼1

fi(x(k))fi(k), (2)

where m is the number of submodels and fi(.) and wi(k) are the
ith submodel and its validity (weight), respectively. The va-
lidity describes the contribution of each submodel to the ob-
served output and allows smooth transition between the local
models when the system moves from one operating point to
another. For easy interpretation, the validity satisfies the con-
vexity property (Shorten et al., 1999; Orjuela et al., 2006):

Xm
i¼1

wi(k) ¼ 1, 8k; (3)
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0 � wi(k) � 1, 8k, 8i [ 1, . . . , M: (4)

Given a set of input–output data, the multimodel identifica-
tion problem is to estimate the number of submodels (m),
the parameters of each submodel ( fi(.)), and the validity
(wi) for each submodel.

Note that submodel fi(.) can be linear, nonlinear, or a
combination of the two submodels. In this study, linear sub-
models are considered. Therefore, the function fi(x(k)) can be
written as

fi(x(k)) ¼ xi(k)uT
i (k), (5)

where ui is the vector of parameters of ith the submodel,
which can be estimated from the data pairs:

z kð Þ ¼ x kð Þ, y kð Þ : k ¼ 1, . . . , Nf g, (6)

where

x kð Þ ¼ y k � 1ð Þ, y k � 2ð Þ, . . . , y k � nað Þ,½
u k � 1ð Þ, u k � 2ð Þ, . . . , u k � nbð Þ�

is the regressor vector.
The multimodel identification of complex nonlinear sys-

tems from a finite set of input–output data is quite involving
as the submodels identification is dependents on the data par-
tition. In order to solve the aforementioned problem, a three-
stage algorithm is proposed:

1. Obtaining the number of submodels and the initial sub-
model: This stage involves application of RCPSO to
obtain m number of partitions and the representative
data sets for each partition. The m number of clusters
obtained from RCPSO is then used to estimate the in-
itial submodels and initial cluster centers.

2. Obtain the final submodels: In this stage hybrid a K-
means criterion is applied to the result of the previous
stage to refine the submodels.

3. Interpolation of the submodels: Finally, the validity of
each submodel is estimated to realize the multimodel
output.

The details of these stages are provided in the subsequent sec-
tions.

3. STAGE 1: OBTAINING THE NUMBER OF
SUBMODELS AND THE INITIAL PARTITION

The aim of this stage is to determine the number of partitions
and to evolve a partition representing a possible grouping of
the given data set. That is, given a data set Z¼ [z1, z2, . . . , zN]
in Rd , that is, N points each with d dimension (d¼ naþ nb),
we need to simultaneously find the number of partition (m)
and divide Z into m exhaustive and mutually exclusive clus-
ters C ¼ [c1, c2, . . . , cm] with respect to a predefined criteria
such that

1. c1 = 1, i ¼ 1, . . . , m;
2. ci > cl ¼1, i ¼ 1, . . . , m, i = l;
3. <m

i¼1ci ¼ Z.

To achieve this objective with partitional algorithm, a modi-
fication to combinatorial PSO (CPSO; Jarboui et al., 2007) is
proposed. The modification is necessary because the CPSO
algorithm required the number of clusters to be fixed a prior.
In what follows, particle swarm optimization, CPSO, and its
modification for the determination of the initial submodels
are described.

3.1. PSO

PSO (Kennedy & Eberhart, 1995) is a metaheuristic search
algorithm, mimicking the movement of organisms in a bird
flock or fish school. Due to its simple concept and fast con-
vergence, PSO has attracted much attention and wide applica-
tions in various fields, including systems identification prob-
lems (e.g., Modares et al., 2010; Tang et al., 2010; Majhi &

Fig. 1. Output blended multimodel identification structure.
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Panda, 2011; Cornoiu et al., 2013; Hu et al., 2014; Zeng et al.,
2014; Kramar et al., 2015). PSO combines self and social ex-
perience for directing search to an optimal solution. The po-
sition of individuals referred to as particles is influenced by its
best position ever attained (called Pbest), the position of the
best in the swarm (Gbest), and the current velocity Vi that
drives the particles. At each generation t, each particle i ad-
justs its velocity Vt

ij and position pt
ij for each dimension j

by referring to its personal best, Pbest, and the global best,
Gbest. The following equations are used by the original
PSO for velocity and particle updates:

Vtþ1
ij ¼ vVt

ij þ c1r1(Pbesttij � pt
ij)þ c2r2(Gbestt � pt

ij), (7)

ptþ1
ij ¼ xpt

ij þ Vtþ1
ij , (8)

where Vt
ij and pt

ij are the jth element of the ith velocity and par-

ticle vector, respectively, at generation t; Pbesttij is the per-

sonal best position of the ith particle and Gbestt is the global
best during iterations 1 to t; v is the inertia weight that con-
trols the impact of the previous velocities on the current velo-
city; r1 and r2 are uniformly distributed random variables in
range [0, 1]; and c1 and c2 are the acceleration constants.

3.2. CPSO-based partition

CPSO (Jarboui et al., 2007) is an extension to the original
PSO to be able to cope with the clustering problem. It has a
similar procedure as the original PSO except that it differs
in two characteristics: particle and velocity representation.
In CPSO, particles Pi are encoded with label-based represen-
tation, where Pi ¼ [ pi1, pi2, . . . , piN] provides integer num-
bers representing the cluster’s number of data points, such
that pij [ f1, 2, . . . , mg, where m is the number of clusters.
The velocity of each particle uses a dummy variable that per-
mits transition from combinatorial to continuous state and
vice versa. Thus, the velocity and particle are updated through
the following equations:

vtþ1
ij ¼ wvt

ij þ r1c1(�1� yt
ij)þ r2c2(1� yt

ij), (9)

where yt
ij is a dummy variable defined by

yt
ij ¼

1 if pt
ij ¼ Gbesttj

�1 if pt
ij ¼ Pbesttj

�1 or 1 randomly if pt
ij ¼ Pbesttj ¼ Gbesttj

0 otherwise

8>><>>: : (10)

After velocity update, the position of each particle is updated
through the dummy variable according to the following equa-
tions:

ltþ1
ij ¼ yt

ij þ vtþ1
ij , (11)

yt
ij ¼

1 if lt
ij . a

�1 if lt
ij , �a

0 otherwise

8<: , (12)

pt
ij ¼

Gbesttj if yt
ij ¼ 1

Pbesttij if yt
ij ¼ �1,

randomly selected otherwise

8<: (13)

where a is a design parameter determined by the user.

3.3. RCPSO-based partition

This section introduces the RCPSO and how it is used to deter-
mine the number of partitions and the initial partition. As men-
tioned earlier, the CPSO algorithm is reinforced as, contrary to
our case, the number of partitions in the algorithm is fixed
a priori. In addition, the CPSO objective is not adequate for
use in submodel identification, which is of paramount impor-
tant. The following four new features distinguish RCPSO
from CPSO:

1. Particles encoding: Similar to CPSO, RCPSO uses the
label-based integer encoding to represent each particle.
However, instead of assigning the same number of clus-
ters to all particles, in RCPSO each particle evolve with
its own number of clusters at each iteration. Each parti-
cle position Pi ¼ [ pi1, pi2, . . . , piN], characterized by N
elements, where N is the number of data points, pro-
vides integer numbers representing the cluster number
of each data point, such that pij [ f1, 2, . . . , mig repre-
sents the cluster number of the jth data point in the ith
particle and mi is the number of clusters associated with
the ith particle. In addition, mi is assumed to lie in the
range [mmin, mmax], where mmin is 2 by default and
mmax is manually specified. The particle and velocity
updates follow that of CPSO [Eqs. (9)–(13)].

2. Avoiding empty clusters: In the label-based representa-
tion, it is possible to generate a solution with an empty
cluster if the number of its clusters is smaller than the
largest cluster number associated with the particle solu-
tion. To avoid this, new positions of particles are
checked. At each generation, particles with an empty
cluster are corrected by changing the largest cluster
number to the smallest unused cluster number.

3. Fitness function: The fitness criterion used in CPSO are
the variance ratio criterion (VRC) and sum of square error
of the cluster. The sum of square error is not appropriate
when the number of clusters is not known in advance.
This is because the maximum number of clusters will al-
ways be favored because its value will decrease as the
number of cluster increases. In contrast, VRC has been
used when the number of clusters is not known. However,
in RCPSO, the use of a fitness function based on cluster
regression error fused in minimum descriptive length re-
flects the peculiar nature of the problem at hand. Cluster
regression error criterion guides toward a linear submodel
in each cluster, while the minimum descriptive length dis-
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courage large number of clusters. Thus, unlike VRC, the
peculiarity of the problem at hand resides in our objective
to use a linear model for each cluster while minimizing
the number of unknown clusters.

Given the data set Z defined in Eq. (6), the cluster re-
gression error (CRE) is defined by

CRE ¼
Xm0max

i�1
SE, (14)

where

SE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
ni

Xni

j¼1 yj � xju
T
i

� �2
� �s

: (15)

In Eqs. (14) and (15), m0max is the maximum number of
clusters assigned to a solution, ni is the number of data
points in the ith cluster, and ui is the parameter of the lin-
ear model associated with the ith cluster. This can be ob-

tained using the least square technique as follows:

ui ¼
Xni

j¼1
xjx

T
j

" #�1 Xni

j¼1
yjxj

" #
: (16)

Finally, the fitness function is defined by

fitness ¼ m0maxlog (N)þ N log (CRE2)
2

, (17)

where N is the total number of data points. The smaller the
fitness value, the better the clustering solution.

4. Avoiding small size data: A situation may occur where
the number of data points assigned to a cluster is too
small. On the one hand, if the number of data points
ni is less than the dimension of the data, d ¼ na þ
nb, then the model obtained from the cluster will be sin-
gular. On the other hand, if ni � d but ni , td, where td
signifies a reasonable minimum number of data points
(i.e., 5% of data points), then the model obtained may
not be well defined. In order to avoid these two situa-

Fig. 2. Stage 2: estimating final submodels.

RCPSO-based multimodal identification 331

https://doi.org/10.1017/S0890060416000482 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060416000482


tions, the SE in Eq. (15) is not calculated from the data
when ni , 0.05N; instead, a penalty value is assigned to
the SE to discourage having a small number of data
points in a cluster. This penalty value can be an arbitrary
value higher than the SE value for an acceptable num-
ber of data points. As such, a penalty value of 1000
has been chosen in all simulation examples.

After the encoding of the particles as discussed above, the
execution of RCPSO to obtain the number of clusters and the
initial partition is done according to the following steps:

Fig. 3. Reinforced combinatorial particle swarm optimization objective function convergence plot.

Table 1. Reinforced
combinatorial particle
swarm optimization
parameter settings

Parameters Values

Swarm size 20
Max. iterations 2000
w, a 0.4, 0.35
c1, c2 2, 2
mmin, mmax 2, 20
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STEP 1. Initialize particle position vector X and associated ve-
locity V in the population randomly. For each particle i, the num-
ber of clusters mi is randomly generated in the range [mmin,
mmax], then each data point is randomly assigned to one cluster.

STEP 2. Evaluate the fitness function for each particle using
Eq. (17).

STEP 3. Compare the fitness value of each particle with it pre-
vious best solution (Pbset) fitness and update Pbest with the
current solution if it is better than the previous value (Pbest).

STEP 4. Compare the fitness value with the overall previous
best (Gbest) fitness. Update Gbest to the current solution if its
fitness values is better than Gbest fitness value.

STEP 5. Update positions and velocities of particles using
Eqs. (9) to (13).

STEP 6. Check for empty clusters in all particle solutions
and correct if they exist.

STEP 7. Repeat Step 2 to Step 6 until the maximum number
of iterations is completed.

Fig. 4. Hybrid K-means objective function convergence plot.
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Fig. 5. Multimodel identification outputs using validation data.

Table 3. Performance of proposed multimodel based on final
submodels

Two-Parameter
Structures

Four-Parameter
Structures

CKF Setting MSE VAF MSE VAF

W ¼ P21(k) 0.0075 99.73% 0.0150 99.46%
W ¼ I 0.0053 99.81% 0.0151 99.46%

Table 2. Performance of proposed multimodel based on the
initial submodels

Two-Parameter
Structures

Four-Parameter
Structures

CKF Setting MSE VAF MSE VAF

W ¼ P21(k) 0.0645 97.67% 0.0500 98.20%
W ¼ I 0.0347 98.78% 0.0499 98.20%
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3.4. Estimation of the initial submodels

Given a set of cluster representatives

~z ¼ ~zi ¼ ~xi, ~yið Þ, i ¼ 1, . . . , mf g,

from the RCPSO algorithm, where m is the number of clusters,
the next task is to estimate the initial submodels. For this pur-
pose, a least square estimation is applied to the data set in each
cluster to find the initial submodel. The coefficients vector ui

for each submodel is computed through the formula

~ui ¼ ð~f
T
i
~f

T
i g
�1 ~f

T
i ~yi, (18)

where ~fi ¼ [~xi(1), . . . , ~xi(ni)]T and ~yi are the regression matrix
and output vector belonging to the ith cluster, respectively and
ni is the number data in the ith partition.

In addition, the centers of the data are calculated by finding
the mean of the data in each cluster produced by the previous
stage. The center of each cluster is given as

~ci ¼
1
ni

Xni

j¼1
~xij i ¼ 1, 2, . . . , m: (19)

4. STAGE 2: OBTAIN THE FINAL SUBMODELS

This stage involves a refinement to the submodels produced
in the previous stage. In order to achieve this objective, a hy-

Fig. 5 (cont.)
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brid K-means criterion (Stanforth et al., 2007) is adopted.
Given a data set Z ¼ [z1, z2, . . . . , zN] in Rd, K-means algo-
rithm group the data Z into k clusters such that an objective
function is minimized. The K-means objective function is de-
fined as the sum of the square error between each data point
and the corresponding cluster center:

J1(c) ¼
Xm
i¼1

X
z j[ui

(zj � ci)
2, (20)

where zi and ci are the data point and cluster center, respec-
tively. The objective function is minimized using an alternat-

ing optimization procedure. It starts with an arbitrary k centers
and assigns each data point to the nearest center. The assign-
ment of each data point is defined by a binary membership
matrix U, such that

uij ¼ 1 if (zj � ci)2 � (zj � ck)2, i = k
0 otherwise

�
: (21)

Each center is updated as the mean of all points assigned to it.
These two steps are carried out iteratively until a predefined
termination criterion is met, which occurs when with RCPSO
there is no change in the objective function.

Fig. 6. Multimodel identification error using validation data.
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In the same spirit of K-mean algorithm, the following lin-
ear regression loss function can also be formulated:

J2(u) ¼
Xm
i¼1

X
~x j[ui

(yj � ~xju
T
j )2: (22)

Thus, instead of minimizing the cluster error objective func-
tion, a linear regression objective function is minimized.
Combining the two objectives J1 and J2, the hybrid K-means

objective can be written as

J(u, c) ¼ l J1(c)þ J2(u), (23)

where l [ [0, 1] is a constant term to be defined by the user to
specify a relative weight of the objective function. This formu-
lation allows not only partitioning of the data set but also asso-
ciating a submodel to each partition. In addition, the partitions
formed are guided toward linear regions. This fits perfectly into

Fig. 7. Reinforced combinatorial particle swarm optimization objective function convergence plot.
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the problem definition, as the aim of partitioning the input space
is to form a linear submodel for each partition. Furthermore, the
inclusion of J1 will allow us to assign new data to a partition in a
situation where the submodels need to be updated online.

The description of how this stage utilizes the hybrid K-means
algorithm is shown in Figure 2. It begins with using the pre-
viously estimated cluster centers and associated model parame-
ters as initialization of the algorithm. This eliminates the burden
of the determination of the number of clusters, diminishes the
effect of initialization, and increases the convergence rate of
the K-means algorithm. Line 2 starts a loop that repeats itself
for as long as there is a significant change in the objective func-

tion. It begins by determining the membership matrix U by Eq.
(21), which assign each data point to a cluster. Line 4 estimates
the parameter vector ui and the center ci for each cluster. Next,
from Lines 5 to 13, undefined clusters are detected and removed
from subsequent updates. An undefined cluster is characterized
by singular cluster, which may result when the size of the cluster
falls below the number of regressors.

Lines 8 to 13 remove a cluster from the pool if the number
of data points in the cluster is less than the number of regres-
sors. In addition, the number of cluster is reduced by 1. The
break statement in Line 12 ensure only one cluster is removed
at each iteration when an undefined cluster is detected. This is

Fig. 8. Hybrid K-means objective function convergence plot.
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to allows other undefined clusters, if they exist, to readjust
during the next iteration and probably to circumvent unde-
fined status. Line 15 computes the objective function J ac-
cording to Eq. (23) while Line 16 increments the number of
iteration. Next, the loop goes back to Line 3 to repeat the pro-
cedure.

Once the algorithm is completed, the final parameters u of
each submodel are obtained along with their associated cen-
troid ci. The submodels are now ready for interpolation in the
next stage to obtain the final global model that will represent
the system under consideration.

5. STAGE 3: INTERPOLATION OF THE
SUBMODELS

This is the final stage where the multimodel output is realized
by combining the estimated final submodels obtained in the
previous stage (Fig. 2). To achieve this, the validity of each
submodel has to be estimated. In the literature, different rea-
lizations exist to combine the submodels along with their va-
lidity. In this study, a weighted sum of the output of the sub-
models is used to form the output of the multimodel, where
the weight signifies the validity of each submodel.

Fig. 9. Multimodel identification outputs using validation data.
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Among many possible candidates for validity estimation,
constrained Kalman filter (CKF) validity estimation is an ef-
fective technique introduced in our earlier work (Adeniran &
Elferik, 2014). The CKF estimates the validity of each sub-
model at every time instant while satisfying the convexity
property in Eqs. (3) and (4). The final output of the system
in computed using Eq. (2). Detail description of the CKF al-
gorithm can be found in Appendix A.

6. SIMULATIONS

The effectiveness of the proposed multimodel approach is
demonstrated in this section. Four simulation examples

were carried out. To illustrate flexibility of the proposed
method on the number of parameters assumed for the sub-
models, two- and four-parameter submodel structures are exam-
ined. The two- and four-parameter submodel structures, sub-
sequently refer to as two-parameter and four-parameter
structures, respectively, are described by

yi(k) ¼ ai1y(k � 1)þ bi1u(k � 1), (24)

yi(k) ¼ ai1yi(k � 1)þ ai2yi(k � 2)

þ bi1u(k � 1)þ bi2u(k � 2), (25)

where ai1, ai2, bi1, bi2 are the ith submodel scalar parameters
to be identified by Stage 1 and Stage 2. Unless it is stated

Fig. 9 (cont.)
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Table 5. Performance of proposed multimodel based on initial
submodels

Two-Parameter
Structures

Four-Parameter
Structures

CKF Setting MSE VAF MSE VAF

W ¼ P21(k) 0.0317 98.63% 0.0315 98.58%
W ¼ I 0.0300 98.58% 0.0295 98.61%

Table 4. Performance of proposed multimodel based on final
submodels

Two-Parameter
Structures

Four-Parameter
Structures

CKF Setting MSE VAF MSE VAF

W ¼ P21(k) 0.0122 98.92% 0.0279 98.99%
W ¼ I 0.0100 99.32% 0.0210 99.14%

Fig. 10. Multimodel identification error using validation data.

RCPSO-based multimodal identification 341

https://doi.org/10.1017/S0890060416000482 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060416000482


otherwise, the parameter settings of RCPSO used are given in
Table 1. Throughout the simulations, l¼ 0.01 is used in Stage
2. In Stage 3, estimation of the validity using the CKF algo-
rithm, setting W ¼ P21(k) and W ¼ I, are both utilized, with
the matrix P initialized as a diagonal matrix 100I. The validity
of each submodel, f, is initialized randomly while satisfying
the convexity property. The obtained multimodel is evaluated
based on the validation data using the mean square error (MSE)
and variance accounted for (VAF) performance measures:

MSE ¼ 1
N

XN
i¼1

(y(i)� ~y(i)), (26)

VAF ¼ max 100� 1� var(y� ~y)
var(y)

� �
, 0

� �
, (27)

where y is the real system output and ŷ is the multimodel esti-
mated output. All simulations are performed using MATLAB
2012b on a 2.4-GHz i3 64-bit Windows machine with 4 G of
RAM.

6.1. Example 1

In the first example, a discrete-time system from Elfelly et al.
(2010) is considered. The system is described by

y kð Þ ¼ a1 kð Þy k � 1ð Þ þ a2 kð Þy k � 2ð Þ
þ b1 kð Þu k � 1ð Þ þ b2u k � 2ð Þ:

The variation laws of different parameters of the process is

Fig. 11. Reinforced combinatorial particle swarm optimization objective function convergence plot.
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given by

a1(k) ¼ 0:04 sin(0:035k)þ 0:8,

a2(k) ¼ 0:005 sin(0:03k)þ 0:1,

b1(k) ¼ 0:02 sin(0:03k)þ 0:5,

b2 kð Þ ¼ 0:01 sin 0:035kð Þ þ 0:2:

The system was excited with uniform random signal u(k)
on the range [21, 1]. A total of 600 data points were gener-
ated for the two submodel structures above. The initial and
final submodels obtained in Stage 1 and Stage 2 are shown
in Table B.1 and Table B.2 in Appendix B, respectively. It

can be observed from the tables that four and two submodels
were identified in Stage 1 for two-parameter and four-
parameter structures, respectively. The convergence paths of
the objective function in the developed RCPSO are shown
in Figure 3. Although the figures show faster convergence
for four-parameter structures compared to two-parameter
structures, this is not always the case. It is possible that the
algorithm started with particle positions closer to the final
solution in the four-parameter structures than the two-parameter
structure because of random initialization of the particle posi-
tions. The convergence of the hybrid K-means in Stage 2 is
shown in Figure 4. Faster convergence can also be noticed

Fig. 12. Hybrid K-means objective function convergence plot.
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in the four-parameter structures than in the two-parameter
structures.

In the validation stage, a different input signal [u(k) ¼ 1 þ
sin(0.06k)] was injected into the real systems and the identified
submodels. The submodels were interpolated with CKF validity
estimation as described in Stage 3 to form the multimodel
output. The real system’s output and the multimodel output
for the two submodels’ structures are compared using the
MSE and VAF. To evaluate the significance of the refinement
in Stage 2, the multimodel output is estimated based on the in-
itial and final submodels obtained in Stage 1 and Stage 2, re-
spectively.

The multimodel identification results are shown in Tables
2 and 3 for the combined final submodels and initial submod-
els, respectively. It can be observed that the performance of
the proposed algorithm is better when all the final submodels
are combined, and can well approximate the real system either
with two-parameter or four-parameter structure using both
CKF settings. However, the two-parameter structure shows
better performance than the four-parameter structure. In addi-
tion, the CKF with settings W ¼ I has slightly better perfor-
mance values in the two-parameter submodel structure. Fur-
thermore, it can be pointed out that fewer parameters (8) have
been achieved in comparison to the multimodel approach

Fig. 13. Outputs of multimodel identification using validation data.
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adopted in Elfelly et al. (2010; 12 parameters). Figures 5 and 6
show the comparison between the real system output and the
multimodel output for the three-stage algorithm.

6.2. Example 2

A nonlinear dynamical system taken from Orjuela et al.
(2013) is considered for multimodel identification:

y(k þ 1) ¼ (0:6� 0:1a(k))y(k)þ a(k)u(k), (28)

a(k) ¼ 6� 0:006y(k)
1þ 0:2y(k)

, (29)

The identification was carried out using the proposed ap-
proach with a data set of 600 samples of uniform random sig-
nal within the range of [20.9,0.9]. Tables B.3 and B.4 in Ap-
pendix B show the initial and final submodels parameters
with their associated centers.

The proposed multimodel approach identified two sub-
models for both two-parameter and four-parameter structures.
Figures 7 and 8 show the convergence of the objective func-
tion in Stages 1 and 2, respective.

To verify the accuracy of the proposed approach, the output
of the nonlinear system was compared with the output of the
proposed multimodel approach using the validation data un-

Fig. 13 (cont.)
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Table 7. Performance of proposed multimodel based on initial
submodels

Two-Parameter
Structures

Four-Parameter
Structures

CKF Setting MSE VAF MSE VAF

W ¼ P21(k) 0.0061 98.27 0.0059 98.17
W ¼ I 0.0034 98.92 0.0056 98.27

Table 6. Performance of proposed multimodel based on final
submodels

Two-Parameter
Structures

Four-Parameter
Structures

CKF Setting MSE VAF MSE VAF

W ¼ P21(k) 0.0047 98.54 0.0012 99.55
W ¼ I 0.0002 99.93 0.0005 99.84

Fig. 14. Multimodel identification error using validation data.
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der the following input:

u(k) ¼ sin
2p
25

k

� �
:

Figures 9 and 10 show the output of the multimodel approach
and the error obtained, respectively, when the final submod-
els are combined during the validation, while Table 4 shows
their performance measure. It can be observed that both sub-
models’ structures can approximate the real system. In addi-
tion, both CKF settings show the same performance. Table 5
shows the performance of the proposed technique using the
initial submodels (without Stage 2). Although the signifi-

cance of Stage 2 seems not pronounced in this example, its
inclusion does provide slightly better performance as seen
in Table 4.

6.3. Example 3

In the third example, the following highly nonlinear dynami-
cal system is considered for identification:

y(k þ 1) ¼ u(k)
1þ y2(k � 1)þ y2(k � 2)

þ y(k)y(k � 1)y(k � 2)u(k � 1)(y(k � 2)� 1)
1þ y2(k � 1)þ y2(k � 2)

: (30)

Fig. 15. Reinforced combinatorial particle swarm optimization objective function convergence plot.
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It is a benchmark system proposed in (Narendra & Parthasar-
athy, 1990) and subsequently has been used in (Chen & Kha-
lil, 1995; Verdult et al., 2002; Wen et al., 2007; Orjuela et al.,
2013). The system was excited by uniformly distributed ran-
dom signal in the interval [21, 1]. The identification was car-
ried out with a data set of 800 samples.

Using the proposed multimodel approach, four and two
submodels were identified for two-parameter and four-pa-
rameter structures, respectively. The convergence of the ob-
jective functions in Stages 1 and 2 for both structures are
shown in Figures 11 and 12, respectively. The initial and
final submodel parameters with their associated centers

for the two stages are shown in Tables B.5 and B.6 in
Appendix B.

Validation of the multimodel identification was done with
a second data set of 800 samples generated by an input signal
given by

u(k) ¼
sin

2p
250

k

� �
if k � 500

0:8 sin
2p
250

k

� �
þ 0:2 sin

2p
25

k

� �
if k . 500

8>><>>: :

Simulation results obtained from Figures 13 and 14 show
that the model outputs closely agree with the system output

Fig. 16. Hybrid K-means objective function convergence plot.
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for both submodels’ structures when the final submodels
were combined. In addition, it can be concluded from Table 6
that the two-parameter structure with CKF setting W ¼ I
shows the best performance. Furthermore, a slightly degraded
performance can be observed in Table 7 that shows the results
obtained when the initial submodels were combined instead
of the final submodels.

As mentioned earlier, this system has been identified with
other multimodel approaches in the literature. Using the same
validation data set, Verdult et al. (2002) achieved MSE of
0.0002 and VAF of 99.9% with four third-order models (24
parameters), Wen et al. (2007) achieved MSE of 0.112 and

VAF of 97.9% with 10 BPWA functions (306 parameters),
and Orjuela et al. (2013) achieved MSE of 0.00067 and
VAF of 99.7% with 16 parameters. It is quite noteworthy to
point out that the proposed multimodel approach does yield
close performances to other techniques in the literature but
with fewer parameters (8).

6.4. Example 4

In this example, a benchmark continuous stirred tank reactor
nonlinear chemical system is considered. The system is de-
scribed by the following equation in which all variables are

Fig. 17. Outputs of multimodel identification using validation data.
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dimensionless (Galan et al., 2003; Du et al., 2009):

_x1 ¼ �x1 þ Da(1� x1)exp
x2

1þ x2

g

0B@
1CA,

_x2 ¼ �x2 þ BDa(1� x1)exp
x2

1þ x2

g

0B@
1CAþ b(u� x2),

y ¼ x2, (31)

where x1 is the reagent conversion, x2 is the reactor temperature,
and u is the coolant temperature. In addition, u and x2 are the

input and output of the system, respectively. The nominal values
for the constants are Da ¼ 0.072, g ¼ 20, B ¼ 8, and b ¼ 0.3.

To test the ability of the proposed multimodel identifica-
tion method, a random white noise step signal between
[21.51.5] is used as input to the system. The system is simu-
lated with a sampling time of 0.2 min, and 700 pairs of input–
output data were collected for the identification process and
another 300 pairs for validation.

Based on the proposed method, four and three submodels
were identified for the two-parameter and four-parameter struc-
tures, respectively. The initial and final submodel parameters
with their associated centers are shown in Appendix B (Tables

Fig. 17 (cont.)
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B.7 and B.8). However, the roots of the poles (a parameters)
of the identified final submodels show that submodels 3 and
1 are unstable for two-parameter and four-parameter structures,
respectively. The convergence of the objective functions in
Stages 1 and 2 are shown in Figures 15 and 16, respectively.

The validation results using the second data pairs are
shown in Figures 17 and 18 and Table 8 for both structures.
It can be observed that the estimated output matched the real
output.

Contrary to the notion that all the submodels must be stable
for a decoupled multimodel to be stable (Orjuela, 2007), it

Fig. 18. Multimodel identification error using validation data.

Table 8. Performance of proposed multimodel based on final
submodels

Two-Parameter
Structures

Four-Parameter
Structures

CKF Setting MSE VAF MSE VAF

W ¼ P21(k) 0.0064 99.42 0.0007 99.84
W ¼ I 0.0053 99.75 0.0040 99.52
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can be observed from Figure 17 that the multimodel output is
stable. This is because the validity estimated by the CKF al-
gorithm is able to filter out the unstable submodel during the
blending operation. Figure 19 shows the validity values of the
submodels for the four-parameter structure. It can be ob-
served that the validity of submodel 1 is zero at instant 25.
It shows that the identified decoupled multimodel acts like
a Takagi–Sugeno multiple model where its stability depends
not only on the stability of the submodels but also on the va-
lidity values. However, further study on this issue would be
necessary to the conditions for this behavior. Furthermore,
comparison of the results in Tables 8 and 9 indicates that sig-
nificant improvement was obtained when the final submodels
were blended together. This emphasized the significance of
including Stage 2 into the methodology to refine the initial
submodels for better approximation.

7. CONCLUSION

This paper presents a novel multimodel approach for the iden-
tification of nonlinear systems having several possible mod-
els depending on the operating region. In the proposed

approach, the number of the submodels are not known
a priori. The proposed method consists of three stages. In
the first stage, a reinforced combinatorial particle swarm op-
timization was developed to obtain the number of submodels
and initial estimate of their parameters. In the second stage,
hybrid K-means is used to refine the submodels in the first
stage. The submodels are interpolated using a constrained
Kalman filter in the third stage. Four simulated nonlinear sys-
tems examples that had been studied previously in the litera-
ture are presented to illustrate the performance of the method.
The examples show that the proposed multimodel approach is
effective in the identification of nonlinear systems. Although
the proposed algorithm is designed for single-input/single-
output systems, an extension to multiple-input/multiple-out-
put systems should be easy by using a multiple-input/sin-
gle-output formulation. Contrary to the notion that all the sub-
models must be stable for a decoupled multimodel to be
stable, the CKF algorithm for the interpolation is shown to
be able to produce a stable system when one of the submodels
is unstable. In future research, we would like to further study
the conditions necessary for the occurrence of this behavior
and develop a control algorithm based on the identified sub-
models with the CKF algorithm.
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APPENDIX A

The CKF algorithm for validity estimation

The CKF algorithm considered the multimodel representation in Eq.
(2) as a parameter estimation problem as follows:

Given the multimodel output in Eq. (2), that is,

y(k) ¼
XM
i¼1

fi(wi(k), ui)fi(k):

the vector form, Eq. (2), can be written as

y(k) ¼ ~y(k)F(k), (A:1)

where ~y(k) ¼ [y1, y2, . . . , yM] is the known vector of local model
outputs and F(k) ¼ [f1, f2, . . . , fM ]T is the unknown vector of
weights for the local models.

Casting the parameter estimation to a state estimation problem, we
have the following state equation:

F(k þ 1) ¼ F(k),
y(k) ¼ ~y(k)F(k)þ y(k), (A:2)

where F is the vector of unknown parameter (validity) to be esti-
mated, and v(k) is the measurement noise with covariance
E[y(k)v(k)T ] ¼ R(k). In the case where y(k) is a white and Gaussian,
the Kalman filter theory says that the posterior distribution of f(k),
given all the observation up to k 2 1, is Gaussian mean value f̂(k)
and error covariance matrix P. One should note that an artificial
noise w(k) with variance E[w(k)wT (k)] ¼ Q could be added to
F(k þ 1) in the case of time-varying parameters and also to ensure
persistence excitation and avoid ill conditioned numerical compu-
tation.

Furthermore, in order for the validity computation (F) to satisfy
the partition of unity, the equality constraint in Eq. (3) needs to be
added. In addition, as at any time instant it is possible for any local
model to fully contribute or not to contribute to the system’s output,
there is a need to impose an inequality constraint [Eq. (4)]. There-
fore, these two constraints need to be included in the estimation of
(F) to give the following full state estimation equation:

F(k þ 1) ¼ F(k)þ v(k),
y(k) ¼ ~y(k)F(k)þ y(k), (A:3a)

such that

bF(k) ¼ 1, 0 � fi(k) � 1, (A:3b)

where b is a row vector of [1, 1, . . . , 1, 1]. The problem is thus for-
mulated as the following: given state Eq. (A.3a), minimize the mini-
mum mean square error estimate of the state F(k) [Eq. (A.4)] subject
to constraints in Eq. (A.3b).

min
F

E[(F(k)� F̂(k))
2
], (A:4)

where E[.] is the expectation operation, b is a row vector of [1, 1, . . . ,
1, 1], F is the unknown parameter, and F̂ is the estimated one.

The above problems are solved in two steps. In the first step, the
equality constraint is solved using the projection techniques (Simon
& Chia, 2002; Simon, 2006), where the unconstrained estimate F̂(k)
is projected onto the constraint space. The equality constrained op-
timization problem can be written as

min
F

E[(F(k)� F̂(k))
T
W(F(k)� F̂(k))] (A:5)

subject to

bF(k) ¼ 1, (A:6)
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where W is a positive define matrix. The solution to this problem is
given as

F̂
�
(k) ¼ F̂(k)þ K�(k) [1� bF̂(k)],

K�(k) ¼ W�1 bT [Rþ bW�1bT ]
�1

,
P�(k) ¼ [I � K�(k)b]W�1 þ Q, (A:7)

where F̂ is the unconstrained estimate, F̂� is the updated equality
constrained estimate that satisfy Eq. (3), and W is a positive definite
matrix weight. Setting W ¼ P21(k) in Eq. (A.7) results in minimum
variance estimate, and setting W ¼ I gives least square estimate of
F(k) (Simon, 2010). Both settings are implemented in this study.
This implies that the unconstrained problem is first solved with the
standard solution of the Kalman filter after which the obtained
unconstrained estimate F̂ is used to update the constrained estimate
in Eq. (A.7). Given observations y(k), y(k 2 1), . . . , y(1) and local
model outputs ~y(k), ~y(k � 1), . . . , ~y(1), the optimal unconstrained es-
timate F̂ can be computed using the following Kalman filter
equation

F̂�(k) ¼ F̂(k � 1),

P�(k) ¼ P(k � 1)þ Q(k � 1)

F̂(k) ¼ F̂�(k)þ K(k)[y(k)� ~y(k)F̂
�

(k)],

K(k) ¼ P�(k)~y(k)T [~y(k)P�(k)~y(k)T (k)þ R(k)]�1,

P(k) ¼ [I � K(k)~y(k)]P�(k), (A:8)

where P�(k), F̂�(k) are the a priori estimate of the error covariance
and the validity estimate, respectively; P(k), F̂(k) are the a poster-
iori estimate of the error covariance and the validity estimate respec-
tively; and K(k) is the Kalman gain.

In the second step truncation and normalization (Nihan & Davis,
1987) are adopted for the inequality constraints. The truncation is
used to readjust each element of F̂�(k) in order not to violate the in-
equality constraint in Eq. (A.4) as follows:

F̂
��
i (k) ¼ 0, if F̂�(k) , 0:

Finally, F̂��i (k) is normalized since the truncation can violate the
equality constraint in Eq. (3) and to satisfy the other part of the in-
equality constraint.

F̂���i kð Þ ¼ F̂��i kð ÞP
i¼1 F̂

��
i kð Þ

, (A:9)

where F̂���i (k) ¼ [f̂���1 (k), f̂���2 (k), . . . , f̂���M (k)]T is the final estimated
validity computation at instant k. Note that the F̂���i (k) and P*(k) are
now the new a posteriori estimate of the error covariance and the
validity estimate respectively at instant k. The summary of the CKF
algorithm is shown in Figure A.1.

One important feature of the proposed CKF algorithm is the in-
trinsic ability to handle modeling error and measure noise through
the covariance matrices Q and R. In the context of this work, the co-
variance R represents the measurements noise and the noise resulting
from model mismatch (R¼sr þ sb). The measurement noise sr can
be estimated by taken the variance of the output noise while the
model mismatch sb can be estimated from the error obtained from
the submodels.

In contrast, the covariance matrix Q is considered as the parameter
that incorporate only the noise resulting from model mismatch Q ;
sb. Because the submodels were estimated from the least square cri-
terion, the model mismatch noise sb can be estimated from data by
computing the empirical covariance from the classical result in least
square theory (Ljung, 1999) for each submodel:

sbi ¼
1

ni � ðd þ 1Þ
Xni

j¼1
ðyij � ŷijÞ

Xni

j¼1
½wij w

T
ij �

^ �1f g
�����

�����, (A:10)

where wi are the vectors of the regressors for ith submodel, and ni

is the number of data points used for estimating the ith submodel.
In addition, d is the number of parameters, and yi and byi are the ac-
tual and predicted output, respectively, for ith submodel. Hence, Q
(a diagonal matrix) and R are computed as

Q ¼
sbi � � � 0

..

. . .
. ..

.

0 � � � sbm

264
375, (A:11)

R ¼ sr þ kQk: (A:12)

Fig. A.1. Stage 3: CFK for validity estimation.
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APPENDIX B

Submodel coefficients and centers

Table B.3. Initial submodels for Example 2

Two-Parameter Structures Four-Parameter Structures

Initial Submodels a1 b1 a1 a2 b1 b2

1 0.54650 0.60674 0.47613 0.03870 0.60722 0.04359
2 0.56813 0.58940 0.61421 20.04158 0.57869 20.040053

Initial Centers

1 20.01412 20.00080 20.01639 20.01316 20.01488 20.01593
2 0.07727 20.16727 0.12038 0.05947 0.10028 0.13306

Table B.1. Initial submodels for Example 1

Two-Parameter Structures Four-Parameter Structures

Initial Submodels a1 b1 a1 a2 b1 b2

1 0.80021 0.46683 0.90904 20.17929 0.50286 0.13472
2 0.79705 0.50171 1.041831 20.2762 0.50508 0.05015
3 0.81370 0.42337 — — — —
4 0.75039 0.61168 — — — —

Initial Centers

1 0.11698 0.05276 0.1198 0.11971 0.05152 0.05091
2 0.11998 0.05119 0.11543 20.11181 0.04611 20.05522
3 0.11966 0.052531 — — — —
4 0.121169 0.04929 — — — —

Table B.2. Final submodels for Example 1

Two-Parameter Structures Four-Parameter Structures

Final Submodels a1 b1 a1 a2 b1 b2

1 0.79812 0.48362 0.93806 20.19068 0.51385 0.10845
2 0.82082 0.55976 0.80392 20.12192 0.52162 0.18125
3 0.75896 0.42027 — — — —
4 0.64245 0.84146 — — — —

Final Centers

1 0.13079 0.07222 0.14561 0.14268 0.05090 0.06226
2 0.12940 0.04096 0.09846 0.10036 0.05154 0.04208
3 0.10844 0.05039 — — — —
4 0.09359 0.03171 — — — —
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Table B.4. Final submodels for Example 2

Two-Parameter Structures Four-Parameter Structures

Final Submodels a1 b1 a1 a2 b1 b2

1 0.48004 0.60620 0.46668 0.04022 0.64528 0.04504
2 0.59707 0.60308 0.49261 0.03074 0.56777 0.03306

Final Centers

1 0.01067 0.45786 20.34414 20.09591 20.00413 20.48350
2 20.02951 20.46991 0.29115 0.06810 20.01360 0.41844

Table B.5. Initial submodels for Example 3

Two-Parameter Structures Four-Parameter Structures

Initial Submodels a1 b1 a1 a2 b1 b2

1 20.00935 0.74062 20.11662 0.03551 0.74416 0.08480
2 20.00839 0.72822 0.40609 0.01631 0.74891 20.25511
3 20.03470 0.79774 — — — —
4 0.05112 0.80693 — — — —

Initial Centers

1 20.01530 20.00774 20.00143 20.00626 20.00842 0.00377
2 20.00240 20.00645 20.14715 20.06505 0.01370 20.24046
3 20.00191 0.00308 — — — —
4 0.06674 20.01483 — — — —

Table B.6. Final submodels for Example 3

Two-Parameter Structures Four-Parameter Structures

Final Submodels a1 b1 a1 a2 b1 b2

1 20.01637 0.65325 20.05385 0.03735 0.86452 0.02908
2 0.04630 0.47067 20.09456 0.04253 0.59664 0.06760
3 20.03507 0.87663 — — — —
4 0.00081 0.87200 — — — —

Final Centers

1 20.19101 20.05831 0.13269 0.02336 20.00636 0.18525
2 0.20190 0.13531 20.17305 20.04705 20.00841 20.23354
3 0.09209 0.59731 — — — —
4 0.02161 20.59013 — — — —
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Table B.8. Final submodels for Example 4

Two-Parameter Structures Four-Parameter Structures

Final Submodels a1 b1 a1 a2 b1 b2

1 0.51875 20.25904 0.52332 0.60225 20.79173 21.45343
2 20.16452 1.23775 0.37017 0.05227 1.00263 1.22693
3 1.02176 22.10171 0.30684 0.37524 20.15508 0.10070
4 0.91022 1.75512 — — — —

Final Centers

1 1.21339 20.31725 0.84523 1.00344 0.02873 20.07783
2 0.86379 0.64175 1.10918 0.90721 0.14359 0.18742
3 0.62801 20.18007 0.98968 1.03175 20.05245 20.00450
4 1.07504 0.09944 — — — —

Table B.9. Convergence time

Model
Structure

RCPSO
Time (s)

Hybrid K-Means
Time (s)

Example 1 Two parameter 474.80 1.32
Four parameter 292.03 0.231

Example 2 Two parameter 615.11 0.16
Four parameter 530.39 0.21

Example 3 Two parameter 655.98 3.52
Four parameter 619.4 0.76

Example 4 Two parameter 548.21 2.72
Four parameter 509.61 2.65

Note: RCPSO, reinforced combinatorial particle swarm optimization.

Table B.7. Initial submodels for Example 4

Two-Parameter Structures Four-Parameter Structures

Initial Submodels a1 b1 a1 a2 b1 b2

1 0.53667 0.01069 0.41435 0.28499 20.13038 20.45585
2 0.46132 0.18517 0.38424 0.15863 0.25568 0.25428
3 0.54070 20.02090 0.33236 0.48919 0.05200 20.11514
4 0.55891 0.11715 — — — —

Initial Centers

1 1.04448 20.00451 0.88647 0.97696 0.00436 20.18552
2 0.94996 0.11237 1.02903 0.99540 0.03286 0.09124
3 0.92811 20.00836 0.99887 0.97750 0.04890 0.10564
4 1.01892 0.00898 — — — —
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