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Abstract This paper establishes the mapping properties of pseudo-differential operators and the Fourier
integral operators on the weighted Morrey spaces with variable exponents and the weighted Triebel–
Lizorkin–Morrey spaces with variable exponents. We obtain these results by extending the extrapolation
theory to the weighted Morrey spaces with variable exponents. This extension also gives the mapping
properties of Calderón–Zygmund operators on the weighted Hardy–Morrey spaces with variable expo-
nents and the wavelet characterizations of the weighted Hardy–Morrey spaces with variable exponents.
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1. Introduction

The main theme of this paper is the mapping properties of pseudo-differential operators
and Fourier integral operators on the weighted Morrey spaces with variable exponents.

The Morrey spaces were introduced by Morrey in [43] to study the solutions of some
quasi-linear elliptic partial differential equations. The Morrey spaces are important gen-
eralizations of Lebesgue spaces. The studies of Morrey spaces had been extended to the
generalized Morrey spaces [44], the weighted Morrey spaces [21, 35, 48] and the Morrey
spaces with variable exponents [1, 18, 19, 25].

The weighted Morrey spaces with variable exponents were introduced and studied in
[20, 42]. Moreover, the mapping properties of singular integral operators and the Riesz
potentials were obtained in [19] and [42], respectively.

In this paper, we further extend the studies in [20, 42] to establish the mapping prop-
erties of pseudo-differential operators and Fourier integral operators on weighted Morrey
spaces with variable exponents. We obtain our main results by extending the well-known

© The Author(s), 2021. Published by Cambridge University Press on Behalf
of The Edinburgh Mathematical Society

1002

https://doi.org/10.1017/S0013091521000742 Published online by Cambridge University Press

https://orcid.org/https://orcid.org/0000-0003-0966-5984
mailto:vkpho@eduhk.hk
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0013091521000742&domain=pdf
https://doi.org/10.1017/S0013091521000742


Extrapolation to weighted Morrey spaces with variable exponents and applications 1003

extrapolation theory introduced by Rubio de Francia [51–52] to the weighted Morrey
spaces with variable exponents.

Our studies also cover the weighted Triebel–Lizorkin–Morrey spaces with variable
exponents and the weighted Hardy–Morrey spaces with variable exponents. They are
generalizations of the Triebel–Lizorkin–Morrey spaces [57, 62] and the Hardy–Morrey
spaces [24, 32]. We establish the mapping properties of pseudo-differential operators and
Fourier integral operators on the weighted Triebel–Lizorkin–Morrey spaces with variable
exponents. We also obtain the mapping properties of the Calderón–Zygmund opera-
tors on the weighted Morrey spaces with variable exponents and establish the wavelet
characterizations of the weighted Morrey spaces with variable exponents.

This paper is organized as follows. The definition of weighted Lebesgue spaces with
variable exponents and the boundedness of the maximal function on these spaces are
recalled in § 2. The main results for the weighted Morrey spaces with variable expo-
nents, the weighted Triebel–Lizorkin–Morrey spaces with variable exponents and the
weighted Hardy–Morrey spaces with variable exponents are established in § 3, § 4 and §
5, respectively.

2. Definitions and preliminaries

Let M denote the class of Lebesgue measurable functions. Let S and S ′ be the class of
Schwartz functions and tempered distributions, respectively. For any x ∈ R

n and r > 0,
write B(x, r) = {y : |y − x| < r}. Define B = {B(x, r) : x ∈ R

n, r > 0}.
Let p ∈ (0,∞) and ω : R

n → (0,∞), the weighted Lebesgue space Lp(ω) consists of all
f ∈ M satisfying

‖f‖Lp(ω) =
(∫

Rn

|f(x)|pω(x)dx
) 1

p

<∞.

For any Lebesgue measurable function p(·) : R
n → (0,∞], define

p+ = esssupx∈Rnp(x) and p− = essinfx∈Rnp(x)

and

R
p(·)
∞ = {x ∈ R

n : p(x) = ∞}.
When p(·) : R

n → [1,∞], define the conjugate function p′(·) by 1
p(·) + 1

p′(·) = 1.
We recall the definitions of the Lebesgue spaces with variable exponents and the

weighted Lebesgue spaces with variable exponents from [11, Definitions 3.1.2, 3.2.1 and
(5.8.1)].

Definition 2.1. Let p(·) : R
n → (0,∞] and ω : R

n → (0,∞) be Lebesgue measurable
functions. The Lebesgue space with variable exponent consists of all Lebesgue measurable
functions f satisfying

‖f‖Lp(·) = inf

{
λ > 0 :

∫
Rn

∣∣∣∣f(x)
λ

∣∣∣∣
p(x)

dx+

∥∥∥∥∥
fχ

R
p(·)
∞
λ

∥∥∥∥∥
L∞

≤ 1

}
<∞.
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The weighted Lebesgue space with variable exponent consists of all Lebesgue measurable
functions f satisfying

‖f‖
L

p(·)
ω

= ‖fω‖Lp(·) <∞.

In particular, when p(·) = p, p ∈ (0,∞), is a constant function, we have Lpω = Lp(ωp).
Notice that for any unbounded Lebesgue measurable set E with |E| <∞,

∫
E
ω(x)pdx is

not necessarily bounded. Therefore, Lpω is not a Banach function space with respect to
the Lebesgue measure. For the definition of Banach function space, the reader is referred
to [2, Chapter 1, Definitions 1.1 and 1.3] and [11, Definition 2.7.7].

Theorem 2.1. Let p(·) : R
n → [1,∞] be a Lebesgue measurable function. Then, Lp(·) is

a Banach function space and

‖f‖Lp′(·) = sup
{∣∣∣∣
∫

Rn

f(x)g(x)dx
∣∣∣∣ : g ∈ Lp(·), ‖g‖Lp(·) ≤ 1

}
.

That is, the associate space of Lp(·) is Lp
′(·).

The reader is referred to [11, Theorem 3.2.13] for the proof of the above result. Notice
that Lp(·)ω is not necessarily a Banach function space, see [11, p.192-193].

In view of the above theorem, we have the following Hölder inequality for the weighted
Lebesgue spaces with variable exponents∫

Rn

|f(x)g(x)|dx =
∫

Rn

|f(x)ω(x)g(x)ω(x)−1|dx ≤ 2‖f‖
L

p(·)
ω

‖g‖
L

p′(·)
ω−1

. (2.1)

Additionally, Theorem 2.1 gives

‖f‖
L

p′(·)
ω−1

= ‖fω−1‖Lp′(·)

≤ C sup
{∣∣∣∣
∫

Rn

f(x)ω(x)−1g(x)ω(x)dx
∣∣∣∣ : gω ∈ Lp(·), ‖gω‖Lp(·) ≤ 1

}

≤ C sup
{∣∣∣∣
∫

Rn

f(x)g(x)dx
∣∣∣∣ : g ∈ Lp(·)ω , ‖g‖

L
p(·)
ω

≤ 1
}

for some C > 0. That is, the associate space of Lp(·)ω with respect to the Lebesgue measure
dx is Lp

′(·)
ω−1 .

We recall the class of weight functions associated with Lp(·)ω from [8, Definition 1.4].

Definition 2.2. Let p(·) : R
n → [1,∞) and ω : R

n → (0,∞) be Lebesgue measurable
functions. We write ω ∈ Ap(·) if there exists a constant C > 0 such that for any B ∈ B,

‖χBω‖Lp(·)‖χBω−1‖Lp′(·) ≤ C|B|.

We also recall the definition of the Muckenhoupt weight functions Ap because they are
important ingredient in the extrapolation theory. A positive locally integrable function
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ω belongs to Ap if it satisfies

[ω]Ap
= sup
B∈B

(
1
|B|

∫
B

ω(x)dx
)(

1
|B|

∫
B

ω(x)−
p′
p dx

) p
p′
<∞

where p′ = p
p−1 . A locally integrable function ω : R

n → [0,∞) is said to be an A1 weight
if there is a constant C > 0 such that for any B ∈ B,

1
|B|

∫
B

ω(y)dy ≤ Cω(x), a.e. x ∈ B.

The infimum of all such C is denoted by [ω]A1 . We define A∞ = ∪p≥1Ap.
When p(·) = p, p ∈ [1,∞), we have ω ∈ Ap(·) ⇔ ωp ∈ Ap.
The following is an important class of exponent functions used in the function spaces

with variable exponents.

Definition 2.3. A continuous function g on R
n is locally log-Hölder continuous if there

exists clog > 0 such that

|g(x) − g(y)| ≤ clog
− log(|x− y|) , ∀x, y ∈ R

n, |x− y| < 1
2
. (2.2)

We denote the class of locally log-Hölder continuous function by C log
loc (R

n).
Furthermore, a continuous function g is globally log-Hölder continuous if g ∈ C log

loc (R
n)

and there exist g∞ ∈ R and c∞ > 0 so that

|g(x) − g∞| ≤ c∞
log(e+ |x|) , ∀x ∈ R

n. (2.3)

The class of globally log-Hölder continuous function is denoted by C log(Rn).

According to [8, Theorem 1.5], we have the following boundedness result of the Hardy–
Littlewood maximal operator on the weighted Lebesgue spaces with variable exponents.

Theorem 2.2. Let p(·) ∈ C log(Rn) with 1 < p− ≤ p+ <∞. If ω ∈ Ap(·), then the Hardy–
Littlewood maximal operator M is bounded on L

p(·)
ω . Moreover, the Hardy–Littlewood

maximal operator M is also bounded on L
p′(·)
ω−1 .

The results given in [8, Theorem 1.5] are presented for the weighted Lebesgue space with
variable exponent Lp(·)ω . It is easy to see that ω ∈ Ap(·) ⇔ ω−1 ∈ Ap′(·). Moreover, for any
p(·) ∈ C log(Rn) with 1 < p− ≤ p+ <∞, we have p′(·) ∈ C log(Rn) with 1 < p′− ≤ p′+ <∞.
Consequently, [8, Theorem 1.5] also yields the boundedness for the Hardy–Littlewood
maximal operator on Lp

′(·)
ω−1 .

3. Weighted Morrey spaces with variable exponents

The main results for the weighted Morrey spaces with variable exponents are obtained
in this section. We establish the extrapolation theory for the weighted Morrey spaces
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with variable exponents. This extrapolation theory yields the boundedness of pseudo-
differential operators and Fourier integral operators on the weighted Morrey spaces with
variable exponents.

We start with the definitions of weighted Morrey spaces with variable exponents.

Definition 3.1. Let p(·) ∈ C log(Rn) with 0 < p− ≤ p+ <∞, ω : R
n → (0,∞) and u(·) :

(0,∞) → (0,∞) be Lebesgue measurable functions. The weighted Morrey space with
variable exponent Mu

p(·),ω consists of all f ∈ M satisfying

‖f‖Mu
p(·),ω

= sup
y∈Rn,r>0

1
u(‖χB(y,r)‖Lp(·)

ω
)
‖χB(y,r)f‖Lp(·)

ω
<∞. (3.1)

To simplify the presentation, for the rest of this paper, we write u(y, r) =
u(‖χB(y,r)‖Lp(·)

ω
), y ∈ R

n, r > 0.

When p(·) = p, 1 < p <∞, is a constant function, u(y, r) = |B(y, r)| 1p− 1
q ,

1 ≤ q ≤ p <∞ and ω ≡ 1, Mu
p(·),ω becomes the classical Morrey space Mq

p .
When ω ≡ 1, the weighted Morrey space with variable exponent becomes the Morrey

spaces with variable exponents [1, 18, 19, 25]. When p(·) = p, p ∈ (0,∞), Mu
p(·),ω reduces

to the weighted Morrey spaces Mu
p,ω [21, 35, 48].

For the mapping properties of the singular integral operators and the Riesz potentials
on the weighted Morrey spaces with variable exponents, the reader is referred to [20, 42].

We now introduce the weighted block spaces with variable exponents. We need to
use the boundedness of the Hardy–Littlewood maximal operator on the weighted block
spaces with variable exponents to establish the extrapolation theory on the weighted
Morrey spaces with variable exponents.

Definition 3.2. Let p(·) ∈ C log(Rn) with 1 < p− ≤ p+ <∞, ω ∈ Ap(·) and u(·) :
(0,∞) → (0,∞) be a Lebesgue measurable function. For any Lebesgue measurable
function b, we write b ∈ bup(·),ω if suppb ⊆ B(x0, r) for some x0 ∈ R

n and r > 0 and

‖b‖
L

p(·)
ω

≤ 1
u(x0, r)

.

The block space Bu
p(·),ω is defined as

Bu
p(·),ω =

{ ∞∑
k=1

λkbk :
∞∑
k=1

|λk| <∞ and bk ∈ bωp(·),u

}
. (3.2)

The block space Bu
p(·),ω is endowed with the norm

‖f‖Bu
p(·),ω

= inf
{ ∞∑
k=1

|λk|such that f =
∞∑
k=1

λkbk a.e.
}
. (3.3)

We now present some supporting results for Mu
p(·),ω and Bu

p′(·),ω−1 . The reader is
referred to [38] for the corresponding results on the Morrey type spaces. We have the
Hölder inequalities for Mu

p(·),ω and Bu
p′(·),ω−1 .
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Lemma 3.1. Let p(·) ∈ C log(Rn) with 1 < p− ≤ p+ <∞, ω ∈ Ap(·) and u(·) : (0,∞) →
(0,∞) be a Lebesgue measurable function. We have a constant C > 0 such that∫

Rn

|f(x)g(x)|dx ≤ C‖f‖Mu
p(·),ω

‖g‖Bu
p′(·),ω−1

.

Proof. Let f ∈Mu
p(·),ω and g ∈ Bu

p′(·),ω−1 . For any ε > 0, we have g =
∑∞
k=1 λkbk with

supp bk ⊆ B(xk, rk) = Bk, ‖bk‖Lp(·)
ω

≤ 1
u(xk,rk) and

∞∑
k=1

|λk| ≤ (1 + ε)‖g‖Bu
p′(·),ω−1

.

The Hölder inequality gives∫
Rn

|f(x)bk(x)|dx ≤ C‖fχBk
‖
L

p(·)
ω

‖bk‖Lp′(·)
ω−1

=
C

u(xk, rk)
‖fχBk

‖
L

p(·)
ω
u(xk, rk)‖bk‖Lp′(·)

ω−1
≤ C‖f‖Mu

p(·),ω
.

Consequently, we have∫
Rn

|f(x)g(x)|dx ≤
∞∑
k=1

∫
Rn

|f(x)bk(x)|dx ≤ C‖f‖Mu
p(·),ω

n∑
k=1

|λk|

≤ C‖f‖Mu
p(·),ω

‖g‖Bu
p′(·),ω−1

. �

The following proposition gives criteria for the membership f ∈Mu
p(·),ω.

Proposition 3.2. Let p(·) ∈ C log(Rn) with 1 < p− ≤ p+ <∞, ω ∈ Ap(·) and u(·) :
(0,∞) → (0,∞) be a Lebesgue measurable function. If f ∈ M satisfies

sup
b∈bu

p′(·),ω−1

∫
Rn

|f(x)b(x)|dx <∞,

then f ∈Mu
p(·),ω.

Proof. For any g ∈ L
p′(·)
ω−1 with ‖g‖

L
p′(·)
ω−1

≤ 1 and B = B(x0, r), x0 ∈ R
n and r > 0,

define bg,B = 1
u(x0,r)

gχB . We find that bg,B ∈ bup′(·),ω−1 .

Since the associate space of Lp
′(·)
ω−1 with respect to the Lebesgue measure is Lp(·)ω , we

have

sup
g∈L

p′(·)
ω−1

‖g‖
L

p′(·)
ω−1

≤1

∫
Rn

|f(x)bg,B(x)|dx =
1

u(x0, r)
sup

g∈L
p′(·)
ω−1

‖g‖
L

p′(·)
ω−1

≤1

∫
Rn

|f(x)g(x)χB(x)|dx

=
1

u(x0, r)
‖χB(x0,r)f‖Lp(·)

ω
.
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By taking the supremum over B(x0, r) ∈ B, we obtain

‖f‖Mu
p(·),ω

= sup
B(x0,r)∈B

1
u(x0, r)

‖χB(x0,r)f‖Lp(·)
ω

≤ sup
b∈bX′,u

∫
Rn

|f(x)b(x)|dx <∞.

Therefore, f ∈Mu
p(·),ω. �

Next, we have the norm conjugate formula for the weighted Morrey spaces with variable
exponents.

Proposition 3.3. Let p(·) ∈ C log(Rn) with 1 < p− ≤ p+ <∞, ω ∈ Ap(·) and u(·) :
(0,∞) → (0,∞) be a Lebesgue measurable function. There exist constants C0, C1 > 0 such
that for any f ∈Mu

p(·),ω,

C0‖f‖Mu
p(·),ω

≤ sup
b∈bu

p′(·),ω−1

∫
Rn

|f(x)b(x)|dx ≤ C1‖f‖Mu
p(·),ω

. (3.4)

Proof. In view of the definition of Mu
p(·),ω, we have a B(x0, r) ∈ B such that

‖f‖Mu
p(·),ω

≤ 2
1

u(x0, r)
‖fχB(x0,r)‖Lp(·)

ω
. (3.5)

As the associate space of Lp(·)ω with respect to the Lebesgue measure is Lp
′(·)
ω−1 , we have a

g ∈ L
p′(·)
ω−1 with ‖g‖

L
p′(·)
ω−1

≤ 1 such that

‖fχB(x0,r)‖Lp(·)
ω

≤ 2
∫
B(x0,r)

|f(x)g(x)|dx. (3.6)

Define b(x) = 1
u(x0,r)

χB(x0,r)(x)g(x). We have supp b ⊆ B(x0, r) and ‖b‖
L

p′(·)
ω−1

≤ 1
u(x0,r)

.

Therefore, b ∈ bup′(·),ω−1 . Consequently, (3.5) and (3.6) yield

C0‖f‖Mu
p(·),ω

≤
∫

Rn

|f(x)b(x)|dx ≤ C1 sup
b∗∈bu

p′(·),ω−1

∫
Rn

|f(x)b∗(x)|dx

for some C0, C1 > 0. The above inequality gives the first inequality in (3.4). The second
inequality in (3.4) follows from Lemma 3.1 and the fact that ‖b‖Bu

p′(·),ω−1
≤ 1 for any

b ∈ bup′(·),ω−1 . �

We now introduce a class of weight function for the study of the boundedness of
the Hardy–Littlewood maximal operator on the weighted block spaces with variable
exponents.

Definition 3.3. Let p(·) ∈ C log(Rn) with 1 < p− ≤ p+ <∞ and ω ∈ Ap(·). We say that
a Lebesgue measurable function, u(·) : (0,∞) → (0,∞), belongs to u ∈ Wp(·),ω if there
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exists a constant C > 0 such that for any x ∈ R
n and r > 0, u fulfils

C ≤ u(r), r ≥ 1, (3.7)

r ≤ Cu(r), r < 1, (3.8)
∞∑
j=0

‖χB(x,r)‖Lp(·)
ω

‖χB(x,2j+1r)‖Lp(·)
ω

u(‖χB(x,2j+1r)‖Lp(·)
ω

) ≤ Cu(‖χB(x,r)‖Lp(·)
ω

). (3.9)

The reader may consult [47, Proposition 2.7] and [46, Definition 1.1] for some sim-
ilar classes of weight functions used to study the generalized Morrey spaces and the
generalized weighted Morrey spaces, respectively.

When p(·) = p, p ∈ (1,∞) is a constant function, we write Wp(·),ω = Wp,ω.
For instance, when θ ∈ (0, 1), uθ(r) = rθ fulfils (3.7) and (3.8). Notice that

Definition 2.2 assures that for any B ∈ B, ‖χB‖Lp(·)
ω

= ‖χBω‖Lp(·) <∞. Therefore, the
inequality in (3.9) is well defined.

Furthermore, (3.7) assures that

1 ≤ ‖χB(x,r)‖Lp(·)
ω

⇒ C ≤ u(x, r), x ∈ R
n, r > 0. (3.10)

Similarly, (3.8) guarantees that

‖χB(x,r)‖Lp(·)
ω

≤ 1 ⇒ ‖χB(x,r)‖Lp(·)
ω

≤ u(x, r), x ∈ R
n, r > 0. (3.11)

Let w ∈ A∞, p(·) = p, p ∈ (1,∞) and ω = w1/p. Recall that for any w ∈ A∞, there exist
constants ε0, C > 0 such that for any B ∈ B and measurable subset A of B, we have

w(A)
w(B)

≤ C

( |A|
|B|
)ε0

, (3.12)

see [17, Theorem 9.3.3 (d)]. We find that (3.12) gives

∞∑
j=0

‖χB(x,r)‖Lp
ω

‖χB(x,2j+1r)‖Lp
ω

uθ(x, 2j+1r)
uθ(x, r)

=
∞∑
j=0

( ‖χB(x,r)‖Lp
ω

‖χB(x,2j+1r)‖Lp
ω

)1−θ

≤ C

∞∑
j=0

2−(j+1)nε0 <∞.

Thus, uθ ∈ Wp,ω.
The condition (3.9) is used to obtain the boundedness of the Hardy–Littlewood

maximal operator on Bu
p(·),ω.

Proposition 3.4. Let p(·) ∈ C log(Rn) with 1 < p− ≤ p+ <∞, ω ∈ Ap(·) and u(·) :
(0,∞) → (0,∞) be a Lebesgue measurable function. If u satisfies (3.7) and (3.8), then
for any B ∈ B, χB ∈Mu

p(·),ω.
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Proof. Let B ∈ B, x ∈ R
n and r > 0. Whenever ‖χB(x,r)‖Lp(·)

ω
≥ 1, (3.10) gives

1
u(x, r)

‖χBχB(x,r)‖Lp(·)
ω

≤ 1
u(x, r)

‖χB‖Lp(·)
ω

≤ C‖χB‖Lp(·)
ω

(3.13)

for some C > 0. When ‖χB(x,r)‖Lp(·)
ω

< 1, (3.11) assures that

1
u(x, r)

‖χBχB(x,r)‖Lp(·)
ω

≤ 1
u(x, r)

‖χB(x,r)‖Lp(·)
ω

≤ C. (3.14)

Consequently, (3.13) and (3.14) yield

‖χB‖Mu
p(·),ω

= sup
B(x,r)∈B

1
u(x, r)

‖χBχB(x,r)‖Lp(·)
ω

< C + C‖χB‖Lp(·)
ω
.

Therefore, χB ∈Mu
p(·),ω. �

The preceding theorem shows that for any u satisfies (3.7) and (3.8), Mu
p(·),ω is non-

trivial. Furthermore, Definition 3.2 and Lemma 3.1 guarantee that for any f ∈Mu
p(·),ω and

B ∈ B, we have
∫
B
|f(x)|dx ≤ C‖f‖Mu

p(·),ω
. Therefore, this inequality and Proposition 3.4

assure that Mu
p(·),ω is a ball Banach function space. For the definition of ball Banach

function space, see [59, Definition 2.2].
We are now ready to show that the Hardy–Littlewood maximal operator is bounded

on Bu
p′(·),ω−1 .

Theorem 3.5. Let p(·) ∈ C log(Rn) with 1 < p− ≤ p+ <∞, ω ∈ Ap(·) and u(·) : (0,∞) →
(0,∞) be a Lebesgue measurable function. If u ∈ Wp(·),ω, then the Hardy–Littlewood
maximal operator M is bounded on Bu

p′(·),ω−1 .

Proof. Let b ∈ bup′(·),ω−1 with supp b ⊆ B(x0, r), x0 ∈ R
n, r > 0. For any k ∈ N ∪ {0},

write Bk = B(x0, 2kr), d0 = χB1 M(b) and dk = χBk+1\Bk
M(b), k ∈ N. Thus, supp dk ⊆

Bk+1\Bk and M(b) =
∑∞
k=0 dk.

Theorem 2.2 assures that

‖d0‖Lp′(·)
ω−1

≤ ‖M(b)‖
L

p′(·)
ω−1

≤ C‖b‖
L

p′(·)
ω−1

≤ C
1

u(x0, r)

for some C > 0. Thus, d0 = Ce0 for some C > 0 with e0 ∈ bup′(·),ω−1 .
Next, (2.1) gives

dk = χBk+1\Bk
M(b) ≤ χBk+1\Bk

1
2knrn

∫
B(x0,r)

|b(x)|dx

≤ CχBk+1\Bk

1
2knrn

‖b‖
L

p′(·)
ω−1

‖χB0‖Lp(·)
ω
.
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Consequently, as ω ∈ Ap(·), Definition 2.2 guarantees that

‖dk‖Lp′(·)
ω−1

≤ C‖χBk+1\Bk
‖
L

p′(·)
ω−1

1
2knrn

‖b‖
L

p′(·)
ω−1

‖χB0‖Lp(·)
ω

≤ C‖χBk+1‖Lp′(·)
ω−1

1
2knrn

‖b‖
L

p′(·)
ω−1

‖χB0‖Lp(·)
ω

≤ C0

‖χB0‖Lp(·)
ω

‖χBk+1‖Lp(·)
ω

u(x0, 2k+1r)
u(x0, r)

1
u(x0, 2k+1r)

for some C0 > 0.
Define ek = 1

γk
dk where

γk = C0

‖χB0‖Lp(·)
ω

‖χBk+1‖Lp(·)
ω

u(x0, 2k+1r)
u(x0, r)

. (3.15)

We see that ek ∈ bup′(·),ω−1 with supp dk ⊆ Bk+1. Since (3.9) asserts that

∞∑
k=1

γk = C0

∞∑
k=1

‖χB0‖Lp(·)
ω

‖χBk+1‖Lp(·)
ω

u(x0, 2k+1r)
u(x0, r)

<∞.

Therefore,

M(b) =
∞∑
k=1

γkek ∈ Bu
p′(·),ω−1 with ‖M(b)‖Bu

p′(·),ω−1
≤ C (3.16)

for some C > 0 independent of b.
For any g ∈ Bu

p′(·),ω−1 , we have g =
∑∞
j=1 λjbj with bj ∈ bup′(·),ω−1 and

∑∞
j=1 |λj | ≤

2‖g‖Bu
p′(·),ω−1

. Let {ej,k} and {γj,k} be defined by (3.15) and (3.16) with b replaced by

bj . We have M(bj) =
∑∞
k=1 γj,kej,k. The sub-linearity of M yields

M(g) ≤
∞∑
j=1

|λj |M(bj) =
∞∑
j=1

∞∑
k=1

|λj |γj,kej,k.

Since
∞∑
j=1

∞∑
k=1

|λj |γj,k ≤ C

∞∑
j=1

|λj | ≤ C‖g‖Bu
p′(·),ω−1

,

we find that B =
∑∞
j=1

∑∞
k=1 |λj |γj,kej,k ∈ Bu

p′(·),ω−1 .
Write

G =
{

M(g)/B, B �= 0,
0, B = 0.

Obviously,

M(g) =
∞∑
j=1

∞∑
k=1

|λj |γj,kgj,k

where gj,k = Gej,k. Since |G| ≤ 1, gj,k ∈ bup′(·),ω−1 with supp gj,k ⊆ supp ej,k. Thus,
‖M(g)‖Bu

p′(·),ω−1
≤∑∞

j=1

∑∞
k=1 |λj |γj,k ≤ C‖g‖Bu

p′(·),ω−1
. �
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A similar result of Theorem 3.5 is obtained in [58]. We use the preceding theorem
to establish the extrapolation theory for Mu

p(·),ω. Let p0 ∈ (0,∞), p(·) ∈ C log(Rn) with
1 < p− ≤ p+ <∞, ω ∈ Ap(·) and u(·) : (0,∞) → (0,∞) be a Lebesgue measurable func-
tion. The operator R is defined by

Rh =
∞∑
k=0

Mk(h)
2k‖Mk ‖Bup0

(p(·)/p0)′,ω−p0
→Bup0

(p(·)/p0)′,ω−p0

, h ∈ L1
loc,

where Mk is the k iterations of the operator M. Notice that the operator R is depending
on p0, p(·), ω and u.

Proposition 3.6. Let p0 ∈ (0,∞), p(·) ∈ C log(Rn) with p0 < p− ≤ p+ <∞, ω ∈ Ap(·)
and u(·) : (0,∞) → (0,∞) be a Lebesgue measurable function. If ωp0 ∈ Ap(·)/p0 and up0 ∈
Wp(·)/p0,ωp0 , then R is well defined on Bup0

(p(·)/p0)′,ω−p0 and satisfies

|h(x)| ≤ Rh(x), (3.17)

‖Rh‖Bup0
(p(·)/p0)′,ω−p0

≤ 2‖h‖Bup0
(p(·)/p0)′,ω−p0

, h ∈ Bup0

(p(·)/p0)′,ω−p0 , (3.18)

[Rh]A1 ≤ 2‖M ‖Bup0
(p(·)/p0)′,ω−p0

→Bup0
(p(·)/p0)′,ω−p0

, h ∈ Bup0

(p(·)/p0)′,ω−p0 . (3.19)

Proof. According to Theorem 3.5, the Hardy–Littlewood maximal operator is
bounded on Bup0

(p(·)/p0)′,ω−p0 . Therefore, R is well defined on Bup0

(p(·)/p0)′,ω−p0 .
In view of the definition of R, (3.17) and (3.18) are valid. Since M is a sublinear

operator, for any h ∈ Bup0

(p(·)/p0)′,ω−p0 , we get

M(Rh) ≤
∞∑
k=0

Mk+1(h)
2k‖Mk ‖Bup0

(p(·)/p0)′,ω−p0
→Bup0

(p(·)/p0)′,ω−p0

≤ 2‖M ‖Bup0
(p(·)/p0)′,ω−p0

→Bup0
(p(·)/p0)′,ω−p0

Rh.

Consequently, Rh ∈ A1 and (3.19) is valid. �

We now establish the extrapolation theory for the weighted Morrey spaces with variable
exponents.

Theorem 3.7. Let p0 ∈ (0,∞), p(·) ∈ C log(Rn) with p0 < p− ≤ p+ <∞, ωp0 ∈ Ap(·)/p0
and up0 ∈ Wp(·)/p0,ωp0 . Suppose that F be a family of pairs of non-negative Lebesgue
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measurable functions such that for every

v ∈ {Rh : h ∈ bu
p0

(p(·)/p0)′,ω−p0},
we have ∫

Rn

f(x)p0v(x)dx ≤ C

∫
Rn

g(x)p0v(x)dx <∞, (f, g) ∈ F (3.20)

where C is independent of f and g. For any (f, g) ∈ F with g ∈Mu
p(·),ω, we have

‖f‖Mu
p(·),ω

≤ C‖g‖Mu
p(·),ω

. (3.21)

Proof. Let f ∈ M with (f, g) ∈ F for some g ∈Mu
p(·),ω. For any h ∈ bu

p0

(p(·)/p0)′,ω−p0 ,
(3.20) with v = Rh and (3.17) assure that∫

Rn

|f(x)|p0 |h(x)|dx ≤
∫

Rn

|f(x)|p0Rh(x)dx

≤
∫

Rn

|g(x)|p0Rh(x)dx

≤ C‖|g|p0‖Mup0
p(·)/p0,ωp0

‖Rh‖Bup0
(p(·)/p0)′,ω−p0

.

Thus, (3.18) gives ∫
Rn

|f(x)|p0 |h(x)|dx ≤ C‖g‖p0Mu
p(·),ω

‖h‖Bup0
(p(·)/p0)′,ω−p0

for some C > 0.
Furthermore, we have

sup
{∫

Rn

|f(x)|p0 |h(x)|dx, h ∈ bu
p0

(p(·)/p0)′,ω−p0 ,

}

≤ C‖g‖p0Mu
p(·),ω

.

Proposition 3.3 guarantees that f ∈Mu
p(·),ω and

‖f‖p0Mu
p(·),ω

= ‖|f |p0‖Mup0
p(·)/p0,ωp0

= sup
{∫

Rn

|f(x)|p0 |h(x)|dx, h ∈ bu
p0

(p(·)/p0)′,ω−p0

}

≤ C‖g‖p0Mu
p(·),ω

for some C > 0. �

The above theorem is a refined version of the general extrapolation theory [51–52]
by using the idea from [28]. The general extrapolation theory requires the validity of
(3.20) for all ω ∈ A1 while Theorem 3.7 only requires the validity of (3.20) for
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ω ∈ {Rh : h ∈ bu
p0

(p(·)/p0)′,ω−p0 }. This relaxation gives us extra flexibility to obtain the
boundedness of operators without using the density argument.

Theorem 3.7 yields the boundedness of pseudo-differential operators and Fourier
integral operators on Mu

p(·),ω.

Definition 3.4. Let m ∈ R. A smooth function a(x, ξ) ∈ C∞(Rn × R
n) is a symbol of

order m if for any multi-indices α, β, we have a constant C > 0 such that∣∣∣∂αx ∂βξ a(x, ξ)∣∣∣ ≤ C(1 + |ξ|)m−β .

Let a be a symbol of order m. The pseudo-differential operator with symbol a is defined
as

Taf(x) =
∫

Rn

a(x, ξ)f̂(ξ)e2πix·ξdξ, f ∈ S

where f̂ is the Fourier transform of f .
In view of [41, Theorem 2.12], we have the following weighted norm inequality for the

pseudo-differential operators of order 0.

Theorem 3.8. Let p ∈ (1,∞), ω ∈ Ap and a be a symbol of order 0. The pseudo-
differential operator Ta is bounded on Lp(ω).

We are now ready to present the boundedness of pseudo-differential operators on the
weighted Morrey spaces with variable exponents. Notice that in view of [60], Ta is bounded
on S ′. Thus, Ta is well defined on Mu

p(·),ω.

Theorem 3.9. Let p0 ∈ (0,∞), a ∈ C∞(Rn × R
n) be a symbol of order 0, p(·) ∈ C log(Rn)

with p0 < p− ≤ p+ <∞. If ωp0 ∈ Ap(·)/p0 and up0 ∈ Wp(·)/p0,ωp0 , then Ta is bounded on
Mu
p(·),ω.

Proof. For any f ∈Mu
p(·),ω and h ∈ bu

p0

(p(·)/p0)′,ω−p0 Lemma 3.1 and (3.18) guarantee
that ∫

Rn

|f(x)|p0Rh(x)dx ≤ ‖|f |p0‖Mup0
p(·)/p0,ωp0

‖Rh‖Bup0
(p(·)/p0)′,ω−p0

≤ C‖f‖p0Mu
p(·),ω

‖h‖Bup0
(p(·)/p0)′,ω−p0

<∞.

That is,

Mu
p(·),ω ↪→

⋂
h∈bup0

(p(·)/p0)′,ω−p0

Lp0(Rh). (3.22)

Define F0 = {(|Taf |, |f |) : f ∈Mu
p(·),ω}. For any

v ∈
{
Rh : h ∈ bu

p0

(p(·)/p0)′,ω−p0

}
,

(3.22) ensures that Mu
p(·),ω ↪→ Lp0(v). Theorem 3.8 guarantees that (3.20) is valid for F0.

Theorem 3.7 asserts that ‖Taf‖Mu
p(·),ω

≤ C‖f‖Mu
p(·),ω

, ∀f ∈Mu
p(·),ω, for some C > 0. �
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Corollary 3.10. Let p ∈ (1,∞), ωp ∈ Ap u ∈ Wp,ω and a ∈ C∞(Rn × R
n) be a symbol

of order 0. The pseudo-differential operator Ta is bounded on the weighted Morrey space
Mu
p,ω.

Proof. In view of the left openness property of Muckenhoupt weight functions [17,
Corollary 9.2.6], we have a p0 ∈ (1, p) such that ωp ∈ Ap/p0 . Whenever p(·) = p, p ∈ (1,∞)
is a constant function, we have ωp0 ∈ Ap(·)/p0 if and only if ωp ∈ Ap/p0 . Thus, we have
ωp0 ∈ Ap(·)/p0 .

Since u ∈ Wp,ω, (3.9) gives

∞∑
j=0

‖χB(x,r)‖Lp
ω

‖χB(x,2j+1r)‖Lp
ω

u(x, 2j+1r) ≤ Cu(x, r).

As p0 > 1, we find that

∞∑
j=0

‖χB(x,r)‖Lp/p0
ωp0

‖χB(x,2j+1r)‖Lp/p0
ωp0

u(x, 2j+1r)p0 =
∞∑
j=0

‖χB(x,r)‖p0Lp
ω

‖χB(x,2j+1r)‖p0Lp
ω

u(x, 2j+1r)p0

≤
⎛
⎝ ∞∑
j=0

‖χB(x,r)‖Lp
ω

‖χB(x,2j+1r)‖Lp
ω

u(x, 2j+1r)

⎞
⎠
p0

≤ Cu(x, r)p0 .

Therefore, up0 ∈ Wp/p0,ωp0 . Theorem 3.9 yields the boundedness of Ta on the weighted
Morrey space Mu

p,ω. �

One of the essential components in the proof of [41, Theorem 2.12] is the density of
S in Lp(ω). As S is not necessary dense in Mu

p(·),ω, the argument in [41, Theorem 2.12]
cannot directly apply to obtain the boundedness of Ta on Mu

p(·),ω. We can overcome this
obstacle because we have the embedding (3.22) and Theorem 3.7 requires the validity of
3.20 for all ω ∈ {Rh : h ∈ bu

p0

(p(·)/p0)′,ω−p0} only.
There are a number of extensions on the study of the boundedness of pseudo-differential

operators on weighted Lebesgue spaces [40, 49, 53, 54, 68]. By using Theorem 3.7, we
can extend the results in [40, 49, 53, 68] to the weighted Morrey spaces with variable
exponents. For brevity, we omit the details and leave them to the readers.

We turn to the study of Fourier integral operators. We recall some definitions and
notions from [12].

Definition 3.5. Letm ∈ R and 0 ≤ ρ ≤ 1. A Lebesgue measurable function a(x, ξ) which
is smooth in the frequency variable ξ and bounded in the spatial variable x, is said to
belong to L∞Smρ if for all multi-indices α, a satisfies

sup
ξ∈Rn

(1 + |ξ|2)−m+ρ|α|
2 ‖∂αξ a(·, ξ)‖L∞(Rn) <∞.

Comparing to the classical symbol class Smρ,δ for the pseudo-differential operators [60,
Chapter VII, Section 1.1 (3)], Definition 3.5 gives a class of symbols where smoothness
of the x variable is not required.
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Let ϕ(x, ξ) be a smooth function and homogeneous of degree 1 in the frequency variable
and the amplitude a(x, ξ) ∈ L∞Smρ where m ∈ R and 0 ≤ ρ ≤ 1. The Fourier integral
operator associated with a and ϕ is defined as

Ta,ϕf(x) = (2π)−n
∫

Rn

eiϕ(x,ξ)a(x, ξ)f̂(ξ)dξ.

We now state some conditions for the study of Fourier integral operators.

Definition 3.6. Let k ∈ N ∪ {0}. A real-valued function ϕ(x, ξ) belongs to the class
L∞Φk if it is homogeneous of degree 1 and smooth on R

n\{0} in the frequency variable
ξ, bounded measurable in the spatial variable x and for all multi-indices |α| ≥ k, it satisfies

sup
ξ∈Rn\{0}

|ξ|−1+|α|‖∂αξ ϕ(·, ξ)‖L∞ <∞.

Definition 3.7. A real-valued function ϕ satisfies the rough non-degeneracy condition
if it is C1 on R

n\{0} in the frequency variable ξ, bounded measurable in the spatial
variable x and there exists a constant c > 0 such that for all x, y ∈ R

n and ξ ∈ R
n\{0},

it satisfies
|∂ξϕ(x, ξ) − ∂ξϕ(y, ξ)| ≥ c|x− y|.

We have the following boundedness result for Ta,ϕ on weighted Lebesgue spaces [12,
Theorem 3.11].

Theorem 3.11. Let 1 < p <∞, ρ ∈ [0, 1] and a ∈ L∞S−( n+1
2 )ρ+n(ρ−1). Suppose that a

and ϕ satisfy either

(1) a is compactly supported in the spatial variable x and the phase function ϕ ∈
C∞(Rn × R

n\{0}) is positively homogeneous of degree 1 in the frequency variable
ξ and satisfies det∂2

xξϕ(x, ξ) �= 0 and rank∂2
ξξϕ(x, ξ) = n− 1 or

(2) ϕ(x, ξ) − 〈x, ξ〉 ∈ L∞Φ1, ϕ satisfies the rough non-degeneracy condition and
|detn−1∂

2
ξξϕ(ξ, ξ)| ≥ c > 0.

Then for any ω ∈ Ap, the Fourier integral operator Ta,ϕ is bounded on Lp(ω).

We now present the boundedness of the Fourier integral operator Ta,ϕ on Mu
p(·),ω.

Theorem 3.12. Let ρ ∈ [0, 1] and a ∈ L∞S−( n+1
2 )ρ+n(ρ−1). Suppose that a and ϕ satisfy

either (1) or (2) in Theorem 3.11.
Let p0 ∈ (1,∞), p(·) ∈ C log(Rn) with p0 < p− ≤ p+ <∞. If ωp0 ∈ Ap(·)/p0 and up0 ∈

Wp(·)/p0,ωp0 , then Ta,ϕ is bounded on Mu
p(·),ω.

By using Theorem 3.11 instead of Theorem 3.8, the proof of the preceding theorem
follows from the proof of Theorem 3.9. Thus, for brevity, we omit the details.

Corollary 3.13. Let ρ ∈ [0, 1] and a ∈ L∞S−( n+1
2 )ρ+n(ρ−1). Suppose that a and ϕ satisfy

either (1) or (2) in Theorem 3.11. Let p ∈ (1,∞) and ωp ∈ Ap u ∈ Wp,ω. The Fourier
integral operator Ta,ϕ is bounded on the weighted Morrey space Mu

p,ω.
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4. Weighted Triebel–Lizorkin–Morrey spaces with variable exponents

In this section, we extend the study in the previous section to the weighted Triebel–
Lizorkin–Morrey spaces with variable exponents. For any f ∈ S ′, let us denote the Fourier
transform of f by f̂ .

Definition 4.1. Let α ∈ R, 1 ≤ q <∞, p(·) ∈ C log(Rn) with 0 < p− ≤ p+ <∞, ω :
R
n → (0,∞) and u(·) : (0,∞) → (0,∞) be Lebesgue measurable functions. The weighted

Triebel–Lizorkin–Morrey space with variable exponent Fα,q,up(·),ω consists of those f ∈ S ′

satisfying

‖f‖Fα,q,u
p(·),ω

=
∥∥∥∥
⎛
⎝ ∞∑
j=0

(2jα|f ∗ ϕj |)q
⎞
⎠

1
q ∥∥∥∥

Mu
p(·),ω

<∞, (4.1)

where ϕ0 ∈ S satisfies

supp ϕ̂0 ⊆ {x ∈ R
n : |x| ≤ 2} and |ϕ̂0(ξ)| ≥ C, |x| ≤ 3/2 (4.2)

and ϕj(x) = 2jnϕ(2jx), j ≥ 1 where ϕ ∈ S satisfying

supp ϕ̂ ⊆ {x ∈ R
n : 1/2 ≤ |x| ≤ 2} (4.3)

|ϕ̂(ξ)| ≥ C, 3/5 ≤ |x| ≤ 5/3 (4.4)

for some C > 0.

The above definition is a special case of the Triebel–Lizorkin type spaces defined in
[37]. In particular, when ω ≡ 1, the weighted Triebel–Lizorkin–Morrey space with variable
exponent becomes the inhomogeneous version of the Triebel–Lizorkin–Morrey space with
variable exponent [23, Definition 6.6] with q(·) being a constant function. When ω ≡ 1
and p(·) is a constant function, then Fα,q,up(·),ω reduces to the inhomogeneous version of the
Triebel–Lizorkin–Morrey spaces studied in [61, 62]. Moreover, when ω ≡ 1 and u ≡ 1,
Fα,q,up(·),ω is the inhomogeneous version of the variable Triebel–Lizorkin spaces introduced
in [67, Definition 2].

Let p, q ∈ (0,∞), α ∈ R and ω : R
n → (0,∞), the weighted Triebel–Lizorkin space

Fα,qp (ω) consists if all f ∈ S ′ satisfying

‖f‖Fα,q
p (ω) =

∥∥∥∥
⎛
⎝ ∞∑
j=0

(2jα|f ∗ ϕj |)q
⎞
⎠

1
q ∥∥∥∥

Lp(ω)

<∞

where ϕ0 and ϕ satisfy (4.2) and (4.3), see [5, 6] and [13, p.124]. We see that whenever
p(·) = p, p ∈ (0,∞) is a constant function, Fα,q,up(·),ω = Fα,qp (ωp).

We first show that the definition of the weighted Triebel–Lizorkin–Morrey space with
variable exponent is independent of the choice of functions ϕ0, ϕ satisfying (4.2)–(4.4).

Theorem 4.1. Let α ∈ R, 1 ≤ q <∞, p0 ∈ (0,∞), p(·) ∈ C log(Rn) with p0 < p− ≤ p+ <
∞. If ωp0 ∈ Ap(·)/p0 and up0 ∈ Wp(·)/p0,ωp0 . Let ϕ0, ψ0 ∈ S satisfy (4.2) and ϕ,ψ ∈ S
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satisfy (4.3) and (4.4). There exist constants C0, C1 > 0 such that for any f ∈ S ′, we
have

C0

∥∥∥∥
⎛
⎝ ∞∑
j=0

(2jα|f ∗ ϕj |)q
⎞
⎠

1
q ∥∥∥∥

Mu
p(·),ω

≤
∥∥∥∥
⎛
⎝ ∞∑
j=0

(2jα|f ∗ ψj |)q
⎞
⎠

1
q ∥∥∥∥

Mu
p(·),ω

≤ C1

∥∥∥∥
⎛
⎝ ∞∑
j=0

(2jα|f ∗ ϕj |)q
⎞
⎠

1
q ∥∥∥∥

Mu
p(·),ω

. (4.5)

Proof. In view of [13, Remark 2.6 and Proposition 10.14], for any ω ∈ A1, we have

C0

∥∥∥∥
⎛
⎝ ∞∑
j=0

(2jα|f ∗ ϕj |)q
⎞
⎠

1
q ∥∥∥∥

Lp(ω)

≤
∥∥∥∥
⎛
⎝ ∞∑
j=0

(2jα|f ∗ ψj |)q
⎞
⎠

1
q ∥∥∥∥

Lp(ω)

≤ C1

∥∥∥∥
⎛
⎝ ∞∑
j=0

(2jα|f ∗ ϕj |)q
⎞
⎠

1
q ∥∥∥∥

Lp(ω)

. (4.6)

Notice that the results given in [13, Remark 2.6 and Proposition 10.14] are for the homo-
geneous Triebel–Lizorkin spaces, as stated at [13, Section 12], the results also apply to
the inhomogeneous Triebel–Lizorkin spaces.

We denote the weighted Triebel–Lizorkin–Morrey space with variable exponent gener-
ated by (ϕ0, ϕ) and (ψ0, ψ) by Fα,q,up(·),ω(ϕ) and Fα,q,up(·),ω(ψ), respectively.

The embedding (3.22) guarantees that for any f ∈ Fα,q,up(·),ω(ψ)

⎛
⎝ ∞∑
j=0

(2jα|f ∗ ψj |)q
⎞
⎠

1
q

∈
⋂

h∈bup0
(p(·)/p0)′,ω−p0

Lp0(Rh).

Define

F =
{(⎛⎝ ∞∑

j=0

(2jα|f ∗ ϕj |)q
⎞
⎠

1
q

,

⎛
⎝ ∞∑
j=0

(2jα|f ∗ ψj |)q
⎞
⎠

1
q )

: f ∈ Fα,q,up(·),ω(ψ)
}
.

The first inequality in (4.6) shows that (3.20) is valid for F . Theorem 3.7 yields a constant
C0 > 0 such that for any f ∈ Fα,q,up(·),ω(ψ)

C0

∥∥∥∥
⎛
⎝ ∞∑
j=0

(2jα|f ∗ ϕj |)q
⎞
⎠

1
q ∥∥∥∥

Mu
p(·),ω

≤
∥∥∥∥
⎛
⎝ ∞∑
j=0

(2jα|f ∗ ψj |)q
⎞
⎠

1
q ∥∥∥∥

Mu
p(·),ω

.

We establish the first inequality in (4.9). The second inequality in (4.9) follows similarly.
�
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We study the boundedness of pseudo-differential operators on Fα,q,up(·),ω. Let L be a non-
negative integer, r ∈ (0,∞)\N and δ ∈ [0, 1]. Suppose that a satisfies

|∂βx∂αξ a(x, ξ)| ≤
1

(1 + |ξ|)|α| , |α| ≤ L, (4.7)

|∂βx∂αξ a(x+ y, ξ) − ∂βx∂
α
ξ a(x, ξ)| ≤

|y|r−[r]

(1 + |ξ|)|α|−δr , |α| ≤ L, |β| = [r] (4.8)

where [r] is the integral part of r.
According to [54, Theorem 1 and Remaek 3], we have the boundedness result for the

pseudo-differential operators on the weighted Triebel–Lizorkin spaces.

Theorem 4.2. Let q ∈ (1, 2] and a satisfies (4.7) and (4.8) with L = [n/q] + 1. If α ∈
((δ − 1)r, r), q ≤ p <∞ and ω ∈ Ap/q, then Ta is bounded on Fα,qp (ω).

We now extend the boundedness of Ta to Fα,q,up(·),ω.

Theorem 4.3. Let q ∈ (1, 2], α ∈ ((δ − 1)r, r) and a satisfies (4.7) and (4.8) with
L = [n/q] + 1, p0 ∈ [q,∞), p(·) ∈ C log(Rn) with p0 < p− ≤ p+ <∞. If ωp0 ∈ Ap(·)/p0 and
up0 ∈ Wp(·)/p0,ωp0 , then Ta is bounded on Fα,q,up(·),ω.

Proof. In view of Theorem 4.2, for any ω ∈ A1 ⊆ Ap0/q, the pseudo-differential oper-
ator Ta is bounded on Fα,qp0 (ω). In view of (3.19) and the embedding (3.22) guarantees
that

Fα,q,up(·),ω ↪→
⋂

h∈bup0
(p(·)/p0)′,ω−p0

Fα,up0 (Rh), (4.9)

we are allowed to apply Theorem 3.7 with

F =
{(⎛⎝ ∞∑

j=0

(2jα|Taf ∗ ϕj |)q
⎞
⎠

1
q

,

⎛
⎝ ∞∑
j=0

(2jα|f ∗ ϕj |)q
⎞
⎠

1
q )

: f ∈ Fα,q,up(·),ω

}

and obtain the boundedness of Ta on Fα,q,up(·),ω. �

As a special case of Theorem 4.3, we have the boundedness of the pseudo-differential
operator Ta on the weighted Triebel–Lizorkin–Morrey spaces.

Corollary 4.4. Let q ∈ (1, 2] and a satisfies (4.7) and (4.8) with L = [n/q] + 1. If α ∈
((δ − 1)r, r), q ≤ p <∞, ωp ∈ Ap/q and u ∈ Wp,ω, then Ta is bounded on Fα,q,up,ω .

Proof. As ωp ∈ Ap/q, the left openness property of the Muckenhoupt weighted func-
tions yields a p0 ∈ (q,∞) such that ωp ∈ Ap/p0 . Therefore, ωp0 ∈ Ap(·)/p0 where p(·) ≡ p.
The proof of the membership up0 ∈ Wp/p0,ωp0 is the same as the proof in Corollary 3.10.
Thus, Theorem 4.3 yields the boundedness of Ta. �
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There are some other results on the boundedness of pseudo-differential operators on
the weighted Triebel–Lizorkin spaces such as [4, Section 3.4 (c)]. We can use the method
in Theorem 4.2 to extend the result in [4, Section 3.4 (c)] to Mu

p(·),ω. For brevity, we leave
the details to the readers.

At the end of this section, we consider the boundedness of Fourier integral operators
on Fα,q,up(·),ω.

Theorem 4.5. Let α ∈ R, 1 ≤ q <∞, p ∈ (1,∞), ω ∈ Ap, a(ξ) is a symbol of
order −n+1

2 and ϕ ∈ C∞(Rn\{0}) is a positive homogeneous function of degree 1. If
|detn−1∂

2
ξξϕ(ξ)| ≥ c > 0 and for any |α| ≥ 1, there is a constant C > 0 such that

|∂αξ ϕ(ξ)| ≤ C|ξ|1−|α|, ξ ∈ R
n\{0}, (4.10)

then the Fourier integral operator

Tf(x) =
1

(2π)n

∫
Rn

eiϕ(ξ)+ix·ξa(ξ)f̂(ξ)dξ

is bounded on Fα,qp (ω).

The reader is referred to [12, Theorem 4.1.4] for the proof of the above theorem. In
view of the embedding (4.9) and the preceding theorem, T is well defined on Fα,q,up(·),ω.

The above theorem and Theorem 3.7 yield the boundedness of the Fourier integral
operator T on Fα,q,up(·),ω.

Theorem 4.6. Let α ∈ R, 1 ≤ q <∞, a(ξ) is a symbol of order −n+1
2 and ϕ ∈

C∞(Rn\{0}) is a positive homogeneous function of degree 1. satisfying |detn−1∂
2
ξξϕ(ξ)| ≥

c > 0 and (4.10). Suppose that p(·) ∈ C log(Rn). If the exists a p0 ∈ (1,∞) such that p0 <
p− ≤ p+ <∞, ωp0 ∈ Ap(·)/p0 and up0 ∈ Wp(·)/p0,ωp0 , then the Fourier integral operator
T is bounded on Fα,q,up(·),ω.

As the proof of the preceding theorem is similar to the proof of Theorem 4.3, for
simplicity, we omit the details.

Corollary 4.7. Let α ∈ R, 1 ≤ q <∞, a(·) is a symbo0l of order −n+1
2 and ϕ ∈

C∞(Rn\{0}) is a positive homogeneous function of degree 1. satisfying |detn−1∂
2
ξξϕ(ξ)| ≥

c > 0 and (4.10). Let p ∈ (1,∞) and ωp ∈ Ap u ∈ Wp,ω. The Fourier integral operator T
is bounded on the weighted Triebel–Lizorkin–Morrey space Fα,q,up,ω .

5. Weighted Hardy–Morrey spaces with variable exponents

In this section, we study the weighted Hardy–Morrey spaces with variable exponents
by using the extrapolation theory. This approach had been used in [27, 30, 31] for the
weighted Hardy spaces with variable exponents, the Orlicz-slice Hardy spaces and the
Hardy local Morrey spaces with variable exponents.
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We begin with the definition of the weighted Hardy–Morrey spaces with variable
exponents. Let F = {‖ · ‖αi,βi

} be any finite collection of semi-norms on S and

SF = {ψ ∈ S : ‖ψ‖αi,βi
≤ 1, for all ‖ · ‖αi,βi

∈ F}.

For any f ∈ S ′, write

MFf(x) = sup
ψ∈SF

sup
t>0

|(f ∗ ψt)(x)|

where for any t > 0, write ψt(x) = t−nψ(x/t).

Definition 5.1. Let p(·) : R
n → (0,∞), ω : R

n → (0,∞) and u : (0,∞) → (0,∞) be
Lebesgue measurable functions. The weighted Hardy–Morrey space with variable expo-
nent Hu

p(·),ω consists of all f ∈ S ′ satisfying

‖f‖Hu
p(·),ω

= ‖MFf‖Mu
p(·),ω

<∞.

When ω ≡ 1, the weighted Hard–Morrey spaces with variable exponents become the
Hardy–Morrey spaces with variable exponents [25, 29]. When u ≡ 1, the weighted Hardy
Morrey spaces with variable exponents reduce to the Hardy spaces with variable expo-
nents [26, 27]. When p(·) = p, p ∈ (0, 1], is a constant function, Hu

p(·),ω becomes the
weighted Hardy–Morrey space Hu

p,ω. For p ∈ (0, 1] and ω : R
n → (0,∞), the weighted

Hardy space Hp(ω) consists of all f ∈ S ′ satisfies

‖f‖Hp(ω) = ‖MFf‖Lp(ω) <∞.

We recall the definition of regular Calderón–Zygmund operators from [15, Definitions 2.1,
2.2 and 2.6].

Definition 5.2. We say that T is a singular integral operator with kernel K(x, y) if for
every bounded function f with compact support

Tf(x) =
∫

Rn

K(x, y)f(y)dy, x ∈ R
n\suppf.

If T is bounded on Lp for some p ∈ (1,∞), T is called as a Calderón–Zygmund operator.
Let γ > 0. We say that K is γ-regular with respect to y if for every multi-index α with

|α| < γ,

|∂αyK(x, y)| ≤ C|x− y|−n−|α|

and for those multi-index satisfying α = [γ]

|∂αyK(x, y) − ∂αyK(x, z)| ≤ C
|y − z|γ−|α|

|x− y|n+γ

whenever |y − z| ≤ 1
2 |x− y|.

The following theorem gives the mapping properties of the Calderón–Zygmund operator
on the weighted Hardy spaces.
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Theorem 5.1. Let r ∈ (0, 1], γ > n( 1
r − 1), ε > 0 and ω ∈ A1. If T is a Calderón–

Zygmund operator with kernel γ-regular with respect to y and ε-regular with respect to
x, then T : Hr(ω) → Lr(ω) is bounded.

The reader is referred to [15, Theorem 2.8] for the proof of Theorem 5.1.

Theorem 5.2. Let p0 ∈ (0, 1), p(·) ∈ C log(Rn) with p0 < p− ≤ p+ <∞, ωp0 ∈ Ap(·)/p0
and up0 ∈ Wp(·)/p0,ωp0 .

Let γ > n( 1
p0

− 1) and ε > 0. If T is a Calderón–Zygmund operator with kernel γ-
regular with respect to y and ε-regular with respect to x, then T : Hu

p(·),ω →Mu
p(·),ω is

bounded.

Proof. Whenever f ∈ Hu
p(·),ω, according to (3.22), we have

MFf ∈Mu
p(·),ω ↪→

⋂
h∈bup0

(p(·)/p0)′,ω−p0

Lp0(Rh). (5.1)

That is,

Hu
p(·),ω ↪→

⋂
h∈bup0

(p(·)/p0)′,ω−p0

Hp0(Rh). (5.2)

Consequently, (3.19) and Theorem 5.1 show that for any

v ∈
{
Rh : h ∈ bu

p0

(p(·)/p0)′,ω−p0

}
,

we have a constant C > 0 such that for any f ∈ Hu
p(·),ω∫

Rn

|Tf(x)|p0v(x)dx ≤ C

∫
Rn

(MFf(x))p0v(x)dx.

Applying Theorem 3.7 with

F = {(|Tf |,MFf) : f ∈ Hu
p(·),ω},

we obtain a constant C > 0 such that for any f ∈ Hu
p(·),ω, we have

‖Tf‖Mu
p(·),ω

≤ C‖MFf‖Mu
p(·),ω

= C‖f‖Hu
p(·),ω

.

In particular, we have the mapping properties of the Calderón-Zygmund operators on the
weighted Hardy–Morrey spaces. �

Corollary 5.3. Let p ∈ (0, 1] and ωp ∈ A1. If there exists a p0 ∈ (0, p) such that up0 ∈
Wp/p0,ωp0 and T is a Calderón–Zygmund operator with kernel γ-regular with respect to y
and ε-regular with respect to x, where γ > n( 1

p0
− 1) and ε > 0, then T : Hu

p,ω →Mu
p,ω is

bounded.
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Proof. For any p0 ∈ (0, p) ωp ∈ A1 ⊂ Ap/p0 . Consequently, we have ωp0 ∈ Ap(·)/p0
where p(·) ≡ p. Therefore, the conditions in Theorem 5.2 are fulfilled and, hence, the
Calderón-Zygmund operator T : Hu

p,ω →Mu
p,ω is bounded. �

The mapping properties of Calderón–Zygmund operators on the weighted Morrey
spaces with variable exponents were established in [20, Theorem 4.3].

In [15], the boundedness of the Calderón–Zygmund operators is used to establish the
wavelet characterization of weighted Hardy spaces. We also have the wavelet character-
ization for the weighted Hardy–Morrey spaces with variable exponents. We obtain this
characterization by solely using Theorem 3.7. For the wavelet characterizations of the
Besov–Morrey spaces and the Triebel–Lizorkin–Morrey spaces, the reader is referred to
[56].

We recall some definitions from wavelet theory. A function ψ ∈ L2(R) is an orthonormal
wavelet if the system

ψj,k(x) = 2j/2ψ(2jx− k), j, k ∈ Z

is an orthonormal basis for L2(R).
For any wavelet ψ, write

Wψf =

⎛
⎝∑
j,k∈Z

2j |〈f, ψj,k〉|2χIj,k

⎞
⎠

1/2

where Ij,k = [2−jk, 2−j(k + 1)].
We have the following wavelet characterization of the weighted Hardy spaces [16,

Theorem 4.2].

Theorem 5.4. Let α ≥ 1, 1
α ≤ p, ω ∈ A1 and ψ ∈ C [α]. If there exist C, r, ε > 0 such

that ∫
R

xkψ(x)dx = 0, k = 0, 1 · · · , [α] − 1, (5.3)

|ψ(x)| ≤ C(1 + |x|)−[α]−r−1, ∀x ∈ R, (5.4)

|ψ(k)(x)| ≤ C(1 + |x|)−α−ε, ∀x ∈ R, and k = 0, 1 · · · , [α], (5.5)

then there exist C0 > C1 > 0 such that

C0‖f‖Hp(ω) ≤ ‖Wψf‖Lp(ω) ≤ C1‖f‖Hp(ω).

For any w ∈ A1, Theorem 5.4 guarantees that the linear functional lψj,k
(f) = 〈f, ψj,k〉

is bounded on the weighted Hardy space Hp(w). In view of the embedding (5.2), we
see that the functional lψj,k

is also bounded on Hu
p(·),ω. Thus, 〈f, ψj,k〉 and Wψf are well

defined on Hu
p(·),ω. For the dual spaces of the weighted Hardy spaces, the reader is referred

to [14, Theorem II.4.4].
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We give the wavelet characterizations of the weighted Hardy–Morrey spaces with
variable exponents in the following theorem.

Theorem 5.5. Let α ≥ 1 and ψ ∈ C [α]. Suppose that ψ satisfies (5.3)-(5.5). Let p0 ∈
(α−1, 1), p(·) ∈ C log(R) with p0 < p− ≤ p+ <∞. If ωp0 ∈ Ap(·)/p0 and up0 ∈ Wp(·)/p0,ωp0 ,
then there exist C0 > C1 > 0 such that for any f ∈ Hu

p(·),ω

C0‖f‖Hu
p(·),ω

≤ ‖Wψf‖Mu
p(·),ω

≤ C1‖f‖Hu
p(·),ω

. (5.6)

Proof. For any f ∈ Hu
p(·),ω with Wψf ∈Mu

p(·),ω, (3.22) assures that

Wψf ∈
⋂

h∈bup0
(p(·)/p0)′,ω−p0

Lp0(Rh).

Therefore, for any

v ∈
{
Rh : h ∈ bu

p0

(p(·)/p0)′,ω−p0

}
,

Theorem 5.4 shows that∫
R

(MFf(x))p0v(x)dx ≤ C

∫
R

(Wψf(x))p0v(x)dx.

By applying Theorem 3.7 with

F = {(MFf,Wψf) : f ∈ Hu
p(·),ω},

we obtain a constant C0 > 0 such that for any f ∈ Hu
p(·),ω,

C0‖f‖Hu
p(·),ω

≤ ‖Wψf‖Mu
p(·),ω

.

We establish the first inequality in (5.6). The proof of the second inequality in (5.6)
follows similarly. �

The following wavelet characterization of the weighted Hardy–Morrey space is a special
case of Theorem 5.5.

Corollary 5.6. Let α ≥ 1, ψ ∈ C [α], p ∈ (α−1, 1] and ωp ∈ A1. Suppose that ψ satisfies
(5.3) and (5.5). If there exists a p0 ∈ (α−1, p) such that up0 ∈ Wp/p0,ωp0 , then there exist
constants C0, C1 > 0 such that for any f ∈ Hu

p,ω

C0‖f‖Hu
p,ω

≤ ‖Wψf‖Mu
p,ω

≤ C1‖f‖Hu
p,ω
.

Acknowledgements. The author thanks the reviewers for their valuable suggestions
which improve the presentation of this paper.

https://doi.org/10.1017/S0013091521000742 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091521000742


Extrapolation to weighted Morrey spaces with variable exponents and applications 1025

References

1. A. Almeida, J. Hasanov and S. Samko, Maximal and potential operators in variable
exponent Morrey spaces, Georgian Math. J. 15 (2008), 1–15.

2. C. Bennett and R. Sharpley, Interpolations of operators (Academic Press, Orlando,
1988).

3. H.-Q. Bui, Weighted Hardy spaces, Math. Nachr. 103 (1981), 45–62.

4. H.-Q. Bui, Weighted Besov and Triebel spaces: interpolation by the real method,
Hiroshima Math. J. 12 (1982), 581–605.

5. H.-Q. Bui, Characterizations of weighted Besov and Triebel-Lizorkin spaces via temper-
atures, J. Funct. Anal. 55 (1984), 39–62.
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