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Abstract

This paper presents a novel knowledge-based Petri net approach to mechanical systems and assemblies modeling
within a design with objects environment. A new unified class of object-oriented knowledge Petri nets, which can
incorporate a knowledge-based system with ordinary Petri nets, is defined and used for the unified representations of
assembly design and modeling. The object knowledge Petri nets, as a graphical language and a new knowledge-based
description scheme, can be used to express the qualitative and quantitative aspects of the assembly design and mod-
eling process in an interactive and integrated way. The four-level hierarchy model is proposed and constructed in terms
of function-behaviors, structures, geometries, and features. The function-behavior-structure description is built on
more abstract concepts so that it can match well top-down design. The static and dynamic characteristics in the design
of assembly can also be captured. With the help of fuzzy logic, the incomplete, imprecise knowledge and uncertainty
in the design process can also be dealt with. Therefore, the hybrid design object model can incorporate product data
model, top-down design process, and assembly process model using an object-oriented, knowledge-based, feature-
based, parametric, and constraint-based modeling approach, and can provide a more accurate and more flexible
representation. To verify and demonstrate the effective use of the proposed hybrid design object model, a prototype
system has been developed. This research provides a knowledge-intensive framework for intelligent assembly design
and modeling.

Keywords: Artificial Intelligence; Assembly Modeling; Computer-aided Design; Design for Assembly; Design with
Object; Petri Net

1. INTRODUCTION

From a designer’s point of view, a machine is a structural
model from general to detail that reflects certain relation-
ships on different levels. The organization of part mating
information to characterize assembly properties is one of
the major issues in product assembly modeling. A mechan-
ical system is often treated as a composite object, called an
assembly model, in which each composite link carries the
is-part-ofrelationships of its elements and subsystems, that
is, the mechanical system and subsystems are represented
by an assembly model. Product design generally involves
creating formal models of the parts and their assemblies.
The design process can be viewed as the process of creating
a representation of the underlying objects. This representa-

tion can then be analyzed to derive important characteris-
tics of the design process. The scheme for representation of
a design process should capture major aspects of the pro-
cess in a precise and concise manner. It is useful to have a
direct relationship between the graphical and analytical rep-
resentations. This is particularly advantageous in the analy-
sis, simplification, and verification of a large system. The
representation should also be able to describe abstractions
and refinements in the design process, and integrate the
basic principles and concepts of system design, such as
analysis, modularity, and so on. The graphical representa-
tion appears to have the above-mentioned characteristics.
However, the main requirement for any proposed represen-
tation model must be abstract and flexible enough in nature
to be helpful for designers to design products in a top-down
manner.

Although advances have been made recently in commer-
cial CAD systems, particularly those employing parametric,
variational, and constraint-based modeling methodologies,
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existing product-modeling software is not easily used for the
construction of mechanical assemblies or otherwise suitable
for assembly design. This is because the approaches devel-
oped in these systems are not flexible enough. Representa-
tions in these systems are only based on concrete single
components and their feature relations. Features are still lim-
ited to a lower level and the model is difficult to update. The
designer’s thinking model is hard to set up due to the lack of
an integrated design object model within a concurrent intel-
ligent CAD environment. The machine design is not consid-
ered as a process, and it is therefore hard for designers to use
in the course of top-down design~Mantyla, 1990!. From the
above observations, the main requirement of the design ob-
ject model is that the model must be abstract enough to be
helpful foradesigner todesign ina top-downmanner, inwhich
the designer develops design concepts by breaking down the
design into a number of logical units, which are known as
functional units of assembly. Functional units can be real-
izedby “means”or “functional carrier.”While functionalunits
are combined to provide the required functions of the assem-
bly, their corresponding means can be assembled into a struc-
ture which can be formulated both qualitatively and
quantitatively. To build an efficient assembly modeling and
design environment, the following features are crucial for the
universal design object model:

1. Support abstract descriptions about geometries and
their connections not only on a whole product assem-
bly level, but on the level of single-piece parts;

2. Be helpful for designers to design top-down, that is,
from incomplete and brief to complete and detailed;

3. Be well-structured for ease of conversion into other
analytical models;

4. Be able to provide a knowledge framework to capture
the designer’s intention;

5. Have an arbitrary level of structure, that is, no limita-
tion for the number of levels of hierarchical decom-
position in a design object;

6. Can be treated as a single manipulating unit for analy-
sis, evaluation, and version control;

7. Carry is-part-of relationship with some subtle classi-
fication about its semantics supporting full manipula-
tion of composite objects; and

8. Support STEP-based data exchange at assembly level.

Petri nets have been very useful in many domains for
modeling and analyzing discrete event systems like com-
munication systems, databases, computer architectures, of-
fice automation, flexible manufacturing systems, and so on
~Javor, 1995; Looney, 1988; Peterson, 1981!. It is well known
that Petri nets are a very powerful means of modeling dis-
crete event systems, and they are also easy to use and inter-
pret. Petri nets can be used as a graphical language to express,
define, or specify assembly tasks in an interactive and en-

vironmentally independent way~Thomas et al., 1996; Zha
et al., 1998c!. The formalisms, structures and behaviors
offered by the Petri net allow the designer to manipulate the
views of assembly and to verify the assembly tasks in dif-
ferent ways. Also, the ease of use and interpretation of Petri
nets can reduce the costs of programming and reprogram-
ming. The designer can then make use of Petri nets for
knowledge representations to incrementally describe a me-
chanical system or an assembly and for consistency check-
ing and property verification in the design process~Chan
et al., 1990; Gary et al., 1991; Zha, 1999!.

The objective of this paper is to explore a novel applica-
tion of Petri nets in modeling mechanical systems or assem-
blies and their design processes. To avoid the combinatorial
explosion that arises in the product and its assembly pro-
cess modeling when the number of pieces or objects in-
volved increases, a new unified class of object-oriented
knowledge Petri nets, which can integrate a knowledge-
based expert system with ordinary place-transition Petri nets,
will be defined and used for the representation and integra-
tion of distributed design models. Knowledge-intensive Pe-
tri nets can be used as a task-level graphical language to
express the qualitative and quantitative aspects of the as-
sembly and its design process in an interactive and inte-
grated way. The proposed scheme for mechanical systems
and assemblies modeling is based on knowledge-intensive
Petri nets to construct a four-level hierarchy model from
function-behavior, structure, geometric, to feature. In the
following sections, some notations and assumptions for rep-
resentations, definitions, and analysis techniques of place-
transition nets and knowledge Petri nets will be first
presented, and then the representations for mechanical sys-
tems and assemblies with the integrated object model will
be discussed in detail.

The organization of this paper is as follows. Section 2
reviews the related work; Section 3 defines the knowledge-
intensive Petri nets; Section 4 describes the design with
object scheme for assembly design and modeling; Section 5
gives the details of the hybrid design object model in terms
of a hierarchy of function-behavior, structure, geometry,
and feature; Section 6 discusses a global-local data scheme
for the hybrid design object model including product data
exchange at assembly level; Section 7 overviews a proto-
type intelligent design and modeling system for mechanical
systems and assemblies using the hybrid design object model;
Section 8 outlines discussions, concluding remarks, and fu-
ture work required.

2. LITERATURE REVIEW

Research on modeling of mechanical systems and assem-
blies has been going on for more than one decade. Several
mechanical assembly representational schemes have been
proposed to describe part-mating relationships. These in-
clude location graph, virtual link~Lee & Gossard, 1985!,
constraint graph~Wolter, 1988!, relational model graph
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~Homem de Mello, 1989!, feature mating operation graph
~Huang & Lee, 1989!, functional relationship graph~Roy
& Liu, 1989!, and part position and part relation network
~Heenskerk & Van Luttervelt, 1989!. The basic concept is
to store assembly entities, either parts, subassemblies, or
parts with assembly operations, as vertices in various types
of graphs. The variety of relationships between assembly
entities, such as connectivity, geometry, location, and func-
tionality, are characterized in terms of joining edges be-
tween graph vertices. Representation of assemblies can also
be established in terms of a high-level language~Lieber-
mann & Wesley, 1977; Popplestone et al., 1978a, 1978b;
Liu & Glaser 1985; Takase & Nakajima, 1985!, in the as-
sembly mating-feature based graph approach~Liu & Pop-
plestone, 1989; Nieminen et al., 1989; Rimscha, 1989; Shah
& Rogers, 1993!.

Other studies attempt to provide a mathematical model
to represent linkages, functional volumes, tolerances, and
allowances in assembly~Rocheleau & Lee, 1987; Kim &
Lee, 1989; Giacometti & Chang, 1990; Wilson & Rit, 1991;
Wilson, 1992!, and to apply common modeling methods,
such as geometric modeling, feature modeling, and
knowledge-based modeling, to model mechanical parts and
products in current CAD systems~Krause et al., 1993;
Shah & Mantyla, 1995!. Solid modeling can be used to
create three-dimensional~3D! geometric models of indi-
vidual parts of the assembly~Delchambre, 1992!. Much
work has been carried out on the addition of tolerance of
information, dimensional or geometric, to the part solid
model. Solid modeling, features, and attribute relation-
ships are the basis for more complete product definition.
Details about the geometric modeling, knowledge-based
modeling, feature-based modeling for mechanical sys-
tems, and assemblies were reviewed in Krause et al.~1993!
and Zha et al.~1998b!. The representations mentioned above
are, however, only based on concrete single components
and their feature relations, although subassembly hierar-
chy could be described to some extent. Due to the devel-
opment background mostly oriented toward supporting
process planning and assembling, most previously pro-
posed systems emphasize describing a final designed prod-
uct or databases. The systems do not regard machine design
as a process. As a result, it is hard for designers to use
them in the course of top-down design.

Just as Dixon et al.~1990! pointed out that assembly
design systems should enable designers to design top-
down, starting at a high level of abstraction, a structure is
composed of three kinds of objects: components, terminals,
and connections. Liu~1992! defined a structure which has
two kinds of basic elements: parts and joints. Based on this
model, a mechanical system can be considered as a group
of related parts and0or subsystems~subassemblies! assem-
bled by joints. A subsystem~subassembly! is also an assem-
bly of parts and its member subsystems connected by joints.
Therefore, it is not difficult to imagine that the main con-
cerns of the designer in structural design are no more than

how to design a functional component, and then how to
connect it to the others already existing. This means that the
functional carries in a structure are logically divided into
two types: component and connector~Gui, 1993!. The com-
ponent is a named concrete object, which performs desired
functions of the machine in possible behaviors through con-
necting to the other components, while the connector is a
named abstract object corresponding to joints, constraints,
or operations and functions between two components. Con-
straints are not provided to the relevant components until
the components are mated together. Thus any machine can
be viewed as consisting of two basic classes of objects: a
class of components and a class of connectors. Functional
relations between features of individual components in a
complete assembly modeling can be easily handled. The
component-connector model could allow for the possibility
that the properties take some values in the form of a fuzzy
set over a base range. Liu’s model~component-joint model!
is very similar to Gui’s model~component-connector model!,
but is at a lower level.

Based on bond graph, fuzzy logic, and object-oriented
knowledge representation, Gui and Mantyla~1994! set up a
function-centered scheme that aims to bridge the gap be-
tween functional modeling and feature modeling. They clas-
sify the design process model as three distinct but related
models, namely, functional model, device model, and pro-
cess model. Functional model is used to study the required
functions of the design and determines how the overall func-
tions can be achieved as an aggregate of low-level subfunc-
tions. Device model~physical! is used to study the device
~i.e., product! structures that can implement the required
function. Process model is used to study the technical per-
formance, behavior, and producibility of the structure. The
component-connector model with multigraph data structure
which joins function and structure is used for representing
the conceptual model of a product. To link the device model
and the final geometries of device structure Gui and Man-
tyla ~1994! developed the concept of feature link, which
can be used for recording features in the sequence of the
design process and supporting feature inheritance. Using
these concepts and ideas, Gui and Mantyla~1994! imple-
mented a “D” top-down design system which includes three
modules: DesignPlanner for design task analysis, Design-
Consultant for design knowledge representation and con-
sultation, and DesignSketcher for feature modeling.

More recently, formal approaches to capturing the logi-
cal interdependency relationships among parts and features
in a complete assembly modeling have received much at-
tention. Mantripragada and Whitney~1999! proposed a sys-
tematic approach to assembly design and modeling using a
datum flow chain. Datum flow chain is a concept that cap-
tures the fundamental structure of a computer-aided design
system in a top-down design process, including the design-
er’s strategy for constraining the parts kinematically and
locating them accurately with respect to each other. It re-
lates the datum logic explicitly to the product’s key charac-
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teristics, assembly sequences, and choice of mating features,
and provides the information needed for tolerance analysis.
Two types of assemblies are addressed: Type 1, where the
assembly puts together parts at their prefabricated mating
features, and Type 2, where the assembly process can in-
corporate in-process adjustments to redistribute variation.
Based on the concept of the datum flow chain, they also
proposed a state transition model of assembly and concepts
from control theory to model variation propagation and con-
trol during assembly~Mantripragada & Whitney, 1998; Whit-
ney et al., 1999!.

However, the existing approaches and models cannot ex-
plicitly express the notions of concurrency, causality, and
conflict. They are not easily used as a graphical language to
express, define, or specify, and simulate assembly tasks in
an interactive and integrated way. The formalisms offered
by them do not allow the designer to manipulate the views
of assembly and to verify the assembly tasks efficiently.
The designer cannot then make better use of them for knowl-
edge representations to incrementally describe a mechani-
cal system or an assembly and for consistency checking
and property verification in the design process.

3. DESIGN WITH OBJECTS SCHEME

3.1. Design process modeling with objects

The design object model in the traditional CAD system is
represented as being only a purely geometric entity. The
most recent understanding of feature-based representation
for machine design is characterized by both function and
form ~feature!. Along the designer’s thinking pattern, the
top-down design manner is a natural way in which the de-
signer develops design concepts by breaking down the de-
sign into a number of logical units which are known as
functional units of assembly. Functional units can be real-
ized by “means” or “functional carrier.” While functional
units are combined to provide the required functions of the
assembly, their corresponding means can be assembled into
a structure which is formulated both qualitatively and quan-
titatively. For most qualified designers, the design process
from the conceptual solution to the structural configuration
is usually carried out through a so-called “structure think-
ing block,” with respect to a “function thinking block.” The
design process includes concepts and solutions evolving.
This means that the design object is actually a dynamic
object, and is ever changing throughout the design process
~Deng et al., 1998!.

Information processing in product design is inherently
model based because the design object is structural in type.
Therefore, object-oriented programming languages are de-
sirable for declarative knowledge representation, object-
oriented concepts, and fuzzy logic. As such, the object
orientation scheme is employed so that both calculating and
reasoning work in design can be carried out. The hybrid
design object model is, in fact, an attempt to set up a knowl-

edge framework in such a way that it becomes possible to
process various types of knowledge in a top-down design
process. Note that procedural representation with conven-
tional languages such as FORTRAN, C, and PASCAL is
not dealt with here, though it is important for the descrip-
tions of algorithms and their processing in design analysis.

3.2. Object-oriented knowledge representation

The proposed object-orientation scheme is based on a mixed
representative method and object-oriented programming
~OOP! techniques, and allows designers to look at the de-
sign problem as a collection of objects or subproblems linked
together by rules. Thus it provides the designers with an
expressive power to represent complex problems or infor-
mation in an effective manner. If a designer can break the
design problem into the form of well-defined clearly ma-
nipulatable chunks with their own self-containing informa-
tion which is interrelated through a series of rules and
constraints, then these problems can be easily solved.

The basic structure of an object-orientation scheme is
described as a unit. The class of object and its instances are
described by using the unit structure. The object-oriented
unit is composed of four types of slots, which are the rela-
tion slot, the attribute slot, the method slot, and the rule
slot. The relation slot is used for describing the static rela-
tion among objects or problems. With the help of relation
slot and according to the relation of classification, the de-
sign object can be described as a hierarchical structure. The
knowledge existing in a super-class can be shared by its
classes and subclasses. The messages that control design
process can be sent among all instances of objects. In addi-
tion, if needed, other kinds of relation slots can be defined,
such as the relation slot of resolution, the relation slot of
position, and the relation slot of assembly, and so on. The
attribute slot is used for describing the static attributes of a
design object, such as width, length, material, and so forth.
The method slot is used for storing the methods of design,
sending messages, performing procedural control, and nu-
merical calculation. The rule slot is used for storing sets of
productions rules. The production rules can be classified
according to the differences among objects being treated
and stored respectively in rule slots in the form of slot value.

3.3. Overall design-with-objects architecture

The central design process inherent in a design-with-
objects scheme can be represented as the architecture
~O’Grady & Liang, 1998!, as shown in Figure 1, with five
main types of objects involved: namely, design models~S!,
design objects~O!, design algorithms~A!, functions ~re-
quirements and constraints! ~FRC!, and the evaluation
schema~E!. Object operators can express the relationship
between these objects: inheritance, import, and message
passing. The architecture in Figure 1 shows how the partic-
ular instance of a design model,S1

k , is obtained from the
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design algorithm, evaluation schema, requirements, con-
straints, and the design model object. For pure formulation
design or creative design, a new design model objectS is
defined that describes the form of the model. A specific
instance,S1

k , of this design model can then be created. For
pure parametric design then, the design model objectShas
already been defined and the design process therefore only
involves the determination of a specific instance,S1

k , of the
design model. Note that additional objects can be defined
within the overall architecture.

In the proposed design-with-objects scheme, the formal-
isms, structures, and behaviors offered by object knowl-
edge Petri nets are used for the designer to model mechanical
systems and assemblies from a function-behavior-structure
description and to manipulate and verify the assembly de-
sign process. The details about knowledge Petri nets and
knowledge Petri net-based design object model will be dis-
cussed below.

4. OBJECT KNOWLEDGE PETRI NETS

Since C.A. Petri first reported it in 1962, the Petri net has
been analyzed, modified, and extended. Various classes of
Petri nets have been built upon the extensions of the basic
place-transition Petri nets. Petri nets possess the potential to
be integrated into an artificial intelligence~AI ! framework.
For knowledge representation using Petri net, a new exten-
sion of Petri net called knowledge Petri net will be proposed.

4.1. Definition of knowledge Petri nets

A place-transition~P0T! net graph model, as shown in Fig-
ure 2a, can be defined as:PTN5 $P,T, F,W% , whereP 5

~ p1, p2, . . . ,pm! is a place node set;T 5 ~t1, t2, . . . ,tn! is a
transition node set; andF is an arcs set which links be-
tween place nodes and transition nodes, and has the char-
acteristics of :P ù T 5 f, F # ~P 3 T ! ø ~T 3 P!, and
P ø T 5 f; and W: F r $0,1% is an association weight
function on arcs,; f [ F, W~ f ! 5 wi , wi is the weight of
arcf. Petri net is a directed place-transition net, as shown in
Figure 2b. The net activities are based on a vision of tokens
moving around an abstract network. Tokens are conceptual
entities that model the objects and appear as small solid
dots moving in a real network. A marked Petri net, as
shown in Figure 2c, is formally defined as a 5-tuplePN5
~PTN, M0! 5 ~P,T, F,W, M0!, where PTN is a directed P0T
net; P,T,W, F are the same as above definitions;M0: P r

$0,1,2, . . .% is the initial marking. The Petri net graph is a
graphic representation of Petri net structure and visualizes
the reasoning rules. From a modeling perspective, these
input and output places can represent the preconditions and
postconditions of an event, or the resources required and
released by an event.

In AI, a general problem can be expressed by a 3-element
~X, f, R!, where X is a set of the variables;f ~ ! are the
attributes of variables, expressed by the functionsf : Xr Y,
where Y is a multidimensional space; andR denotes the
topologies on the set of the variables. From the Petri net
notation above, the correspondences between the Petri net
and the general description of a problem can be described
as follows:X a $P,T %, R a $I,O%, f a $C, M0% . Thus,
Petri net modeling can be considered to be equivalent to
general problem solving strategies in AI. That is to say, a
generic Petri net can incorporate the ordinary place0transition
Petri net models into general problem description in artifi-

Fig. 1. The overall architecture of design with objects.
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cial intelligence. However, the major difficulty with ordi-
nary Petri nets is that industrial applications are likely to
result in large systems consisting of many places and tran-
sitions. Other shortcomings include the structural inflexi-
bility and the inability to identify individual tokens. To use
Petri nets for modeling complex systems, ordinary Petri
nets should be extended with considerations of time, uncer-
tainty, and knowledge information involved.

By incorporating the ordinary place0transition Petri net
models into a knowledge-based expert system, a novel
knowledge-embedded Petri net model can be defined as
KPN5 ~P,T, I,O, M0, K !, where~P,T, I,O! is a finite Petri
net; K is the knowledge function defined fromP 3 T into
nonempty sets;K~ p! and K~t ! are the sets of knowledge
associated with placep [ P and transitiont [ T, that is,

K~P! 5 øi50
m K~ pi !, K~T ! 5 øj50

n K~tj !; K 5 KP ø KT,
whereKP: P r K~P! is the mapping from place setP to
place knowledge setK~P!; KT: T r K~T ! is the mapping
from transition setT to transition knowledge setK~T !. There-
fore, the KPN model can be regarded as a combination of
two aspects: net graph and knowledge annotations. Similar
to an ordinary Petri net graph, a KPN graph is a graphic
representation of knowledge-based Petri net structure and
visualizes the reasoning rules. The annotations of knowl-
edge are composed of the place knowledge annotations and
the transition knowledge annotations, that is,KP and KT.
The place knowledge is descriptive knowledge correspond-
ing to the tokens and facts of the place in place setP. The
transition knowledge is the rule knowledge~e.g., firing rules!.
Many methods for knowledge representation in AI such as

proposition logic, attributes list, semantic network, frame,
and If-Then production rule, and object orientation can be
used to represent the knowledge inKP andKT.

By knowledge Petri net modeling, we mean that a knowl-
edge Petri net model for a problem is first described as a kind
of “template,” and the model of the particular subproblems
is then established as instances of the template. The corre-
spondences between the knowledge Petri net and the general
knowledge-based problem solving can be described as fol-
lows:Xa $P,T %,Ra $I,O%, f a $KP,KT,M0%.Thus, knowl-
edge Petri net modeling is equivalent to general knowledge-
basedproblemsolvingstrategies inAI.Assuch, theknowledge
annotationsofKPNenlarge the representation rangesandcon-
tents of its net graph. These knowledge annotations can be
organized into a knowledge base and an inference engine,
and KPN is therefore a knowledge-based expert system.
An illustration of a knowledge Petri net graph is shown in
Figure 2d, whereP 5 ~~ p1, p2, p3!, ~ pc1, pc2!!; T 5 ~~t1, t3!,
~td1!!; A 5 ~a, b! 5 ~~~ p1, td1!, ~ p2, t1!, ~ p3, t3!, ~ pc1, t1!,
~ pc1, t3!, ~ pc2, t3!!, ~~t1, p1!, ~td1, p2!, ~t3, p1!!!; M0 5
~0,1,1,1,0!T; Cf : ~ pc1, p1!, ~ pc1, t3! are permitted arcs,
markedarcper., ~ pc2, t3! are inhibited arcs, markedarcinh.;
W5 ~1,0,1,1, 1,1,1,1,1!.

4.2. Object knowledge annotation

Various forms of knowledge Petri nets can be obtained by
further extending or modifying the places or transitions of
the knowledge Petri net described above. For instance, some
extensions of places and transitions are used for function-

Fig. 2. Place-transition nets and Petri nets:~a! place-transition net,~b! directed place-transition net or Petri net,~c! marked Petri net,
~d! knowledge Petri net.
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behavior-structure and feature-based geometric modeling
for mechanical systems and assemblies. The definitions of
these extended forms of knowledge Petri nets can be de-
rived from object-oriented concepts and techniques. A tem-
plate for knowledge annotations in knowledge Petri nets
can be described as follows:

Knowledge entity name:̂name: string expression& 0* name
of this entity *0
Membership:^place,transition& 0* the class types of this
entity *0
Superclass:̂name: string expression& 0*the parent entity
class name*0
Subclass:̂ name: string expression& 0* the children entity
class name*0
Inherit method:^overall, hidden, partial& 0* the inherit
method of this entity class inherit knowledge from its par-
ent class*0
Method list: method name0* it is the port for other object
to access*0
Slot type: method
Value: $ 0* It contains the operation and activity when the
method is invoked*0

filter ~keywords!; 0* a filter to check the message*0
meta knowledge$ 0* meta knowledge is part of method
*0%
description:$0* explanation and definition of the meta-
knowledge*0%
operation:$0* operation knowledge*0%
action:$ 0* a course of actions*0%
rule-set:$ 0* rules of the meta-knowledge*0%
. . . . . .%

4.3. Operations and properties analysis

The analysis of Petri net properties such as liveness, bound-
ness, and reversibility is crucial for Petri net-based model-
ing. Fundamental techniques for such an analysis are state
space construction, matrix-equation approach, and reduc-
tion or decomposition techniques. The construction of a
state-space representation called a reachability graph by enu-
meration allows computation of all properties; however its
usefulness is limited by the state-space explosion often oc-
curring even in seemingly simple models. In spite of this
capability, feasibility and efficiency considerations moti-
vate the use of the algebraic approach and of reduction or
decomposition techniques whenever possible.

In the extended, refined, or decomposed net, the proper-
ties analysis is more complicated than its original one. An
alternative way is to find out whether the properties of the
original net are inherited. The method of applying reduc-
tion rules to analyze a large system which reduces it to a
smaller and simplified system or replaces the transitions in
the net with corresponding subnets is helpful to examine
the properties of the system when the properties of the
smaller system are known. On the other hand, it is desirable

to use an abstract model for representing a large system.
Therefore, techniques are developed to transform an ab-
stract model into a more refined model in a hierarchical
way. Decomposition and refinement techniques can be used
together as a top-down strategy. The former divides a large
net into smaller and understandable nets, whereas the latter
adds details to the existing net by replacing a component of
the net with a subnet. The refinement of Petri nets may be
done by replacing a place or transition with a subnet. De-
tails about the general procedures for the refinement oper-
ations in Petri nets and the replacement rules of a place with
a subnet can be found in Valette~1979!; Lee and Favrel
~1985!; Berthelot~1986!; Zhou and DiCesare~1989!; and
Zha ~1999!.

5. DESCRIPTION OF HYBRID DESIGN
OBJECT MODEL

As described before, an intuitive explanation has been given
on the necessity of a hybrid design object model and the
necessary concepts of the knowledge representation in me-
chanical system and assembly design. With respect to ob-
ject orientation, any modeling system can be viewed as a
collection of methods used to describe the behaviors of
corresponding objects. The system, in fact, is composed of
a collection of objects plus methods. Design object can be
generally viewed from two perspectives, namely, function-
ality and physical structures. However, the complete model
will be represented in this section using a four-level hierar-
chy: function-behavior, structure, geometry, and feature.

5.1. Top-down and bottom-up design

The overall conceptual design process consists of two main
stages, analysis and synthesis, which are actually top-down
functional decomposition stage and bottom-up configura-
tion stage. The top-down analysis process primarily deals
with how to organize design tasks, decompose and allocate
required functions, and find design solutions~e.g., suitable
physical structures! for each allocated and decomposed de-
sign task and subfunctions. The bottom-up synthesis pro-
cess is to synthesize and connect physical structures in terms
of the relationships set forth by the corresponding func-
tional object to compose a workable physical configura-
tion, which is either a component or a subassembly, or the
final whole assembly. At this stage, design object at last
reaches its full form, design output.

A typical design of plate fastening assembly can be used
as an illustration as shown in Figures 3 and 4. From a de-
signer’s point of view, an assembly is a structural model
from general to detail that reflects certain relations at dif-
ferent levels. At the beginning of design, designers do not
care about the particular structure, or no details are pro-
vided. According to the functional requirements of fasten-
ing, the units and their coupling relationships are roughly
represented by a graph-like model as shown in Figure 3a. It
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is enough to represent the fastening relationship between
P1 and P2 at the top level, at most with some estimated
dimensions, such as the approximate diameter. Designers
usually face several conceptual models to materialize the

fastening structure: welding, riveting bolt-nut, bolt only,
nut only, and so on, as shown in Figure 3b–e. The designer
may divide the required structure thinking blocks into two
sets: a bolt set and a nut set; in between is a screw fit if the

Fig. 3. Plate assembly design and its structural model with several design solutions.

Fig. 4. A network model for top-down assembly modeling.
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designer makes a choice of bolt-nut as an initial solution, as
shown in Figure 4a, b. Since the bolt-nut fasteners are quite
different in different work circumstances, the devices for
locking must be carefully considered in the detailed design
stage. Figure 4d gives a network model based on the com-
monly used concepts discussed above. Thus the network
model for the bolt-nut structure in Figure 4d might be re-
cursively divided into several subnets within the dashed
lines, which reflect the designer’s structural thinking.

5.2. Hierarchical structure model

A mechanical system is composed of parts which are as-
sembled to carry out specific functions. From the modular
viewpoint, a key idea in design is the concept of module,
called modular design. This means that there are various
modules, of which interface-modules determine much of
the functionality in engineering systems. For the physical
structural aspect of a design object, it could be a system
with many subsystems; an assembly composed of parts or
components and connectors~ joints!; or a single part com-
posed of physical features. Different levels of physical ob-
jects actually form a hierarchy which utilizes the relationships
between different parts of the physical aspect of a design
object.

5.2.1. Structural representation

Incorporating Liu’s model~component-joint model! and
Gui’s model ~component-connector model! into a hybrid
one, a “place-transition” model is proposed in this paper to
represent the structures of mechanical systems and assem-
blies, in which each part is represented as a place of P0T net
and each joint is represented as a transition of P0T net.
Therefore, a mechanical system~assembly! is a hierarchi-
cal P0T net, called Assembly_Model, and a subsystem~sub-
assembly! is a sub P0T net. Using modular representation, a
sub P0T net ~object! can be described as either a macro
place or a macro transition. This is mainly dependent on its
function as either a component or a joint or a connector.
Token data abstraction and dynamic distribution can be used
for knowledge representation in describing the structure and
system state changes.

Using object-oriented representation, the attributes and
functions of theAssembly_Modelare described as follows.
The Assembly_Modelclass carries theis-part-of relation-
ship of a mechanical system and its components. The
attributes and methods~functions! of theAssembly_Model
are defined to help the designer construct the structure of
the mechanical system. The editing functions allow the de-
signer to create the specific system configurations. When a
designer creates a new system, the system configuration or
decomposition is based on some special purposes from the
designer’s viewpoint. Furthermore, based on different ap-
plication considerations, the designer can edit the configu-
ration or evolve it through experiment to conceive, as a

meaningful unit, an analysis that evaluates some aspects of
the performance of the system or subsystem.

Class Assembly_Model
{
Attributes:

ID
Name
Set of Assembly_Models (Nil or Composite IDs)
Set of places (Parts) (Nil or Part IDs)
Set of transitions (Joints) (Nil or Joint IDs)

Methods:
Create Assembly_Model
Add place (Part)
Erase Place (Part)
Add transition (Joint)
Erase transition (Joint)
Add Assembly_Model
Erase Assembly_Model
Display place (Part)

}

Formally, an assembly place-transition model can be de-
fined as:S2 PTN5 $P,T, A,W% , whereP5 ~ p1, p2, . . . ,pm!
is a place set which represents objects consisting of com-
ponents;T 5 ~t1, t2, . . . ,tn! is a transition set which repre-
sents joints; andA is an arcs set which links between
components and joints;W is a weights set of the arcs. Var-
ious relations between place nodes and transition nodes in a
hierarchical P0T net can be clarified with reference to Fig. 5.

1. A structure on the top level is only a P0T graphS0

with one place or macro place node;
2. A structure oni th level ~i 5 1, . . . ,L! Si is a graph:

Si 5 $Pi ,Ti , Ai ,Wi %, wherePi is a set of places denot-
ing componentscij or subassembliessubik, that is,Pi 5
$cij , subik%, ~ j 5 1, . . . ,hi , k 5 1, . . . ,xi !; Ti is a set of
transitions, either jointsJis or connectorsl it , that is,
Ti 5 $Jis, l it % ~s51, . . . ,mi , t 51, . . . ,ni !; Ai is a set of
arcs linking Jis or l it and cij or subik, that is, Ai 5
$aisj ,aisk,aitj ,aitk%; Wi is a set of weights of arcs, that
is, Wi 5 $wisj ,wisk,witj ,witk%. The structure can be also
expressed by a collection of unconnected graphssi,a

~a 5 1, . . . ,y!, that is,Si 5 $si,a% 5 $$ pi , ti ,ai ,wi %a%,
pi [ Pi , ti [ Ti , ai [ Ai , andwi [ Wi .

3. A place or transition~ pi or ti ! or graphsi,a may be
associated with another graphsi11,b 5 $$ pi11,
ti11,ai11,wi11%b% pi [ Pi, ti [ Ti, ai [ Ai, andwi [
Wi ~i 5 1, . . . ,L! . Such a graph is termed a subgraph
of the graphsi,a; vice versa,si,a is termed the super
graph of the graphsi11,b. The place or transition is
termed macro place or macro transition, either a sub-
assembly place or a connector transition.

4. Suppose an assembly P0T net that hasn transitions
and m places. Its assembly incidence matrix is de-
fined asC 5 @Cij # ~1 # i # n, 1# j # m!. Every row
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of C represents a transition or a macro transition; every column represents a place or a macro place,Cij 5 w ~ti , pj ! 2
w~ pj , ti !. For example, the assembly incidence matrix of the bolt-nut fastening assembly is as follows:

AIM~C! 5

against1(t1)
against2(t2)
against3(t3)
against4(t4)
fit1 2 1(t5)
fit1 2 2(t6)
fit2 2 1(t7)
fit2 2 2(t8)

screw2 fit(t 9)

P1( p1) P2( p2) washer1(p3) washer2(p4) bolt(p5) nut(p6)

1
1.0 1.0 0 0 0 0
0 1.0 1.0 0 0 0

1.0 0 1.0 0 0 0
0 0 1.0 0 0 1.0

1.0 0 0 0 1.0 0
0 1.0 0 0 1.0 0
0 0 1.0 0 1.0 0
0 0 0 1.0 1.0 0
0 0 0 0 1.0 1.0

2
Thus, any machine can be viewed as consisting of two

basic classes of objects: a class of places~components! and
a class of transitions~ joints!. P0T net can model mechani-
cal causal relations between components. The main pur-
pose of transitions is to make places~components! work
normally through connecting these components. For exam-
ple, a transition with a motion transmission function might
become a gear pair; a transition with a fixing function might
be a collection of geometric mating surfaces such as a cyl-
inder and shoulder. Since places and transitions for compo-
nents and connectors are conceptually fuzzy, they might
form a fuzzy P0T net which represents a subassembly dur-
ing later stages of design.

The hierarchical model as suggested has the advantage
of “implicitly incorporating abstraction and refinement.” A

multi-level P0T net could be imagined to be generated by
network modeling from top to bottom. To implement a num-
ber of levels of abstraction, a usual network model in a
macro place or transition is split into several embedded
blocks corresponding to the designer’s thinking patterns or
thinking blocks on various levels.

For the example in Figure 4a,“bolt-nut” structure, the
designer’s goal of fixing plates P1 and P2 is expressed as
putting a connector between the component P1 and P2 on
the top level. Thus a macro transition~labeled rectangular!
located between P1 and P2 in Figure 6 replaces the thinking
block on the first level after the first abstraction. A further
splitting with the second thinking block might be “bolt-set”
and “nut-set” which are logically components. Two places

Fig. 5. Hierarchical P0T model.
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~labeled circles! replace the thinking block on the second
level after the second abstraction. Replacement of a part of
the original network model by a logic node is a type of
abstraction through which nodes in the network model are
pulled down. In this way, a multilevel Petri net graph with
increasing structural information detail could be naturally
created during in-progress design. The mechanism to gen-
erate a multi-level P0T net graph has been realized in the
experimental prototype assembly modeling system which
will be described in Section 7.

The significant improvements created by using a multi-
level P0T net lie in two aspects: Nodes of a multilevel P0T
net graph are functionally divided into components and joints
only and graphically distinguished into normal nodes which
denote atomic components and macro nodes which are as-
sociated with another level P0T net graph. Such a distinc-
tion reflects various levels of abstractions at different stages
of a design process. One of the advantages of using a high
abstraction of connectors, for example, is that feature-

based modeling for single-piece parts becomes a natural
extension of assembly modeling. On the lowest level, con-
nectors are those features of single components that mate
and structure these components.

On the other hand, places, transitions, and P0T nets not
only can perform functions in possible behaviors, but also
can show behaviors in possible properties as well. Behav-
iors ~states! are time-varying properties. Usual invariable
properties of places or transitions are typically perfor-
mance, form, size, color, stability, manufacturability and
assemblability, transportability, suitability for storage, and
so forth. They can be represented in the form of linguistic
variables and allow for the possibility that the attributes
take values in a base range. Therefore, an incomplete struc-
ture based on places and transitions for components and
connectors in the early design stage can be modeled through
imprecise descriptions of their properties. During design
process, places and transitions are refined until their prop-
erties are all certainly defined.

Fig. 6. A multi-level P0T net graph for the “bolt-
nut” structure.
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5.2.2. Abstraction and task-oriented schema

One of the main objectives of the proposed hierarchical
P0T net structure model is to support the user to work at the
abstract level. The abstraction is a way to specify the func-
tional aspects of a system and provide a mechanism for
ignoring irrelevant data or detail by use of a specific analy-
sis procedure. However, the most meaningful way to con-
figure mechanical systems and assemblies is in a form that
allows a designer to conceive some analysis that could eval-
uate aspects of the performance of the system or subsystem
as a whole. Depending on the purpose, the model can be
examined in different ways: The designer may want to know
the kinematic relationships between different parts and ki-
nematic configuration for the influence on kinematic per-
formance~e.g., modular robot!; the manufacturing engineer
may want to examine the configuration with emphasis on
the assembly process~e.g., assembly sequence! and assem-
bly system.

Both hierarchical structures in Figure 7 represent the
same mechanical system or product, but they emphasize
different viewpoints. This feature helps the user to work
at different levels of conceptual abstraction. Also, the
data model can support the user to work at abstract geo-
metric views in a top-down design environment, despite
the details contained in the parts and joints yet to be
introduced. Regardless of the actual geometry of the
parts, a mechanism can be described functionally by the
kinematic pairs and connections between them. By assign-
ing proper dynamic properties~methods! to theAssembly_
Model ~e.g., create, modify, delete, and add objects!, the
user can easily create a distinct configuration of the sys-
tem structure, and even edit the structure, throughout the
design stages.

5.3. Functions and behaviors in design
object model

5.3.1. Functional and behavioral description

Taking the structural model as a framework, the func-
tional and behavioral descriptions can be further con-
structed for a mechanical system or machine. Function, as
usual, means what the system is for. It represents input0
output relations of the system to the outside. Functions of a
machine can be viewed as deriving mainly from user re-
quirements, independent of any particular solution. Behav-
ior ~state! means how the system works. When any machine
performs human-desired functions, it operates with changes
in its location, shape, attributes, or the relations between its
parts. The change of its states represents its behavior. Ac-
tually, almost all mechanical systems are based on physical
processes which are in turn based on physical effects. These
effects can be formulated by means of the physical laws
governing the physical quantities involved. The term “de-
sign intent” or “purpose,” which is conceptually similar to
“function” and “behavior,” is widely used. Different under-
standing of what these similar terms mean will influence
the functional and behavioral modeling. The distinction be-
tween “behavior” and “function” is favorable to clarify for
design problem-solving, that is, a functional model for a
required machine is mainly related to a design task struc-
ture while a behavioral model on the basis of physical laws
is related to a particular solution. Functions of the required
machine are not the subset of the machine behaviors. In the
design decision-making process, designers are mostly inter-
ested in their qualitative behaviors. The design process can
be viewed as transforming a functional model to a design
solution through its behavioral modeling.

Fig. 7. Different system configurations of bolt-nut fastening.
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A formal approach to representing a design functionally
is given in the form of a function block diagram, as shown
in Figure 8. The term function logic applies to the reason-
ing used to develop and use the function block diagram.
Originally developed to stimulate design creativity, this sys-
tematic approach to the representation of design process at
a high level relies on identification of design goals and
describes them in functional terms. The resulting, compact
description is called the basic function of the design. The
basic function is decomposed by the design team into sev-
eral functions, which collectively perform the function. These
secondary functions are then translated into components or
recursively decomposed. The function decomposition pro-
cess continues until one can map each function into a com-
ponent or system that will accomplish it. Such results are
for the most part preliminary because practical designs rarely
feature a one-to-one correspondence between functions and
components.

5.3.2. Functional representation

Function representation refers to the mapping of a func-
tion into data structures in a computer program, plus the
representation of procedures, methods, and mechanisms used
to access, manipulate, and utilize that function. The four-
step procedure for function representation is elaborated as
from understanding, abstracting, and describing to repre-
senting the function concisely and rigorously. As a design

intention or an inherent attribute of a product, function nor-
mally cannot be represented numerically, except for some
specific situations, where a function is involved in process-
ing of energy flow, material, or signal, or some physical
quantities related to energy, and the relationship between
input and output of flow is quantitatively or mathematically
known to the designers. For example, if a function is “to
reduce the angular speed to 1:3,” it can be mathematically
described as 3wout 5 win. This kind of function is some-
times regarded as “the transformation from input to output.”

The most commonly used method for function represen-
tation is describing a function using a natural language ap-
proach, in which a function is a predicate which specifies a
relationship between input and output from the physical
structure:apply~$di %,Si ! r P1 ∧ P2 . . . ∧ Pn, whereSi is the
structure under consideration;$di % is a set of input param-
eters applied to the structure; predicateapply relates to
these parameters andPi ~i 5 1,2, . . . ,n! are predicates by
tasks. From the function logic in hierarchy, the function and
function decomposition actions can be represented with pred-
icates in Prolog~Zha, 1999!. While this is the actual lan-
guage that is used to derive the functions, there also exists a
method to graphically model functions. Based on the rela-
tionship between proposition logic and Petri nets, these mod-
els are referred to as Petri nets, and can sometimes give a
more clear and intuitive representation for functions. Note
that using a Petri net graph is not intended to replace the

Fig. 8. Hierarchical structure of functional aspect of a design object~function logic diagram!.
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prolog code, but rather provides a different representation
of functions and their mappings.

A function logic model represented by a place-transition
Petri net can be defined as :F 2 PTPN5 $P,T, A,W% , where
P 5 ~ p1, p2, . . . ,pm! is a place set which represents func-
tional objects consisting of hierarchical subfunction com-
ponents;T5 ~t1, t2, . . . ,tn!, is a transition set which represents
function decomposition actions;A is an arcs set which links
between functions and their decomposition actions; andW
is a weights set of the arcs. Figure 9 gives an example of
functional Petri nets model and prolog codes.

To avoid ambiguity, knowledge relating the function to
its working scenario should be added, and several relevant
issues have to be represented together with this represen-
tation ~Deng et al., 1998!. For this purpose, an object-
oriented knowledge Petri net representation scheme can be
used for function representation. The most generic function
can be represented as the top-most functional object. The
class of these objects is as follows:

Class Function (macro plate or transition)
{
Name: Transition/place

Complement: Additional information or knowledge annotation
Type: Performance/Assembly/Manufacturing/

Maintenance/Others
Level: Overall/Embodiment/Geometric/Feature

}

The name attribute is expressed by the transition and
place variables, where transition is used to describe the
action relating to the function, for example, “transmit,”
“change,” and so on, which is normally a verb; place is
used to describe the target of the action. For example, if
the function object name is “to reduce vibration,” then the
target of action “reduce” is “vibration.” Complement

attribute is used to offer some additional information or
knowledge annotation to the name attribute when necessary.

With this top-level function representation, specific func-
tion can be represented as its child object, which can inherit
its attributes, but add some specific attributes pertinent to
the child object. For example, if the specific function hap-
pens to be a fundamental mechanical function, then this
function object can be represented as:

Class Fundamental_Mechanical_Function (macro place)
{
inherit: Function

category: {Supplying/Storing}
{Transmitting_Motion/Force/Material}
{Converging/Branching}
{Changing_Form/Magnitude}

}

Furthermore, if the specific function is “to slow down the
angular speed by 103,” which is also a fundamental me-
chanical function, then this function can be represented as:

Class Specific_Function_1 (place)
{

inherit: Fundamental_Mechanical_Function
variable: Input_angular_speed
variable: Speed_ratio
method: derive_Output_angular_speed

{ variable: Output_angular_speed
Output_angular_speed = Input_angular_speed *

Speed_ratio
Output: output_angular_speed

}. . . . . .}

This function Specific_Function_1 inherits the attributes
from its super or parent function, Fundamental_Mechani-
cal_Function, while at the same time, Fundamental_
Mechanical_Function also inherits attributes from the top-

Fig. 9. Functional Petri nets model and prolog codes.
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most function. This makes the function Specific_Function_1
automatically have all the attributes from its upper func-
tions; a method is encapsulated in this function to
characterize the relationship between two variables Input_
angular_speed and Output_angular_speed. This feature from
object-oriented technology makes it far superior to the tra-
ditional frame-based approach, where only attribute data
can be grouped but cannot be encapsulated. The relation-
ship between different level of function classes and the
relationships between function classes and function ob-
jects and instances of the class can be illustrated as shown
in Figure 10.

Because every fundamental mechanical function has its
corresponding physical structures or design elements that
can perform it, this data or information can be represented
inside its function class. For simplicity, if several functions,
either coupled or not coupled, are performed by one design
element, then they can be represented in one function class.
Thus the class for fundamental mechanical function pre-
sented above can be extended as follows:

Class Fundamental_Mechanical_Function (macro place)
{
inherit: Function

category: {Supplying/Storing}
{Transmitting_Motion/Force/Material}
{Converging/Branching}
{Changing_Form/Magnitude}

structure: Design_element
}

5.3.3. Behavioral modeling

As a functional behavior reflects the states of the struc-
ture, the behavioral modeling is simultaneously related to

function representation. The behavioral modeling process
synthesizes structure and functions from a state-based model
through qualitative representation based on machine-centered
ontology and0or process-centered ontology~Gui, 1993!. The
designer can make use of function knowledge representa-
tions to incrementally describe a behavioral specification
of a mechanical system. This behavior will be later inter-
preted as a knowledge-based Petri net model and then ana-
lyzed for consistency checking and function or property
verification.

In qualitative modeling, parameters can only take on one
of a small number of values. This set of possible values is
determined by the quantity space which is represented by
an ordered set of discrete landmarks, for example,~2 0 1!
or ~2` 0`!. The representation for a parameter is a quan-
tity associated with two numbers: a qualitative magnitude
and its derivative~e.g., increasing, decreasing, or constant!.
Because there are fewer constraints to the parameter values
in qualitative modeling, there inevitably exists ambiguity.
The behavioral modeling problem can be described as
follows.

Suppose thatSt 5 $s1, . . . ,sn% is a collection of state
diagrams, where each state diagramsi is a bi-tuple
@$sij %, $tij %, $eij %# . $sij % is a set of possible qualitative states
presented as a tuple of qualitative values for the structure
parameters and their variations.tij is a set of state transi-
tions: ti , si 3 si . $eij % is a set of events for state transi-
tions. A behavior is a subset of B: b5 $~si !— ; i si [
St % [ B. The acceptable behaviors can only contain accept-
able states and state transitions:Baccept , $b 5 ~si ! [
B—; i si [ St,accept∧ ti [ Taccept%.

There are some efficient behavioral modeling techniques
developed based on the state-based models such as bond
graph theory of system dynamics~Ermer et al., 1993; Gui,
1993! and finite state machine. These methods can combine
the advantages of process-centered ontology with the mod-
eling features of the machine-centered approach. However,
they cannot explicitly express the notions of concurrency,
causality, and conflict. A Petri net can naturally capture
these notations. Recent research indicates that the the Petri
net method has great potential for qualitative and quantity
reasoning in discrete, continuous, and hybrid~discrete and
continuous! systems and the preliminary design of ma-
chines~Valette et al., 1994!. A Petri net approach to behav-
ioral modeling is proposed in this paper.

The proposed approach first applies state-based models
to model the machine behaviors and then applies algo-
rithms 1 and 2 of synthesizing Petri nets from state-based
models to transform the transition system~TS! models to
behavioral Petri net models~Cortadella et al., 1995, Zha,
1999!. In the course of transformation, the underlying fea-
tures of knowledge Petri net models are incorporated into
the place-transition structural model. Suppose that the be-
haviors of a machine are described as states,S, and state
transitions,T, under events,E, that is,B 5 ~S, E,T !. The

Fig. 10. Hierarchy of function class and relationship between class and
object.
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corresponding behavior transition system can be described
asBTS5 ~S, E, T, sin!, whereS is a finite nonempty set of
states,E is a set of events,T , S 3 E 3 S is a transition
relation, andsin is an initial state. The elements ofT are
often denoted bys

e
&& s' instead of~s,e,s' !. The reachabil-

ity relation between states is the transitive closure of the
transitionsT. If there is a~possibly empty! sequence of
transition s between statess ands', then this is denoted by
s

s
&& s' or simply bys

*
&& s'. A behaviorTSis called deter-

ministic if for each states and each labela there can be at
most one states' such thats

a
&& s'. Otherwise, it is called

nondeterministic. The BTS can therefore be represented as
an arc-labeled directed graph and Petri nets. Figure 11 gives
a simple example to demonstrate the procedures of behav-
ior modeling.

Algorithm 1: Mapping from a elementary behavior transition
system to a Petri net
Input: a TS
Output: a PN
Procedure: map_to_PN
{
Step 1: For each event a a transition labeled with a is gener-

ated in the PN;
Step 2: For each (minimal) region ri a place pi is generated;
Step 3: Place pi contains a token in the initial marking m0 if

the corresponding region ri contains the initial state of
the EBTS sin;

Step 4: The flow relation is as follows: a [ pi• (output transi-
tion of pi ) if ri is a pre-region of a and a [ •pi (input
transition of pi ) if ri is a post-region of a.

Step 5: end}

Algorithm 2: Synthesizing behavior Petri net from state-
based models
Input: a behavior TS
Output: a behavior PN
Procedure {
begin

repeat /* Generation of pre-regions and label splitting */
split := false;
for each e [ E do

eo = expand_states (GER(e),0); /* GER is general-
ized excitation region */

if ¬ excitation_closure (eo) then
split_labels (e);
split := true;

end if
end for
until ¬ split;

find _irredundant _cover;
map_to_PN;

end }
expand_states (r,R)
{
begin

/* r is the set of states to be expanded */
/* R collects all regions generated */
if r is a region then

R = R ø {r};
Return;
/* since any region expanded from r would not be
minimal */

end if;
find e [ E violating some region condition in r ;

Fig. 11. An example of transition system~a!, the corresponding Petri net~b!, and its labeled reachability graph RG~c!.
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r ' = r ø {1st set of states to legalize e};
expand_states (r ' ,R);
/* for some conditions the set of states must be ex-
panded in two directions */
r ' = r ø {2nd set of states to legalize e };
expand_states (r ' ,R);

end }

Based on the discussion above, modeling behaviors of a
complex physical system by knowledge Petri nets only
requires a small number of components and rules that var-
ious computer programs can easily implement. Qualitative
descriptions of functions and behaviors~i.e., static states!
from the device-ontology point of view can be embedded
in the place-transition assembly structural model as predi-
cate logic or more generally as fuzzy logic when reason-
ing with incomplete structure. The representation of input-
output causality~i.e., state change or transitions! from the
process ontology point of view can be established and
explained using Petri nets from different perspectives and
modeling levels. It is more concise and clearer than causal
networks which are currently used in most of the propos-
als. More importantly, the mapping from assembly struc-
tural P0T net to behavioral Petri net can be easily
implemented.

5.3.4. Elemental functions and P0T units

Although no function in structure nor structure in func-
tion exists universally, fundamental or elemental mechani-
cal functions with typical connector forms are widely used
in mechanical structure. The main idea underlying a design
prototype is to represent a class of generalized heteroge-
neous groups of elements derived from similar design cases
that provide the basis for the start and continuation of a
design.

Similar design cases can be viewed as design prototypes
on the most basic level of mechanical design. From a func-
tional point of view, connectors provide actions in the sense
that two jointed components can perform the required func-
tions. Some basic functions such as fix, motion constraint
and motion0force transmission, material transmission, and
power supplier are listed in Table 1. Elemental mechanical
functions and behaviors, which are suitable for any mechan-
ical systems, have their own expressions in predicates, and
their possible unit forms in P0T nets.

Different forms with the same function may show dis-
similar behaviors. Fixing with a nut and bolt works by
transmitting the axis load to the fastened parts; while fix-
ing with a key fit is based on transmitting the shared load
to the interference parts. They can be distinguished in the

Table 1. Elemental functions, behaviors, connector forms and P0T units

Function Behavior Connector form P0T unit form

Fix Fastening Fastener~bolt_and_nut, ~Macro!places,
bolt_only, nut_only,rivet, or~macro!transitions
welding, solder, etc!

Coupling Key_fit,pin_fit,screw_fit Transitions
Latching Snap_ring Place
Attaching Fix_fit1,Fix_fit2, Transitions

Fix_fit4, against
Motion Rolling Journal_bearing, ~Macro!places,
constraint Roll_fit1,Roll_fit2, or~macro!transitions

Sliding Cylinder guide Transition
keyway spline

Screwing Screw Transition
linkage_c_joint

Motion Cam ~Macro!places,
converting or~macro!transitions

Motion0force Sealing Rubber_ring ~Marco! place
transmission circlip

Linear_limit Spring Place
Reduction Gear_mesh,screw_mesh, ~Macro!places,

belt_mesh or~macro!transitions
Clutch Clutch_disk Place
Pumping Cylinder Place

Material Piping Pipe Place
transmission

Material Valve ~Macro!place
flow changing

Power supplier Providing Motor ~Macro! place
mechanical power
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following form of predicates: the motion predicates for fix
function Fix~Sa,Sb! r motion~Sa! 5 motion~Sb!, and the
predicates for behavior of fastening and coupling,
Stress_monotonic_increase~1,Length~1l!!, Relative_
length~l! # allowable_limitation~Max!, Stress_monotonic_
decrease~2, Area~2A!!, respectively. In types of rotation
assemblies, the states of gear meshes may be changeable.
Typical examples are shifted gear units as shown in Fig-
ure 12, where the predicates for their behaviors can be
modeled as Shift_mesh~Sa, Sb, mesh_state!, Mesh_
state~1,0! or ~0,1! for Sa, Sb: 2-connected gear units, Mesh-
_state~1,0,0! or ~0,1,0! or ~0,0,1! for Sa,Sb: 3-connected
gear units.

5.4. Geometries in design object model

The geometric model is a formal logical0mathematical rep-
resentation of shape and size of a part. Most geometric
models are presented as solid models. Since the interest is
in reasoning about 3D objects, solid modeling has been
chosen to create the geometric models of individual parts
of the assembly. Other common representational methods,
such as wire-frame systems, instances and parameterized
shapes, constructive solid geometry~CSG!, and boundary
representation~B-rep! are also used to model mechanical
parts in the geometric database of CAD systems. Recent
research work has been carried out on the addition of toler-
ance of information, dimensional or geometric, to the part
solid model.

Solid modeling, features, and attribute relationships
are the basis for more complete product definition. In ad-
dition to rigorously defining geometry and topology of
individual parts and joints above, product assemblies are
defined through solids primitive modeling by defining the
following:

1. Instances or occurrences of each part in a hierarchical
manner;

2. The relative location of each instance or occurrence
of the part in terms of the part’sx, y, andzcoordinates

relative to the assembly’s base or reference pointx, y,
andz coordinates;

3. For each instance or occurrence of a part, the part’s
orientation in relation to the assembly’s orientation;

4. Vectors or axes of rotation and translation to describe
movement of parts within assemblies.

A geometric modeling or construction indeed can be seen
as a series of successive operations, consisting of instanti-
ation of geometric entities~e.g., points, lines, circles, etc.!,
which will be used to create new entities with simple con-
structive methods until the desired result is reached. The
user interface enables users to interact with the solid and
the entities that constitute it, enabling transformations and
maintaining relationships among objects, that is, the geo-
metric constraints.

To make explicit the process underlying a geometric con-
struction and its successive manipulations, a kind of knowl-
edge Petri net graph, called GC-PN~Geometric Construction
Petri net graph! was defined that describes the sequence of
steps that enables the designer to generate a geometric en-
tity and the relationships among the constituent objects~Zha,
1997; Zha, 1999!. The system can maintain an internal rep-
resentation of the GC-PN and turns to it for constraint solv-
ing during transformations. GC-PN is helpful in describing
informally and in an intuitive way a problem which has
intrinsic concurrent aspects. Based on geometric construc-
tion Petri net formalisms, a geometric modeler,GeoObj
~Zha, 1997; Zha, 1999!, was developed in object-oriented
C0C11 language as an extension of its predefined classes
defined to represent Euclidean geometric knowledge and
implement primitive geometric entities and the hierarchy
among them.

This approach can yield a complete definition of the prod-
uct’s geometry and topology at any level in the product
structure. Many assembly relationships~e.g., topological
liaison, geometric liaison! and constraints~e.g., geometric
constraints, and partial precedence constraints! discussed
in assembly planning~Zha, 1998a! are extracted or rea-
soned out from the defined assembly geometric model.

Fig. 12. Modeling behaviors of the shifted gear
meshes.
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5.5. Features and semantics in design object model

In the design object model developed, the form feature,
precision features, and assembly features are organized in
the mechanical system’s hierarchical structure. Form fea-
tures and precision features are embedded in the part ob-
ject, while assembly features are carried by the joint object.
Form features are the geometric features which are desig-
nated to represent the part’s shapes. A form feature is car-
ried by the geometric representation of the part. Precision
features include tolerances and surface texture, which are
also grouped under the same composite attribute~geomet-
ric representation!. Precision features are used to describe
the final product design information for CAPP0CAM tools
to select processes, machine tools, and tooling. Assembly
features are particular form features that affect assembly
operations. Each form feature has certain precision features
associated with it. For example, a slot~form feature! has
dimensions such as height, width, and length; each dimen-
sion has tolerance~e.g., positional tolerance, straightness,
or perpendicularity to some datum! and surface finish~e.g.,
lay direction, average surface roughness!. When parts mate
together, both the parts’ form features and precision fea-
tures govern the assembly operations. The parts’ form fea-
tures directly affect the joining conditions, for instance, a
hole or pin indicates the fit condition; a threaded stud or
threaded hole suggest a torque operation is needed. Obvi-
ously, the precision features of the mating parts also affect
the quality and manufacturing processes of the assembly.
Figure 13 shows a geometric model of a model product
with features.

It has been shown that feature-based product models for
assembly can help considerably in both assembly modeling
and planning, on the one hand by integrating single-part
and assembly modeling, and on the other hand by integrat-
ing modeling and planning. For specific assembly-related
information, assembly features are used in which handling
features contain information for handling components, but
connection features contain information on connections be-
tween components. For product and its assembly process,
both part-level information including name, identification,
type, class, material, heat-treatment, and geometric repre-
sentation and feature-level information including name, iden-
tification, type, parameters, locations, tolerances, relations,
and surface-finish are required. Three classes are defined
for describing the product design as follows~Gu & Yan,
1996!:

Geometric Entity: its super class-object
Sub-class-part and feature
Instance variables

Name: the unique identifier
Type: the sort of the object

Part: its super class—Geometric Entity
Sub-class-feature
Instance variables
Component: features a part holds
Neighbor: related part’s names
Relating component: features having relations with other
parts
n-relation: related part along a specific direction, n, and
the position of the relating feature, where n = 6X,6Y,6Z

Fig. 13. Geometry and form feature of the part.
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n-list: a list of features whose normal is n with the order
from nearest to farthest along n, where n = 6X,6Y,6Z

Feature: its super class—Geometric Entity
Instance variables
Location: position (x,y,z) and orientation (nX,nY,nZ) of a
feature
Relation: related part name

One of the advantages of using a high abstraction of con-
nectors or joints is that feature-based modeling for single-
piece parts becomes a natural extension of assembly
modeling. On the lowest level, connectors or joints can be
considered as the features of single components that mate
and structure components. In Figure 14, the feature model
for a step shaft in an assembly can be thought of as con-
sisting of the shaft and a set of connectors: keyFit, Spline

Fit, and several cases of FixFit, all of which are features
as usual. Thus a unified description of a feature-based
model of both an assembly and single piece components
will be obtained through this data abstraction of compo-
nents and connectors on various levels from function-
behavior-structure based conceptual modeling, geometric
modeling to feature-based design. The feature links of an
axle system using P0T net is shown in Figure 15.

5.6. Constraints in design object model

The design process, as represented through constraint mod-
eling, is goal directed. The process sets out to solve prob-
lems by the resolution of conflicts. The constraint Petri net
is used to model parametric and constraint design pro-
cesses. The constraint network is a collection of constraints
transitions that are connected by virtue of sharing variables
~places!. The value of a variable that is linked to a con-
straint may influence the values of other linked variables.
In this manner changes may propagate throughout a net-
work. This ability to propagate makes constraint networks
unique and enables the network to support nondirectional
inference. A user of a constraint Petri net can observe the
changes made in linked variables as the initial change is
made. This makes it a powerful tool in modeling the rela-
tively ill-structured assembly design problem.

Constraint modeling using Petri net formalisms can be
illustrated by shaft assembly in a gearbox. The requirement
of shaft assembly is complete fit of shaft and bearing cap,
as shown in Figure 16a. Therefore, the assembly con-
straints can be described as:b 5 f, e . b, a , b, f . i,
i . a, c . hb 1 hi 1 j, j , g 1 h, h 5 c 2 hb 2 hi ,
he $ 0, d. 0, and so forth. Accordingly, the partial dimen-
sion constraint graph can be shown in Figure 16~b!. Once
the problem becomes unordered, the Petri net becomes com-
plex due to the necessary inclusion of the control places
and interactive transitions. A solution for the above prob-
lem uses constraint modeling procedures within each of the
transition activities. In the ordinary Petri net representation
of the function:C5 A1 B, shown in Figure 17a, tokens are
placed inA andB in order to fire the transition. The final
state is given by a token inC. Based on the constraint mod-
eling, the constraint transition contains not an equality but a
constraint rule~or number of rules!. Thus the above rela-
tionship is rewritten to: RuleA 1 B 2 C, shown in Fig-
ure 17~b!, and is true when the rule equates to zero. The
constraint transition is fired when two tokens are present in
any of the data places and so the third can be found. The
solution is carried out automatically by software solving
constraints. The above two cases can be generalized and
described as a macro constraint transition, as shown in Fig-
ure 17c. More details about the knowledge based Petri net
constraint modeling was discussed in Zha~1999!.

The development of methods for generating flexible mod-
els which can be modified dynamically is a critical problem
to be solved in feature-based design. Constraint-basedFig. 14. Data abstraction at different assembly levels.
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dimension-driven geometry through constructive schemes
using Petri nets is a useful method for design modifica-
tions. The algorithm for dimension variation of feature-
based models used in this paper is based on B-rep0CSG
hybrid scheme and operates directly on B-rep~Zha, 1999!.
The dimension variation of models has very high effi-

ciency. The production information including the features
locating dimensions and other data for manufacturing will
not be lost after model variation and modification. Further-
more, the definition and solution of features constraints and
chain reactions of constrained features are also supported.
This algorithm is an organic combination of feature repre-

Fig. 15. Feature-links of an axle system represented by P0T net.

Fig. 16a. Shaft assembly.
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sentation in feature library, feature modeler, and the descrip-
tion of feature models.

6. GLOBAL-LOCAL DATA MODEL SCHEME

For the global-local data model scheme of the design ob-
ject discussed above, the global product data model con-
tains product characteristics or attributes that are
fundamental to and shared among applications and charac-
teristics that are passed between applications. Such a glo-
bal data model is the schema of a global database. The
local data model only contains product information that
the application needs or completely defines products

from an application viewpoint. A local data model is the
schema for a local database. Product attributes for the lo-
cal data model can be classified into: imported, inter-
preted, resident, and exported. Through classification of
attributes of local data models, relationships between ap-
plications, such as data dependencies, can be formally de-
fined ~Liu, 1992!.

Therefore, the global data model maintains product char-
acteristics consistency and supports product characteris-
tics’passing across applications, while each local data model
maintains a complete product definition for an application
and defines engineering roles of the application in an inte-
grated system.

Fig. 16b. Dimension constraint network.

Fig. 17. Standard, constraint, and macro constraint transition.
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6.1. Global definitions of mechanical systems
and assemblies

As stated in Section 4, a mechanical system is an assembly
of functional parts in which assemblies are formed by the
joints between functional parts. The functional part is a
part or a part assembly~subassembly! designed for mechan-
ical functions such as transmitting or sustaining forces and
torques, and made from machining or other manufacturing
processes. When certain degrees of freedom~d.o.f! be-
tween parts are restricted, the parts are assembled. Hence, a
part assembly is composed of parts and joints.

A part in a mechanical system is a solid entity that has
specific geometry and material properties. All joint agents
and functional parts, no matter whether they are parts or
part assemblies, are defined on the part basis. As discussed
in Section 4, geometries and features in design object model,
attributes of a part in the global data model include a part
identification, a name, a geometric representation, and a
material property. The geometric representation of a part
contains three components: geometric model, form feature,
and precision features.

In the global product definition, however, a joint only
defines the mating conditions and kinematic constraints be-
tween parts. From an assembling viewpoint, a joint is an
ordered sequence of assembly operations and specifies as-
sembly operations and mating conditions between parts.
Based on the global-local data model scheme, a joint con-
tains fundamental and shared characteristics of a joint from
computer-aided engineering0manufacturing viewpoints,
where fundamental means minimal and necessary to ini-
tiate certain applications. Hence, a joint in the global data
model defines connectivity, joint agent~also a part!, and
kinematic degree of freedom between parts. Characteristics
of a joint include an identification~id!, name, joint type,
connection, and degrees of freedom. A joint defines a set of
mating conditions that describe the geometric mating be-
tween assembled parts and restrictions on kinematic de-
grees of freedom between parts, without considering the
process to realize the mating condition and kinematic re-
strictions. According to the way that parts are assembled, a
joint can be an operational joint, a fastener joint, or a fusion
joint ~Liu, 1992! in which a fastener joint contains addi-
tional information, that is, its joint agent~s! with a designed
part~such as a pin! or a standard mechanical part~such as a
bolt and nut, screw, or rivet! used as a medium to assemble
parts.

6.2. Part and joint model for assembly process

Information about joints and parts of a mechanical system
or an assembly in the global product definition can be used
for assembly process planning, because parts are the ele-
mentary components for making an assembly and joints
carry parts’ connectivity information, which points to as-
sembly features of parts. The assembly features of joints
defined in the global definition indicates how parts are mated

or jointed together. Both the part and joint global definition
contain necessary product information for assembly pro-
cess applications. However, these parts and joints require
additional information such as relations~topological liaison
and geometric liaison! and constraints~topological, geomet-
ric, partial precedence, stability, etc.! for assembly applica-
tions. Details were discussed in our previous work~Zha
et al., 1998a, 1998b!.

6.3. Product data exchange at assembly level

Product data exchange and interfaces between different
CAD0CAM systems are of great importance to the inte-
grated design environment and the future concurrent engi-
neering and computer-integrated manufacturing systems. One
possible way is to develop a suitable product model such as
IGES ~Initial Graphics Exchange Standard! to make the
transition between different models easier; the other way is
to establish an international standard such as PDES0STEP,
an efficient means to increase the data compatibility of dif-
ferent systems.

However, current research on product data exchange is
mainly limited to single-piece parts. There are no univer-
sally acceptable representation schemes for assemblies, in
particular, the assembly features involved. Assembly fea-
tures should be represented with different degrees of “trans-
parency” as a computer system, while current feature
concepts involved in an assembly are all joint-oriented with
no consideration of various subdivisions of a machine, which
are important for presenting a designer’s intention on vari-
ous levels. The semantics of assembly features as usually
defined, therefore, should not be the same at different mod-
eling levels. The significance of communication at assem-
bly levels should not be underestimated. There will be an
absolute need for communication of different types of data
at the assembly level between real intelligent design sys-
tems in the future. There is no doubt that modeling assem-
bled products is of increasing importance in computer-
integrated systems.

The PDES0STEP standard is a neutral product model
data exchange mechanism that is capable of completely
representing product definition data throughout the life cy-
cle of a product. It uses a three layer architecture, including
a reference model, an object class and schema definition
language—EXPRESS, and physical communication~file
structure! ~NIST, 1988!. The product data defined in each
PDES0STEP application reference model include nominal
shape information~geometry, solids, and topology!, form
features, precision features, integration information, prod-
uct structure configuration, materials, and so forth. These
product data are necessary to completely define parts and
part assemblies for the purpose of design, analysis, manu-
facturing, test, inspection, and product support. However,
using only a PDES0STEP-based product specification can-
not ensure integration and exchange product data at the
assembly level, because interrelationships and constraints
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between applications such as data consistency and data de-
pendency are not defined in PDES0STEP.

Using the proposed global-local data model scheme to
formalize data consistency and dependency and data pass-
ing across applications, interrelationships between applica-
tions in an integrated engineering system can be developed.
Therefore, the PDES0STEP-based mechanical system prod-
uct definition can be augmented to support significant por-
tions of CAD, CAE, and CAM applications. This means
that it is feasible to integrate CAD, CAE, and CAM appli-
cations by applying the global-local data model scheme as
an integration model and PDES0STEP as an informal model.
As described above, by use of the knowledge Petri net
scheme, assembly modeling involves five aspects: func-
tion, behavior, structure, geometry, and feature. The stan-
dard interfaces at assembly levels can separate the neutral
description from any specific applications or implementa-
tions through knowledge Petri net modeling, which include:

1. an English-like structured language based on Petri net
for functional description;

2. standard abstraction components of dynamic systems
as described in knowledge Petri net theory;

3. element mechanical connectors with functions and
behaviors;

4. extension of CAD*I neutral format to assemblies~e.g.,
various constructive geometries and performance di-
mensioning of assemblies, etc.!.

7. A PROTOTYPE SYSTEM FOR TOP-DOWN
ASSEMBLY DESIGN AND MODELING

In principle, the new generation of CAD systems should be
intelligent enough to imitate human thinking on design to
some extent so as to assist designers in making decisions
through the entire design process. To verify the hybrid de-
sign object model and demonstrate the effective use of it, a
prototype system has been developed for top-down assem-
bly design and modeling using knowledge-based Petri net
modeling and object-oriented programming~OOP!
techniques.

Coded by C0C11, Visual Prolog, and CLIPS expert
system development shell with its fuzzy extension, the sys-
tem incorporated an embedded CLIPS expert system shell,
a knowledge Petri net tool, a function-behavior-structure
modeler, a geometric solid modeler, a feature-based mod-
eler, and a case-based reasoner. The system is therefore a
prototype expert CAD system which can achieve assembly
design and modeling from functional and technological spec-
ifications or customer’s requirements. Figure 18 depicts the
architecture of intelligent assembly design and modeling
system. The output of the system is individual components
and assemblies or product models, which can be used for
assembly process planning and assemblability evaluation.
The system can also accept the imported CAD files of in-
dividual components and assemblies from DXF and STEP
based modeling system, and organize them into an assem-
bly representation. Using feature recognition techniques,

Fig. 18. The overall architecture of intelligent assembly design and modeling system.
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the assembly editor can differentiate joints between parts
and assembly features on individual parts.

With this system, a number of concepts developed in
the previous sections have been tested. The place-transition
and knowledge Petri net models for part-joint machine
description and designer’s intents modeling, because of
their simplicity and high abstraction, find a friendly host
in knowledge-based design and modeling. Design fea-
tures are consistently added for detailed design. Design
alternatives of the same functional units can now be
stored so that a practical intelligent modeling system can
be realized. This provides the possibility of integrating a
development team to work over a network, and allowing
the designer to specify, design, and analyze complex
mechanical systems and assemblies concurrently and
cooperatively.

8. DISCUSSIONS AND CONCLUSIONS

This paper presented a new hybrid design object model for
top-down assembly design. Knowledge Petri net-based de-
sign with objects scheme was utilized to uniformly model a
mechanical system or an assembly and its design process.
The hybrid design object model was represented and eval-
uated in terms of a four-level hierarchy: function-behavior,
structure, geometry, and feature. The structure model is de-
scribed as a place-transition based component-connector or
part-joint multilevel hierarchical graph, while the func-
tions, behaviors, geometries, features, and constraints are
embedded as objects in such a hierarchy, and their causal
relations are described by the corresponding knowledge Pe-
tri net graphs.

The knowledge Petri nets as a graphical language and a
new knowledge representation scheme can be used to ex-
press, define, or specify, and simulate assembly design pro-
cess in an interactive and integrated way. The formalisms,
structures, and behaviors offered by knowledge Petri nets
allow the designer to not only model mechanical systems
and assemblies from function-behavior-structure descrip-
tion but also to manipulate and verify the assembly and its
design process in different ways. Both qualitative and quan-
titative models are available for the knowledge Petri net
assembly model. The static and dynamic characteristics in
the design of assembly can be captured. The description by
this model is built on more abstract concepts from assem-
bly level to feature-based single-part level so that it can
well match top-down design.

Therefore, the proposed hybrid design object model can
provide a mechanism for combining device ontology and
process ontology such that the designer’s thinking on vari-
ous levels from conceptual design to detailed design is eas-
ily captured, and allows designers to deal with incomplete,
imprecise knowledge and uncertainty with the help of fuzzy
logic. Such a hybrid model is evolutionary in the course of
modeling and design process from top down, and has the
following advantages:

1. capable of representing any machine structure;

2. capable of supporting data abstraction on any assem-
bly modeling level;

3. captures the nature of top-down design;

4. provides a hierarchy for function-behavior-structure
modeling and design;

5. is easily computerized using object-oriented program-
ming methodology;

6. is a statically and dynamically hybrid intelligent model;

7. supports fuzzy knowledge representation and reason-
ing and learning; and

8. can be mathematically defined and operated by Petri
net theory.

As a result, the proposed hybrid design object model
using knowledge intensive Petri net formalisms makes it
possible to consider all the relevant aspects in an integrated
knowledge-based modeling for mechanical systems and as-
semblies including the up-to-date CAD technology,
knowledge-based system techniques, concurrent engineer-
ing, and collaborative engineering. However, there are still
some limitations in the proposed methodology and system,
such as:

1. the properties analysis for the knowledge Petri nets in
hybrid design object model and the mapping algo-
rithm from function model to structure model;

2. the development and refinement of modeling system;
and

3. the thorough testing of the concept of the mechanical
design prototype and the establishment of a real case-
based reasoning system.

Future work on this research will be required with prior-
ity on overcoming the limitations listed above, and the fo-
cus will be on the computer implementation of the proposed
model.
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