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CLASSES OF STRUCTURES WITH NO INTERMEDIATE
ISOMORPHISM PROBLEMS

ANTONIOMONTALBÁN

Abstract. We say that a theory T is intermediate under effective reducibility if the isomorphism
problems among its computable models is neither hyperarithmetic nor on top under effective reducibility.
We prove that if an infinitary sentence T is uniformly effectively dense, a property we define in the paper,
then no extension of it is intermediate, at least when relativized to every oracle in a cone. As an application
we show that no infinitary sentence whose models are all linear orderings is intermediate under effective
reducibility relative to every oracle in a cone.

§1. Introduction. We show a connection between Vaught’s conjecture and an
intriguing open question about computable structures. The question we are refer-
ring to asks whether every nice theoryT (given by a computably infinitary sentence)
satisfieswhatwe call the no-intermediate-extension property,which essentially means
that for every nice extension T̂ of T (i.e., T̂ = T ∧ ϕ, where ϕ is a computable
infinitary sentence), the isomorphism problem among the computable models of T̂
is either “simple,” or as complicated as possible, but is never intermediate. (Through-
out this paper, “theory” means “L�1,�-sentence”.) By “simple” here we mean
hyperarithmetic, and by “as complicated as possible” we mean universal among
all Σ11-equivalences relations on � under effective reducibility. See Definition 1.3.
It is already known that if T has this property when relativized to all oracles,
then Vaught’s conjecture holds among the extensions of T (Becker [3]). The main
result of this paper is a partial reversal, showing that the no-intermediate-extension
property follows from a strengthening of Vaught’s conjecture, which we call the
uniform-effective-density property.
As a bit of evidence that this strengthening is not too strong, we show that the
theory of linear orderings has the uniform-effective-density property. It thus fol-
lows that the isomorphism problem among the computable models of any given
theory T̂ extending that of linear orderings, is either hyperarithmetic or as compli-
cated as possible, but never intermediate, at least relative to every oracle in a cone
(Theorem 1.4).
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128 ANTONIOMONTALBÁN

As a side result that follows from one of our lemmas, we show that if a nice
class of structures is on top under hyperarithmetic reducibility on a cone, then it is
already on top under computable reducibility, also on a cone (Theorem 1.6).
Let us now explain all these concepts in more detail and give some of the
background behind them.

The no-intermediate-extension property. In [7], E. Fokina andS. Friedman started
to analyze an effective version of the H. Friedman and L. Stanley [9] reducibility
among classes of structures.

Definition 1.1. We say that a class of structures K is on top under effective
reducibility if for every Σ11 equivalence relation E on �, there is a computable
function f : � → �, mapping numbers to indices for computable structures in K
such that, for all i, e ∈ �,

i E e ⇐⇒ Af(i) ∼= Af(e),
where An is the computable structure coded by the nth Turing machine.
K. Fokina, S. Friedman, V. Harizanov, J. Knight, C. McCoy, and A. Montalbán
[8] proved that the classes of linear orderings, trees, fields, p-groups, torsion-free
abelian groups, etc., are all on top under effective reducibility. The only examples of
classes of structures that we know are not on top under effective reducibility are the
ones where the isomorphism problem among computable structures is hyperarith-
metic, such as vector spaces, equivalence structures, torsion-free abelian groups of
finite rank, etc.
This behavior is quite different from that of the reducibility used by Friedman
and Stanley [9], where they consider all the countable models of a theory (coded
by reals), not just the computable ones, and used Borel functions as reducibilities.
There, a class of structures K is said to be Borel complete if for every other class
of structures S, there is a Borel function mapping structures S to structures in K

preserving isomorphism. We use the terminology “on top under Borel reducibility”
instead of “Borel complete” to avoid confusion with other notions of complete-
ness. In that context, no isomorphism problem can be on top among all analytic
equivalence relations on the reals. Friedman and Stanley provided some examples
of classes that are on top under Borel reducibility, as for instance, linear orderings,
trees, and fields. However, for p-groups, which we said they were on top under
effective reducibility, Friedman and Stanley showed they are not on top under Borel
reducibility, despite the fact that the isomorphism problem is Σ11-complete as a
subset of R2 (which is different from being universal as an equivalence relation).
For torsion-free abelian groups, which we also said they were on top under effective
reducibility, it is still open whether they are on top under Borel reducibility, and all
that is known is that their isomorphism problem is Σ11-complete as a set of pairs of
reals [6,13].

Definition 1.2. Let us call a class of structures, K, intermediate for effective
reducibility if it is not on top under effective reducibility, but also the isomorphism
problem among its computable structures (i.e., the set {(i, e) ∈ �2 : Ai ,Ae ∈ K,
Ai ∼= Ae}) in not hyperarithmetic.
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Let us remark that there are natural equivalence relations on � that are
intermediate, as for example, the relation of bi-embeddability among computable
linear orderings. (It is not on top because it has only one nonhyperarithmetic equiv-
alence class, namely the class ofQ. For more on bi-embeddability of linear orderings
see [17]). However, we do not know of an example where the equivalence relation
is isomorphism on a nice class of structures.
In [8, Question 4], we asked:

Are there isomorphism relations on hyperarithmetical classes of computable
structures which are not hyperarithmetical and not FF-complete (i.e., not on top
under effective reducibility)?

It is often the case in computable-structure theory that the relativized notions
behave better than the unrelativized ones, as they avoid ad-hoc counter-examples.
In this paper, we concentrate on the relativized notions:

Definition 1.3. An infinitary sentence T is intermediate on a cone if there exists
aC ∈ 2� (the base of the cone), such that relative to every oracleX ≥T C , the class
of models of T is intermediate for effective reducibility. By an extension of T we
mean a sentence of the form T ∧ ϕ, where ϕ is an infinitary sentence. We say that
T has the no-intermediate-extension property if no extension T̂ of T is intermediate
on a cone.

Let us remark that, when we say that the class of models of T is intermediate for
effective reducibility relative to anoracleX , we relativize everything toX : themodels
we consider are the X -computable ones, the reductions become X -computable,
hyperarithmetic becomes hyperarithmetic in X . Intuitively, it is like assuming X is
computable itself. A second remark worth making is that it does not matter if T is
computable, because every infinitary sentence is computable on a cone.
As an application of our results we will show the following theorem.

Theorem 1.4 (ZFC+PD). The theory of linear orderings has the no-intermediate-
extension property.

We would have preferred a theorem saying that if we take a nice extension of the
theory of linear orderings, say given by a computably infinitary sentence, then it is
not intermediate for effective reducibility (relative to 0). The theorem only gives us
this on a cone. What does follow from the theorem, however, is that even if there
was such an intermediate extension, there cannot be a relativizable proof that it is
intermediate.
It was already known that linear orderings satisfy Vaught’s conjecture, as proved
by Rubin [23] (see also Steel [28]). In Section 4.2, using part of the construction
we use for Theorem 1.4, we give another proof of that fact. A connected result
worth mentioning is that the extensions of the theory of linear ordering satisfy the
Glimm–Effros dichotomy (Gao [10]).
For arbitrary theories, and for one of the implications, we have the following
theorem.

Theorem 1.5 (ZFC+PD). IfT has the no-intermediate-extension property, thenT
satisfies Vaught’s conjecture, in the sense that every extension T̂ of T has either
countably many, or continuum many countable models.
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The result above was first proved by Becker [3], although he did not state it in this
terms. For the interested reader, let us explain how Becker’s terminology translates
to ours, and how Theorem 1.5 follows from his work. The next two paragraphs are
not needed in the rest of the paper.
In [3, Definition 5.1], given a real b ∈ 2�, an L�1,� sentence Φ is called
b-exceptional if the class of b-computable models of Φ (denotedModC (b)(Φ) in [3])
is Δ11(b), and there is exactly one b-computable model of Φ whose isomorphism
type is not Δ11(b). In the paragraph right after [3, Question 4.3], Becker argues that
every exceptional Φ must be ≤FF -intermediate (i.e., according to our notation, the
class of models of Φ is intermediate for effective reducibility – the definition of
≤FF -intermediate is given two paragraphs before [3, Question 4.3]). Of course,
this argument relativizes, and if Φ is b-exceptional, it is intermediate for effective
reducibility relative to b. Going back to Theorem 1.5, suppose T does not satisfy
Vaught’s conjecture. Harnik and Makkai [14, Theorem 1] showed that there exists
an extension T̂ of T which is a minimal counterexample to Vaught’s conjecture.
(See [18, Definition 3.1] or [3, Definition 2.5] for a definition of minimal counterex-
ample to Vaught’s conjecture.) Now, [3, Theorem 5.3] states that if T̂ is a minimal
counterexample to Vaught’s conjecture, then for every a ∈ 2� there is a b ≥T a
such that Φ is b-exceptional. In other words, the set of oracles b such that T̂ is
b-exceptional is co-final in the Turing degrees. It follows that the set of oracles b
such that T̂ is intermediate for effective reducibility is co-final in the Turing degrees.
Using Turing determinacy, we get that T̂ is intermediate on a cone, and hence T
does not have the no-intermediate-extension property.
Knight and Montalbán arrived at the same conclusion roughly at the same time
via a very different proof. They use techniques from computable structure theory,
while Becker uses techniques from invariant descriptive set theory. Both proofs of
Theorem 1.5 show that if T is a minimal counterexample to Vaught’s conjecture,
then there is an oracle relative to which there is exactly one computable model of T
with a nonhyperarithmetic index set. To prove this, Knight and Montalbán show
(using [18, Lemma 3.3]) that there is an oracle relative to which T has exactly one
computable model of high Scott rank, and then modify the oracle to get the index
set for this structure to be not hyperarithmetic.

Hyperarithmetic reductions. The natural effectivization to computable models of
the Friedman–Stanley reducibility would be to consider hyperarithmetic reductions
instead of computable reductions. We say that a class K is on top under hyperarith-
metic reducibility if every Σ11 equivalence relation on � hyperarithmetically reduces
to the isomorphism problem among computable models ofK. Another unexpected
empirical observation from the results in [8] is that every theory which we could
provewas on top under hyperarithmetic reducibility, was already on top under effec-
tive reducibility. We show here that this should always be the case, at least among
nice theories T where relativization should not be an issue.

Theorem 1.6 (ZFC+PD). If an infinitary sentence T is on top under hyperarith-
metic reducibility on a cone, then it is already on top under effective reducibility on
a cone.
We will prove this theorem at the end of Subsection 3.1, as a corollary of
Lemma 3.5. The use of Projective Determinacy (PD) is not essential here, and is
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just to be able to state the theorem saying “on a cone of Turing degrees,”
instead of “for co-finally many Turing degrees”–these two phrases are equiva-
lent using projective Turing determinacy when the property they are applied to is
projective.

The density property. Further analyzing the proofs of Theorem 1.5, one can
see that the no-intermediate-extension property implies a property that we call
the effective-density property, and is apparently stronger than Vaught’s conjecture.
Therefore, if there was going to be a reversal of Theorem 1.5, then the best we
can hope for is to prove that these two properties are equivalent, which remains
unknown. We instead get a reversal from a stronger notion. Let us now define all
these concepts.

Definition 1.7. We say that anL�1 ,�-sentence T is unbounded if it has countable
models of arbitrary high Scott rank below �1.

Observation 1.8 (ZFC+PD). Let T be an L�1 ,�-sentence. The following are
equivalent:

(1) T is bounded.
(2) The isomorphism problem among the countable models of T is Borel.
(3) Relative to every oracle in a cone, the isomorphism problem among the
computable models of T is hyperarithmetic.

For the sake of completeness, let us quickly sketch the proof of this observation.

Sketch of the Proof. That (1) and (2) are equivalent is well-known (see [11,
Theorem 12.2.4] or [4, Theorem 7.1.4]), and does not need PD. That (2) implies (3)
is immediate using the oracles that make the isomorphism problem among the
countable models of T lightface Borel. For (3) implies (2) we need two lemmas
of Martin: The first one (see [27, Theorem in second page]) says that if a set S of
reals in co-final in the Turing degrees, then there is a pointed perfect tree (i.e., a
perfect tree all whose paths compute the tree) whose paths belong to S. The second
one (see [18, Lemma 2.5]) says that if f is a function that assigns ordinals to reals
which is invariant under Turing degree and satisfies f(X ) < �X1 for all X , then it is
constant on a cone. Both use determinacy in a local way. Now, consider the function
f that assigns to each X on the cone given by (3) the least ordinal α such that the
isomorphism problem among X -computable models of T is Δ0α(X ). We then get
thatf is bounded, say by α0 on a cone. Using the first of the two lemmas we get that
there is an index e and perfect pointed tree P such that for all paths X through P,
{e}X (α0) is the isomorphism problem among X -computable models of T . Deciding
whether two presentations A and B are isomorphic can now be uniformly decided
using α0 jumps of A⊕ B ⊕ P. �

It follows thatT has the no-intermediate-extension property if and only if among
the extensions T̂ ofT , being unbounded is equivalent to being on top under effective
reducibility relative to every oracle in a cone.

Definition 1.9. We say thatT isminimally unbounded if it is unbounded, but for
every L�1 ,�-sentence ϕ, one of T ∧ ϕ or T ∧ ¬ϕ is bounded.
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It is known (see [28, Theorem 1.5.11]) that if there is a counter-example to
Vaught’s conjecture, then there is one that is minimally unbounded. Such a coun-
terexample is used to build a theory intermediate on a cone in Theorem 1.5. Let us
remark that, as far as we know, minimally unbounded theories do not necessarily
have ℵ1 many models, and it is unknown whether the existence of a minimally
unbounded theory implies the existence of one with ℵ1 models.
If a theory has no minimally unbounded extensions, we say that it is dense. It is
unknown whether every unbounded theory is dense.

The effective analogs. We will need effective versions of these notions. Recall that
�X1 is the least ordinal without an X -computable presentation. When we are given
an L�1,�-formula ϕ, we assume we are given a presentation for it, say by a tree
describing the structure of the formula. We can then write �ϕ1 for the least ordinal
not computable in the real representing ϕ. Or equivalently, �ϕ1 = min{�X1 : ϕ is an
X -computably infinitary formula}. (This, of course, depends on the presentation
of ϕ.) For a countable structure A, we let �A

1 = min{�X1 : X computes a copy
of A}, and let SR(A) be the Scott rank of A (see subsection 1.1.2 below).
Definition 1.10. We say that an L�1,�-sentence T is effectively unbounded if it
has countable models of arbitrary high Scott rank below �T1 (i.e., for each α < �

T
1 ,

T has a model of Scott rank at least α). We say that a structure A has high Scott
rank if �A

1 ≤ SR(A).
One can show that every satisfiable infinitary sentence T has a countable model

A with �A
1 = �

T
1 ; this follows from Gandy’s basis theorem and the fact that being

a model of T is a Σ11(T ) property. We will show in Lemma 2.1 that T is effectively
unbounded if and only if it has such a modelA of high Scott rank, that is, satisfying
�T1 = �

A
1 ≤ SR(A).

It is unknown whether being effectively unbounded is different from being
unbounded. This is quite an interesting question. (See [25] for partial results.)

Definition 1.11. We say that T is effectively minimally unbounded if it is effec-
tively unbounded, and for every L�1 ,�-sentence ϕ of quantifier rank less than �T1 ,
one of T ∧ ϕ or T ∧ ¬ϕ is bounded below �T1 .
This is the property that is needed to build a theory that is intermediate for effective
reducibility relative to an oracle in Theorem 1.5. We will show in Theorem 2.3 that
T is effectively minimally unbounded if and only if every oracle X with �X1 = �

T
1

computes at most one model of high Scott rank (relative to X ), and some such X
computes at least one. Considering theories with this property is not really new.
Some time ago, Goncharov and Knight asked whether there existed computably
infinitary sentences that have a unique computable model of high Scott rank. For all
the theories researchers have looked at, they have either none, or infinitely many
computable model of high Scott rank.
It is unknown whether being effectively minimally unbounded is different from
being minimally unbounded.

Definition 1.12. We say that T is effectively dense if it is unbounded and no
extension T̂ of T is effectively minimally unbounded.

https://doi.org/10.1017/jsl.2014.55 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2014.55


CLASSES OF STRUCTURESWITH NO INTERMEDIATE ISOMORPHISM PROBLEMS 133

Unraveling the definition, an unbounded theory T is effectively dense if every
extension T̂ of T that is unbounded below �T̂1 can be split into two theories, T̂ ∧ϕ
and T̂ ∧ ¬ϕ of quantifier rank less than �T̂1 , both unbounded below �T̂1 . Notice
that the bound, �T̂1 , on the rank of the witness, ϕ, depends on the computational
complexity of T̂ , andnot on the quantifier complexity of T̂ . The following definition
considers the quantifier complexity of T̂ :

Definition 1.13. We say that T is uniformly effectively dense if it is unbounded,
and, for every α ∈ �1 there is a � ∈ �1 such that, for every extension T̂ ∈ Πin

α

of T which is effectively unbounded, there is a � ∈ Πin
� witnessing that T̂ is

not effectively minimally unbounded, i.e., such that both T̂ ∧ � and T̂ ∧ ¬� are
unbounded below �T̂1 .
Here Πin

α refers to the set of infinitary Πα formulas. (See [1, Chapter 6] for
background on the hierarchy of infinitary formulas.)

It is unknown whether being uniformly effectively dense, being effectively dense,
and being dense are actually different.
We are now ready to state our main theorem.

Theorem 1.14 (ZFC+PD). Let T be an L�1,�-sentence which is uniformly effec-
tively dense. Then T is on top under effective reducibility, relative to every oracle in
a cone.

We get that for a theory T :

T is uniformly effectively dense
⇓

T has the no-intermediate-extension property
⇓

T is effectively dense.

Whether any two of these three notions are equivalent is unknown.
Projective determinacy (PD) is used in the proofs of the theorems above a few
times in the form of Turing determinacy (due to Martin): If a projective degree-
invariant set S ⊆ 2� is co-final in the Turing degrees (i.e., ∀Z∃X ≥T Z (X ∈ S)),
then S contains a cone of Turing degrees (i.e., ∃C∀X ≥T C (X ∈ S)). We did not
calculate the exact amount of Turing determinacy needed in the proofs, nor did we
made an effort to optimize it, although, surely much less than the full power of PD
is necessary. In theorems like 1.4, it might not be necessary at all.

1.1. Background. For background on infinitary formulas and computably infini-
tary formulas, see [1, Chapters 6 and 7]. We will use Σinα to denote the set of
infinitary Σα-formulas, Σcα for the computable infinitary formulas, and Σ

cXα for the
X -computable infinitary formulas.

1.1.1. Back-and-forth relations. For more background on the back-and-forth
relation see [1, Chapter 15]. Given structures A and B, tuples ā ∈ A<� , b̄ ∈ B<�
and an ordinal �, we say that (A, ā) is �-back-and-forth below (B, b̄), and write
(A, ā) ≤� (B, b̄) if the Πin

� -type of ā in A is contained in the Πin
� -type of b̄ of B.

(We are allowing tuples of different sizes here as in [1], provided |ā| ≤ |b̄|. We note
that (A, ā) ≤� (B, b̄) ⇐⇒ (A, ā) ≤� (B, b̄ � |ā|).) Equivalently, (A, ā) ≤� (B, b̄)
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if for every tuple d̄ ∈ B<� and any � < �, there exists c̄ ∈ A<� such that
(A, āc̄) ≥� (B, b̄d̄ ).
We now review the notion of α-friendliness (see [1, Section 15.2]), which is an
“effectiveness condition” on a class of structure. A computable sequence {Bn :
n ∈ �} of structures is α-friendly if given two tuples in two structures ā ∈ B<�n
and b̄ ∈ B<�m and given � < α, we can effectively decide if (Bn, ā) ≤� (Bm, b̄) in a
c.e. way, or, in other words, if the set of quintuples {(n, ā,m, b̄, �) : n,m ∈ �, ā ∈
B<�n , b̄ ∈ B<�m , � < α, such that (Bn, ā) ≤� (Bm, b̄)} is c.e.
1.1.2. Scott rank. The Scott rank of a structureA is a measure of its complexity
defined as follows. For each ā ∈ A<� , let rA(ā) be the least α such that whenever
ā ≤α b̄ for some b̄ ∈ A|ā|, we have that ā and b̄ are automorphic. We then let
SR(A), the Scott rank of A, to be the least α greater than rA(ā) for all tuples
ā ∈ A<� . (This version of Scott rank is not the same as Scott’s original. It was used
in [1, Section 6.7] where is denoted by R(A).) For every structure A, we have that
SR(A) ≤ �A

1 + 1 (Nadel [21]), where �
A
1 = min{�X1 : X computes a copy of A}.

Structures with �A
1 ≤ SR(A) are said to have high Scott rank.

When a structure A has Scott rank α, each automorphism orbit can be defined
by a Πin

<α formula (see [1, Proposition 6.9]). The collection of these formulas for
the different tuples ā from A form what is called a Scott family for A. Given such
formulas, one can then define a Scott sentence forA, which is a sentence that is true
aboutA and of no other countable structure. Such formula can be taken to beΠin

α+1.
Conversely, if a structureA has a Πin

α+1 Scott sentence, then it must have Scott rank
≤ α + 1. The computable structures of high Scott rank are exactly the ones which
do not have computably infinitary Scott sentences. However, it is still true (due to
Nadel [21], see also [2, Theorem 7.3]) that if two computable structures satisfy the
same computably infinitary sentences, then they are isomorphic.

1.1.3. TheHarrison linear ordering. TheHarrison linear ordering is a computable
linear ordering, denoted byH, isomorphic to�CK1 +�CK1 ·Qwhich has nohyperarith-
metic descending sequences [12]. The well-founded initial segment, which, abusing
notation we denote by �CK1 , cannot be Σ

1
1. This allows us to use the following kind

of argument, called an overspill argument: If P ⊆ H is Σ11 and contains the whole
initial segment�CK1 , then it also contains some α ∈ H��CK1 . We call such elements
α nonstandard ordinals.
Since the back-and-forth relations are arithmetically definable from the previous
ones, one can always define them for α ∈ H beyond �CK1 . More precisely, fix a
computable structure A, and let P be the set of all α ∈ H such that there exists a
sequence {R� : � ≤ α} of relations R� ⊆ A<� ×A<� which satisfy the definition
of the back-and-forth relations, that is, for all � < α, (ā, b̄) ∈ R� ⇐⇒ ∀	 <
�∀d̄∃c̄ ((b̄d̄ , ā c̄) ∈ R	). This set P ⊆ H is Σ11 and contains all of �CK1 , and hence
contains also some α ∈ H� �CK1 . The same way, it also makes sense to talk about
the notion of α-friendly sequence of structures for α ∈ H� �CK1 .
We remark that all these notions can be relativized. We use HX to denote the
Harrison linear ordering relative to X .

§2. Models of high Scott rank. In this section, we quickly prove the results
about structures of high Scott rank mentioned in the introduction. In particular,
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we give characterization of effectively unbounded theories, and effectively minimally
unbounded theories, in terms of models of high Scott rank.

Lemma 2.1. An infinitary sentence T is effectively unbounded if and only if it has
a model A with �T1 = �A

1 ≤ SR(A).
Proof. The right-to-left direction is immediate from the definition of effectively
unbounded. For the left-to-right consider, for each α < �T1 , the sentence Sα such
that A |= Sα if and only if SR(A) ≥ α. It is well-known such sentences exist and
can be taken to be T -computably infinitary. Since T is effectively unbounded, for
every α < �T1 , T ∪{Sα} has a model. By Barwise compactness T ∪{Sα : α < �T1 }
has a model. Any such model A would satisfy �T1 ≤ SR(A). Since being a model
of T ∪ {Sα : α < �T1 } is a Σ11(T ) property, by Gandy’s basis theorem, there is such
a model A with �T1 = �A

1 . �
Furthermore, we can assume that also �T1 = �

T,A
1 , where �

T,A
1 = min{�X1 : X

computes a presentation of A and T is an X -computably infinitary sentence}.
The Scott sentence of a structure is the one that identifies a structure up to
isomorphism, among all countable structures. If all wewant is to identify a structure
up to its α-back-and-forth type, a simpler sentence can be used. Suppose that A
has a computable copy. Recall that A ≤α B if and only if the Πin

α -theory of A is a
subset of the one of B. However, the assumption that the Πc

α-theory ofA is a subset
of the one of B is not enough to obtain A ≤α B. The following lemma gives us a
good approximation.

Lemma 2.2. Let A be a computable structure, and B be any structure.
(1) If Σc3·α-Th(A) ⊆ Σc3·α-Th(B), then A ≥α B.
(2) IfΠc

3·α-Th(A) ⊆ Πc
3·α-Th(B), then A ≤α B.

Proof. The proof is by transfinite induction. Suppose first that Σc3·α-Th(A) ⊆
Σc3·α-Th(B), and we want to show that A ≥α B. Take ā ∈ A<� and 	 < α.
Let �ā(x̄) be the conjunction of all the Πc

3	-formulas true about ā in A. This set
of formulas is Π03	 , and hence this conjunction is equivalent to a Π

c
3	+1 formula

(see [1, Proposition 7.12]), and the formula ∃x̄�ā(x̄) is, in particular, Σc3α . Since it
is true in A it is true in B, and hence there is b̄ in B such that B |= �ā(b̄).
But then Πc

3	-tpB(b̄) ⊇ Πc
3	-tpA(ā), and hence by the inductive hypothesis that

(A, ā) ≤	 (B, b̄).
Suppose that Πc

3·α-Th(A) ⊆ Πc
3·α-Th(B), and we want to show that A ≤α B.

Take b̄ ∈ B<� and 	 < α. For each ā ∈ A<� let �ā be now the Πc
3	+1 formula

equivalent to the conjunction of all the Σc3	-formulas true about ā. Then A models
∀x̄∨ā∈A�ā(x̄). This is a Π

c
3	+3 sentence, and hence it is true about B, too. So, there

is some ā such that B |= �ā(b̄), and hence Σc3·α-Th(A, ā) ⊆ Σc3·α-Th(B, b̄). By the
inductive hypothesis we then get that (A, ā) ≥	 (B, b̄). �
Note that if α is a limit ordinal, then 3α = α.
We are now ready to prove the characterization of effectively minimally
unbounded theories.

Theorem 2.3. An infinitary sentence T is effectively minimally unbounded if and
only if every oracle X with �X1 = �

T
1 computes at most one model of high Scott rank

(relative to X ), and some such X computes at least one.

https://doi.org/10.1017/jsl.2014.55 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2014.55


136 ANTONIOMONTALBÁN

Proof. Suppose first that T is effectively minimally unbounded. Since it is
effectively unbounded, there is at least one modelA ofT with�T1 = �T,A1 ≤ SR(A)
and some X with �T,X1 = �T1 which computes a presentation for it. Suppose B
was another such model computable from X . Then, A and B satisfy the same
X -computably infinitary sentences: This is because, for every X -computably infini-
tary sentence ϕ, one of T ∧ ϕ and T ∧ ¬ϕ is bounded below �T1 , and hence the
other one is true in both A and B. It follows thatA and B are isomorphic.
Suppose now that T is not effectively minimally unbounded. If T is not even
effectively unbounded, then, by the Lemma 2.1, no X with �X1 = �

T
1 computes a

model of T of high Scott rank. Suppose then that it is effectively unbounded and
that there is a Πin

α -sentence ϕ with α < �
T
1 such that T ∧ ϕ and T ∧ ¬ϕ are

both unbounded below �T1 . If we had that �
T∧ϕ
1 = �T1 , then we easily could

directly (applying Barwise compactness and Gandy’s basis theorem) find and X
with �X1 = �

T
1 which computes a two model of T of high Scott rank, one satisfying

ϕ and one satisfying ¬ϕ. However, there is no reason to assume that �T∧ϕ1 = �T1 .
We will show that we can use find another formula � that also splits T in two
effectively unbounded theories, but with �T∧�1 = �T1 .
Let X be an oracle with�X,T1 = �T1 and which computes a modelA of high Scott
rank, i.e., �T1 = �

A
1 ≤ SR(A). Then either ϕ or ¬ϕ is true in A; suppose it is ϕ.

Let � be the conjunction of the whole Πc,X
3α -theory ofA. For anymodel B of ¬ϕ we

have B �≥α A, and hence B |= ¬� by Lemma 2.2. Thus, since T ∧¬ϕ is unbounded
below �T1 , so is T ∧ ¬�. Since �X,T∧�1 = �T1 (because � is hyperarithmetic in X ),
there is a model B |= T ∧¬ϕ such that�T1 = �X,B1 ≤ SR(B). LetY ≥T X compute
a copy of B and satisfy �Y1 = �T1 . This Y contradicts the right-hand-side of the
theorem as it computes two different models of high Scott rank. �

§3. The proof of the main theorem. In this section, we prove Theorem 1.14.
That is, assuming T is uniformly effectively dense, we will show that there is a cone
such that, relative to every oracle in that cone, T is on top for effective reducibility.
This proof is divided into several steps. First, in Subsection 3.1, we study a particular
way of representing Σ11 equivalence relations on� using transfinite binary sequences.
In Subsection 3.2, we consider trees of structures, where the structures are indexed
by transfinite binary sequences, and we show how to use them to define reductions
from Σ11-equivalence relations to structures. That is, we show that if we have such
a tree of models of a certain theory T , then the isomorphism problem among
computable models of T is on top under effective reducibility. The next objective is
be able to build such trees of structures. In Subsection 3.3, we deal with a different
aspect of the proof which has to do with finding computable representations for
functions from ordinals to ordinals. In Subsection 3.4, we go back to the trees of
structures, and we show how to build them when we have a uniformly effectively
dense theory, and we relativize to a good enough oracle. We finally put all the
ingredients together in Subsection 3.5.

3.1. A representation ofΣ11-equivalence structures. Toprove thatT is on topunder
effective reduction we need to define an embedding from an arbitrary Σ11 equivalence
relation on � into the computable models of T . We start by finding a particular
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representation of an arbitrary Σ11 equivalence relation that will be useful to build
this embedding.
The first lemma allows us to approximate Σ11 equivalence relations by hyperarith-
metic ones.

Lemma 3.1. For every Σ11-equivalence relation ∼ of �, there is a sequence {∼α:
α < �CK1 } of equivalence relations such that, for all n,m ∈ �,
• n ∼ m ⇐⇒ (∀α ∈ �CK1 ) n ∼α m.
• For � ≤ α, n ∼α m ⇒ n ∼� m.
• Each ∼� is Σ0�+1 uniformly in � .
Proof. The Borel version of this result for analytic equivalence relations on the
reals is due to Burgess [5, Corollary 1], but he only required each ∼� to be Borel
and not necessarily Σ0�+1 uniformly in � . A proof of this exact lemma, but for
equivalence relations on reals, can be found in [20, Lemma 2.1]. If one codes each
natural number by a real (say the one that has a 1 at position n, and 0’s elsewhere),
then the lemma from [20] applies here too. �

Definition 3.2. Let 2◦α to be the set of all α-long binary sequences 
 ∈ 2α with
only finitely many 1’s.

Notice that 2◦α is countable and computably presentable whenever α is itself
computable, as opposed to 2α which has size continuum for infinite α.

Definition 3.3. For a computable ordinalα, we say that a sequence {
n : n ∈ �}
⊆ 2◦α is uniformly Σ0� �→�+1 if deciding if 
(�)n = 1 is Σ0�+1 uniformly in � and n, or,
in other words, if there is a c.e. operatorW , such that 
n(�) = 1 ⇐⇒ n ∈ W∇� ,
where∇� is a complete Δ0� real (see [19]).

Thedefinition abovedoes not requireα to be anordinal, but just that the iterations
of the jump, ∇� , exist for � < α. So, if we assume that ∇� exists for each � in the
Harrison linear ordering,H, thenwe can still talk about uniformly Σ0� �→�+1 sequences
in 2◦H.

Lemma 3.4. For each Σ11-equivalence relation ∼ on �, there exists a uniformly
Σ0� �→�+1 sequence {
n : n ∈ �} ⊆ 2◦H, such that

(∀n,m ∈ �) n ∼ m ⇐⇒ 
n ��CK1 = 
m ��CK1 .

Proof. We will define 
n(�) by transfinite recursion on �. The general idea
is as follows. Suppose we have already defined 
n � � for all n. So, we have an
equivalence relation E� on � given by n E� m if 
n � � = 
m � �. At stage � we
preserve the inclusion∼�⊆ E� , and we only take one step towardsmakingE� closer
to ∼� as follows. Each E�-equivalence class consists of many (possibly just one)
∼�-equivalence classes. If it is only one, we are in good shape and we do not do any-
thing. Within each E�-equivalence class which contains at least two∼� equivalence
classes, we will define 
n(�) to be 0 or 1 so that we split the E�-equivalence class
into two E�+1-equivalence classes, by separating the first∼�-equivalence class from
the rest. We will actually consider at∼�−1 instead of∼� to keep the complexity low.
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More concretely:

Let 
n(�) = 1 if for the least m < n with 
m � � = 
n � �, there is some � < �
such that n �∼� m, and let 
n(�) = 0 otherwise.

By counting quantifiers, it is not hard to see that 
n is uniformly Σ0� �→�+1.
Take n0, n1 ∈ �, and suppose that 
n0 ��CK1 �= 
n1 ��CK1 . Let � be the first value
where 
n0(�) �= 
n1 (�). Suppose 
n0 (�) = 0 and 
n1 (�) = 1. Let m be the least with

m � � = 
n0 � � = 
n1 � �. From the definition of 
n0 (�) and 
n1(�), we get that for
some � < �, n1 �∼� m ∼� n0, and hence n0 �∼ n1.
Suppose now that m < n, 
m ��CK1 = 
n ��CK1 , and, towards a contradiction,
that m �∼ n. Suppose that m is the least for which there exists such an n. Thus,
if there was some n0 < m with 
n0 ��CK1 = 
m ��CK1 , we would have n0 ∼ m
and n0 ∼ n. So we can assume that m is the least such that 
m ��CK1 = 
n ��CK1 .
For some � < �CK1 high enough, we have that n �∼� m, and m is still the least with

m �� = 
n �� . Let � = �+1. Then, by definition of 
n(�), we would get 
n(�) = 1
and 
m(�) = 0 contradicting that 
m ��CK1 = 
n ��CK1 . �
Knight and Montalbán [16] have already shown that Σ11 equivalence relations
could be represented by uniformly Σ0� �→�+1 sequences in 2

H, possibly with infinitely
many 1’s. The fact that using sequences with finitely many 1’s is enough, is important
for the rest of the paper.
As a corollary of this lemma, we can now prove Theorem 1.6. We first prove the
following result that avoids the use of Turing determinacy, and implies Theorem 1.6
using Turing determinacy.

Lemma 3.5. If the set of oracles, relative to whichT is on top under hyperarithmetic
reducibility, is co-final in the Turing degrees, then so is the set of oracles relative to
which T is on top under effective reducibility.
Proof. Let C be any real. We want to show that there is some X ≥T C relative
to which K is on top under effective reducibility. By hypothesis we might assume C
is such that T is on top under hyperarithmetic reducibility relative to C .
Consider the following equivalence relation on �. First take a nonstandard ordi-
nal α∗ ∈ HC � �C1 . For each e ∈ �, let 
e be the sequence in 2◦α

∗
for which e is

a ΣC� �→�+1-code. In other words, let 
e(�) = 1 ⇐⇒ � ∈ W∇�
e , where ∇�(C ) is a

complete Δ0�(C ) real andWe is the eth c.e. operator. Given e0, e1 ∈ �, let e0 ∼C e1
if 
e0 ��CK1 = 
e1 ��CK1 . Notice that this is a Σ11-equivalence relation. This is the
equivalence relation Knight and Montalbán had considered in [16], and proved
that it is on top under effective reducibility (relative to C ), which now follows from
Lemma 3.4. Just because it is Σ11, there is aC -hyperarithmetic reduction h from� to
C -computable indices of structures in K, such that e0 ∼C e1 ⇐⇒ AC

h(e0)
∼= AC

h(e1)

(where ACn is the structure coded by the n-th Turing machine with oracle C ). For
some � < �C1 , h is Δ

0
�(C ).

Let X be ∇� (C ). We will define an X -computable function f such that i0 ∼X
i1 ⇐⇒ AX

f(i0)
∼= AX

f(i1)
, which would then imply that K is on top under effective

reducibility relative to X . Let i be a ΣX� �→�+1-code for a sequence 
 ∈ 2◦α∗ . Let 
̂
consist of a string of � many 0’s followed by 
 (that is 
̂(�) = 0 if � < � and

̂(� + �) = 
(�)). Find an index e for 
̂ as a ΣC� �→�+1 sequence and let g(i) = e.
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We have defined a function g : � → � such that i0 ∼X i1 ⇐⇒ g(i0) ∼C g(i1).
Let f(i) be an X -index for AC

h(g(i)) viewed as an X -computable structure. Thus,

we have thatAX
f(i) = AC

h(g(i)). We then have that

i0 ∼X i1 ⇐⇒ g(i0) ∼C g(i1) ⇐⇒ ACh(g(i0)) ∼= ACh(g(i1)) ⇐⇒ AXf(i0) ∼= AXf(i1),
as wanted. �
Proof of Theorem 1.6. Apply projective Turing determinacy to the set of
oracles X , relative to which, T is on top under effective reducibility. �
3.2. Trees of structures. Now that we can represent Σ11-equivalence relations in
terms of uniformly Σ0� �→�+1 sequences in 2

◦H, we need to associate these sequences
with structures.

Definition 3.6. For anordinal �, an �-tree of structures is a sequence of structures
{A
 : 
 ∈ 2◦�} such that, for every 
, � ∈ 2◦� and � < �, we have that


 � � = � � � ⇒ A
 ≡�+1 A� .
We will show that when a class of structures has arbitrary long nontrivial trees of
structures, the class is on top under effective reducibility. Of course, to get nontrivial
trees of structures we have to ask that all structures A
 are nonisomorphic. But we
have to be careful with this, as we do not want to use Π11-properties in the definition.
The following is a generalization of Ash–Knight’s theorem on pairs of structures
to trees of structures. It says that if we have an �-friendly �-tree of structures, and
we are given an index for a Σ0� �→�+1 sequence 
 ∈ 2◦�, we can uniformly computably
build a copy of A
 . (The definition of �-friendly �-tree of structures is the same as
that of �-friendly sequence of structures in Subsection 1.1.1, except that the indexing
of the structures is over 2◦� rather than over �.) Thus, even if guessing the bits of 

is complicated, namely Σ0� �→�+1, then we can still produce a computable copy ofA
 .
Theorem 3.7 ([19, Theorem 5.3]). Let {A
 : 
 ∈ 2◦�} be a computable �-friendly
�-tree of structures. Let {
n : n ∈ �} ⊆ 2◦� be uniformly Σ0� �→�+1. Then, there exists
a computable sequence of computable structures {Cn : n ∈ �} such that for all n,
Cn ∼= A
n .
Proof. The result in [19, Theorem 5.3] is slightly finer than this. In there, it is
assumed that 
 � � = � � �
(�) ≤ �(�) ⇒ A
 ≥�+1 A� , the conclusion being the
same. That assumption still holds with our definition of �-tree. �
Again in Definition 3.6, the fact that � is an ordinal is not essential so long as we
can talk about the �-back-and-forth relations for every � < �. On any computable
family of structures, one can always define these relations on an initial segment
of H which is longer than �CK1 . Let us notice that if α∗ is a computable pseudo-
well-ordering, α∗ ∈ H � �CK1 , and we have a computable α

∗-tree of structures
{A
 : 
 ∈ 2◦α∗}, then whenever 
 ��CK1 = � ��CK1 , A
 ∼= A� . This is because we
would have thatA
 ≡�CK1 A� , which implies they are isomorphic.
Definition 3.8. For α∗ ∈ H � �CK1 , we say that an α

∗-tree of structures {A
 :

 ∈ 2◦α∗} is proper if for ever 
, � ∈ 2◦α∗ ,


 ��CK1 = � ��CK1 ⇐⇒ A
 ∼= A� .
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The following theorem shows how trees of structures are used to get reductions
from Σ11-equivalence relations.

Theorem 3.9. Suppose that there exists a computable, proper, α∗-friendly α∗-tree
of models of T for some α∗ ∈ H��CK1 . Then T is on top under effective reducibility.

Proof. Let ∼ be a Σ11 equivalence relation on �. We need to build a sequence
{Cn : n ∈ �} of computable models of T such that n ∼ m ⇐⇒ Cn ∼= Cm.
Let {
n : n ∈ �} ⊆ 2◦α∗ be a uniformly Σ0� �→�+1 sequence such that (∀n,m ∈ �)
n ∼ m ⇐⇒ 
n ��CK1 = 
m ��CK1 as given by Lemma 3.4. We will now apply an
overspill argument to the Theorem 3.7. For each � ∈ α∗, and n ∈ �, let 
n,� ∈ 2◦α∗
be defined by copying 
n up to � and extending to α∗ with 0’s (i.e., 
n,�(�) = 
n(�)
if � < � and 
n,�(�) = 0 if � ≥ �).
Let P be the set of all � ∈ α∗ such that there exists a computable sequence

{Cn : n ∈ �} such that Cn ∼= A
n,� for all n ∈ � and for all � < � . The set P is Σ11.
The set P contains all ordinals � < �CK1 : this follows from applying Theorem 3.7 to
the �-tree obtained by truncating the α∗ tree (the α∗-friendliness of the α∗-tree was
used there to apply Theorem3.7). Thus, there is a nonstandard ordinal�∗ ∈ P\�CK1
together with a witnessing sequence {Cn : n ∈ �} satisfying that Cn ∼= A
n,�∗
for every n. Now, for each n, A
n ∼= A
n,�∗ because 
n ��CK1 = 
n,�∗ ��CK1 . Thus,
Cn ∼= A
n as needed. �

3.3. Functions from ordinals to ordinals. The next objective is be to build such
α∗-trees. But before that we need a lemma about the representation of functions
from ordinals to ordinals.

Definition 3.10. Wesay thatf : �1 → �1 witnesses thatT is uniformly effectively
dense if for everyα ∈ �1 and everyϕ ∈ Πin

α such thatT∧ϕ is effectively unbounded,
there is a � ∈ Πin

f(α) such that both T ∧ ϕ ∧ � and T ∧ ϕ ∧ ¬� are unbounded
below �T∧ϕ1 .

Notice that if T is uniformly effectively dense, then there is a projective represen-
tation for such anf. By that wemean a projective subset F : WO×WO (whereWO
is the set of well-orderings of �) such that for every A ∈ WO, f(|A|) = � if and
only if there exists some B ∈ WO with |B| = � and (A,B) ∈ F (where |A| is the
ordinal in �1 of the same order type asA). However, for our argument we will need
f to be much simpler than projective. Under enough determinacy assumptions, one
can always find a much simpler presentation for f.

Definition 3.11. We say thatf : �1 → �1 looks computable according toX ∈ 2�
if f maps ordinals below �X1 to ordinals below �

X
1 , and on some X -computable

linear ordering α∗, which has an initial segment isomorphic to�CK1 (i.e., a Harrison
linear ordering), X can compute a function fX : α∗ → α∗ which coincides with f
on �X1 .

Theorem 3.12 (ZF+PD). For every function f : �1 → �1 with a projective pre-
sentation there is a cone such that f looks computable according to every X on that
cone.
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Proof. First, we claim that there is an oracle Y such that every Y -admissible
ordinal is closed under f. This follows from PD and the fact that the set of ordinals
α ∈ �1 such that α is closed under f forms a club, which is projective when viewed
as a subset of WO: Consider the set of all X such that �X1 is closed under f.
By projective Turing determinacy there is a cone, say with base Y , that is either
contained in or disjoint form this set. Sacks proved that the Y -admissible ordinals
are exactly the ones of the form �X1 for some X ≥T Y [24, Corollary 3.16]. Thus,
either every Y -admissible ordinal is closed under f or none is. But, since the
Y -admissible ordinals contain a club, and so do the ordinals closed under f, there
is at least one Y -admissible ordinal closed under f. It then follows they all are.
Let us relativize the rest of the proof to such Y , and assume that every admissible
ordinal is closed under f.
Let S be the set of all X according to which f looks computable. This set is
projective, and by projective Turing determinacy, all we need to do is to show that
it is co-final in the Turing degrees, i.e., that ∀Z∃X ≥T Z (X ∈ S). We relativize the
rest of the proof to such Z, so all we have to do is show that there is some X ∈ S.
Consider L�1 [f], where f is viewed as s relation symbol, and Lα+1[f] is defined
to be the set of definable subsets of (Lα[f];∈, f ∩ α × α) (see, for instance,
[15, Section 1.3]). Let α be such that Lα [f] is admissible and every ordinal is
countable inside Lα[f]; for instance, let α = �

L[f]
1 . Now, using Barwise compact-

ness for the admissible set Lα[f] [2, Theorem III.5.6] we get an ill-founded model
M = (M ;∈M, fM) ofKP whose ordinals have well-founded part equal to α, with
fM �α coinciding with f �α, and satisfying that every ordinal can be coded by
a real. Even if such application of Barwise compactness is standard, let us spell it
out in the next paragraph.
To show this, one has to consider the infinitary theory in the language L =

{∈, f, c} saying all this, plus axioms saying that the constant symbol c is an ordinal
and that any ordinal below α exists and is below c. Then observe that the whole
set of axioms is Σ1(Lα [f]), and that, choosing c appropriately, Lα[f] is a model of
any subset of these axioms which is a set in Lα [f]. Thus, by Barwise compactness
[2, Theorem III.5.6], this theory has amodel and its ordinals havewell-founded part
at least α. Then, using [2, Theorem III.7.5], we get such a model with well-founded
part exactly α.
Let α∗ be a nonstandard ordinal inM, i.e., α∗ ∈ ONM � α, and let X be a
real inM coding α∗ and fM �α∗. Notice that �X1 = α. (To see this, we have that
�X1 ≥ α because it codes every initial segment of α, and �X1 ≤ α because every
X -computable well-ordering is isomorphic to an ordinal inM and hence below α.)
This shows that f looks computable according to X . �
3.4. Building a tree of structures. Suppose T is uniformly effectively dense wit-
nessed by f. To be able to apply Theorem 3.9 we would like to build, for each
X on a cone, a computable, proper, α∗-friendly α∗-tree of models of T for some
nonstandard α∗ ∈ HX � �X1 . For this we would like to use an overspill argument,
but the first problem we encounter is that being “proper” is a Π11 property. For that
reason, we consider the notion of g-proper, which is Δ11.

Definition 3.13. Given g : �1 → �1 and � ∈ �1, we say that an �-tree {A
 :

 ∈ 2◦�} is g-proper if for every � < �, if 
 � � �= � � �, then A
 �≡g(�) A� .
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We remark that, on one hand, being a g-proper tree is a Δ11 property (relative
to g). On the other hand, if we have α∗-tree of models of T for some computable
nonstandard α∗ ∈ H � �CK1 , which satisfies the definition of “g-proper tree” for
� < �CK1 , then we know the tree is actually proper.
The function g we are going to use is defined by iterating f. That is, for � ∈ �1,

g(�) = sup
�<�

f(g(�) + 1) + �.

Without loss of generality, we will assume that for all � , � ≤ f(�). The same is
then true for g. We remark that the definition of g is far from being optimal.
Before considering nonstandard trees, we want to show that, for every X on a
cone and every α < �X1 , X computes an g-proper, α-friendly α-tree. The first step
is to show that g-proper α-trees exists.

Lemma 3.14. Assume T is uniformly effectively dense witnessed by f : �1 → �1,
and let g be defined by iterating f as above. For every α ∈ �1, there is a g-proper
α-tree.

Proof. Let X be such that α < �X1 , and such that g looks computable according
to X (which exists by Theorem 3.12). For each 
 ∈ 2◦α we will define a structure
A
 such that �X1 = �A


1 ≤ SR(A
). We define the structures A
 by induction
on the number of 1’s in 
. For 
 the α-string of all 0s, let A
 be any structure
with �X1 = �

A

1 ≤ SR(A
) which we know exists using that T is unbounded and

Lemma 2.1.
Suppose now that we have 
 ∈ 2◦α and we need to define A
 . Let � < α be
the largest with 
(�) = 1, and let 
− be defined be making that “1” into a “0”,
that is, 
−(�) = 
(�) if � �= � and 
−(�) = 0. By induction, we can assume that
we have already defined A
− of high Scott rank, and that we have a presentation
computable in someY with�Y1 = �

X
1 . Wewill defineA
 so thatA
 ≡g(�) A
− , and

A
 �≡g(�+1)A
− . Let 0 be the conjunction of theΠc,Y
g(�) andΣ

c,Y
g(�) theories ofA
− , and

1 be the conjunction of the Π
c,Y
3f(g(�)+1) and Σ

c,Y
3f(g(�)+1) theories ofA
− . Lemma 2.2

then implies that for any B |= 0 ∧ ¬1 we have B ≡g(�) A
− , and B �≡g(�+1)A
−
(we are using here that g(�) is a limit ordinal and hence that 3g(�) = g(�), and
we are using that 3f(g(�) + 1) < g(� + 1)). We claim that 0 ∧ ¬1 is unbounded
below �X1 . Once we prove the claim, we can then use Lemma 2.1 to get a modelA

of 0∧¬1 of high Scott rank with�A


1 = �
X
1 . To prove the claim, start by noticing

that 0 is Πin
g(�)+1 and is unbounded below �

X
1 as witnessed byA
− . Hence, there is

a Πin
f(g(�)+1) formula� such that both 0∧� and 0∧¬� are unbounded below�X1 .

For any model B |= 0 ∧ ¬� we haveA
− �≡f(g(�)+1) B, and hence, by Lemma 2.2,
B �|= 1. It follows that since 0∧¬� is unbounded below �X1 , so is 0∧¬1 proving
the claim. Finally, using Lemma 2.1 again, let A
 be a model of  ∧ ¬1 of high
Scott rank with �A


1 = �
X
1 ≤ SR(A
).

To see that we have built a g-proper α-tree consider �, � ∈ 2◦α , and let � be
the least with �(�) �= �(�). Suppose �(�) = 0 and �(�) = 1. Let 
 be � � � + 1
followed by 0’s, and 
− be � � � + 1 followed by 0’s. From the construction we get
thatA� ≡g(�+1) A
− �≡g(�+1) A
 ≡g(�+1) A� as needed. �
We are now ready to use an overspill argument.
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Lemma 3.15 (ZFC+PD). Suppose that there is a g : �1 → �1 such that for every
α there is a g-proper α-tree of models of T . Then, relative to every oracle X on a
cone, there is an X -computable, proper, α∗-friendly α∗-tree of models of T for some
α∗ ∈ HX � �X1 .

Proof. By Theorem 3.12 there is a cone of oracles according to which g looks
computable. Using projective Turing determinacy (which follows from PD), all we
need to do is show that the set of X satisfying the thesis of the lemma is co-final in
the Turing degrees. So, givenZ we need to findX ≥T Z with this property. Assume
that according to Z, g looks computable. By the hypothesis of the lemma, there is
an Y which computes a g-proper α-tree of models of T for each α < �Z1 , which
might not be α-friendly. But it just takes 2α-jumps over the model to compute all
the (< α)-back-and-forth relations. Then, if X computes every set hyperarithmetic
inY , it computes a g-proper α-friendly α-tree of models ofT for each α < �Z1 . The
set of X which, for each α < �Z1 , compute a g-proper α-friendly α-tree is Σ

1
1(Z),

as the quantifier ∀α < �Z1 can be replaced by a second-order ∃-quantifier. Thus, by
Gandy’s basis theorem, there is such an X with �X1 = �

Z
1 . Now, the set of � ∈ HX

such that X computes a g-proper, �-friendly �-tree is Σ11(X ), and contains �
X
1 .

By an overspill argument, every such X computes an g-proper, α∗-friendly α∗-tree
for some α∗ ∈ HX �∈ �X1 , as needed. �
3.5. Tying the loose ends. We can now put all the pieces together and prove
Theorem 1.14, that every uniformly effectively dense theory is on top under effective
reducibility relative to every oracle in a cone.

Proof of Theorem 1.14. Let T be uniformly effectively dense witnessed by f
(see Definition 3.10). By Lemma 3.14, we have that for every α ∈ �1, a g-proper
α-tree ofmodels ofT exists, where g is defined by iteratingf. Then, by Lemma 3.15,
we have that relative to every oracle X on a cone, there is an X -computable proper,
α∗-friendly α∗-tree of models of T for some α∗ ∈ HX � �X1 . Finally, we apply
Theorem 3.9 to get that T is on top under effective reducibility relative to every
such X . �

§4. Case Study: Linear orderings. In this section, we prove that the theory of
linear orderings has the no-intermediate-extension property. This implies that it
satisfies Vaught’s conjecture by Theorem 1.5. The first step in this proof is to show
that if we have a computable linear ordering L of high Scott rank, then we can write
it as

∑
q∈Q Bq , where each Bq has high Scott rank. The following step is to replace

each linear ordering Bq by another B̂q that is α-equivalent, to get a linear ordering
L̂ that is α-equivalent to L and has certain desired properties. What we are using
here is the following property (which is surely known to some researchers, but we
have not found it in the literature).

Lemma 4.1. If for all i ∈ C (where C is a linear orderings) we have linear orderings
Ai ≡α Bi , then

∑
i∈C Ai ≡α

∑
i∈C Bi .

Proof. Add to the linear orderings
∑
i∈C Ai and

∑
i∈C Bi unary relations Ui ,

one for each i ∈ C, identifying the segment that corresponds to either Ai or Bi .
It is straightforward to show that these two structures in this new language are
α-equivalent (by transfinite induction on α using the back-and-forth definition

https://doi.org/10.1017/jsl.2014.55 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2014.55


144 ANTONIOMONTALBÁN

of ≡α). But then, forgetting about these new relations, we get that the linear
orderings are α-equivalent. �
To get the decomposition of L as mentioned above, the main idea is to consider
the following convex equivalence relation on a linear ordering.

Definition 4.2. Given a linear ordering and an ordinal α, we define a binary
relation ∼α on L given by: for a < b ∈ L let

a ∼α b ⇐⇒ SR((a, b)L) < α,

where (a, b)L is the open segment (a, b) inside L.
The idea of considering this equivalence relation is similar to ideas of Kach
andMontalbán when they were thinking Vaught’s conjecture for Boolean algebras.
That question is still open. It is also open whether an analog of Lemma 4.7 holds
for Boolean algebras.

4.1. Basic results on Scott ranks of linear orderings. To prove the basic results
about∼α , we need a few lemmas thatwill help us compute the Scott ranks of various
linear orderings. Most of the bounds in these lemmas are probably not sharp, but
are enough for our purposes.
We will repeatedly use the fact that (A, a1, . . . , ak) ≤� (B, b1, . . . , bk), where

A = A0+{a1}+A1+{a2}+· · ·+{ak}+Ak andB0+{b1}+B1+{b2}+· · ·+{bk}+Bk,
if and only if Ai ≤� Bi for each i ≤ k (see [1, Lemma 15.7]). It follows that the
Πin
α -type of a tuple (a1, . . . , ak) in A, is determined by the Πin

α -theories of the Ai
for i = 0, . . . , k.
Given a linear ordering A and x ∈ A, we use A<x to denote the sub-linear-
ordering of A with domain {a ∈ A : a < x}.
Lemma 4.3. For two linear orderings A, B,
max{SR(A), SR(B)} ≤ SR(A+ 1 + B) ≤ max{SR(A), SR(B)}+ 2.

Proof. Let as call c the element in place of the “1” in A + 1 + B. First, to
show that SR(A) ≤ SR(A + 1 + B) we observe for ā, b̄ ∈ A<� and α ∈ �1, we
have that (A; ā) ≤α (A; b̄) if and only if (A + 1 + B; ā, c) ≤α (A + 1 + B; b̄, c).
For each α < SR(A) we know that there are tuples ā, b̄ ∈ A<� such that ā ≤α b̄
but ā �≡α+1 b̄ within A (as otherwise A would have Scott rank ≤ α [1]). But then
the same is true for āc and b̄c withinA+1+B, showing that α < SR(A+1+B).
The same way we can show that SR(B) ≤ SR(A+ 1 + B).
For the other inequality, let α = max{SR(A), SR(B)}. Then, each of A and B
have a Πin

α+1 Scott sentence, and hence A+ 1 + B has a Σinα+2 Scott sentence saying
that there exists an element such that the linear ordering to the left satisfies the Scott
sentence for A, and the one to the right the sentence for B. It then follows that
SR(A + 1 + B) ≤ α + 2. �
Corollary 4.4. If α is a limit ordinal, then ∼α is an equivalence relation on any
linear ordering L.
Proof. Symmetry and reflexivity are obvious from the definition. Transitivity
follows from the lemma above. �
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Lemma 4.5. For two linear orderingsA, B,
SR(A + B) ≤ max{SR(A), SR(B)} · 2 + 3.

Proof. Let α = max{SR(A), SR(B)}.
First, suppose that there are some x ∈ A and y ∈ B such that A<x ∼= A+ B<y .
Via this isomorphism we get a z ∈ A such that (z, x)A ∼= (x, y)A+B , which by the
Lemma 4.3 we know has Scott rank ≤ α. But then A + B ∼= A<x + 1 + (z, x)A +
1+B>y , all of which have Scott rank≤ α, and by Lemma 4.3, SR(A+B) ≤ α+2.
Suppose now that for no x ∈ A and y ∈ B isA<x ∼= A+B<y . We can then define
theA-cut withinA+B as the set of all z ∈ A+B such that (A+B)<z is isomorphic
to A<x for some x ∈ A. This is a Σinα+1 formula using that each A<x has a Πin

α+1
Scott sentence. Now, to define an orbit inA+B all we have to do is find its definition
within eitherA orB, and then relativize this definition to the Scott sentence of either
A or B, getting a α · 2 + 2 definition. It follows that SR(A + B) ≤ α · 2 + 3. �
The next lemma will become handy.

Lemma 4.6 (Lindenbaum [22, Theorem 1.44]). If X ,Y are linear orderings such
thatX is isomorphic to an initial segment of Y and Y is isomorphic to an end segment
of X , then X ∼= Y.
The following lemma is in the spirit of [28, Lemma 2.1.3].

Lemma 4.7. If SR(L<x) < α for all x ∈ L, then SR(L) ≤ α + 4.
Proof. The proof is divided in two cases.
Case 1: Suppose that for co-finally many x ∈ L, the set {y ∈ L : L<y ∼= L<x}
is bounded above in L. Take z ∈ L. We will find a b ∈ L such that the following
formula defines the automorphism orbit of z within L:
Φb(w): There exists v > w such that L<v ∼= L<b , and for every u ≥ v with
L<u ∼= L<b , we have that L<u |= ϕz,b(w),

where ϕz,b is the Πin
α formula that defines the orbit of z within L<b . The formula

Φb(w) is Σinα+2 because checking “L<v ∼= L<b” is Πin
α (as a formula with one free

variable v) using that L<b has a Πin
α Scott sentence. We now need to prove two

things:

(1) There is a b such that for every u ≥ bwithL<u ∼= L<b wehave thatϕz,u = ϕz,b .
(2) For such b, the formula Φb(w) defines the orbit of z.

For (1) we chose x > z and b > z such that {y ∈ L : L<y ∼= L<x} is bounded by
b ∈ L. Take u ≥ b with L<u ∼= L<b . The supremum of the set {y ∈ L : L<y ∼= L<x}
determines a cut in both L<u and L<b which is invariant under automorphisms.
The right part of the cut within both L<u and L<b must then be isomorphic, and
hence there is an isomorphism between L<u and L<b leaving the left part of the
cut fixed. This isomorphism leaves z fixed, and hence ϕz,u = ϕz,b . To show (2) we
observe in Φb(w) we can now replace L<u |= ϕz,b(w) by L<u |= ϕz,u(w). It is clear
now that Φb(z) holds, just because L<u |= ϕz,u(z) holds for any u and z, and hence
any w automorphic to z satisfies Φb(w) too. For the other direction, suppose now
L |= Φb(w) with witness v. Since L<v |= ϕz,v(w), there is an automorphisms ofL<v
mapping z to w. This automorphism can now be extended to an automorphism of
the whole of L mapping z to w.
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Case 2. Suppose we are not in any of the previous case. Furthermore, suppose
that for any a, L≥a does not satisfy the condition of Case 1, as otherwise we would
have SR(L>a) ≤ α + 2 and by Lemma 4.3 that SR(L) ≤ α + 4.
Take z ∈ L; again, we will find a b0 ∈ L such that the formula Φb0 (w) defines the
automorphism orbit of z in L. Again, the main step is to find b0 as in condition (1)
above. The same proof we used for (2) above would then show that Φb0 (w) indeed
defines the automorphism orbit of z.
Let a0 > z be such that {y ∈ L : L<y ∼= L<a0} is unbounded,which exists because
we are not in Case 1. Let b0 be such that L<b0 ∼= L<a0 and {y ∈ L : [a0, y)L ∼=
[a0, b0)L} is unbounded; such b0 exists because otherwise, L≥a0 would satisfy the
condition of case 1. Take a > b0 with L<a ∼= L<b0 . To show that ϕz,a = ϕz,b0 we
will show that there is an isomorphism between L<a and L<b0 that leaves z fixed.
Call L<a0 = A, [a0, b0)L = B and [a0, a)L = C.

��|z a0 | |b0 |a L
A

��
B ��

C
��

We will now prove that B ∼= C, and thus that here is an isomorphism between
A + B and A + C fixing A, and hence fixing z. Clearly B is an initial segment
of C (because b0 < a), but also note that C is isomorphic to an initial segment
of B because {y ∈ L : [a0, y)L ∼= B} is unbounded, and hence there is such a
y > a. Via the isomorphism from L<b0 to L<a0 , the image of a0 is some b1 such
that [a0, b0)L ∼= [b1, a0)L ∼= B. Via the isomorphism from L<a to L<a0 , the image
of a0 is some a1 such that [a0, a)L ∼= [a1, a0)L ∼= C. Then, either a1 ≤ b1 or b1 ≤ a1,
so, either B is a finial segment of C or C is a final segment of B. In either case,
by Lemma 4.6 we get that B and C, as isomorphic, which is what we needed to
get (1). �
Lemma 4.8. For a computable linear ordering L of high Scott rank, L/∼�CK1 is
dense.

Proof. Suppose, towards a contradiction, that a0 and a1 are in adjacent
equivalence classes in L/∼�CK1 . That means that for every x ∈ (a0, a1)L,

either SR((a0, x)L) < �CK1 or SR((x, a1)L) < �CK1 .

By Σ11 bounding, there is an α < �
CK
1 such that for every x ∈ (a0, a1)L either

SR((a0, x)L) < α or SR((x, a1)L) < α. Write (a0, a1)L as A+ B where A consists
of the x’s with SR((a0, x)L) < α and B of the other ones. By the previous lemma,
we have thatSR(A) ≤ α+4, and, applying the previous lemma toB∗, thatSR(B) ≤
α + 5 too. By Lemma 4.5, we then have that SR((a0, a1)L) ≤ α · 2 + 11 < �CK1 ,
and thus that a0 ∼�CK1 a1, contradicting the assumption that they are in different
equivalence classes.
To see thatwemust havemore thanone equivalence class, consider 1+L+1. Since
SR(L) ≥ �CK1 , the 1s at the extremes are not ∼�CK1 -equivalent. So 1 + L+ 1/∼�CK1
has more than one element and is dense by the previous paragraph. So L/∼�CK1
must also have more than one equivalence class. �
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4.2. Vaught’s conjecture for Linear orderings. In this section, we give a new proof
of Rubin’s theorem that the theory of linear orderings satisfies Vaught’s conjecture
(in the sense that all extensions do) [23,28].
Consider a infinitary sentence T in the language {≤}, which extends the theory
of linear orderings. We may assume T is given by a computably infinitary sentence,
as we can always relativize the rest of the proof later. If there is a bound on the
Scott ranks of the models of T , we then have that the isomorphism problem among
the reals coding models of T is Borel (see [11, Theorem 12.2.4]). Then, we can
apply Silver’s theorem [26], which implies that every Borel equivalence relation has
either countably or continuum many equivalence classes, to get that T has either
countably or continuum many models.
Thus, let us assume that T is unbounded, and hence it has a model L with
�CK1 = �L1 ≤ SR(L) (by Lemma 2.1). Let us also assume that T has less than
continuum many models. Relativizing again, let us assume thatL has a computable
copy.
Letα be a limit ordinal be such thatT isΠc

α . Take any countable linear orderingA.
We will show that there is a linear ordering L̂ ≡α L such that L̂/∼�CK1 ∼= A, showing
that there are continuum many models of T . (Notice that if L̂ ≡α L, then L̂ |= T .)
ByLemma 4.8,L/∼�CK1 is dense. By using an isomorphismbetweenQ andQ·Z·A,
we can write

L =
∑
q∈A

(∑
n∈Z

Bq,n
)
,

where each Bq,n is such that Bq,n/∼�CK1 is still dense and hence SR(Bq,n) ≥ �CK1 .
Let α < α0 < a1 < α2 < .... be a sequence of limit ordinals with limit�CK1 . For each
q ∈ A and n ∈ Z, let B̂q,n be such that B̂q,n ≡α|n| Bq,n andα|n| ≤ SR(B̂q,n) ≤ α|n|+1.
To build such a linear ordering B̂q,n one needs to construct a model of the Πc

<α|n| -
theory ofBq,n, but omitting all the nonprincipal Πc

<α|n| -types that are realized in any
model of T (for the type omitting theorem see [2, Theorem III.3.8]). That there are
only countably many such types follows from the fact that otherwise there would be
continuum many, and hence there would be continuum many models of T , which
we are assuming there are not.
Let L̂ = ∑q∈A(

∑
n∈Z B̂q,n). By Lemma 4.1 we then have that L ≡α L̂. It is not

hard to see that if we are given b ∈ B̂q,n and c ∈ B̂p.m, then b ∼�CK1 c if and only
if p = q. So, for each q ∈ A we have that (∑n∈Z B̂q,n) is a single ∼�CK1 equivalence
class and L̂/∼�CK1 ∼= A.
4.3. Linear orderings are uniformly effectively dense. We now give a proof of
Theorem 1.4 that the theory of linear orderings has the no-intermediate-extension
property. This would give yet another proof of Vaught’s conjecture for linear order-
ings, although the one in the previous sub-section is more direct. To prove it we use
Theorem 1.14 and the following theorem.

Theorem 4.9. The theory of linear orderings is uniformly effectively dense.

Proof. Consider again a Πin
α sentence T in the language {≤}, which extends the

theory of linear orderings, and which is effectively unbounded. We will prove that
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there is a Πin
α... sentence � such that both T ∧� and T ∧ ¬� are unbounded below

�CK1 . We may assume T is given by a computably infinitary sentence, and, as above,
assume T has a computable model L of high Scott rank, as we can relativize the
proof later. Also, using that L/∼�CK1 is dense as above, we find a decomposition

L = (1 +A0 + 1 +A1 + 1 +A2 + 1 + · · · ) + (· · ·+ B2 + B1 + B0),

where Ai and Bi have Scott rank at least �CK1 for all i . Let us assume α is a limit
ordinal; if not consider α+� instead.Wewill define aΠin

α+�·2 sentence extendingT ,
false about L and that is unbounded below �CK1 . We consider three cases.
Case 1: Suppose that for some i , Ai is not α-equivalent to any linear ordering
of Scott rank α. We will now build Â ≡α Ai which satisfies some type which is
not realized in L. By Lemma 2.2, we have that if a structure Âi |= Πc

<α-theory(A),
then Âi ≡α Ai . We will define Âi using the type-omitting theorem (see for instance
[2, Theorem III.3.8]) as a model of Πc

<α-theory(A) which omits the following
countable list of nonprincipal types: For eachΠc

<α-typeΦ(x0, . . . , xk) wewill define
a Πc

<α-type Φ̂(x1, . . . , xk−1) obtained by essentially forgetting about what happens
to the left ofx0 and to the right ofxk. In otherwords, given aΠc

<α-typeΦ(x0, . . . , xk)
realized in L by a0 < a1 < · · · < ak , we let Φ̂(x1, . . . , xk−1) be the Πin

<α-type of
a1, . . . , ak−1 within the linear ordering (a0, ak)L. The list of types to omit consists
of all the nonprincipal Πc

<α-types Φ̂(x1, . . . , xk−1) that come from a Π
c
<α-type

Φ(x0, x1, . . . , xk−1, xk) realized in L. Let L̂ be defined by replacing Ai by Âi ,
and leaving the rest of L untouched. Since the rest of L has Scott rank at least
�CK1 , so does L̂. By our assumption, Âi does not have Scott rank α, and hence
there is some tuple a1 < · · · ak−1 ∈ Ai satisfying some nonprincipal Πc

<α type Γ̂.
Let Γ be the Πc

<α-type within L̂ of a0, a1, . . . , ak (where a0 and ak are the 1’s
surrounding Ai). This type is not realized in L because it would have been omitted
in Âi otherwise. The Σinα+1 formula saying that there is a tuple in L satisfying Γ is
true in L̂ but not in L. Since T and this formula are true in L̂, it is unbounded
below �CK1 .
Case 2. Suppose now that, for some i ,Ai is notα-equivalent to any linear ordering
of Scott rank α + �. The proof is essentially the same as that for case 1 above.
The separating formula is now Σinα+�+1.
Case 3. None of the previous cases hold. Let L̂ be built by replacing each Ai by
an α-equivalent linear ordering of Scott rank α. Let L̃ be built by replacing each
Ai by an α-equivalent linear ordering of Scott rank α + �. Both have Scott rank
at least �CK1 because

∑
i∈�∗ Bi does. The Σin<α+�·2 formula that says that there is

some x such that SR(L<x) = α + � is true in L̃ and not in L̂, both being models
of T . So, both, T , together with this formula and together with its negation, are
both unbounded below �CK1 . �
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