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Abstract

This work is devoted to improving relativistic self-focusing of intense laser beam in underdense unmagnetized plasma.
New density profiles are introduced to achieve beam width parameter up to the wavelength of the propagating laser.
By investigating variations of the beam width parameter in presence of different density profiles it is found that the
beam width parameter is considerably decreased for the introduced density ramp comparing with uniform density and
earlier introduced density ramp profiles. By using this new density profile high intensity laser pulses are guided over
several Rayleigh lengths with extremely small beam width parameter.
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INTRODUCTION

Since the first suggestion of Askarian (1962), self-focusing is
an extensively studied phenomenon in the field of high inten-
sity laser interaction with nonlinear media. When laser inten-
sity exceeds the critical power Pcr≅ 17 (ω/ωp)

2 GW, which
ω and ωp are the laser frequency and the plasma frequency,
respectively (Sun et al., 1987), quiver motion of the gener-
ated relativistic electrons increase the mass of electrons. As
a consequence, transverse gradient of the refractive index
leads to confinement of the laser beam to the propagation
axes and decreases the beam width parameter that gives
rise to the relativistic self-focusing (Hora et al., 1975;
Osman et al., 2000). Due to mass increase in relativistic self-
focusing, the electron mass replaced by m0γ where γ= (1+
a2/2)1/2 is relativistic factor, a= e|E|/(m0cω) is normalized
laser amplitude and E, e, m0 are the amplitude of the laser
electric field, the electron charge, and the electron rest
mass, respectively. Therefore, the plasma dielectric function
modified as ε= 1− ω2

p/γω
2, where ωp= (4πnee

2/m0γ)
1/2 is

the plasma frequency (Boyd et al., 2008). The ponderomo-
tive force also causes nonlinear electron perturbation that
exerts a radial force and expels the electrons radialy outward
from the intense laser beam axes, which ends to ponderomo-
tive self-focusing (Mori et al., 1988; Perkins & Valeo, 1974).

Ponderomotive self-focusing causes decreasing of electron
density and increasing the refractive index.

Resent advances in ultra-intense short-pulse lasers and
their numerous applications stimulated the research activities
in this field such as generation of high-energy electron and
ion beams and their acceleration (Leemans et al., 2006;
Láska et al., 2006; Lihua et al., 2004; Geddes, 2005; Hoff-
mann et al., 2005; Schlenvoigt et al., 2008; Xie et al.,
2009; Zhou et al., 2007), monoenergetic electron beam
(Fature et al., 2004; Singh et al., 2008; Sadighi-Bonabi
et al., 2009a, 2009b, 2010a, 2010b), monoenergetic ion
beam generation (Hegelich et al., 2006), X-ray emission
and X-ray lasers (Zhang et al., 1998), harmonic generation
(Butylkin & Fedorova, 1994), fusion with the fast ignition
scheme (Lalousis & Hora, 1983; Hora, 2004, 2009; Hora
et al., 2009; Ghoranneviss et al., 2008; Yazdani et al.,
2009; Sadighi-Bonabi et al., 2010c, 2010d). These lasers
are also used in the transmutation of hazardous radioactive
wastes to valuable nuclear medicine (Sadighi-Bonabi &
Kokabi, 2006; Sadighi-Bonabi et al., 2010e; Sadighi &
Sadighi-Bonabi, 2010).

In the entire above mentioned ultra-intense laser inter-
actions, self-focusing has an important role and it should
be carefully studied. In order to guide high intensity laser
pulses over several Rayleigh lengths, it is important to
employ self-focusing by a defined density profile. This
achievement can have very fundamental impact in the
recent advances of laser-plasma interaction and fast ignition
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systems. Self-focusing effects have been observed in
laser-plasma interaction that enables the laser beam to propa-
gate over several Rayleigh lengths (Boyd et al., 2008;
Schlenvoigt et al., 2008). Self-focusing has been investigated
in the interaction of laser beam with homogenous and
inhomogeneous plasma (Upadhyay et al., 2002; Varshney
et al., 2006; Kaur & Sharma, 2009; Sharma & Kourakis,
2010).
In this work, a complete study of density ramp profiles is

presented and the self-focusing of laser beam along the
propagation axis in axially inhomogeneous plasma is simu-
lated. It is shown that with the introduced density ramp pro-
file and by optimizing the laser and plasma parameters, the
laser beam width parameter is reduced up to the laser
wavelength.

VARIATION OF BEAM WIDTH PARAMETER

For investigating of electron density variation of unmagne-
tized cold plasm, the propagating of a Gaussian laser beam
E = x̂A e−i(ωt−k0z) in a cylindrical coordinate system is con-
sidered, where k0(z)= (ω0/c)ω0/c)ε0

1/2 and ε0 is the
plasma dielectric constant. Following the Tripathi et al.
(2005) approach, at z> 0 one have a2= (a0

2/f2)exp(−r2/
r20 f2), where f is the laser beam width parameter and a0=
eA0/(mωc) is the laser intensity parameter.
As the Gaussian beam have an intensity gradient along its

cross-section, the radial ponderomotive force pushes the
electrons outward of propagation axis, on the time scale of
a plasma period ωp

−1 and creates a radial space charge field
of Es=−∇φs, therefore, considering Poisson’s equation,
electron density modified as:

ne = ne0 + (1/4πe)∇2
⊥φs. (1)

Where φs is the electric potential, which is due to the
radial space charge. In quasi-steady state one can have
Fp=−∇φp= eEs, where φp is the radial ponderomotive
force and it is defined as

φ p = −(mc2/e)((1+ a2/2)1/2 − 1). (2)

Therefore, the modified electron density is obtained similar
to the works of Tripathi et al. (2005), Gupta et al. (2007a),
and Sadighi-Bonabi et al. (2010f, 2010g):

ne = ne0 z( ) 1− c2

ω2
p r

2
0 f

2
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1+ a2/2
( )0.5

{

× 1− r2

r20 f
2
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.

. (3)

And the dielectric constant of plasma is obtained as

ε = 1− ω2
p/γω

2

= 1−

4πn0 z( ) 1− c2
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in paraxial approximation (r2 « r0
2 f2), the dielectric constant

of plasma can be expanded as ε= ε0 – r2/r0
2. As a result ex-

panding of in this approximation, leads to:
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Then expansion coefficients are obtained as:

ε0 = 1− ω2
p

ω2

1

1+ a2/2
( )1/2

( )
+ c2a2

ω2 r20 f
2 1+ a2/2
( ) ,

f = ω2
p

4ω2

a2

f 2 1+ a2/2
( )3/2 1+ c2 8+ a2

( )
r20ω

2
p f

2 1+ a2/2
( )1/2

( )
.

(6)

Regarding the wave equation approaches (Gupta et al.,
2007a); the second order boundary equation for the laser
beam width parameter is obtained as:

∂2f

∂ξ2
= 1

f 3
− 1

2ε0

∂f
∂ξ

∂ε0
∂ξ

− R2
d

r20 ε0
f f . (7)

Where ξ= z/Rd is dimensionless propagation length, with
Rd= ωr0

2/c as Rayleigh length. The first term on the right-
hand side of Eq. (7) is due to the diffraction effect, the
second term is due to the plasma inhomogeneities, and the
last term is the nonlinear term that is responsible for relativis-
tic self-focusing. Using initial boundary condition at z= 0 as
f= 1 and initial plane front wave (df/dξ= 0), one can solve
this equation and investigate changing of the beam width par-
ameter along the laser propagation in plasma.

R. Sadighi-Bonabi & M. Moshkelgosha454

https://doi.org/10.1017/S0263034611000589 Published online by Cambridge University Press

https://doi.org/10.1017/S0263034611000589


The critical laser relativistic intensity of I= 1.21 × 1018

(w/cm2) is assumed for Nd:Glass laser wavelength λ=
1.06 μm and initial laser spot size chosen as r0= 10λ=
10.6 μm. For propagation of laser in plasma without reflect-
ing, electron density must be regarded less than the critical
density ncr= (ω2m/4πe2)≃ 1021(cm−3). Therefore, laser fre-
quency must be larger than the plasma frequency.
Figure 1 shows the plots of Eq. (7) for propagation of the

laser beam in plasma with constant density (ne0= n0), by
considering the self-focusing effect (solid curve) and ne-
glecting the self-focusing (dashed curve). This plot indicates
that by neglecting the self-focusing term in Eq. (8), the laser
beam diverges during travelling in the plasma medium. How-
ever, by considering the self-focusing, laser beam width
parameter decreases due to the relativistic effects and ponder-
omotive force. Later the beam width starts to increase due to
the attraction of the electrons with the ions and decreasing of
the dielectric constant. As a consequence, the laser beam un-
dergoes an oscillatory focusing/defocusing behavior along
the propagation direction.
Figure 2 shows the electron density distribution ne, versus

r. As one can notice from the beam width parameter f= 1

that is related to unfocused beam, the electrons distributed
uniformly along r (solid curve). However, for the focused
beams ( f is less than one) that are shown by dashed and
point curves, one can see for smaller f the electrons distri-
bution become more inhomogeneous and the electrons
distributed in region far from the axis due to the ponderomo-
tive force.

One can also investigate the electron density distribution
along the propagation direction of the laser beam. Regarding
Eq. (3) and substituting the beam width variation ( f ), one
can have an oscillatory distribution of ne and this is comple-
tely agrees with the result of self-focusing of the laser beam.
This is shown in Figure 3 and as one can see for regions with
ne(z)/n0= 1, which is related to the uniform distribution of
the electron density, the beam width parameter value is f= 1
and in the regions with ne(z)/n0= 0 that is related to the maxi-
mum self-focusing, the beam width parameter is minimum.
Figures 1 and 3 are in good agreement with the work of
Brandi et al. (1993), which is obtained with a different
approach.

Fig. 1. Dependence of beam width parameter f on distance of propagation in
underdense plasma neglecting self-focusing (dash curve) and for self-
focusing with uniform electron density (solid curve).

Fig. 2. (Color online) The changes of electron density along r: for
f= 1(solid curve), f= 0.6 (dash curve), f= 0.5 (dot curve).

Fig. 3. (Color online) The changes of electron density (solid curve) and
beam width parameter along laser beam propagation (z).

Fig. 4. Dependence of beam width parameter f on distance of propagation ξ
in underdense plasma mass for ramp density profile with function as ne0=
n0 × tan(z/d ) (dot curve) and ne0= n0+ n0 tan(z/d ) (solid curve).

Self-focusing up to the incident laser wavelength 455

https://doi.org/10.1017/S0263034611000589 Published online by Cambridge University Press

https://doi.org/10.1017/S0263034611000589


THE PROPOSED DENSITY RAMP AND THE
RESULTS

To overcome the defocusing of laser beam due to attraction
of centralized ions at the axis, Gupta et al. (2007a) intro-
duced a density ramp varying along laser propagation (z)
in the form of n0+ tan(z/d ). Where n0 is the electron density
at z= 0 and d is a constant factor. Regarding dimension cor-
rection revised papers are presented and an acceptable form
of density ramp is introduced as n0 × tan(z/d ) (Gupta
et al., 2007b; Sadighi-Bonabi et al., 2010f, 2010g). Introdu-
cing the new density profile of ne0= n0+ n0tan(z/d ), one
can investigate the beam width variation for mentioned
profile.
In Figure 4, the beam width parameter variation, for two

different density ramps are compared at the same conditions.
A considerable decrease of beam width parameter for intro-
duced density ramp of ne0= n0+ n0tan(z/d ) is obtained in
comparison to the earlier profile of ne0= n0 × n0tan(z/d ).
By using here introduced density ramp, the laser beam
width parameter decreased up to 20% of the initial value.
The frequency of oscillation also decreased noticeably.
Self-focusing can produce extremely high laser intensity

that can have numerous important applications such as ELI

(www.extreme-light-infrastructure.eu/eli-home.php), ion ac-
celeration in fusion applications (Ting et al., 1997; Hegelich
et al., 2006). The realistic expectation is focusing of high
power lasers in dimensions comparable to the laser wave-
length. For this purpose, even more useful density ramp is in-
troduced as ne0= n0+ n1tan(z/d ). Based on this new ramp
profile Figure 5 is produced where self-focusing for different
n1 is plotted.
Simulating the Nd:Glass laser parameters in the intensities

of I= 1017, I= 1.2 × 1018, I= 1019 (W/cm2), one can see
that the best self-focusing, occur at the critical relativistic in-
tensity of Icr= 1.2 × 1018 (W/cm2). This is shown in
Figure 6.
Regarding the optimized laser and plasma parameters and

introducing the above mentioned density ramp, beam width
parameter of close to 10% of the initial value is obtained
and this is shown in Figure 7. In this condition, the laser
beam width parameter reduced up to about 10% of its initial
beam width parameter and this is equal to about one laser
wavelength.

CONCLUSION

In this work, simulation and optimization of the self-focusing
of laser beam along the propagation axis is investigated. Fo-
cusing of the laser beam up to the laser wavelength by the
new density profile is achieved. The effect of different
laser intensities is also studied and the best intensity for
achieving minimum laser beam width parameter is shown.
This achievement can have very important impact in fast
ignition processes in which self focusing is very important
factor.
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