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Slip velocity over a perforated or patchy surface
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Shear flow over a solid surface containing perforations or patches of zero shear stress
is discussed with a view to evaluating the slip velocity. In both cases, the functional
dependence of the slip velocity on the solid fraction of the surface strongly depends
on the surface geometry, and a universal law cannot be established. Numerical results
for flow over a plate with circular or square perforations or patches of zero shear
stress, and flow over a plate consisting of separated square or circular tiles corroborate
the assertion.
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1. Introduction
The concept of macroscopic slip velocity over nominally solid surfaces containing

regions of zero shear stress has gained increasing attention in recent years due to its
relevance to the hydrodynamics of microfluidics devices and to the microphysics
of superhydrophobic surfaces (e.g. Karniadakis & Beskok 2001; Zheng, Yu &
Zhao 2005). From the viewpoint of mathematical analysis, the problem is similar to
that of shear flow over a porous or perforated surface separating two flow domains,
where a shear flow is imposed on one side and the fluid drifts with a uniform velocity
on the other side. A common objective in both cases is the computation of the slip
velocity shifting the streamwise velocity profile normal to the surface.

Tio & Sadhal (1994) acknowledged the occurrence of apparent slip in shear
flow over a porous membrane and performed detailed calculations for a model
configuration consisting of a zero-thickness plate perforated by periodic parallel slits.
Longitudinal (unidirectional) and transverse (two-dimensional) configurations were
considered where the fluid undergoes simple shear flow with a specified shear stress
far above the plate and is quiescent far below the plate. In an earlier study, Philip
(1972a,b) performed similar calculations for flow over a flat or cylindrical surface
hosting solitary or periodic stripes of vanishing shear stress. In fact, the Tio & Sadhal
(1994) and Philip (1972a,b) problems are equivalent, in that the flow in the second
problem can be deduced from that in the first problem by a mere reflection with respect
to the plate followed by superposition. In related efforts, Wang (2001) studied flow in
a two-dimensional channel divided into two compartments by a slotted plane, where
the motion is driven by the parallel translation of the walls. Other configurations
involving flow over grated surfaces were considered more recently by Ng & Wang
(2009).
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Pozrikidis (2001) discussed shear flow over a particulate plate representing a finite-
thickness membrane. The fluid velocity was restricted to either vanish or tend to an
a priori unknown constant value far below the plate. A distinction was made between
the slip velocity shifting the linear velocity far above the plate Us and the uniform
drift velocity established far below the plate Ud . The direction of the slip and drift
velocities is not necessarily parallel to that of the simple shear flow imposed above the
plate due to the possible anisotropic geometrical structure of the plate. Because the
difference Us − Ud is on the order of the plate thickness, the slip and drift velocities
are identical only in the case of a zero-thickness plate. By adding to the flow over
the particular plate its reflection with respect to the plate, we obtain shear flow over
a surface containing patches of zero shear stress exhibiting macroscopic slip velocity
Vs = Us + Ud .

To reconcile and unify the results of the previous authors, in § 2 we discuss
the functional dependence of the slip velocity on the surface liquid fraction by
summarizing and comparing the results of previous authors. New boundary element
solutions demonstrating that the slip velocity strongly depends on the morphology of
a surface are presented in § 3, and further comments are made in § 4.

2. Holes and tiles
In the configuration considered by Philip (1972a,b) and Tio & Sadhal (1994), far

above a plate perforated by parallel slits, the velocity component parallel to the
plate exhibits the asymptotic form ux � ξy + Us , where ξ is the shear rate, y is the
distance from the plate and Us is a slip velocity. By adding to this primary flow its
reflection with respect to the plate, we obtain shear flow past a surface with zero
shear stress over an array of slits. Detailed analysis yields an exact expression for the
corresponding slip velocity,

Vs = 2Us = − δ

2π
ξL ln

(
cos

πφl

2

)
, (2.1)

where L is the period of the perforations, φl = (L−a)/L is the surface liquid fraction,
a is the length of the solid segments and L − a is the slit opening inside each period.
The solid surface fraction is φs = 1 − φl = a/L. The dimensionless coefficient δ has
the value of two in the case of unidirectional longitudinal flow, and the value of unity
in the case of two-dimensional transverse flow. In the limit of vanishing slit opening,
φl → 0, we obtain

Vs � δπ

16
ξL φ2

l . (2.2)

In the diametrically opposite limit of dominant slit opening, φs → 0, we obtain

Vs � − δ

2π
ξL

(
ln φs + ln

π

2

)
. (2.3)

This expression shows that the slip velocity diverges logarithmically with respect to
the surface solid fraction. Physically, a one-dimensional array of thin wires is unable
to sustain a longitudinal or transverse shear flow. A similar logarithmic divergence
with respect to the solid fraction is observed in the permeability of an idealized
two-dimensional porous medium consisting of parallel cylinders for longitudinal and
transverse flow (Hasimoto 1959; Sparrow & Loeffler 1959).

Smith (1987) and Davis (1991) presented analytical solutions for shear flow past a
solitary circular orifice on an infinite plane wall. Pozrikidis (2001) used their results to
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derive an expression for the slip velocity in the case of shear flow over a zero-thickness
plate perforated by a large number of well-separated circular holes of radius b. By
adding to this flow the reflection of the flow with respect to the plate, we obtain the
slip velocity

Vs = 2Us � 8

9
nξb3 =

8

9π
ξb φl, (2.4)

where n is the surface number density, defined as the surface concentration of the
holes; the surface liquid fraction is φl = nπb2. A factor of π was inadvertently omitted
in the denominator of the first fraction in (54) of Pozrikidis (2001), and should be
carried over to two subsequent equations. Expression (2.4) was recently rederived by
Sbragaglia & Prosperetti (2007). If the circular holes are deployed on a square lattice
with side length L, n = 1/L2 and φl = πb2/L2, yielding

Vs � 8

9
ξL

(φl

π

)3/2

, (2.5)

applicable in the limit of disappearing holes, φl → 0. Comparing (2.5) with (2.2), we
observe that, in the limit φl → 0, the exponent of φl is higher in two-dimensional than
in three-dimensional flow.

Pozrikidis (2001, 2005) carried out an asymptotic analysis and performed boundary-
integral computations for an idealized membrane consisting of a doubly periodic array
of spherical or spheroidal particles in three-dimensional flow, and a periodic array of
cylinders in unidirectional and two-dimensional flow. In the case of a square array of
spherical particles of radius a, the slip velocity for small solid fraction is

Vs = 2Us � 1

3π
ξL

(
L

a
+

3

4
c

)
=

1

3
ξL

(
1√
πφs

+
3

4π
c

)
, (2.6)

where L is the lattice side length, φs = πa2/L2 is the surface solid fraction of the
projection of the particulate sheet in the xy plane, and c = 5.85 is a numerical
coefficient. Comparing (2.6) with (2.3), we observe that, in the limit φs → 0, the
divergence of the slip velocity with respect to φs is stronger in three-dimensional than
in two-dimensional flow.

We conclude that the functional form of the slip velocity on the liquid or solid areal
fraction strongly depends on the geometry of the surface, and a universal law cannot
be established. To further demonstrate this strong dependence, we visualize flow over
an idealized perforated surface consisting of a doubly periodic array of square plates
with side length 2a separated by uniform gaps along the four sides. The surface solid
fraction of the surface is φs = 4a2/L2, where L is the lattice side length. For shear flow
parallel to two square sides and perpendicular the other two square sides, in the limit
2a → L and correspondingly φl → 0, we obtain a superposition of longitudinal and
transverse shear flow over a one-dimensional array of slits separating nearly touching
plates. Applying (2.2) for φl = 1−2a/L and δ = 2 for the longitudinal flow and δ = 1
for the transverse flow, neglecting the small overlapping gaps at the four corners of
each plate, and then adding the individual slip velocities, we find

Vs � 3π

16
ξL

(
1 − 2a

L

)2

=
3π

16
ξL (1 −

√
φ

s
)2. (2.7)

A similar formula can be derived for rectangular plates.
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Figure 1. (a, b) Discretization of a plane wall perforated by a doubly periodic array of circular
holes of radius b = 0.2L into 192 boundary elements over each period, and dependence of
the slip velocity on the surface liquid fraction. The curve in (b) represents the predictions of
the asymptotic theory expressed by (2.4). (c, d) Same as (a, b) but for a doubly periodic array
of square holes; a configuration with square holes of half side length b = 0.2L is shown in
(c). In (b, d), the diamonds, × symbols, squares and circles correspond to boundary element
discretization into 12, 48, 192 and 768 boundary elements, and the crosses arise by numerical
extrapolation.

3. Boundary element solutions
Boundary element solutions of the equations of Stokes flow were computed for

shear flow over a flat plate perforated by a square array of circular or square holes
(figure 1), and shear flow over a permeable wall consisting of a doubly periodic array
of square or circular plates (figure 2). The integral formulation involving the doubly
periodic Green’s function of three-dimensional Stokes flow and the implementation
of the numerical method are discussed by Pozrikidis (2001). Briefly, one period of
the solid portion of the surface is divided into six-node boundary elements, and
the boundary traction is computed by solving a Fredholm integral equation of the
first kind supplemented by an integral constraint requiring that the force exerted
on the boundaries balances the force imparted to the surface by the shear flow.
An important feature of the formulation is that the slip velocity arises directly as
part of the solution. Boundary element discretization was carried out by custom-made
methods based on the successive subdivision of an eight or twelve element hard-coded
pattern. The computation of the Green’s function was expedited by the use of Ewald
sums (Pozrikidis 1996).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

09
99

26
67

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112009992667


Slip velocity over a perforated or patchy surface 475

0 0.5–0.5 1.0–1.0 1.5–1.5

0

0.5

–0.5

1.0

(a) (b)

(c) (d)

–1.0

0 0.5–0.5 1.0–1.0 1.5–1.5

x/L

x/L

y/
L

0

0.5

–0.5

1.0

–1.0

y/
L

0.2 0.4 0.6 0.8 1.00

0.5

1.0

1.5

0.2 0.4 0.6 0.8 1.0

φl

φl

V
s/
ξ
 L

0

0.5

1.0

1.5

V
s/
ξ
 L

Figure 2. Same as figure 1, but for a doubly periodic array of (a, b) square, and (c, d) square
plates with half side length a = 0.45L are shown in (a), and circular plates with radius
a = 0.45L are shown in (c).

Figure 1(a, b) illustrates a boundary element discretization and presents numerical
results for the slip coefficient in the case of shear flow over a flat plate perforated
by a square array of circular holes. The various symbols in figure 1(b) represent
results obtained by different levels of discretization, as explained in the caption. The
numerical results at small liquid areal fractions are in excellent agreement with the
predictions of the asymptotic theory expressed by (2.4), represented by the solid line
in figure 1(b). As the surface liquid fraction tends to the maximum possible value of
π/4 corresponding to touching holes, the slip velocity tends to a well defined limit.
The asymptotic solution underestimates the slip velocity at finite volume fractions.
Reliable numerical results could not be obtained for nearly touching holes due to the
skewness of the boundary element distribution.

Figure 1(c, d) illustrates a boundary element discretization and presents numerical
results for the slip coefficient in the case of shear flow over a flat plate perforated by a
square array of square holes. The numerical results for small liquid areal fractions are
in good agreement with the predictions of the asymptotic theory expressed by (2.4),
even though the theory strictly applies for circular holes. As in the case of circular
holes, reliable numerical results could not be obtained for liquid surface fraction near
unity. However, the numerical results clearly indicate that the slip velocity diverges
as φl → 1 due to the inability of the emerging wireframe to sustain the shear flow.

Figure 2(a, b) illustrates a boundary element discretization and presents numerical
results for the slip coefficient in the case of shear flow over a plate consisting of
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a square array of square plates. The physical configuration shown in figure 2(a)
is the mirror image of that shown in figure 1(c). As the plates tend to touch and
correspondingly the surface liquid fraction φl tends to zero, the numerical results for
the slip coefficient are in excellent agreement with the predictions of the asymptotic
analysis expressed by (2.7), represented by the dashed line in figure 2(b). In the
opposite limit where the plates shrink down to points and correspondingly φl tends
to unity, the slip velocity diverges. The functional dependence of the slip velocity on
φl in this limit is well described by (2.6) with c = 0, represented by the dotted line in
figure 2(b). Figure 2(c, d) shows corresponding results for shear flow over a surface
consisting of a square lattice of circular plates. The numerical results for the slip
coefficient are well described by the asymptotic theories for small and large liquid
surface fractions represented by the dashed and dotted lines.

4. Discussion
We have demonstrated that the slip velocity in shear flow over a perforated

or loosely tiled surface strongly depends on the geometry of the surface, and a
universal law cannot be established. In previous analysis and calculations discussed
earlier in this paper, the flow is unidirectional or else the motion of the fluid
is governed by the linear equations of Stokes flow applicable for low Reynolds
numbers. Pozrikidis (2004) assessed the effect of fluid inertia by computing numerical
solutions of the Navier–Stokes equation for two-dimensional transverse shear flow
over a periodic array of cylinders using a finite-difference method combined with
conformal mapping for generating an orthogonal grid. The results demonstrated that
fluid inertia promotes the magnitude of the slip and drift velocities. In view of the
nonlinearity of inertial flow, the significance of the boundary geometry is expected to
be even more pronounced in the case of Navier–Stokes flow.

Tangential shear flow over a perforated surface is complementary to normal flow
through a perforated surface. Sampson (1891) derived an exact solution for Stokes flow
through a single hole in an infinite plane. Wang (1994) used eigenfunction expansions
to study flow through a plane perforated by a double array of circular holes. His
results show that the boundary geometry is an important factor for determining the
pressure drop for a given flow rate.

This research was supported by a grant provided by the National Science
Foundation.
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