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We extend linear input/output (resolvent) analysis to take into account nonlinear triadic
interactions by considering a finite number of harmonics in the frequency domain
using the harmonic balance method. Forcing mechanisms that maximise the drag are
calculated using a gradient-based ascent algorithm. By including nonlinearity in the
analysis, the proposed frequency-domain framework identifies the worst-case disturbances
for laminar-turbulent transition. We demonstrate the framework on a flat-plate boundary
layer by considering three-dimensional spanwise-periodic perturbations triggered by a few
optimal forcing modes of finite amplitude. Two types of volumetric forcing are considered,
one corresponding to a single frequency/spanwise wavenumber pair, and a multi-harmonic
where a harmonic frequency and wavenumber are also added. Depending on the forcing
strategy, we recover a range of transition scenarios associated with K-type and H-type
mechanisms, including oblique and planar Tollmien–Schlichting waves, streaks and their
breakdown. We show that nonlinearity plays a critical role in optimising growth by
combining and redistributing energy between the linear mechanisms and the higher
perturbation harmonics. With a very limited range of frequencies and wavenumbers, the
calculations appear to reach the early stages of the turbulent regime through the generation
and breakdown of hairpin and quasi-streamwise staggered vortices.

Key words: transition to turbulence, boundary layer stability

1. Introduction

Methods for prediction of instability and transition have evolved considerably during the
past several decades. Advances, driven by increases in computer speed and memory,
include the availability of high-fidelity direct numerical simulation (DNS) and large-eddy
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simulation solutions for canonical wall-bounded flows (Sayadi, Hamman & Moin 2013),
the recognition of transient growth (non-modal instability) as a key mechanism and
mathematical formulations for optimal disturbances in linear and nonlinear frameworks
(Schmid & Henningson 2001; Schmid 2007; Kerswell 2018), and generalization of
parallel-flow analysis to global approaches to flows that are inhomogeneous in two or more
directions (Theofilis 2011).

Most of the stability studies concern linearised evolution of perturbations. For stable
base flows, the physical mechanisms associated to linear growth mechanisms (modal
and non-modal) and receptivity can be clarified by finding initial conditions in the time
domain, or volumetric forcings, in the frequency domain, that maximize, for example,
the kinetic energy of perturbations (Schmid & Henningson 2001). The frequency-space
problem is also called linear resolvent analysis or input/output analysis in the literature. In
these analyses, adjoint methods are used to maximise a specific cost function. Trefethen
et al. (1993) and Jovanović & Bamieh (2005) showed that the computation of the optimal
forcings and responses of the resolvent operator extracts the pseudo-resonances of a
flow field, that is, the frequencies and spatial distributions of forcings that optimally
trigger linear responses in a system. In a set-up where the streamwise direction is also
discretised (in addition to the cross-stream direction), accurate methods to extract the
optimal features from the global resolvent have first been carried out with time-stepper
approaches by Blackburn, Barkley & Sherwin (2008), Åkervik et al. (2008), Monokrousos
et al. (2010) and more recently with sparse direct LU methods by Sipp et al. (2010), Brandt
et al. (2011), Rigas et al. (2017), Schmidt et al. (2018), Pickering et al. (2020), among
others.

Determining the growth of finite-amplitude perturbations is, of course, more
challenging. In practice, the direct solution of the three-dimensional (3-D) Navier–Stokes
equations in the time domain is most commonly employed. For example, Rist & Fasel
(1995) and Bake, Meyer & Rist (2002) reproduced experimental results evidencing
different forms of transition in the flat-plate boundary layer. More recently, nonlinear
transitional mechanisms have been studied by employing gradient-based techniques to
find the smallest amplitude optimal initial conditions that trigger transition to turbulence
(Biau & Bottaro 2009; Cherubini et al. 2010, 2011; Monokrousos et al. 2011; Pringle,
Willis & Kerswell 2012; Kerswell 2018; Vavaliaris, Beneitez & Henningson 2020). The
optimal perturbation is calculated over a finite time interval and the one with the lowest
energy is known as the minimal seed in the time domain. Similar methodology has been
applied to study the transition mechanisms in thermoacoustic systems (Juniper 2011) and
also recently has been extended to compressible flows (Jahanbakhshi & Zaki 2019; Huang
& Hack 2020). The results still depend on the specific metric (cost function) used to
measure the growth; common choices include perturbation kinetic energy (Cherubini et al.
2011; Pringle et al. 2012), integral skin friction coefficient (Jahanbakhshi & Zaki 2019),
dissipation (Monokrousos et al. 2011) and mean shear (Karp & Cohen 2017).

The minimal seed calculations can be compared, in certain cases, against appropriate
experimental measurements of finite-amplitude thresholds for transition to turbulence
(Peixinho & Mullin 2007, for experimental pipe flow transition). However, by analog
with the linear approaches, it is experimentally more natural to model transition from
laminar to turbulent flow as a stationary process where disturbances are continually
supplied to the system from the environment, i.e. to consider the receptivity problem.
For linear growth, this results in the aforementioned resolvent (or input/output) analysis
that provides, in the frequency domain, a transfer function between inputs, for example,
environmental noise characterised by spatially localised spectral co-variance tensors, and
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outputs, for example, the structure of the resulting amplified flow structures, and the net
gain between them. Given the convective nature of instabilities in spatially developing
boundary layer flows, an accurate and practical prediction of the transition location relies
on an accurate description of the amplitude and spectral content of the environmental noise
and also on the unravelling of the transition mechanisms, typically the most dangerous
ones.

In order to deal with finite-amplitude perturbations in the frequency domain, the stability
and numerical tools have to be extended to account for nonlinearity. Previous attempts
in this regard have been limited to the nonlinear parabolised stability equations (NPSEs,
Bertolotti, Herbert & Spalart 1992; Chang & Malik 1994). While such calculations showed
good agreement with DNS for the very early stages of transition, they require specific inlet
conditions to be specified and these are typically based on modal solutions to the local
(parallel) spatial stability problem. Furthermore, numerical instabilities and robustness
issues, associated with the minimum step restriction, have limited the applicability of both
parabolised stability equations (PSEs) and NPSEs (Towne, Rigas & Colonius 2019), and
cast doubt on whether PSEs can be used to identify optimal inlet conditions or volumetric
forcing. The aforementioned work on non-modal mechanisms relies on cooperative
amplification of modes with disparate wavelengths, which raises further questions about
the appropriateness of PSE ansatz.

A natural generalization in order to calculate finite-amplitude perturbations in the
frequency domain is to seek solutions to the full Navier–Stokes equations under the form
of an expansion consisting of a mean-flow solution, a fundamental mode and p harmonics
of the fundamental, but without the parabolising approximations inherent to PSEs. Such
an approach, known in literature as the harmonic balance method (HBM, Fabre et al.
2018; Khalil & Grizzle 2002) is a general method to find periodic or quasi-periodic
solutions, which are approximated using truncated Fourier expansions. The HBM has
been used previously in fluid mechanics primarily in the context of turbomachinery (Hall,
Thomas & Clark 2002; Gopinath et al. 2007; Sicot, Dufour & Gourdain 2012), where
one seeks a mean flow and harmonics associated with the externally imposed blade
passing frequency. When used with p = 0, HBM also recovers the self-consistent model
introduced by Mantič-Lugo, Arratia & Gallaire (2014) and Mantič-Lugo & Gallaire (2016)
for the cylinder wake and backstep flow, respectively.

In this paper, using HBM, we explore the optimal nonlinear amplification problem
in the frequency domain, and we use the method to identify and analyse transition
scenarios for the flat-plate boundary layer. We begin in § 2 by briefly reviewing the
literature on boundary layer transition. In § 3 we propose a solution strategy for the
following optimisation problem. Given an amplitude A, a time period and spanwise
wavelength associated respectively to the fundamental frequency ω and fundamental
wavenumber β, we look for a spatial distribution of a time-periodic (of period 2π/ω)
and spanwise-periodic (of period 2π/β) volumetric forcing of amplitude A that triggers
a solution maximising the mean skin friction coefficient (integrated over the wall). In
§ 4 we validate the HBM solver by reproducing a K-type transition scenario previously
studied using DNS (Rist & Fasel 1995), while in § 5 we validate the optimisation procedure
by reproducing previously reported linear optimal solutions. Finally, in § 6 we calculate
nonlinear optimal responses and forcings that maximise the skin friction coefficient. By
varying A, ω, β and the forcing component combinations, we identify a range of optimal
transition scenarios. We summarise our results in § 7, and discuss prospects for transition
prediction using HBM.
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2. Boundary layer transition: a brief review

Early studies on zero-pressure gradient boundary layer transition have been mainly
focused on the modal amplification of Tollmien–Schlichting (TS) waves. The primary
TS waves develop three-dimensional secondary instabilities, and subsequently break
down to turbulence. The analysis of transition mechanisms resulting from the secondary
instability of TS waves has identified two main routes.

(i) The fundamental K-type transition, which involves a planar TS wave (ω, 0) and
two oblique waves of the same frequency (ω, ±β). Such a resonance has first been
evidenced by Klebanoff, Tidstrom & Sargent (1962).

(ii) The subharmonic H-type transition, triggered by a planar TS wave (ω, 0) and two
subharmonic oblique waves (ω/2, ±β). It has been experimentally observed by
Kachanov, Kozlov & Levchenko (1977) and Kachanov & Levchenko (1984).

In both cases, the oblique waves are strongly amplified, leading to �-shaped patterns
composed of strong longitudinal vortices (Rist & Fasel 1995; Berlin, Wiegel &
Henningson 1999; Sayadi et al. 2013). In the case of H-type transition, the �-patterns are
staggered while they are aligned in the case of K-type transition. In an effort to explain the
observed patterns, Herbert (1988) examined the secondary stability characteristics of the
modified periodic flow (Blasius flow with superimposed TS waves) using linear Floquet
analysis in a local framework. The analysis showed that the growth of three-dimensional
oblique subharmonic frequency waves (seen for H-type) is favoured over fundamental
waves (K-type).

More recent work shows that disturbances can undergo significant transient growth
that leads to faster transition to turbulence, even at subcritical Reynolds numbers,
and potentially bypassing transition through TS waves. A linear resolvent analysis
for the Blasius boundary layer has been performed by Monokrousos et al. (2010)
to identify optimal forcing in the frequency domain. Peaks of the optimal gain
in the frequency/spanwise wavenumber space were linked to modal and non-modal
instabilities. The analysis showed that maximum energy amplification is due to steady
three-dimensional disturbances. The optimal forcing consists of streamwise vortices (rolls)
and the response of streamwise elongated vortices, known as streaks. The amplification
is a purely non-modal mechanism through the linear lift-up mechanism (Landahl 1980;
Butler & Farrell 1992). The non-modal analysis also shows that oblique TS waves are
more amplified than the two-dimensional (2-D) ones, though these are linearly suboptimal
to the aforementioned lift up mechanism.

Due to early observations that streaks can be significantly amplified and provide an
alternative bypass route to turbulence, various studies have focused on the secondary
instability of boundary layers distorted by streaks. Andersson et al. (2001) performed an
inviscid, secondary instability analysis of the optimally amplified boundary layer streaks
in a linear framework. Depending on the symmetries of the perturbed flow, varicose or
sinuous oscillations of the low-speed streaks are possible, with the latter being the most
unstable one. Once the streaks reach a certain amplitude and become unstable, breakdown
to a turbulent flow is observed (Brandt & Henningson 2002; Hack & Zaki 2014). The
sinuous mode has been linked to the spanwise shear which leads to the formation of
streamwise vortices around the low-speed streaks. On the other hand, the varicose mode
has been associated with wall-normal shear and the formation of symmetric hairpin
vortices (Asai, Minagawa & Nishioka 2002; Hack & Moin 2018).

An alternative bypass scenario for transition relies on oblique waves (Schmid &
Henningson 1992). In this scenario, streamwise-aligned vortices are generated by
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nonlinear interaction between a pair of oblique waves with equal angle but opposite sign
in the flow direction (Schmid & Henningson 1992; Reddy et al. 1998; Berlin et al. 1999).
These vortices, in turn, induce streamwise streaks through the lift-up mechanism. The
subsequent stages of transition to turbulence are similar to those described previously
for the streak breakdown. The initial stages of the nonlinear interaction of the oblique
waves have been described also using NPSEs. Chang & Malik (1994) showed that the
oblique waves are a dominant mechanism at low supersonic speeds. Similarly to the
incompressible regime, the nonlinear interaction of a pair of oblique waves results in
the evolution of a streamwise vortex. This stage was described by a wave–vortex triad
consisting of the oblique waves and a streamwise vortex whereby the oblique waves grow
linearly while nonlinear effects result in the rapid growth of the vortex mode.

3. Nonlinear input/output analysis: theory and algorithms

In order to extend the linear input/output (resolvent) analysis to finite-amplitude
perturbations, we need to proceed in two steps.

(i) Devise a method to find, for a given time- and spanwise-periodic finite-amplitude
forcing, a time- and spanwise-periodic solution with the same periods that is a
solution to the forced nonlinear Navier–Stokes equations. For this, we will use the
HBM framework. The theory and numerical algorithms are presented in § 3.2.

(ii) Devise a method to search, over a fixed set of forcing and response frequencies,
for an optimal forcing with a finite overall amplitude, A, that maximises a given
cost functional. Similarly to the optimisation strategies followed in the time domain
(Kerswell 2018), we use gradient-based strategies to find local maxima and optimal
solutions in a few iterations (§ 3.3).

3.1. Governing equations and computational set-up
The flow under consideration is the zero-pressure gradient boundary layer flow, shown
schematically in figure 1. The spanwise direction z is treated as homogeneous and, without
loss of generality, we will assume that the forcing and response are z-periodic, in addition
to being t-periodic.

We consider the forced three-dimensional incompressible Navier–Stokes equations

∂tu + u · ∇u = −∇p + νΔu + f (x, t), (3.1a)

∇ · u = 0, (3.1b)

u = g(x, t) on ∂Ωf , (3.1c)

where f is a volumetric time-dependent momentum forcing and g a time-dependent
forcing on some boundary ∂Ωf . The forcing terms can represent the effect of free-stream
disturbances or actuators on the boundary/wall (i.e. periodic blowing and suction,
vibrating wall, roughness elements) or actuators within the flow (i.e. vibrating ribbon).

The governing equations are discretised in the x and y spatial directions, using the finite
element method, while z and t are treated as continuous homogeneous directions. In the
discrete state space, the forcing and state variables are then vectors depending only on
z and t, while the explicit dependence on x and y defines the degrees of freedom of the
vectors. If we consider the compound state vector w = [u, p], where u = [u, v, w] refers
to the x, y and z velocity components, the semi-discretized governing equations (3.1) may
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Volumetric
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Figure 1. Schematic of the zero-pressure-gradient flat-plate set-up. Transition of the laminar boundary layer
is triggered here either by boundary forcing or volumetric momentum forcing. In general, these forcings can
model free-stream disturbances or actuators on the boundary/wall (i.e. periodic blowing and suction, vibrating
wall, roughness elements) or actuators within the flow (i.e. vibrating ribbon).

be recast in the following form:

M∂tw + Lw + 1
2 N(w, w) = MPf (z, t), (3.2a)

P∗w = g(z, t) on ∂Ωf . (3.2b)

Here P is the prolongation matrix mapping a [u, v, w] velocity vector into a [u, v, w, 0]
velocity-pressure vector and the transconjugate operator of P, denoted as P∗, is the operator
transforming a [u, v, w, p] vector to [u, v, w]. The matrices M , L and the bilinear operator
N are defined as

M =
(

M ′ 0
0 0

)
, L =

( −ν�() ∇()

∇ · () 0

)
,

N(w1, w2) =
(

u1 · ∇u2 + u2 · ∇u1

0

)
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (3.3a–c)

where M and M ′ are the mass matrices associated to the spatial discretisation, L the
Stokes operator and N the symmetrised nonlinear convection operator.

We apply no-slip boundary conditions along the plate and zero stress conditions at the
outlet. At the inlet and at the upper boundary, we impose the Blasius profile. We consider
the free-stream velocity U∞ and ν/U∞ as reference velocity and length scales throughout
the manuscript. For this specific choice, we have x �→ Rex.

The computational domain for the zero-pressure flat-plate configuration is rectangular
with the plate located at y = 0, the upper boundary at y = 1.2 × 105 and the inlet at
xi = 0.30 × 105. The outlet is at xo = 2.52 × 105 (§ 4) or xo = 3.60 × 105 (§§ 5 and 6).
The inlet Reynolds number based on the displacement thickness, Reδ∗ = 1.72

√
Rex, is
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xi xo Rei
δ∗ Reo

δ∗ Triangles DOFs Section

30 000 252 000 298 863 71 207 357 469 4 K-type validation
30 000 360 000 298 1032 116 806 586 178 5 and 6 Optimal disturbances

Table 1. Parameters for flat-plate boundary layer computational set-up.

298, which is subcritical with respect to the local modal instability of planar TS waves,
Recrit

δ∗ = 519.4 (Schmid & Henningson 2001). The elements close to the plate are based on
split rectangular elements, which exhibit a uniform streamwise length of Δx = 400 and a
height at the plate of Δy = 40. The height of the split rectangles is stretched in the vertical
direction by a factor 1.04 up to the point where the rectangles become squares. From this
height, the mesh is gradually stretched isotropically up to the upper boundary.

The discretization is carried out with the FreeFem++ software (Hecht 2012), with
first-order [P1b, P1b, P1b, P1] (Mini) elements (Arnold, Brezzi & Fortin 1984) for a w =
[u, v, w, p] element. The resulting degrees of freedom (DOFs) for the 2-D discretisation
of the equations are given in table 1.

3.2. Nonlinear input/output relation in frequency space with harmonic
balance method

The volume f (z, t) and boundary g(z, t) forcings are assumed to be z-periodic of
wavelength λ = 2π/β and t-periodic of period T = 2π/ω. We assume that the state vector
w(z, t) behaves the same way. When considering boundary layers in early stage transition,
i.e with weak external forcing amplitude, it is reasonable to assume that the response of
the system follows the time periodicity and spatial symmetries of the external forcing.
A Fourier expansion is introduced for the periodic forcing and state variables, which is
truncated at M + 1 harmonics in z and N + 1 harmonics in t. Hence,

w(z, t) =
∑

−M�m�M
−N�n�N

exp(i(mβz + nωt))ŵmn, (3.4)

with similar expansions (not shown here) for f (z, t) and g(z, t). Term ŵmn (respectively
f̂ mn, ĝmn) represents the harmonic associated to exp(imβz + inωt) for ŵ (respectively f̂
and ĝ). For these variables to be real, the relation

ŵ−m,−n = ŵmn (3.5)

must hold for all (m, n), which induces that ŵ00 is real. The overbar (·) denotes the complex
conjugate. For a high forcing amplitude, quasi-periodic limit cycles may appear, which
can be captured by introducing two or more incommensurate fundamental frequencies
and their harmonics in expansion (3.4), an investigation which is beyond the scope of the
present paper.

After substituting the Fourier expansion (3.4) in the Navier–Stokes equations (3.2), a
set of nonlinear equations is obtained by balancing the amplitudes of like harmonics.
Specific simple examples are given in § 3.2.1. In the general case, this procedure yields the
harmonic-balances Navier–Stokes (HBNS) equations, described by the system of coupled
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equations[
inωM + Lm + γ mn

00 Nm
0 (ŵ00, ·)

]
ŵmn +

∑
S(m,n)

γ m2n2
m1n1

Nm2
m1

(ŵm1n1, ŵm2n2) = MP f̂ mn,

(3.6a)

P∗ŵmn = ĝmn on ∂Ωf , (3.6b)

for all (m, n) such that −M � m � M and −N � n � N, and the sum is over the set of
indices

S(m, n)=
{

m = m1 + m2, −M � m1 � m2 � M,

n = n1 + n2, −N � n1 � n2 � N,

∣∣∣∣∣ (m1, n1) /=(0, 0), (m2, n2) /=(0, 0).

(3.7)
The coefficients γ

m2n2
m1n1 = 0.5 if (m1 = m2, n1 = n2) and 1 in the other cases. The linear

matrix Lm and bilinear operator Nm2
m1

are deduced from L and N by replacing ∂z derivatives
by imβz. We define the solution and forcing vectors, ŵ, f̂ and ĝ whose elements correspond
to the (2M + 1) × (2N + 1) complex unknowns.

Then, (3.6) may be rewritten in compact form as

R(ŵ) = MP f̂ , (3.8a)

P∗ŵ = ĝ on ∂Ωf , (3.8b)

where we reuse the symbols M and P to now refer to block matrices composed from the
individual equations. For given forcing terms f̂ and ĝ, (3.8) are (2M + 1) × (2N + 1)

complex nonlinear equations for the unknowns ŵ. Due to the fact that the equation
governing the (m, n) harmonic of ŵ corresponds to the complex conjugate of the equation
governing the (−m, −n) harmonic, the solution will be symmetric, ŵ−m,−n = ŵmn,
whenever the forcing is.

3.2.1. Special cases
In order to get some insight into the structure of the governing equations, we consider two
particular cases where the boundary forcing term, ĝ, is set to zero for simplicity.

In the case where M = N = 1, (3.6) reduce to[
L0 + 1

2 N0
0(ŵ00, ·)

]
ŵ00 + N1

−1(ŵ10, ŵ10) + N0
0(ŵ01, ŵ01) + N1

−1(ŵ11, ŵ11) = MP f̂ 00,

(3.9a)[
L1 + N1

0(ŵ00, ·)
]

ŵ10 = MP f̂ 10, (3.9b)[
iωM + L0 + N0

0(ŵ00, ·)
]

ŵ01 = MP f̂ 01, (3.9c)[
iωM + L1 + N1

0(ŵ00, ·)
]

ŵ11 = MP f̂ 11. (3.9d)

For a boundary layer, the terms ŵ10 eiβz, ŵ01 eiωt and ŵ11 eiβz+iωt may represent,
respectively, a streak, a 2-D Tollmien–Schlichting wave and an oblique wave. In this
case, these components are linearly triggered by the forcing terms f̂ 10, f̂ 01 and f̂ 11,
whereupon they deform the mean flow through the nonlinear interactions in (3.9a) (in
addition to any mean-flow forcing, f̂ 00). The linear operators inωM + Lm + Nm

0 (ŵ00, ·)
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are strictly damped and thus invertible. Connections with the restricted nonlinear model
(RNL) introduced for the study of transition (Waleffe & Kim 1997; Biau & Bottaro 2008;
Farrell & Ioannou 2012) and turbulence (Thomas et al. 2015; Farrell, Gayme & Ioannou
2017) in streamwise invariant configurations become apparent. The equations governing
the steady harmonics ŵ00 and ŵ10 (which comprise the streaks and the rolls) are related
to the equation governing the streamwise averaged component of the flow in the RNL
equation, while those governing ŵ01 and ŵ11 are related to the streamwise fluctuating
part (one harmonic in ω being equivalent to one streamwise wavenumber). In the present
approach the spanwise direction is treated as homogeneous while the streamwise direction
is solved for, while for RNL model, the opposite is true. But for both models, nonlinear
interactions only appear in the mean-flow equation due to the low-order truncation.

In the case M = 0, N = 2, nonlinear interactions also appear at the fluctuation level:[
L0 + 1

2 N0
0(ŵ00, ·)

]
ŵ00 + N0

0(ŵ01, ŵ01) + N0
0(ŵ02, ŵ02) = MP f̂ 00, (3.10a)[

iωM + L0 + N0
0(ŵ00, ·)

]
ŵ01 + N0

0(ŵ01, ŵ02) = MP f̂ 01, (3.10b)[
2iωM + L0 + N0

0(ŵ00, ·)
]

ŵ02 + 1
2 N0

0(ŵ01, ŵ01) = MP f̂ 02. (3.10c)

They correspond to the extension at second order of the self-consistent model
(Mantič-Lugo & Gallaire 2016) for backward-facing step flow. We recognize the
dynamics of the three harmonics ŵ00, eiωtŵ01 and e2iωtŵ02, the nonlinear interactions
(N0

0(ŵ01, ŵ01) + N0
0(ŵ02, ŵ02)) and forcing term (f̂ 00) generating the mean-flow

deformation, the nonlinear interactions (N0
0(ŵ01, ŵ02) and 1/2N0

0(ŵ01, ŵ01)) and forcing
terms (f̂ 01 and f̂ 02) affecting the first and second harmonics (eiωtŵ01 and e2iωtŵ02).
If higher-order truncations are considered, the complexity is increased by additional
nonlinear interaction terms that affect both the mean flow and the fluctuating harmonics.

3.2.2. Algorithms and numerical methods
In order to solve the coupled nonlinear equations (3.8) and calculate the response ŵ, we
use an iterative Newton algorithm. An initial guess ŵi may be improved according to
ŵi+1 = ŵi − δŵi with

Aδŵi = R(ŵi) − MP f̂ , (3.11a)

P∗δŵi = P∗ŵi − ĝ on ∂Ωf , (3.11b)

where A = ∂R/∂ŵ is the Jacobian of operator R, given by⎛
⎜⎜⎜⎜⎜⎜⎝

L0 + N0
0(ŵ00, ·) N0

0(ŵ0,−1, ·) N0
0(ŵ01, ·) · · ·

N0
0(ŵ01, ·) iωM + L0 + N0

0(ŵ00, ·) N0
0(ŵ02, ·) · · ·

N0
0(ŵ0,−1, ·) N0

0(ŵ0,−2, ·) −iωM + L0 + N0
0(ŵ00, ·) · · ·

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠ ,

(3.12)

where the off-diagonal blocks stem from nonlinear interactions between harmonics, while
the diagonal blocks correspond to Navier–Stokes equations linearised around the current
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mean flow ŵ00. This matrix is also known in the literature as the finite-dimensional block
Hill matrix (Lazarus & Thomas 2010).

The linear problem (3.11) involves a large number of unknowns, equal to the
number of harmonics (2N + 1)(2M + 1) times the number of degrees of freedom in
a velocity-pressure vector on a two-dimensional computational mesh. If the number of
retained harmonics is large, solution of the linear system becomes the pacing item,
primarily due to associated computer memory limitations rather operation counts, when
a direct LU method is used. Iterative solvers for HBM problems partially bypass
these limitations (Hall et al. 2002; Gopinath et al. 2007; Sicot et al. 2012). In order
to decrease the computational cost, we follow Moulin, Jolivet & Marquet (2019)
and use a preconditioned generalized minimal residual (GMRES) algorithm that only
requires matrix-vector products. We use a block-Jacobi preconditioner, where the blocks
correspond to the harmonics: ŵ00, (ŵ01, ŵ0,−1), etc. The block-Jacobi preconditioner is
very efficient when the diagonal blocks of matrix A are dominant, that is, when the
nonlinear interactions between harmonics remain reasonably weak. This occurs when the
amplitude A of the forcing remains small. The code is parallel with each processor core
handling a block. In the block-Jacobi preconditioner the linear system associated to the
diagonal block of a given harmonic, for example,(

inωM + Lm + Nm
0 (ŵ00, ·) A′

A′ −inωM + L−m + N−m
0 (ŵ00, ·)

)
, (3.13)

is solved by the core handling the harmonic (ŵmn, ŵ−m,−n) with a sparse direct LU
method (Amestoy et al. 2001). For an efficient distributed implementation, we use the
PETSc software (http://www.mcs.anl.gov/petsc) with the scalable linear equation solver
component (KSP). Since a single core solves for a system involving matrix (3.13), the
size of the mesh needs to remain reasonable. Should larger meshes be required, domain
decomposition could be used to distribute each harmonic over several cores.

To obtain a good initial guess, we solve the linear problem, which uncouples the
equations and may be solved with a direct LU decomposition. For larger A, we continue in
steps from smaller A. Likewise, we may increment M and N as the iteration proceeds.

3.2.3. Reflectional symmetry in z
For a reflectionally symmetric solution with respect to z = 0, we restrict the forcing so that

fx(−z, t) = fx(z, t) =⇒ f̂x(−m, n) = f̂x(m, n), (3.14a)

fy(−z, t) = fy(z, t) =⇒ f̂y(−m, n) = f̂y(m, n), (3.14b)

fz(−z, t) = −fz(z, t) =⇒ f̂z(−m, n) = −f̂z(m, n). (3.14c)

Imposing symmetry on f and g requires that the spanwise velocity component must be
set to zero at the inlet boundary. Imposing the same symmetries on the solution reduces
the number of unknowns by about a factor of two. These symmetric solutions, it must be
stressed, may be unstable to asymmetrical disturbances. In the subsequent sections, results
are shown with and without imposing z-reflectional symmetry.

3.3. Optimal forcings

In this study we only consider optimal volumetric forcings f̂ in view of understanding the
physical triggering mechanisms at play. In a future step, the present study can be extended
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Nonlinear input/output analysis

to boundary forcings, by also optimising ĝ. We pose a procedure to find the forcing f̂ that
maximizes a general positive, real-valued cost functional J(ŵ), under the constraint that ŵ
is a solution to the HBNS nonlinear problem forced by f̂ with finite amplitude A. In the
following sections the cost functional J(ŵ) will either correspond to the kinetic energy of
the harmonics (§ 5) or to the wall shear stress of the mean-flow harmonic (§ 6).

To solve the constrained optimisation, we consider the Lagrangian functional

L(ŵ, [w̃, λ], f̂ ) = J(ŵ) − w̃∗(R(ŵ) − MP f̂ ) − λ( f̂ ∗Q f̂ − A2), (3.15)

where the star symbol (·)∗ denotes the conjugate transpose, and w̃ and λ are Lagrange
multipliers enforcing the constraints. The λ-constraint is that the forcing f̂ must exhibit a
prescribed finite amplitude A,

f̂ ∗Q f̂ = A2, (3.16)

where Q is a positive-definite Hermitian matrix defining a norm on the forcing space f̂ .
Here we consider a block diagonal matrix

Q = diag(Qmn), (3.17)

where

f̂ ∗
mnQmn f̂ mn =

∫∫
(| f̂mn,x|2 + | f̂mn,y|2| + | f̂mn,z|2) dΩ (3.18)

such that Q is used to calculate the energy over all frequencies and wavenumbers and Qmn
is component-wise.

Proceeding in the usual way by zeroing the variations of L with respect to w̃ and λ yields
the constraints, whereas variations with respect to w̃ gives an equation for the adjoint state,

A∗w̃ = dJ
dŵ

, (3.19)

and variations with respect to f̂ lead to a relation

Q−1P∗Mw̃︸ ︷︷ ︸
w̃′

−2λ f̂ = 0, (3.20)

that shows that f̂ needs to be parallel to w̃′. A convergence criteria (to a local maximum)
is that the angle θ between these two vectors vanishes,

cos(θ) = f̂ ∗Qw̃′

Aγ
= 1, (3.21)

where γ =
√

w̃′∗Qw̃′.
Following Kerswell (2018), the algorithm for the update of f̂ is based on steepest ascent

f̂ new = f̂ + Aε(w̃′ − 2λ f̂ ), (3.22)

where the Lagrange parameter λ is chosen such that it constraints the forcing energy
f̂ ∗

newQf̂ new = A2, and ε governs the amplitude change between f̂ and f̂ new. The parameter
ε may be chosen as ε = c/γ , where 0 < c � 1 to allow a solution for λ.
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Algorithm 1 Nonlinear optimisation using HBNS

1: Initialize. Set stopping criterion θc. Let f̂ n be an approximation of a maximum of J(ŵ)

such that
f̂ ∗

nQ f̂ n = A2.

2: Solve the nonlinear HBNS system (3.8a) to determine the state ŵn, using the iterative
Newton method and the iterative preconditioned GMRES algorithm (§3.2.2)

R(ŵn) = MP f̂ n.

3: Solve the linear system for the adjoint state w̃n, using the same iterative preconditioned
GMRES algorithm (§3.2.2)

A∗w̃n = dJ
dŵ

∣∣∣∣
ŵn

.

4: Set w̃′
n = Q−1P∗Mw̃n, compute the norm γn =

√
w̃′∗nQw̃′n and evaluate alignment

angle

cos(θn) = f̂ ∗
nQw̃′

n/(Aγn).

5: if | cos(θn)| > cos(θc) then
6: Break. Return ( f̂ n, ŵn), which is a reasonable approximation of an extremum.
7: else
8: Update f̂ :

λn =
1 + εnγn cos θn −

√
1 − ε2

nγ 2
n sin2 θn

2Aεn
, εn = c

γn
. (3.23)

f̂ n+1 = f̂ n + Aεn(w̃′
n − 2λn f̂ n),

9: Go to 2.
10: end if

For c = 1, f̂ new is parallel to the adjoint vector w̃′ and the procedure is therefore
similar to the power iteration method. Potentially, more efficient numerical methods
can be implemented for the search direction (i.e. conjugate gradient instead of
steepest ascent) and the update step length (line search methods for variable step
size).

The explicit steps of the iterative procedure are detailed in algorithm 1. The parameter c
can be fixed to 1 if the guess f̂ is close to the optimum. If not, large derivatives of the cost
functional (i.e transition) can lead to large drifts of f̂ , which may destabilise the Newton
algorithm. In such a case, lower values of c need to be imposed. In the present study, a
good compromise was found with c = 0.5, for which most of the cases converged, without
penalising too much the number of iterations for the Newton method to converge. In a
few cases, we had to decrease the value of c down to c = 0.2. The stopping criterion was
chosen so that the alignment θ is less than θc = 1◦.
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Nonlinear input/output analysis

4. HBNS: validation for controlled transition

In this section we validate the HBNS implementation described above against the DNS of
controlled K-type transition by Rist & Fasel (1995). The volumetric forcing f̂ is set to zero
and perturbations are triggered through ĝ which is chosen to represent wall-normal forcing
by local time-dependent blowing and suction within a narrow strip at the wall. Thus, in
accordance with Rist & Fasel (1995), we impose u = w = 0 and

v(x, z, t) = 5 × 10−3 sin(ωt)va(x) + 1.3 × 10−4 cos(βz)vs(x), (4.1)

which represents a superposition of a 2-D spanwise uniform wave (0, ω) of frequency
ω = 11 × 10−5 and a steady 3-D wave (β, 0) of spanwise wavenumber β = 42.3 × 10−5.
The specific profiles of the wall-normal velocity of the unsteady and steady waves, which
are localised between x1 and x2 on the wall boundary, are given by

va(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, x � x1,

15.1875ξ5 − 35.4375ξ4 + 20.25ξ3, x1 < x � xm,

−va(2xm − x), xm < x � x2,

0, x2 < x,

(4.2)

vs(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, x � x1,

−3ξ4 + 4ξ3, x1 < x � xm,

vs(2xm − x), xm < x � x2,

0, x2 < x.

(4.3)

Here x1 = 1.3438 × 105 (Re1
δ∗ = 630), x2 = 1.5532 × 105 (Re2

δ∗ = 678), xm = (x1 +
x2)/2 and ξ = (x − x1)/(xm − x1). We have positioned the strip for exciting the
disturbances exactly at the same location as in Rist & Fasel (1995). The inlet and outlet
positions of the domain (Rei

δ∗ = 298 and Reo
δ∗ = 863) are not identical to those of Rist

& Fasel (1995) (580 and 1375, respectively); yet, due to the convective amplification of
disturbances in the boundary layer, these choices should not affect the comparison.

Due to the symmetry of the wall forcing, spanwise reflectional symmetry was assumed
enforcing equations (3.14). The mean-flow harmonic ŵ00 was initialised with the base-flow
solution and the other harmonics were set to zero except the (0, ω) and (β, 0) harmonics,
which were initialised with the linearised responses. For M = N = 2 (9 harmonics in
total), the solution of the HBNS system converged after nine Newton iterations (residuals
of the order of 10−10). The M = N = 3 (16 harmonics) solution was obtained using as
an initial guess the M = N = 2 solution and converged after four iterations, whereas
the M = N = 4 (25 harmonics) solution was obtained from the M = N = 3 one in four
iterations. The associated computational cost in terms of memory, cores and walltime is
given in table 3, appendix A.

In figure 2 we compare the amplitude of the first few harmonics from the HBNS against
the DNS results obtained by Rist & Fasel (1995). A sensitivity analysis of the domain
length and of the finite element discretisation is given in appendix A, along with the
computational cost for the HBM method. For plotting the (0, 0) harmonic component,
we have subtracted the base-flow solution, which leads to the mean-flow deformation
(MFD). The definition of the amplitudes of the different harmonics is described in
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Figure 2. Amplitudes of harmonics for K-type controlled transition. Comparison between DNS (Rist & Fasel
1995) and harmonic-balanced Navier–Stokes retaining M = N = 2 (HBNS22) and M = N = 4 (HBNS44)
harmonics in spanwise/frequency. The grey region denotes the streamwise extent of the wall blowing and
suction region that triggers K-type transition. Note that to ease representation, we have plotted one fifth of the
amplitude of harmonics (0, ω) and (2β, ω).

appendix B. The wall-normal forcing excites initially planar TS waves (0, ω) and
streamwise vortices/streaks (β, 0) at a given frequency and spanwise wavelength. Oblique
waves (β, ±ω) and higher harmonics are generated through nonlinear interactions.
Similarly, the self-interaction of the modes when they reach sufficiently high amplitudes
generates (0, 0) components that cause the departure of the mean-flow harmonic from
the base-flow solution. Even with M = N = 2, good agreement is obtained for the
fundamental (0, ω) and (β, 0) harmonics and for the oblique wave (β, ω). As the
perturbations grow in the streamwise direction, the M = N = 4 results are in slightly better
agreement with the DNS for the higher harmonic (2β, ω).

In figure 3 isosurfaces of streamwise velocity show low-speed velocity streaks (blue)
developing in the streamwise direction. Furthermore, isosurfaces of the Q-criterion,
coloured based on the normal distance from the wall, show �-vortices sitting on the
low-speed streaks. They are elongated and move away from the wall as they propagate
downstream, in accordance with Rist & Fasel (1995). The more localised the �-structure,
the larger the number of harmonics required in the z-direction to describe it. It is seen that
with M = 4, we clearly capture these structures.

It is evident that linear approaches would fail to capture the observed transition
dynamics, including mean-flow deformation and saturation of the amplitude of the
harmonics. Potentially a quasi-linear approach could be used to calculate the mean-flow
deformation but, in general, the nonlinear energy transfer between the forced modes is
not captured. And consequently, also the resulting mean-flow deformation arising from
the triadic nonlinearly excited modes. In the specific case of K-type examined by Rist &
Fasel (1995), this is evident by observing that energy is transferred to the oblique wave
due to the nonlinear interaction of the streak and planar 2-D wave components.

The HBNS framework captures all the above key dynamical characteristics of transition
(mean-flow deformation, saturation, nonlinear energy transfer among harmonics) by
keeping the minimum number of harmonics and consequently the minimum number of
balanced nonlinear interactions.
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Figure 3. K-type controlled transition with HBNS44. Isosurfaces of perturbation velocity u′ = ±0.04 (red:
high speed, blue: low speed) and of the second invariant of the velocity gradient tensor, Q, coloured by the
vertical distance from the wall (Q = 2 × 10−9).

The question that arises is how many modes and consequently nonlinear interactions
are needed for a qualitative and quantitative description of the flow? As expected,
the higher the amplitude of the perturbations, the more harmonics are needed in the
HBNS representation: the upstream (respectively downstream) part of the flow, which
is characterised by small (respectively large) perturbations, requires a low (respectively
high) truncation order. The number of required harmonics, therefore, depends on the
forcing amplitude and the extent of the domain in the downstream direction, which sets
the maximum amplitude of the perturbation.

5. Linear input/output (resolvent) analysis

Before performing nonlinear optimisation, we briefly recall here results obtained by
Monokrousos et al. (2010), Brandt et al. (2011) concerning linear optimal forcing in the
frequency domain that aim at maximising energetic gains (resolvent analysis). Such results
are important to understand and analyse the forthcoming nonlinear optimisations. For
this, we consider a generic volumetric forcing and no-slip boundary conditions on the
wall. For a given forcing f̂ mn and response ŵmn harmonic, the cost function for the linear
optimisation is the input/output kinetic energy gain over the whole domain

Jlin
mn = ŵ∗

mnQ′
mnŵmn

f̂ ∗
mnQmn f̂ mn

, (5.1)

where Q′
mn eliminates the pressure component of the state vector w = [u, v, w, p] for the

calculation of the kinetic energy solely on the velocity components,

Q′
mn =

(
Qmn 0

0 0

)
, (5.2)

and Qmn was defined in (3.18).
Although we could have used the nonlinear HBNS code with a small forcing amplitude

A, such that nonlinear effects are negligible, we used a linearised version of the code
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Figure 4. Linear input/output (resolvent) analysis. Optimal gain (a). The two local maxima correspond to the
amplification of streaks (A at (β, ω) = (100, 0) × 10−5) and oblique waves (B at (β, ω) = (30, 10) × 10−5).
Optimal forcing (left; light grey: positive, dark grey: negative) and optimal response (right; red: positive, blue
negative) for streaks and obliques waves. Top and side views are shown. The x-axis has been scaled by a factor
of 4.

implementing the linear relationship between f̂ mn and ŵmn. Such a linear optimisation
problem is efficiently solved by iterative methods (Sipp & Marquet 2013). The mesh
extends here from xi = 0.30 × 105 (Rei

δ∗ = 298) to xo = 3.60 × 105 (Reo
δ∗ = 1032). It

comprises 116 806 triangles, yielding 586 178 degrees of freedom per harmonic. The same
mesh will be used in the next section dealing with nonlinear optimisation (§ 6).

The linear optimal amplitude gain (σ = √Jlin
mn) is shown in figure 4, as a function of

frequency ω and spanwise wavenumber β. Two local maxima are observed, in agreement
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with Monokrousos et al. (2010). The forcing and response mode shapes of the two linear
optimal mechanisms are shown in the same figure.

The first local maximum at (β, ω) = (100, 0) × 10−5, point A, is associated with the
non-modal lift-up mechanism. The optimal forcing corresponds to steady streamwise rolls
(v, w components; for the optimal forcing, the v component is shown), and the optimal
response to streamwise streaks located further downstream (u component).

The second local maximum at (β, ω) = (30, 10) × 10−5, point B, corresponds to the
amplification of oblique TS waves. The planar TS waves are not the most amplified ones
due to the cooperative non-modal amplification through the Orr and lift-up mechanisms. It
is clearly noticed that the optimal forcing is tilted upstream, against the mean shear so that
the response takes advantage of the algebraic amplification through the Orr mechanism.

6. Nonlinear input/output analysis

To uncover the optimal nonlinear mechanisms that promote transition, the nonlinear
interactions of the modes and their impact on the mean flow is now incorporated in the
analysis through the optimisation approach developed in § 3.3.

We choose as cost function the (squared) shear stress of the mean-flow deviation,
integrated over the wall. With the notation introduced above, this is

J(ŵ) = J(ŵ00) = (ŵ00 − wb)
∗C∗C(ŵ00 − wb), (6.1)

with Cw = ∫y=0(∂u/∂y) dx and wb is the base flow. For this choice of cost function, we
have

dJ
dŵ00

= 2C∗C(ŵ00 − wb) (6.2)

and 0 for the other harmonics. This cost function can be directly linked to the drag change
exerted on the plate,

ΔCD = νJ0.5

1
2 U2∞Lp

, (6.3)

where Lp = xo is the plate length. In other words, by maximizing the specific cost function
J, we maximize the drag on the plate.

The entries of matrix P allow selection of the forced equations and of a subset of forced
harmonics. As in the linear case, we will restrict the forcing to the momentum equations
and exclude mass sources. In order to preserve the mean-flow harmonic ŵ00 from direct
modifications induced by steady forcing terms, we set f̂ 00 = 0 and exclude this mode
from the optimisation process. Thus, we focus on environmental perturbations that trigger
transition which are, in principle, characterised by zero mean in z and t, and they do not
introduce directly a mean-flow deformation. Yet, we allow steady forcing in z, i.e. rolls
with eiβz shape, that trigger mean-flow deformations in z.

Two types of forcing are then considered, which we refer to as fundamental and
superharmonic cases, as depicted in figure 5. For the first case, forcing is restricted to
components (m, n) = (β, ±ω), (β, 0), (0, ±ω); we call this fundamental since forcing is
allowed only at the primary forcing frequency and spanwise wavenumber. Each of these
forcing components can potentially lead to the amplification of a pair of unsteady oblique
waves, steady streamwise streaks or vortices, and planar waves, respectively. For the
superharmonic forcing case, we allow also the second forcing harmonics to be optimised,
|m| � 2 and |n| � 2, except m = n = 0. This allows forcings comprising of fundamental
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Figure 5. Fundamental (a) and superharmonic (b) cases. The nonlinear optimisation is restricted to forcing
components 1β, ±1ω, or 1β, 2β, ±1ω, ±2ω, and their oblique combinations, respectively. Other forcing and
response harmonics in the (m, n) plane may be deduced from the real-value constraint, e.g. ŵ−m−n = ŵmn. In
case of reflectional symmetry in z, the −nω components are linked to the +nω ones.

superharmonic components. For example, forcing f̂ 02 is at twice the frequency of forcing
f̂ 11. If the perturbation satisfies reflectional symmetry in z, all forcing and response
harmonics n < 0 are directly linked to those satisfying n > 0. The range of fundamental
forcing frequencies and spanwise wavenumbers for the nonlinear optimisation were chosen
such that the linear optimal mechanisms corresponding to streaks and oblique waves,
see linear β − ω gain map in figure 4, are investigated in the nonlinear framework. We
note that in both cases, we solve 132 separate optimisation cases over a wide range
of the fundamental forcing frequency, ω and β. Specifically, β = [4.1, 8.3, 16.6 : 16.6 :
167] × 10−5 and ω = [0.83, 1.67 : 1.67 : 16.67] × 10−5.

As an initial guess to the nonlinear optimisation algorithm, we use the base-flow solution
for the mean-flow harmonic ŵ00 and the linear optimal forcing and response components
that maximize the kinetic energy (see § 5) for the perturbation (all unforced harmonics are
set to zero). The amplitude of each harmonic forcing f̂ is normalized based on the linear
gain

f̂ init
mn = ζ

f̂ lin
mn√
λmn

, (6.4)

where f̂ lin
mn is a unit-norm (based on Qmn) linear optimal forcing associated to the linear

optimal gain λmn and ζ a constant adjusted so that f̂ ∗Qf̂ = A2. Such a choice allows the
initial condition ŵlin to correspond to a mix of optimal responses of equal amplitude. The
nonlinear optimisation framework then adjusts their amplitude, their spatial shape and fills
in the response modes arising from the nonlinear interactions.

Regarding the initial amplitude A, we choose a low value, for which it is easy to converge
to the nonlinear solution due to its proximity to the linear regime. Then, we gradually
increase A and follow the solution. The optimal solution is defined up to a phase due to
the periodicity in time (for example, t = 0 can correspond to an arbitrarily defined phase).
Without imposing a z-symmetry, the same is true for the z-direction, meaning the z = 0
location has an arbitrarily defined phase. Only in the symmetric case, the phase in z is fixed.
For high amplitudes, multiple solutions may exist. For that reason, we have added random
noise to test the robustness of our solutions. After a high threshold, we indeed identified a
non-symmetric branch of solutions in addition to the low amplitude symmetric one, which
are discussed in the following sections.
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Figure 6. Optimal drag change from nonlinear input/output analysis with (a) fundamental and
(b) superharmonic forcing, M = N = 2 and A = 7.07 × 10−5. In both cases, we solve separate optimisation
cases over a wide range of the fundamental forcing frequency, ω and β. Fundamental maximum at point
C: ΔCD,max = 2.8 × 10−5 at (β, ω) = (33.4, 11.7) × 10−5. Superharmonic maximum at point D: ΔCD,max =
41.6 × 10−5 at (β, ω) = (50, 11.7) × 10−5. Both maxima are close to the optimal linear amplification of the
oblique waves (point B).

6.1. Identification of optimal transition mechanisms: z-symmetric case with
A = 7.07 × 10−5 and M = N = 2

We first consider a case with imposed spanwise symmetry on the forcing and response and
M = N = 2. For small enough amplitude A, we expect that the forcing and perturbation
should exhibit the z-reflectional symmetry of the configuration. The small number of
resulting modes allows for more expensive parametric studies over ω and β, but, strictly
speaking, the results are converged for sufficiently small A so that higher-order harmonics
may be neglected. We look for an amplitude A that is sufficiently large so that nonlinear
interactions and energy transfers are effective but also sufficiently small to ensure that
truncation errors are negligible for M = N = 2. We found the value A = 7.07 × 10−5 to
be a good compromise. In a subsequent section we examine convergence by increasing A
and the retained number of harmonics M and N, and verify a posteriori that the present
results are reasonably well converged.

The cost function (expressed as mean drag perturbation via (6.3)) is shown in figure 6
for both the fundamental- and superharmonic-type forcings. For the fundamental case,
maximum drag increase is observed at (β, ω) = (33.4, 11.7) × 10−5, whereas for the
superharmonic case, the maximum occurs at the same frequency but a slightly higher
wavenumber, (β, ω) = (50, 11.7) × 10−5. For the superharmonic case, the drag increase
is approximately 14 times higher compared with the fundamental forcing. In both cases,
the overall optimal frequency/wavenumber pairs are close to the point marked B on
the linear amplification plot (figure 4), which represents the local maximum in linear
amplification of oblique waves. While those waves are linearly less amplified than streaks
(point A), they are nonlinearly superior. As will be shown in detail below, the nonlinear
fundamental mechanism C and superharmonic mechanism D initially harness oblique
wave amplification, and eventually lead, through nonlinearity, to redistribution of energy
near A and a strong response related to the lift-up mechanisms producing streaks.

6.1.1. Symmetric fundamental forcing
Focusing on the fundamental case first (figure 5a) with z-reflectional symmetry, we now
delve into the optimal forcing and response in greater detail. To simplify the discussion,
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Figure 7. Nonlinear optimisation for fundamental z-symmetric forcing with M = N = 2. Amplitudes of
optimal forcing (a) and response (b) for each individual harmonic component (m, n), as depicted in figure 5(a).
Values have been normalised with the total forcing amplitude A = 7.07 × 10−5. The circle marks the
frequency/wavenumber that maximum drag increase is observed. Also, isolines of the cost function (dashed
lines) have been added on the forcing components.

we define in appendix B, a scalar amplitude A(m, n) of each forcing/response mode, which
represents an integral over the spatial domain. These amplitudes are shown in figure 7.
Note that upon summation of the forcing modes, this yields the overall forcing amplitude
(here A = 7.07 × 10−5), and all amplitudes in the plot are normalized by this value. Based
on the dominant regions of the forcing and response amplitudes on the β–ω planes in
figure 7, three distinct mechanisms can be identified.

(i) Oblique waves. The maximal drag increase over the entire β–ω plane examined here
occurs for (β, ω) = (33.3, 11.7) × 10−5, and only involves significant forcing of the
oblique wave component (β, ±ω). In the response, there is some amplification to
the response component (β, ±ω), as expected in a linear framework, but the (2β, 0)

component, which arises from nonlinear interactions between (β, ω) and (β, −ω)

components, is highly amplified. The mean-flow modification is clearly associated
with the amplification of (2β, 0) streaks via oblique forcing. These observations
confirm oblique transition as optimal in terms of transition thresholds among all
the fundamental spanwise-symmetric mechanisms, as shown previously for plane
Couette (Duguet, Brandt & Larsson 2010) and channel flow (Reddy et al. 1998).

(ii) Streamwise vortices. For high spanwise wavenumbers, β > 100 × 10−5, the optimal
forcing is a streamwise vortex (m, n) = (β, 0). For these frequencies, the linear
amplification of oblique waves is weak and, thus, the generated streaks through
nonlinearity would also be weak. Consequently, for high enough frequencies and
wavenumbers, i.e. those that are far from the linear optimal of the oblique waves, the
optimal forcing mechanism is the direct amplification of streaks through the lift-up
mechanism.
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(iii) K-type mechanism. Finally, at (β, ω) = (16, 15) × 10−5, the optimal forcing is a
combination of all three components. Main forcing component is a planar 2-D wave
(0, ω) followed by a pair of 3-D oblique waves (β, ±ω) at the same frequency.
This mechanism is similar to the Klebanov one, describing fundamental K-type
transition.

Since the oblique waves are the most dangerous mechanism in terms of drag increase,
we examine the structure of the forcing and response fields in greater detail in figure 8.
Initially, (β, ±ω) oblique waves (only oblique waves with positive wavenumber and
frequency are shown due to z-symmetry) are amplified due to linear instability and reach
maximum amplitude at Rex ≈ 250 000 before they start decaying. The optimal forcing
is located further upstream and exploits the Orr mechanism for the amplification of
the oblique waves, similarly to the optimal linear mechanism. Both the linear (§ 5) and
nonlinear (shown in this section) optimal oblique forcings reach their maximum value
around Rex ≈ 150 000, which is near branch I of the neutral amplification curve based
on modal stability analysis (see Sipp & Marquet (2013) regarding the link between local
modal stability and linear resolvent). The quadratic nonlinearity redistributes the energy
of the oblique waves into the (2β, 0) mode in the form of streamwise vortices with
streamwise vorticity ωx (v, w components with (2β, 0)). In turn, the streamwise vortices
lead to the growth of the streaks (u component with (2β, 0)) through the linear lift-up
mechanism. The spatial shape of each harmonic response component mentioned above is
shown in figure 9, demonstrating the transition sequence from oblique waves to streamwise
vortices and streaks. These observations are in agreement with previous studies on oblique
transition (Schmid & Henningson 1992; Berlin, Lundbladh & Henningson 1994). The
sequential temporal unfolding of the Orr, oblique and lift-up phases has been observed
during the minimal seed calculations in the time domain (Pringle et al. 2012; Duguet et al.
2013), in analogy to the spatial unfolding of the above mechanisms in the streamwise
direction during the present approach.

The link between the nonlinear gain map and that obtained from linear analysis is
evident now: the most dangerous nonlinear forcing exploits both linear amplification
mechanisms, specifically 3D unsteady oblique waves and 3-D steady rolls–streaks,
through the redistribution of energy from the first linear mechanism to the second linear
mechanism via nonlinearity. The fundamental frequency and spanwise wavenumber,
(β, ω) = (33.3, 11.7) × 10−5, is very close to the linearly optimal oblique ones, (β, ω) =
(30, 10) × 10−5, and then nonlinearly generated steady vortices are formed at twice the
spanwise wavenumber (β, ω) = (66.6, 0) × 10−5. The latter part does not coincide with
the maximum linearly amplified lift-up wavenumber, (β, ω) = (100, 0) × 10−5, but it is
close enough to take advantage of this mechanism in an optimal synergistic way.

6.1.2. Symmetric superharmonic forcing
Here, the forcing is expanded to consider both the fundamental and its first harmonic
in both frequency and spanwise wavenumber, see figure 5(b). Thus, forcing is allowed
in eight forcing components arising from all the combinations of fundamental and first
harmonic components. We retain for now M = N = 2 and A = 7.07 × 10−5, and recall
(figure 6b) that maximum amplification of shear stress is observed for forcing at (β, ω) =
(50, 11.7) × 10−5.

The optimum in the (β, ω) plane for the superharmonic case is close to the one found
for the fundamental case where the oblique waves were the optimal forcing mechanism.
However, now the planar waves at twice the frequency of the oblique waves share
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Figure 8. Optimal oblique fundamental case with M = N = 2 at (β, ω) = (33.3, 11.7) × 10−5 for A = 7.07 ×
10−5. This forcing results to the maximum amplification of shear stress for fundamental forcing over all forcing
frequencies and wavenumbers (point C in figure 6a). Isosurfaces of streamwise perturbations f ′

u = ±8.3 × 10−9

(c) and u′ = ±0.07 (d), blue negative isovalue and red positive one. One fundamental wavelength is shown
in z.
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Figure 9. Harmonic response components for the optimal oblique fundamental case shown in figure 8. The
response is dominated by the growth of (β, ±ω) oblique waves (u′ shown), followed by the nonlinear generation
of (2β, 0) streamwise vortices (ω′

x shown) and the linear growth of streaks (u′ shown).

similar amplitude to the oblique waves. As can be observed in figure 10, only two major
forcing components exist at the optimal (β, ω) pair. The optimal forcing corresponds to
a three-dimensional oblique wave (β, ω) and a superharmonic two-dimensional wave at
twice the frequency, (0, 2ω). The optimal superharmonic forcing is in agreement with the
typical scenario for H-type transition triggered by a pair of oblique waves and a TS wave at
twice the frequency. In the literature describing H-type transition, typically the TS is called
the fundamental wave and the oblique the subharmonic, but our description is equivalent.

The streamwise evolution of each forcing and response harmonic for the optimal
superharmonic case is shown in figure 11. The forcing is dominated by the superharmonic
two-dimensional TS wave at twice the fundamental frequency, (0, 2ω), and the
three-dimensional oblique waves, (β, ±ω). Since spanwise reflectional symmetry has been
enforced, the amplitudes of the (β, +ω) and (β, −ω) oblique waves are equal and only one
of those is shown. Despite the differences in the forcing components when compared with
the fundamental case where only the oblique waves are present, the amplitude response is
qualitatively similar and dominated by streaks. However, the nonlinearly generated streaks
have almost twice as high amplitude when compared with the fundamental case, due to
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Figure 10. Nonlinear optimisation for superharmonic z-symmetric forcing M = N = 2. Amplitudes of optimal
forcing (a) and response (b) for each individual harmonic component (m, n), as depicted in figure 5(b). Values
are normalised with the total forcing amplitude A = 7.07 × 10−5. The square marks the frequency/wavenumber
that maximum drag increase is observed.
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Figure 11. Optimal H-type superharmonic case M = N = 2 at (β, ω) = (50, 11.7) × 10−5 for A = 7.07 ×
10−5. This forcing results to the maximum amplification of shear stress for superharmonic forcing over all
forcing frequencies and wavenumbers (point D in figure 6b). Isosurface of f ′

u = ±8.3 × 10−9 (c) and u′ =
±0.07 (d), blue negative isovalue and red positive one. One fundamental wavelength is shown in z.
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Figure 12. Harmonic response components for the optimal superharmonic case shown in figure 11. The
response is dominated by the growth of (β, ±ω)OW oblique waves (OW) and planar waves (0, 2 ± ω)TS at
twice the fundamental frequency (u′ overlaid for OW and TS) characteristic of H-type resonance. The oblique
waves generate nonlinearly (2β, 0) streamwise vortices (ω′

x shown) which promote the linear growth of streaks
(u′ shown). Also, initial stages of streak instability are observed near the domain outlet.

the efficient amplification of the parent oblique waves through the resonant interaction
with the planar 2-D waves (see figure 12). The subsequent stages are similar to the ones
of the fundamental case where streamwise vortices are generated from the nonlinear
interactions between (β, ω) and (β, −ω) components, which in turn produce streaks.
Finally, towards the end of the domain, low- and high-speed streaks start to undergo
streamwise oscillations. These oscillations are stronger than in the fundamental oblique
case (compare with figure 8), since for a given amplitude, the resonant H-type forcing
leads to higher streak amplification through the stages described above.

For the optimal superharmonic forcing (oblique and planar waves), low levels of energy
are observed in two other forcing components, the (2β, 0) and (2β, 2ω) components.
In figure 13 we analyse their importance by plotting the total amplitude of each forcing
and response harmonic. Also, to ensure converged results, we have increased the number
of response harmonics and lowered the forcing amplitude. The left column shows the
superharmonic optimised forcing and response amplitude for each harmonic, when forcing
is allowed in all eight forcing components as above. The (0, 2ω) planar and (β, ω)
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Figure 13. Optimal forcing (a–c) and response (d– f ) amplitudes for superharmonic cases M = 4, N = 2
at (β, ω) = (50, 11.7) × 10−5 for A = 5.13 × 10−5. Forcing has been optimised in all fundamental and
superharmonic components (a,d); only at (β, ω) and (β, 2ω) (b,e); only at (β, ω) and (2β, 0) (c, f ).

oblique waves are the dominant forcing components, and the (2β, 0) and (4β, 0) streaky
structures, the (β, ω) and (3β, ω) oblique waves and the (0, 0) MFD in the response. The
second column corresponds to an optimisation restricted solely to the (0, 2ω) and (β, ω)

harmonics: it is seen that it reproduces closely the more complex optimisation of the left
column (the reached ΔCD is nearly the same). In contrast (right column), it is seen that
if the (0, 2ω) planar wave is replaced by the (2β, 0) streaky component in the forcing
(this also corresponds to a superharmonic forcing but in spanwise wavenumber), then the
optimal response only achieves weak drag increase, in agreement with those shown for
the fundamental optimisation at similar amplitudes. This validates that it is the interplay
between the (0, 2ω) planar and the (β, ω) oblique harmonic that accounts for the strong
amplification observed in H-type transition.

The catalytic role of the planar waves in the superharmonic H-type case also be
evidenced from a weakly nonlinear analysis based on scaling arguments. The analysis
(see appendix C) shows that the drag increase, for the two optimal fundamental and
superharmonic cases, scales as

ΔCD = ΔCD,2A2 + ΔCD,3A3 + ΔCD,4A4 + · · · for superharmonic forcing, (6.5)

ΔCD = ΔCD,2A2 + ΔCD,4A4 + · · · for fundamental forcing. (6.6)

Hence, superharmonic resonant forcing allows the presence of additional odd terms in the
expansion. For example, the A-order (0, 2ω) planar and (β, −ω) oblique waves generate
the A2-order (β, ω) oblique wave, which may interact with the A-order (−β, −ω) oblique
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Figure 14. Maximum drag increase as a function of forcing amplitude for different truncations in spanwise
(M) and frequency (N) components (a). Results shown for the optimal oblique fundamental case (β, ω) =
(33.3, 11.7) × 10−5, with reflectional symmetry in the spanwise direction. Skin friction coefficient for M =
N = 4 as a function of streamwise distance for different forcing amplitudes (b). For A > 8.5 × 10−5, varicose
transition of the low-speed streaks is observed.

wave to promote an A3-order (0, 0) MFD. Hence, in the case of superharmonic forcing,
it is possible to take advantage of the odd orders to optimise the drag increase, while for
fundamental oblique forcing, only even orders exist in the expansion.

6.2. Fundamental forcing for higher A and the effects of truncation
The results shown above were obtained with a truncated expansion with M = N = 2
response modes. A preliminary assessment of the harmonic truncation can be made by
examining the amplitude of higher or truncated wavenumber/frequency components. In
figure 7 we observe that the second frequency harmonics, (mβ, 2ω), have a much smaller
amplitude than the fundamental ones, (mβ, ω). However, this is not the case for the
truncation in β harmonics. As we saw above, a strong response was obtained at (2β, 0)

component through nonlinear interactions.
To directly assess the truncation error, calculations were performed with larger M and N.

The resulting maximum in the cost function is shown, as a function of forcing amplitude,
in figure 14(a) for various orders of truncation. Apart from the most highly truncated
case, we see a tendency towards convergence for forcing amplitudes A < 7 × 10−5. The
M = N = 1 case is clearly highly truncated – this can be understood physically since the
nonlinear amplification mechanisms described above require the generation of streaks at
(2β, 0).

As discussed above, during the initial stages of transition and for a small forcing
amplitude, the second and higher ω-harmonics are not as strongly amplified as the
β-harmonics, meaning that the energy spreading occurs faster in β than ω. For example,
the M = 2, N = 1 case is almost identical to M = N = 2. Similarly, M = 4, N = 2 is close
to M = N = 4. The dominance of the β-cascade has been observed in various DNS and
experimental transition studies (Rist & Fasel 1995; Breuer, Cohen & Haritonidis 1997;
Yeo et al. 2010) and it is consistent with the results presented here.
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6.2.1. Symmetric streak breakdown
Increasing further the number M of β-harmonics, a sudden change is observed in the drag
values for A ≈ 8 × 10−5 and for M � 4, see figure 14(a). The skin friction coefficient for
various amplitudes is shown in figure 14(b) for M = N = 4. The spanwise averaged skin
friction coefficient is calculated from the (0, 0) streamwise velocity component:

Cf = τwall
1
2 U2∞

, with τwall = ν

(
∂ û00

∂y

)
y=0

. (6.7)

For comparison, the values of the laminar skin friction coefficient (Clam
f =

0.664/
√

Rex) and the empirical one corresponding to fully developed turbulence (Cturb
f =

0.455/ ln2(0.06Rex)) are shown with dashed lines (White 1991; Yeo et al. 2010). The
transition is accompanied by an overshoot of the skin friction coefficient up to the
empirical turbulent values for sufficiently high forcing amplitudes. Increasing M, the
transition threshold moves to lower forcing amplitudes, suggesting that the flow has
transitioned to a more complex regime, for which a large number of harmonics would be
required to capture quantitatively accurately the solution, as will be discussed in greater
detail below.

The amplitudes of the forcing and response components are shown in figure 15 for
A = 11.3 × 10−5 and the M = N = 4 case, again for the optimal fundamental forcing.
The forcing reaches maximum amplitude further downstream at Rex = 200 000 when
compared with the lower amplitude case, and also a second distinct region of forcing
appears for Rex > 250 000. For all the cases examined, we noticed that the second region
of forcing triggers streak oscillations in the streamwise direction and they subsequently
break down. Regarding the response, once the (2β, 0) streaks reach sufficiently high
amplitude, the harmonic component (4β, 0) increases up to Rex ≈ 320 000 along with the
(3β, ω) harmonic. The latter is responsible for the generation and progressive elevation of
hairpins from the wall. The MFD increases monotonically in agreement with the increase
in skin friction coefficient. A cascade of nonlinear interactions makes the amplitude of all
the harmonic components to increase significantly toward the end of the domain, where
the skin friction has exceeded the empirical turbulent value. The streak breakdown is the
key mechanism that promotes the transition of the flow, compared with the previous low
forcing amplitude cases.

For all the cases presented above, we have imposed symmetry in z. Under this restriction,
the low-speed streaks undergo varicose oscillations in x whereas the high-speed streaks
undergo sinuous oscillations (subharmonic varicose case in Andersson et al. 2001)
creating a staggered pattern of �-structures and the emergence of hairpin vortices further
downstream (Asai et al. 2002). Similar behaviour has been observed in direct numerical
simulations (Berlin et al. 1999) where a pair of oblique waves was introduced in the domain
inlet and reflectional symmetry in spanwise was imposed. Initial stages of this process are
visualised using the Q-criterion. The emergence of the hairpin vortices coincides with the
final regime during the transition process and the overshoot of the skin friction coefficient
to the turbulent values.

6.2.2. Breaking the z-reflectional symmetry
In this section we relax the reflectional symmetry assumption in z that was imposed
above. The computational cost increases since we have to account for almost twice
the number of harmonics. We focus again here on the optimal fundamental forcing at
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Figure 15. Laminar-turbulent transition for optimal oblique fundamental case (symmetry in z) with M = N =
4 at (β, ω) = (33.3, 11.7) × 10−5 for A = 11.3 × 10−5. Amplitude for forcing (a) and response (b) for each
individual harmonic component (m, n). Isosurfaces of streamwise perturbations for f ′

u = ±8.3 × 10−9 (c) and
u′ = ±0.16 (d). Vortical structures visualised with the Q-criterion (iso-Q = 1.4 × 10−9; green) and low-speed
streaks (u′ = −0.16; blue). Two fundamental wavelengths are shown in z to facilitate the presence of staggered
�-structures and hairpins.

(β, ω) = (33.3, 11.7) × 10−5 that is initiated through a pair of equal amplitude oblique
waves.

The dependence of the maximum drag increase on the forcing amplitude with and
without z-reflectional symmetry is shown in figure 16(a) for M = N = 2 and M =
3, N = 2. The dashed lines correspond to the values obtained in the previous section
imposing reflectional symmetry (SYM cases). We repeated the optimisation for each
forcing amplitude and restricted the forcing to act only on the oblique (β, ω) component
without imposing symmetry in z. The initial guess was the symmetric solution with
random noise of 10 % of the maximum value of each forcing component added to break the
symmetry. Up to a critical forcing amplitude, Ac = 18 × 10−5 for M = N = 2 and Ac =
9.2 × 10−5 for M = 3, N = 2, the solution converges to the one satisfying the reflectional
symmetry. At the critical amplitude, the solution bifurcates to a different equilibrium with
approximately two times higher drag increase than the one for the symmetric case.

In figure 16(b) the skin friction coefficients of the two cases with and without
z-reflectional symmetry are shown for M = 3, N = 2 for various forcing amplitudes.
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Figure 16. Maximum drag increase for optimal oblique fundamental forcing with no imposed symmetry in
z (solid lines) and z-reflectional symmetry (SYM, dashed lines) for various orders of truncation M, N (a).
Skin friction coefficient as a function of Rex for various forcing amplitudes for M = 3, N = 2 (b). For the
non-symmetric cases, sinuous-like transition of the low-speed streaks is observed.

For the symmetric cases, the skin friction values saturate to values close and above the
laminar curve for low forcing amplitudes. Only the highest amplitude shows a tendency
for departure from the trend of the lower amplitude curves, indicating that the streaks
are on the verge of symmetric breakdown. Relaxing the symmetry assumption, and for
the same amplitudes as the symmetric case, the skin friction reaches values significantly
higher than the turbulent ones. For the two highest amplitudes, after the overshoot to the
turbulent values, the skin friction drops. In contrast, for the symmetric case, a monotonic
increase for similar values beyond the threshold of the turbulent skin friction values was
observed (see figure 14b).

The amplitude of the forcing and response harmonic components is shown in figure 17
for the M = 3, N = 2 case. The oblique forcing components, (β, +ω) and (β, −ω), break
their symmetry and are characterised by different amplitudes now. Due to the fact that the
+z and −z directions are equivalent, the preference for higher amplification of (1, +1) or
(1, −1) is arbitrary and depends upon the noise initialisation. Also, two new local maxima
appear for Rex > 2 × 105 in the amplitude forcing curves. This is similar to the one that
appeared in the symmetric case that promoted the varicose streak breakdown, but here it
is more pronounced. The amplitude response of the different harmonic components shows
that the initial stages are similar to the ones observed in the case with imposed spanwise
symmetry. The oblique waves (β, ±ω) interact nonlinearly to promote the growth of
rolls–streaks at twice the spanwise wavenumber, (2β, 0). The (3β, ±ω) components are
amplified as well, similar to the symmetric case. Immediately after that, all the harmonics
appear to attain high energy values, due to the more effective energy spread through the
symmetry break of the forcing.

Despite the similarities in the amplitude response, the flow is qualitatively different
from the symmetric case. The reflectional symmetry break of the forcing can be observed
in the isosurfaces of the streamwise velocity perturbation. Towards the decaying phase
of the forcing, the dominance of the left-travelling (1, −1) oblique wave is evident.
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Figure 17. Laminar-turbulent transition for optimal oblique fundamental forcing (no symmetry in z) with
M = 3, N = 2, (β, ω)=(33.3, 11.7) × 10−5, A = 14.1 × 10−5. Maximum amplitudes of optimal forcing (a) and
response (b) for each individual harmonic component (m, n). Isosurfaces of streamwise perturbations for f ′

u and
u′ (c). Vortical structures visualized with the Q-criterion along with low-speed-streaks (d). Two fundamental
wavelengths are shown in z ( f ′

u = ±8.3 × 10−9, u′ = ±0.2, Q = 10−9).

This mechanism promotes in an optimal way the sinuous-like breakdown of the low-speed
streaks. The sinuous low-speed streak breakdown occurs for lower forcing thresholds
compared with the varicose breakdown. This is in accordance with previous results in
the literature examining streak breakdown (Andersson et al. 2001). This regime is not
associated with hairpin vortices, but with quasi-streamwise vortices of alternate sign,
in accordance with the experimental findings of Asai et al. (2002) and numerical ones
of Brandt (2007). Visualisation of the vortices using the Q-criterion shows longitudinal
vortices staggered on each side of the low-speed streaks up to Rex = 300 000. At this
location, the low-speed streaks come close together in an alternate staggered manner
and merge. In the same time, they break and then create individual �-like staggered
structures. Exactly at this stage, the skin friction coefficient has reached the turbulent
value.
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Figure 18. Maximum drag increase for optimal H-type superharmonic forcing at (β, ω) = (50, 11.7) × 10−5

with z-symmetry as a function of forcing amplitude (a). Various orders of truncation MN are shown. Skin
friction coefficient (b) as a function of Rex for M = 6, N = 3.

6.3. Superharmonic forcing for high MN and high A
A convergence study of the truncated HBM expansion was performed for the
superharmonic case with imposed z-reflectional symmetry. Up to a forcing amplitude
A = 3 × 10−5, the solution appears converged, for the M = N = 2 case. Increasing the
forcing amplitude, the flow transitions. For A > 5.13 × 10−5 and M = 6, N = 3, the skin
friction coefficient overshoots towards the turbulent values; see figure 18(b). Similarly to
the symmetric fundamental case, a monotonic increase of the skin friction coefficient is
observed by increasing the forcing amplitude.

The amplitude of the forcing and response components are shown in figure 19 for the
high-amplitude forcing case with M = 6, N = 3. The dominant forcing component is the
(0, 2ω) mode followed by the (β, ±ω) components. The nonlinear interaction of (β, ±ω)

response components create a strong response in the (2β, 0) component. This process
continues resulting in the progression of energy along the β-axis and the emergence of
(4β, 0) and (6β, 0) components. Although higher harmonics are also created by nonlinear
interactions, they are less energetic since they are not amplified by the transient growth to
the same degree as the low wavenumber modes (Breuer et al. 1997). The low-speed streaks
undergo symmetric varicose type of oscillations, whereas the high-speed streaks oscillate
in a sinuous mode in the streamwise direction. The response appears similar to the one for
the fundamental oblique forcing, where spanwise reflectional symmetry is imposed. The
low-speed streaks attain a �-shape, which creates a staggered pattern of � vortices. These
vortices are identified using the Q-criterion.

6.4. Summary and implications for turbulent dynamics
Three high-amplitude forcing cases have been identified above as the worst-case nonlinear
disturbances that reach values of the skin friction coefficient that are close to and above the
empirical turbulent values. These cases were obtained by restricting the forcing to specific
harmonic components, with or without spanwise symmetry. For the three cases considered,
we plot the mean velocity profile at various streamwise locations for the highest forcing
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Figure 19. Laminar-turbulent transition for optimal H-type superharmonic forcing with M = 6, N = 3,
(β, ω) = (50, 11.7) × 10−5, A = 5.65 × 10−5. Total energy for forcing (a) and response (b) for each individual
harmonic component (m, n). Isosurfaces of streamwise perturbations f ′

u (c) and u′ (d). Vortical structures
visualised with the Q-criterion along with low-speed streaks (e). Two fundamental wavelengths are shown
in z ( f ′

u = ±6.2 × 10−9, u′ = ±0.2, Q = 5.5 × 10−9).

amplitude in figure 20. Distinct regimes can be identified in accordance with the transition
sequences observed in the previous sections.

(i) At the very early stages of transition up to Rex = 200 000 the velocity profiles
obey the linear wall law u+ = y+ for all three cases. This stage is characterised
by linear growth of perturbations. Transition has been triggered optimally with a
pair of oblique waves (fundamental cases). In the case of subharmonic instability
(superharmonic case), the planar waves are also excited.

(ii) The second stage of transition is associated with the generation of streaks through
nonlinear interactions of the oblique waves. At this regime, the skin friction
coefficient departs from the laminar Blasius values. This new regime is reflected
as well through the modification of the local velocity profile outside of the viscous
sublayer for y+ > 5, in accordance with the increase of the skin friction coefficient
(recall that u+∞ = √2/Cf ). Depending on the symmetry of the forcing, varicose
�-shaped (symmetry in z) or sinuous (no symmetry in z) low-speed streaks have
been clearly identified for Rex > 260 000.

(iii) A third regime is observed where a distinct plateau is formed in the buffer region,
15 < y+ < 30 for all three cases. In the symmetric cases, hairpin-like vortical
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Figure 20. Mean velocity profiles during transition in inner units based on the local friction velocity uτ . Linear
(u+ = y+; dashed) and log laws (u+ = 1

0.41 log y+ + 5; dashed–dotted) are also shown. Then insets show the
skin friction coefficient as a function of Rex and the location where the velocity profiles are plot are marked with
circles. (a) Fundamental (z-symmetry). (b) Fundamental (no symmetry). (c) Superharmonic (z-symmetry).

structures grow around the �-shaped low-speed streaks at Rex ≈ 330 000. In the
case without symmetry, alternate quasi-streamwise vortices grow around the sinuous
low-speed streaks, i.e. Rex ≈ 300 000. Immediately after the vortical structures are
formed, the skin friction coefficient overshoots to the turbulent values.

(iv) The final transition regime is associated with the breakdown. At this regime, the skin
friction coefficient reaches the empirical turbulent values and energy is transferred
to all the higher harmonics.

When z-reflectional symmetry is imposed, the velocity profiles show qualitatively
similar characteristics as Rex increases, both for the fundamental and superharmonic cases.
A monotonic decrease of the local streamwise velocity is observed in accordance
with the monotonic increase of the skin friction coefficient. For the fundamental case
with symmetry, a small logarithmic region is observed for Rex = 360 000; however,
the velocities are lower than those associated with the turbulent profile, which is in
accordance with the increased skin friction coefficient beyond the turbulent values.
For the superharmonic case and the forcing amplitudes examined here, the behaviour
is similar without the observation of the logarithmic region. The spanwise-symmetric
high-amplitude solutions calculated here that transition through streak breakdown show
striking similarities with the optimal nonlinear solutions calculated in the time domain
for spatially developing boundary layers. However, this is not surprising since their
calculations were obtained by using a symmetric initial condition as a guess for the
optimisation (Cherubini et al. 2011) or spanwise symmetry was imposed (Duguet et al.
2012).

Interestingly, for the fundamental case with no symmetry in z (figure 20b), the velocity
profiles at the final stages of transition show characteristics similar to the ones observed in
turbulent boundary layers. Specifically, the velocity profile appears to develops a nascent
logarithmic region, u+ = 1

0.41 log y+ + 5, that extends in y+ as Rex increases. The skin
friction coefficient, after an initial overshoot above the turbulent empirical values, drops
to values close to the turbulent ones. For this specific case, we observed sinuous low-speed
streaks and quasi-streamwise staggered vortices, which are fundamental building blocks in
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the self-sustaining process in a variety of streamwise homogeneous flows (Waleffe 1997,
fundamental sinusoidal instability of the streaky flow), in contrast to the varicose streak
instability and the hairpins that were observed for the two symmetric cases.

7. Conclusion

The nonlinear optimal mechanisms for wall-bounded laminar-turbulent transition have
been investigated through the solution of the frequency-domain harmonic-balanced
Navier–Stokes equations by projecting the governing Navier–Stokes equations on to
a limited number of harmonics whose triadic interactions are considered. The new
framework complements previous methods that seek nonlinear optimal initial conditions in
the time domain within a finite time horizon. The proposed nonlinear input/output analysis
identifies the most dangerous nonlinear forcing mechanisms that trigger transition and can
be viewed as the minimal forcing seed in the frequency domain.

Optimal nonlinear forcing mechanisms that lead to transition and maximise the skin
friction coefficient have been identified based on a variational method using direct-adjoint
looping. By increasing the finite forcing amplitude, we identified the key mechanisms
that distort the laminar flow and lead to transition. We showed that for fundamental
forcing, the most amplified disturbances correspond to a pair of oblique waves with
frequency and spanwise wavenumber close to the linear optimal one. Nonlinearity is
responsible for redistributing the energy to the streamwise uniform vortex component
which leads to the amplification of streaks through the lift-up mechanism. Depending on
the imposed spanwise symmetry, the low-speed streaks break down to turbulence through
varicose oscillations (imposing reflectional symmetry in spanwise) or sinuous-like ones
(no symmetry in spanwise), with the latter being more efficient in promoting transition. In
each case, hairpin vortices and quasi-streamwise vortices are observed prior to breakdown.
When multi-harmonic forcing is allowed, the resonant interaction between oblique and
planar waves at twice the frequency allows for even more rapid transition. At the final
stages of transition, the skin friction coefficient reaches the empirical turbulent values
and the velocity profiles depart from the law of the wall, for all cases examined here.
However, only for the non-symmetric sinuous-like streak breakdown the velocity profiles
develop a clear logarithmic region similar to the one observed for turbulent boundary
layers.
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Appendix A. Mesh, domain sensitivity and computational cost for K -type transition

A sensitivity analysis of the domain length, the finite element discretisation and the
number of retained harmonics has been performed for the K-type controlled transition.
The amplitudes of the first few harmonics obtained by the HBM method are shown in
figure 21. Mesh 1 extends to xo = 2.52 × 105 whereas mesh 2 is for a longer domain up
to xo = 3.00 × 105. The number of triangles and degrees of freedom per harmonic of
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Figure 21. Sensitivity of various harmonics for various choices of the numerical parameters. Note that to
ease representation, we have plotted one fifth of the amplitude of harmonics (0, ω) and (2β, ω).

M, N xi xo Triangles DOF/harmonic Elements

Mesh 1 2, 2 30 000 252 000 71 207 357 469 P1b-P1
Mesh 1 4, 4 30 000 252 000 71 207 357 469 P1b-P1
Mesh 1 2, 2 30 000 252 000 71 207 465 352 P2-P1
Mesh 2 2, 2 30 000 300 000 86 595 434 653 P1b-P1

Table 2. Parameters for sensitivity analysis of the computational parameters.

Newton Walltime
M, N Cores RAM (Gb) iter. (min/iter) Elements Initial guess

Mesh 1 2, 2 9 47 9 23 P1b-P1 Linear response
Mesh 1 2, 2 9 121 10 45 P2-P1 Linear response
Mesh 1 3, 3 16 102 4 43 P1b-P1 M = 2, N = 2 solution
Mesh 1 4, 4 25 289 4 77 P1b-P1 M = 3, N = 3 solution

Table 3. Computational cost for HBNS solution.

the discretised problem for the two meshes and for different choices of finite elements
([P1b, P1b, P1b, P1] and [P2, P2, P2, P1]) are given in table 2. Small differences are
observed in the amplitude of the various harmonics between P1b and P2 elements. Given
the lower computational cost (see table 3) of the former, we performed all calculations
using P1b elements.

Calculations were performed on a multi-node cluster, with each node having 2 × 12 core
Xeon E5-2670 2.3 GHz CPUs and 128 GB DDR4 2133 MHz RAM. In table 3 the RAM,
number of cores, number of Newton iterations for convergence and the walltime are given,
depending on the order of truncation and mesh type.
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Appendix B. Amplitudes of harmonics for HBM

In the z-symmetric case the full solution may be rewritten under the form

ŵ = wb + (ŵ00 − wb) +
M∑

m=1

(ŵm0 exp(imβz) + c.c.) +
N∑

n=1

(ŵ0n exp(inωt) + c.c.)

+
M∑

m=1

N∑
n=1

(
ŵmn exp(imβz + inωt) + ŵ−mn exp(−imβz + inωt) + c.c.

)
. (B1)

The domain-integrated amplitudes of the response harmonics may be defined according to

Aŵ(m, n) =

⎧⎪⎪⎨
⎪⎪⎩
√

(ŵ00 − wb)∗Q′
mn(ŵ00 − wb) if (m, n) = (0, 0),√

2ŵ∗
mnQ′

mnŵmn if (m, n) ∈ (0, 1 . . . N) ∪ (1 . . . M, 0),√
4ŵ∗

mnQ′
mnŵmn if (m, n) ∈ (1 . . . M, 1 . . . N),

(B2)
where Q′

mn has been defined in (5.2). The overall amplitude of all the harmonics is

Aŵ =
√ ∑

m�0,n�0

Aŵ(m, n)2. (B3)

The overall amplitude of the forcing f̂ was defined in (3.16) by the Q matrix:

A =
√

f̂ ∗Q f̂ =
√√√√√√

∑
|m|�M
|n|�N

(m,n) /= 0

f̂ ∗
mnQmn f̂ mn. (B4)

In the symmetric case, noting that f̂ 00 = f b = 0, following (B3), we have Af̂ =
√

f̂ ∗Qf̂ .
The amplitudes of the individual harmonics may be represented as well with the quantity
Af̂ (m, n).

The maximum amplitude of any velocity or pressure component of the state vector can
be calculated in accordance with (B2). For example, for the u component,

umax(m, n) =

⎧⎪⎪⎨
⎪⎪⎩

max
√

(û00 − ub)∗(û00 − ub) if (m, n) = (0, 0),

max
√

2û∗
mnûmn if (m, n) ∈ (0, 1 . . . N) ∪ (1 . . . M, 0),

max
√

4û∗
mnûmn if (m, n) ∈ (1 . . . M, 1 . . . N).

(B5)

Appendix C. Link with weakly nonlinear analysis

In this appendix we analyse weakly nonlinear expansions of the HBNS solutions at low
amplitudes A  1. We will consider two cases: § C.1 will consider the case of a fixed
forcing structure composed of a single harmonic (as obtained in the case of fundamental
forcing) and § C.2 the case with two harmonics (as obtained in the case of superharmonic
forcing at point D for high forcing amplitude A).
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C.1. Single harmonic forcing
Suppose that the forcing only comprises a (β, ω) oblique harmonic of amplitude A (plus
the three others resulting from the z-reflectional symmetry and the real-value contraints).
This forcing will be noted Af̂ 11 in the following. For A  1, considering the solution under
the form (3.4), the various harmonics may be expanded as

ŵ11 = AŵA
11︸︷︷︸

A f̂ 11

+ A3ŵAAA
11︸ ︷︷ ︸

AŵA
11 × A2ŵAA

00
+ AŵA

−1,−1 × A2ŵAA
22+ ···

+ O(A5), (C1)

ŵ02 = A2ŵAA
02︸ ︷︷ ︸

AŵA
11 × AŵA

−1,1

+ O(A4), (C2)

ŵ20 = A2ŵAA
20︸ ︷︷ ︸

AŵA
11 × AŵA

1,−1

+ O(A4), (C3)

ŵ22 = A2ŵAA
22︸ ︷︷ ︸

AŵA
11 × AŵA

11

+ O(A4), (C4)

ŵ13 = A3ŵAAA
13︸ ︷︷ ︸

AŵA
11 × A2ŵAA

02

+ O(A5), (C5)

ŵ31 = A3ŵAAA
31︸ ︷︷ ︸

AŵA
11 × A2ŵAA

20

+ O(A5), (C6)

ŵ33 = A3ŵAAA
33︸ ︷︷ ︸

AŵA
11 × A2ŵAA

22

+ O(A5), (C7)

ŵ00 = A2ŵAA
00︸ ︷︷ ︸

AŵA
11 × AŵA

−1,−1+ ···

+ A4ŵAAAA
00︸ ︷︷ ︸

AŵA
11 × A3ŵAAA

−1,−1
+A2ŵAA

20 × A2ŵAA
−2,0+ ···

+ O(A6). (C8)

All non-zero terms up to order A3 have been indicated for (m, n) /=(0, 0), while the
development is complete up to order A5 for the mean-flow harmonic (0, 0). We have shown
in the underbraces a sample of forcings that trigger the considered term.

Hence, the mean friction (being a linear operator acting on ŵ00) scales as

ΔCD = ΔCD,2A2 + ΔCD,4A4 + · · · . (C9)

C.2. Two-harmonic forcing
Suppose that the forcing lies in the (β, ω) oblique and (0, 2ω) planar wave harmonics
(plus the ones due to symmetry). Similarly to the previous section, these forcings will be
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noted Af̂ 11 and Af̂ 02. We obtain the following expansions:

ŵ11 = AŵA
11︸︷︷︸

A f̂ 11

+ A2ŵAA
11︸ ︷︷ ︸

AŵA
02 × AŵA

1,−1+ ···

+ O(A3) (C10)

ŵ02 = AŵA
02︸ ︷︷ ︸

A f̂ 02

+ A2ŵAA
02︸ ︷︷ ︸

AŵA
11 × AŵA

−1,1

+ O(A3), (C11)

ŵ20 = A2ŵAA
20︸ ︷︷ ︸

AŵA
11 × AŵA

1,−1

+ O(A3), (C12)

ŵ22 = A2ŵAA
22︸ ︷︷ ︸

AŵA
11 × AŵA

11

+ O(A3), (C13)

ŵ13 = A2ŵAA
22︸ ︷︷ ︸

AŵA
11 × AŵA

02

+ O(A3), (C14)

ŵ04 = A2ŵAA
04︸ ︷︷ ︸

AŵA
02 × AŵA

02

+ O(A3), (C15)

ŵ00 = A2ŵAA
00︸ ︷︷ ︸

AŵA
11 × AŵA

−1,−1
+ AŵA

02 × AŵA
0,−2+ ···

+ A3ŵAAA
00︸ ︷︷ ︸

AŵA
11 × A2ŵAA

−1,−1
AŵA

02 × A2ŵAA
0,−2+ ···

+ O(A4). (C16)

These expansions are the same as for the single forcing harmonic case described in the
previous section with additional terms marked in red. All terms that scale as A2 are
given explicitly for (m, n) /=(0, 0), while the development is valid up to order A3 for the
mean-flow harmonic (0, 0).

The drag increase now follows

ΔCD = ΔCD,2A2 + ΔCD,3A3 + · · · . (C17)

C.3. Scalings
Such scalings have been verified in figure 22 for superharmonic forcing at point D. The
red curve corresponds to the optimised solution at all amplitudes, as presented in § 6.3.

For very low amplitudes, e.g. for the leftmost point at A = 4.54 × 10−7 on that curve in
the graph, the optimal forcing is a pure (β, ω) oblique forcing (for very low amplitudes,
the cooperation between forcing harmonics vanishes and the optimal forcing converges
to a single harmonic). The blue curve then corresponds to HBNS solutions with a
forcing structure frozen and equal to the one obtained for A = 4.54 × 10−7, i.e. the above
mentioned pure oblique (β, ω) wave. Only the amplitude A was adjusted in the various
computations. For low amplitudes A, a curve fitting technique yields the scaling

ΔCD = 872A2 + 5 × 1011A4 + · · · , (C18)

which is consistent with the weakly nonlinear expansion given in (C9).
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872A2

225A2 + 9.75 × 106 A3

225A2

Figure 22. Low amplitude A scalings of drag increase in the case superharmonic forcing at point D, (β, ω) =
(50, 11.7) × 10−5 with MN42. The red curve corresponds to the optimised solution at all amplitudes. The
green curve corresponds to HBNS solutions with a fixed forcing structure corresponding to the optimal one
obtained at A = 4.47 × 10−5 (a (0, 2ω) planar wave plus a (β, ω) oblique wave essentially). The green curve
was produced in the same way as the blue curve, except that the chosen forcing structure corresponds to the
one obtained at A = 5.54 × 10−7 (a pure (β, ω) oblique forcing). Dashed lines correspond to fitting polynomial
expansions for A  1.

For higher amplitudes, say A = 4.47 × 10−5 (see red vertical line on the graph), the
optimal forcing is essentially a combination of a (0, 2ω) planar wave plus a (β, ω) oblique
wave. The green curve was produced in the same way as the blue curve, except that the
chosen forcing structure corresponds to the one obtained at A = 4.47 × 10−5, i.e. the just
mentioned combination between a planar and an oblique wave. Fitting this curve yields,
for small amplitudes,

ΔCD = 225A2 + 9.75 × 106A3 + · · · , (C19)

which exhibits a cubic term, consistent with the development presented in (C17).
It is interesting to note that the structure of the optimal forcing at A = 4.47 × 10−5 is

strongly suboptimal at very low amplitudes: it becomes optimal only at high amplitudes
due to the additional odd terms in the ΔCD development. In contrast (blue curve), the
structure of the optimal forcing at very low amplitude only benefits from the even terms in
the ΔCD development and becomes strongly suboptimal at high amplitudes.

Finally, note that the optimal drag increase (red curve) scales as

ΔCD = 872A2 + 1.43 × 1012A4 + · · · , (C20)

which does not exhibit a cubic term. It is more difficult to justify this expansion
theoretically (as done in §§ C.1 and C.2) since the forcing structure is adjusted at all
amplitudes A.
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