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Abstract
This paper proposes an iterative algorithm to solve the inverse displacement for a hyper-redundant elephant’s trunk
robot (HRETR). In this algorithm, each parallel module is regarded as a geometric line segment and point model.
According to the forward approximation and inverse pose adjustment principles, the iteration process can be divided
into forward and backward iteration. This iterative algorithm transforms the inverse displacement problem of the
HRETR into the parallel module’s inverse displacement problem. Considering the mechanical joint constraints,
multiple iterations are carried out to ensure that the robot satisfies the required position error. Simulation results
show that the algorithm is effective in solving the inverse displacement problem of HRETR.

1. Introduction
Traditional industrial robots perform operational tasks in a specific environment using “teach-
ing/playback.” However, developments in robotics have led to a gradual expansion of the field from
traditional fixed-point tasks to autonomous operations in unstructured environments, such as deep-sea
exploration and salvage [1, 2], space shuttle inspection and maintenance [3], nuclear reactor failure
detection [4, 5], and in vivo testing [6] in medicine and healthcare. Traditional robots struggle to meet
the demands of the above applications due to their mechanical structure [7, 8], workspace [9], and flex-
ibility [10–12]. Scholars have been inspired by physiology [13, 14] and the motion mechanics [15] of
natural organisms which, when applied to the study of HRETR, offer excellent operational performance
and motion flexibility, enabling operation in complex environments. HRETRs are a form of a complex
redundant mechanical system. Displacement analysis for HRETRs is a challenging problem due to their
coupling structure, complex mathematical model, and the cost of calculations. Therefore, providing an
inverse displacement algorithm with multiple solutions is of particular importance for the development
of HRETR.

Some works have been done on the inverse kinematics of robots with redundant degrees of freedom
(DOFs) robots. For traditional redundant robots, numerical iterative methods based on the Jacobian
matrix and associated deformations [16, 17] are typically used to solve the inverse kinematics problem,
such as the Jacobian pseudo-inverse [17], Jacobian transpose [18], singular value decomposition (SVD)
[19, 20], and damped least squares (DLS) [21]. Although such methods can obtain the robot’s smooth
motion and stable posture, the process of calculation is complicated and time-consuming due to their
large matrix operations. Chirikjian and Burdick [22, 23] proposed a modal approach based on the hyper-
redundant manipulator’s overall geometrical characteristics, which abstracted the backbone curve into
a continuous, smooth spatial curve, and used the curve fitting to obtain the inverse kinematics solutions.
Kim and Chirikjian [24] put forward two solutions for the inverse kinematics of a six DOFs robot based
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on biopolymer segments. One is the extended elimination method [25], which can act on the biopolymer
segment directly, the other is a heuristic algorithm based on the Lie group theory. In the second method,
all the requirements can be met by solving the Jacobian matrix inverse iteration, as verified by numerical
examples. Focusing on a hyper-redundant elephant’s trunk robot (HRETR) consisting of six 3UPS-PRU
parallel models in series, Zhao et al. [26] solved the inverse kinematics problem by using a parametric
backbone curve to describe the geometric characteristics of the HRETR, but with a lengthy search time.
Wang and Chen [27] proposed a combined optimization method for inverse kinematics, which is effi-
cient and insensitive to the manipulator’s initial and singular configurations, but motion discontinuity
can sometimes occur. Tao et al. [28] proposed a modified inverse algorithm for improved tip follow-
ing motion, to solve the problems of large computation complexity, exceeding joint limits, and large
configuration deviations in a hyper-redundant snake-arm robot. Results show that the improved algo-
rithm can guarantee the bending angles and do not exceed the given range at a reduced computational
cost. Aristidou and Lasenby [29, 30] proposed an algorithm named forward and backward reaching
inverse kinematics to solve the anthropometric robot’s inverse kinematics problem, which is efficient,
simplicity, convergence speed, and with a controlled performance. Anandhanarayanan and Ordóñez [31]
introduced an efficient method of solving inverse kinematics for 2n+1 DOFs (where n is the number of
joints). This method combines an iterative algorithm and a numerical method, based on the Jacobian
matrix, to enhance computational efficiency. It is demonstrated with examples of obstacle avoidance
and joint limit avoidance. Neppalli et al. [32, 33] proposed a novel, analytical approach to solve inverse
kinematics for multisection continuum robots, implemented these algorithms in the simulation and on a
prototype of continuum robot and discussed its possible applications. Kaganov and Karpenko [34] intro-
duced an automatic control system to control each section of the manipulator and the entire structure
for the multisection trunk type manipulator, and this system can be used to react to changing uncertain
conditions in real time. Manfred Husty et al. [35] presented a new algebraic parameterization method
to achieve a direct mathematical description between the desired motion parameters of parallel mech-
anisms and numerical examples for the forward and inverse kinematics were given. Saglia et al. [36]
investigated a parallel mechanism with a central strut and demonstrated the advantage of introducing
the actuation redundancy to eliminate singularities and to improve desterity. Gan et al. [37] presented
a kinematics model for linear-actuated symmetrical spherical parallel manipulators (LASSPMs) which
had advantages in solving the forward kinematic equations. Zhao et al. [38] had made some research
about HRETR. The HRETR is a form of a complex redundant mechanical system, in which the joint
space dimensions are much larger than the dimensions of the operation space in mathematics. As a
result, multiple solutions exist for the inverse kinematics of an HRETR, and inverse displacement is
a challenging problem. This paper proposes an iterative algorithm, which transforming the HRETR’s
inverse displacement into the inverse displacement of parallel modules to solve the complex inverse
displacement problem.

This paper’s structure is as follows: Section 2 presents the mechanical configuration of an HRETR
and describes the structure. In Section 3, a kinematics model of the HRETR is established and an iter-
ative algorithm for HRETR’s inverse displacement is introduced by considering the joint constraints.
Section 4 provides a numerical example. Finally, the conclusions are presented in Section 5.

2. System description
The mechanical configuration of an HRETR is shown in Fig. 1. The HRETR discussed in this paper is
composed of six parallel modules with two degrees of rotational freedom. Each parallel module is com-
posed of a base platform, moving platform, central fixed-length link, and three UPS chains in which U is
the universal joint, P is the active prismatic joint, and S is the spherical joint. The first parallel module’s
central fixed-length link is connected to its own base platform vertically and fixedly and connected to
the moving platform through the universal joint. The base platform of the first parallel module is the
base platform for the whole HRETR. The first parallel module’s moving platform is the base platform
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Figure 1. Hyper-redundant elephant’s trunk robot (HRETR).

of the second parallel module, and the following parallel modules are connected as before. The moving
platform of the last parallel module is the moving platform of the whole HRETR. The HRETR has 18
driving DOFs, and the flexible movement of the end moving platform in 3D space can be realized by
coordinating and controlling each driving chain.

3. Inverse displacement model of HRETR
3.1. Inverse displacement of the parallel module
The inverse displacement model is established according to the k − th parallel module. The following
coordinate systems are defined for the inverse displacement model: The reference coordinate system
Ok−1 − xk−1yk−1zk−1 is attached to the center of the base platform Ok−1, and the moving coordinate system
Ok − xkykzk is located at the center of mass of the moving platform Ok. A rotation matrix Ok−1ROk can
describe the orientation of the moving platform. Thus, the rotation matrix can be obtained by:

Ok−1ROk = Rot(zk−1, ϕzk)Rot(y′
k−1, ϕyk)Rot(x′ ′

k−1, ϕxk) (1)

The transformation matrix k−1
k T, which represents the position and orientation of the moving platform

for the base platform of the k − th parallel module, can be expressed as:

k−1
k T =

[
Ok−1ROk

0

rk

1

]
(2)

where rk donates the position vector of the k − th central link. Hence, the overall forward kinematics
model of the HRETR can be obtained by multiplying the homogeneous transformation matrices as:

0
kT = 0

1T
1
2T · · · k−2

k−1T
k−1
i T (3)

where 0
kT is the homogeneous transformation matrix of the k − th moving coordinate system for the

referenced coordinate system fixed on the base platform of the HRETR. The schematic diagram of the
parallel module is shown in Fig. 2.

https://doi.org/10.1017/S026357472200039X Published online by Cambridge University Press

https://doi.org/10.1017/S026357472200039X


3542 Feifei Yuan et al.

Figure 2. Schematic diagram of parallel module.

Figure 3. Vector diagram of a kinematics chain.

As shown in Fig. 3, aki and bki denote the position vector of the i − th connection point with the
moving platform and the base platform of the k − th parallel module, respectively. The position equation
associated with the i − th kinematics chain of the k − th parallel module can be described as:

rk + aki = bki + qkiwki (4)

where k = 1, 2, 3, · · · , 6, i = 1, 2, 3.
The length associated with the i − th kinematics chain of the k − th parallel module can be

written as:

qki = ||rk + aki − bki|| (5)

Furthermore, the position vector rk can be obtained by the following inverse displacement algorithm.

3.2. Inverse displacement algorithm of HRETR
3.2.1 Algorithm description
Each of the HRETR’s parallel modules is abstracted as a geometric line segment and point model in
the inverse displacement algorithm. The algorithm can be divided into forward iterations and backward
iterations according to the forward approximation and inverse pose adjustment principle. The position
vector rk of the central link can be obtained by the following algorithm and the inverse displacement of
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Figure 4. Forward iteration. (a) Move the moving platform P6 to the target point Pt. (b) Find the joint
P′

5 which lies on the line P5P′
6. (c) Find the joint P′

4 which lies on the line P4P′
5. (d) Find the joint P′

3

which lies on the line P3P′
4. (e) Find the joint P′

2 which lies on the line P2P′
3. (f) Find the joint P′

1 which
lies on the line P1P′

2.

the HRETR can be solved. In order to describe the position change process clearly, the UPS links are
omitted. The forward iteration diagram and the flow chart are presented in Figs. 4 and 5.

Assuming that the initial configuration of the HRETR is at downward, as shown in Fig. 4(a),
P0, P1 · · · · · · P6 denote the position coordinate of each of the robot’s joint points: P0 is the position
of the center of the base platform in the first parallel module, Pk and Pk−1 are the position of the center
of the moving platform and base platform of the k − th parallel module, respectively, and dk is the cen-
tral fixed-length link of the k − th parallel module, as dk = ||Pk − Pk−1||. All central fixed-length links
mentioned in this paper are of identical length d. Pt is the target point and r7 denotes the normal vector
of the end platform. Since the central fixed-length link of the first parallel module is connected to its
own base platform vertically and fixedly, thus, P0 is not involved in the iterative process. The forward
iteration determines whether the target point is within the maximum range that the robot can initially
reach. The judgment method is as follows:

da =
∑5

k=1
dk (6)

dt = ||Pt − P1|| (7)

where da denotes the total length of the central fixed-length links of the last five parallel modules of the
robot, dt denotes the distance between the center of mass of the moving platform and the target point in
the first parallel module. If da < dt, the target point is not within the maximum range that the robot can
reach. Otherwise, the target point is within the maximum range that the robot can reach.

The position error ε is given, and then df denoting the distance between the end of the robot P′ ′
6 and

the target point Pt is computed by df = ||Pt − P6||. If df > ε, then start the forward iteration process
is started. Otherwise, the iterative calculation will stop. The forward iteration process is as follows:
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Figure 5. Forward iteration flow chart.

P′
0, P′

1 · · · · · · P′
6 is the position of each point after forward iteration. Moving the end point of the robot

to the target point is the first step, as shown in Fig. 4(b), namely P′
6 = Pt. The second step is finding

the line P′
6P5 as shown in Fig. 4(c), and then calculating the length r5 of the link P′

6P5 with Eq. (8) and
the ratio of d5 to r5 with Eq. (9). Substituting r5 and λ5 into Eq. (10) and obtaining the coordinate P′

5

after updating the position is the third step. By repeating the above calculation process, P′
4, P′

3, P′
2, P′

1

can be obtained. P0 is not involved in the iterative process, let P′
0 = P0. Thus, the forward iteration is

complete:

rk−1 = ||P′
k − Pk−1|| (8)

λk−1 = dk−1/rk−1 (9)

P′
k−1 = (1 − λk−1)P′

k + λk−1Pk−1 (10)

The end platform’s mass center P′
6 coincides with the target point Pt after the forward iteration, but the

first parallel module’s base platform’s mass center no longer coincides with P0. Therefore, backward
iteration is needed to ensure the first parallel module’s moving platform mass center is permanently
fixed. Backward iteration is shown in Fig. 6.

As shown in Fig. 6(a), the first step of backward iteration is to find the joint P′ ′
1 by moving P′

1 to the
initial point P1:

r′
k+1 = ||P′

k+1 − P′ ′
k|| (11)

λ′
k+1 = dk+1/r′

k+1 (12)

P′ ′
k+1 = (1 − λ′

k+1)P′ ′
k + λ′

k+1P′
k+1 (13)

Then, connect P′ ′
1 and P′

2, calculate the distance r′
2 between the two points and the ratio λ′

2 of d to r′
2

via Eqs. (11) and (12), and obtain the P′ ′
2 via Eq. (13). P′ ′

3, P′ ′
4, P′ ′

5, P′ ′
6 can be calculated using the same

iteration method as shown in Fig. 6(b) to (f). The flow chart of backward iteration is presented in Fig. 7.
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Figure 6. Backward iteration. (a) The configuration of the HRETR after forward iteration and P′
1 is

covered by P′ ′
1. (b) Find the joint P′ ′

2 which lies on the line P′ ′
1P′

2. (c) Find the joint P′ ′
3 which lies on the

line P′ ′
2P′ ′

3. (d) Find the joint P′ ′
4 which lies on the line P′ ′

3P′
4. (e) Find the joint P′ ′

5 which lies on the line
P′ ′

4P′
5. (f) Find the moving platform P′ ′

6 which lies on the line P′ ′
5P′

6.

Figure 7 Flow chart of backward iteration.
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Figure 8. HRETR inverse displacement algorithm flow chart.

Following a complete iteration, it is necessary to check whether the robot’s end point is closer to
the target point to determine whether to proceed with the next iteration. To achieve this, the distance
df between the robot’s end point and the target point is calculated and compared with ε. If df > ε, the
iterative calculation must be continued. Otherwise, P′ ′

k+1 meets the requirements and the algorithm is
complete.

3.2.2 Constraint conditions
Constraint conditions on the mechanical relationships are introduced to the inverse displacement algo-
rithm. According to the mechanical structure of the HRETR, the following physical parameters of each
module must be constrained: length of the UPS links, angle of the universal joint of the parallel module’s
central link, angle of the universal joint of the UPS links, and angle of the spherical joint of the UPS
links.

(1) Length of the UPS links

The lengths of the HRETR’s UPS links can be obtained using Eq. (5). Considering the electric cylin-
der assembly, the constraint condition on the i − th UPS link of the k − th parallel module must be met
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Table I. Radius of each platform of the HRETR (m)

Platform 1 2 3 4 5 6 7
Radius of each platform 0.200 0.175 0.150 0.125 0.100 0.075 0.050

Table II. Length parameters for the sleeve and push rod in the
UPS link of each module (m)

Module 1, 2 Module 3, 4, 5 Module 6
Sleeve length 0.156 0.142 0.140
Push rod length 0.162 0.142 0.152

and can be written as: ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

qki,min ≤ qki ≤ qki,max

qki,min = lbki

qki,max = lbki + lrki

(14)

where lbki and lrki are the length of the cylinder barrel and the length of the cylinder rod, respectively. If
the condition in Eq. (14) is not satisfied, the angle θk between the two adjacent central links should be
reduced by one step, θk = θk − �θ , and the lengths of the parallel module’s links recalculated until the
constraint condition is met.

(2) Angle of the universal joint of the central link

The rotation angle θk of the moving platform can be regarded as the angle between the central links
of two adjacent parallel modules, as shown in Eq. (15):

θk = arcsin (rk × rk+1) (15)

where rk and rk+1 denote the vector of the central link of the k − th parallel module and the (k + 1) − th
parallel module. Only when θk ≤ θmax, the result can be considered as meeting the constraints. Otherwise,
θk should be updated using the following methods until Eq. (15) is satisfied:

a. In the forward iteration, ck denotes a vector of the same length and opposite direction to rk+1, as
shown in Eq. (16), and hk denotes the plane normal vector by the right-hand screw rule, according to
vector rk+1 and vector rk. When θk ≤ θmax is not satisfied, let hk be the rotation axis and rotate the vector
vk by θmax according to the right-hand screw rule, to obtain the updated vector rk:

ck = −rk+1 (16)

hk = rk+1 × rk (17)

b. In the backward iteration, ck is a vector of the same length and direction as rk, as shown in Eq. (18),
and hk is the plane normal vector by the right-hand screw rule according to vector rk and vector rk+1.
When θk ≤ θmax is not satisfied, set θk = θmax, let hk be the rotation axis, and rotate the vector vk by θk

according to the right-hand screw rule. Calculate the updated vector rk+1 and ensure the angle constraint
of the universal joint is met. Otherwise, let θk = θk − �θ and recalculate vk and mk until the updated
vector rk+1 meets the angle constraint of the universal joint:

ck = rk (18)

hk = rk × rk+1 (19)
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Table III. Inverse displacement solutions for different values of position error ε

Position error ε (mm)
Iterative times p Module Module Module Module Module Module
Running time e (s) Parameters 1 2 3 4 5 6
ε = 10-1 φx(◦) −4.3084 3.0291 33.2667 14.1836 29.5842 39.6393
p = 7 φy(◦) 4.3207 11.2607 9.1340 −24.3022 28.2508 6.2064
e = 0.1452664 Center of mass of base

platform
⎡
⎣0.0000

0.0000
0.0000

⎤
⎦

⎡
⎣0.0000

0.0000
0.2000

⎤
⎦

⎡
⎣0.0150

0.0150
0.3989

⎤
⎦

⎡
⎣0.0582

0.0582
0.5893

⎤
⎦

⎡
⎣0.1698

0.1698
0.7121

⎤
⎦

⎡
⎣0.3091

0.3091
0.7468

⎤
⎦

Center of mass of
moving platform

⎡
⎣0.0000

0.0000
0.2000

⎤
⎦

⎡
⎣0.0150

0.0150
0.3989

⎤
⎦

⎡
⎣0.0582

0.0582
0.5893

⎤
⎦

⎡
⎣0.1698

0.1698
0.7121

⎤
⎦

⎡
⎣0.3091

0.3091
0.7468

⎤
⎦

⎡
⎣0.4000

0.4000
0.8999

⎤
⎦

Length of UPS links(m) ⎡
⎣0.1885

0.1968
0.2195

⎤
⎦

⎡
⎣0.1732

0.2235
0.2087

⎤
⎦

⎡
⎣0.2018

0.2679
0.1464

⎤
⎦

⎡
⎣0.2516

0.1895
0.1790

⎤
⎦

⎡
⎣0.1631

0.2457
0.2114

⎤
⎦

⎡
⎣0.1934

0.2339
0.1805

⎤
⎦

ε = 10-3 φx(◦) −4.3088 3.0293 33.3031 14.1395 29.5687 39.5940
p = 15 φy(◦) 4.3210 11.2614 9.1466 −24.2411 28.2671 6.2124
e = 0.1738098 Center of mass of base

platform
⎡
⎣0.0000

0.0000
0.0000

⎤
⎦

⎡
⎣0.0000

0.0000
0.2000

⎤
⎦

⎡
⎣0.0150

0.0150
0.3989

⎤
⎦

⎡
⎣0.0582

0.0582
0.5893

⎤
⎦

⎡
⎣0.1698

0.1698
0.7121

⎤
⎦

⎡
⎣0.3091

0.3091
0.7468

⎤
⎦

Center of mass of
moving platform

⎡
⎣0.0000

0.0000
0.2000

⎤
⎦

⎡
⎣0.0150

0.0150
0.3989

⎤
⎦

⎡
⎣0.0582

0.0582
0.5893

⎤
⎦

⎡
⎣0.1698

0.1698
0.7121

⎤
⎦

⎡
⎣0.3091

0.3091
0.7468

⎤
⎦

⎡
⎣0.4000

0.4000
0.9000

⎤
⎦

Length of UPS links(m) ⎡
⎣0.1885

0.1968
0.2195

⎤
⎦

⎡
⎣0.1732

0.2235
0.2087

⎤
⎦

⎡
⎣0.2018

0.2680
0.1464

⎤
⎦

⎡
⎣0.2515

0.1896
0.1790

⎤
⎦

⎡
⎣0.1631

0.2457
0.2114

⎤
⎦

⎡
⎣0.1934

0.2338
0.1805

⎤
⎦
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Table III. Continued.

Position error ε (mm)
Iterative times p Module Module Module Module Module Module
Running time e (s) Parameters 1 2 3 4 5 6
ε = 10-6 φx(◦) −4.3087 3.0293 33.3045 14.1385 29.5685 39.5931
p = 38 φy(◦) 4.3209 11.2612 9.1472 −24.2397 28.2673 6.2125
e = 0.2820901 Center of mass of base

platform
⎡
⎣0.0000

0.0000
0.0000

⎤
⎦

⎡
⎣0.0000

0.0000
0.2000

⎤
⎦

⎡
⎣0.0150

0.0150
0.3989

⎤
⎦

⎡
⎣0.0582

0.0582
0.5893

⎤
⎦

⎡
⎣0.1698

0.1698
0.7121

⎤
⎦

⎡
⎣0.3091

0.3091
0.7468

⎤
⎦

Center of mass of
moving platform

⎡
⎣0.0000

0.0000
0.2000

⎤
⎦

⎡
⎣0.0150

0.0150
0.3989

⎤
⎦

⎡
⎣0.0582

0.0582
0.5893

⎤
⎦

⎡
⎣0.1698

0.1698
0.7121

⎤
⎦

⎡
⎣0.3091

0.3091
0.7468

⎤
⎦

⎡
⎣0.4000

0.4000
0.9000

⎤
⎦

Length of UPS links(m) ⎡
⎣0.1885

0.1968
0.2195

⎤
⎦

⎡
⎣0.1732

0.2235
0.2087

⎤
⎦

⎡
⎣0.2018

0.2680
0.1464

⎤
⎦

⎡
⎣0.2515

0.1896
0.1790

⎤
⎦

⎡
⎣0.1631

0.2457
0.2114

⎤
⎦

⎡
⎣0.1934

0.2338
0.1805

⎤
⎦

ε = 10-10 φx(◦) −4.3087 3.0293 33.3045 14.1385 29.5685 39.5931
p = 70 φy(◦) 4.3209 11.2612 9.1472 −24.2397 28.2673 6.2125
e = 0.4908419 Center of mass of base

platform
⎡
⎣0.0000

0.0000
0.0000

⎤
⎦

⎡
⎣0.0000

0.0000
0.2000

⎤
⎦

⎡
⎣0.0150

0.0150
0.3989

⎤
⎦

⎡
⎣0.0582

0.0582
0.5893

⎤
⎦

⎡
⎣0.1698

0.1698
0.7121

⎤
⎦

⎡
⎣0.3091

0.3091
0.7468

⎤
⎦

Center of mass
of moving platform

⎡
⎣0.0000

0.0000
0.2000

⎤
⎦

⎡
⎣0.0150

0.0150
0.3989

⎤
⎦

⎡
⎣0.0582

0.0582
0.5893

⎤
⎦

⎡
⎣0.1698

0.1698
0.7121

⎤
⎦

⎡
⎣0.3091

0.3091
0.7468

⎤
⎦

⎡
⎣0.4000

0.4000
0.9000

⎤
⎦

Length of UPS links(m) ⎡
⎣0.1885

0.1968
0.2195

⎤
⎦

⎡
⎣0.1732

0.2235
0.2087

⎤
⎦

⎡
⎣0.2018

0.2680
0.1464

⎤
⎦

⎡
⎣0.2515

0.1896
0.1790

⎤
⎦

⎡
⎣0.1631

0.2457
0.2114

⎤
⎦

⎡
⎣0.1934

0.2338
0.1805

⎤
⎦
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Initial
configuration

Final
configuration

Position and
orientation

of target point

Figure 9. Configuration of the HRETR’s central link without constraint conditions.

Initial
configuration

Final
configuration

Position and
orientation

of target point

Figure 10. Configuration of the HRETR’s central link with constraint conditions.

Figure 11. HRETR configuration with constraint conditions.
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Figure 12. Trajectory 1: The normal vector at the end remains vertical and downward.

Figure 13. HRETR configuration along trajectory 1.

(3) Angle of the universal joint of the UPS links

At the center of rotation of the universal joint of the i − th UPS link of the k − th parallel module, let
the z − axis point to the moving platform. The two vertical axes of the universal joint are the x − axis and
y − axis, respectively, where the x − axis points to the center of the base platform. k−1wki is the vector
expression of the i-th kinematics chain of the k-th parallel module in the k-th reference coordinate system
and can be described by:

k−1wki = k−1Rki(
k−1rk/d) (20)

where k−1Rki donates the transformation relationship between the direction vector of the i-th UPS link
of the k-th parallel module and the central link of the same parallel module and it can be described by:

k−1Rki = Rot(z, π/3)Rot(y′, ϕkiy)Rot(x′ ′, ϕkix) (21)

Due to the hyper-redundant mechanical structure, each two adjacent parallel modules are arranged at
an interval of angle along the direction of the z-axis and the rotation angle with the z-axis is π/3. Then
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Figure 14. Top view of HRETR configurations along trajectory 1.

Figure 15. Trajectory 2: The normal vector at the end is divergent all around.

the rotation angle of the universal joint of the k − th parallel module’s i − th UPS can be obtained by:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ϕkix = arcsin

(√
3k−1wkix − k−1wkiy

2

)

ϕkiy = arctan

(
k−1wkix + √

3k−1wkiy

2i−1wkiz

) (22)

The rotation range of the universal joint of the i − th UPS link of the k − th parallel module should
meet the following constraints: ⎧⎨

⎩
ϕkix ≤ ϕkix max

ϕkiy ≤ ϕkiy max

(23)

when the universal joint’s rotation angle does not satisfy the rotation range, let θk = θk − �θ and
recalculate ϕkix and ϕkix until the angle constraint is satisfied.
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Figure 16. HRETR configuration along trajectory 2.

Figure 17. Top view of HRETR configurations along trajectory 2.

(4) Angle of the spherical joint of the UPS links

Assuming the initial installation angle of the spherical joint of the UPS links is γ0, the normal vector
of the spherical joint installation plane can be obtained from the normal vector of the moving platform
through the y − x − y Euler angle rotation transformation which can be described by:

Rin = Rot
(

y, −π

2

)
Rot (x′, −βi) Rot

(
y′ ′,

π

2
− γ0

)
(24)

where β = [
0 2π/3 4π/3

]
denotes the angle between the two adjacent spherical joints on the mov-

ing platform. The rotation angle of the spherical joint of the i − th UPS link of the k − th parallel module
is then given by:

ηki = arccos ((Ok−1ROkRkirk)
T k−1wki) (25)
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Table IV. Position error, iteration times, and operating time with trajectory 1

Position error ε/mm 1 × 10−1 1 × 10−3 1 × 10−6 1 × 10−10

Iteration times p 391 675 1118 1708
Operating time e/s 86.999 129.897 207.499 320.316

where k−1wki is the direction vector of the central link vector of the k − th parallel module in its own
base platform coordinate system. The angle constraint of the spherical joint should meet ηki ≤ ηki,max.
Otherwise, let θk = θk − �θ and recalculate ηki until the angle constraint is satisfied.

The complete flow chart for the HRETR inverse displacement solution algorithm is shown in Fig. 8.

4. Numerical example
The parameters of the HRETR’s mechanical structure are given in the following tables. Tables I and
II present the radius of each platform of the HRETR and the lengths of the sleeves and push rods
in each module’s UPS link, respectively. The target point’s position and orientation are given as[

0.4 0.4 0.9 0 0
]T , where the first three values describe the position of the target and the last

two values denote its orientation. Inverse displacement solutions for different values of position error ε

(mm) are shown in Table III, where, p is the iterative times and e (s) is the running time. ϕx and ϕy denote
the rotation angle of the moving platform concerning its own base platform. The numerical example was
implemented using an Intel i7-7700 (3.6 GHz) processor, 8 GB RAM, and MATLAB R© software.

The HRETR’s central link configurations are shown without and with constraint conditions in Figs. 9
and 10, respectively. The solid red line denotes each module’s central link, and the green dot represents
the each platform mass center. To verify the HRETR’s inverse displacement, its configuration was
obtained based on the iterative algorithm and inverse displacement model proposed in this paper, as
shown in Fig. 11. The simulation result obtained demonstrates the accuracy of the algorithm and model.

To verify the inverse displacement algorithm’s effectiveness, two trajectories with different constraint
conditions were provided to simulate the moving configuration of an HRETR composed of six parallel
modules in series. The HRETR’s configuration, when its end effector reached the given path points, was
calculated and the result were analyzed.

The two circular trajectories are shown in Figs. 12 and 15, the radius was 0.5 m. Taking 60 path points
on the two circular trajectories, respectively, the normal vector of the robot’s end point must be vertical
and downward at each point in Fig. 12 and the normal vector is required to be divergent to all around
in Fig. 15. The HRETR’s initial configuration is vertical and down before the simulation. Because of
the difference in the position and orientation of the HRETR’s end effector in two circular trajectories
and the joint constraint conditions are existed in this algorithm, the configurations of the HRETR are
different. As shown in Figs. 13 and 16, the end of the HRETR initially reaches the first target point
on the trajectory, and then the HRETR’s configuration at the remaining target points is solved by the
iterative algorithm. Considering the end moving platform’s normal vector to be the virtual central link
and calculating the angle between the two adjacent central links and the UPS link’s length continuously
ensures the constraints are met. Due to the joint constraint conditions of the HRETR, six joints need to be
verified if the joint constraint conditions are satisfied or not. If the angle between the two adjacent central
links and the UPS link’s length satisfies the constraint conditions, the end effector of the HRETR will
reach the next target point. If not, the joints need to adjust the pose and position to meet the constraint
conditions. Until all the constraints conditions are met, the end effector of the HRETR will reach to the
next target point. When the end of the HRETR returns to the first target point again, the simulation ends.
Figs. 13, 14, 16 and 17 show the HRETR’s configuration change with and without constraints.

To illustrate the effectiveness of the algorithm, a numerical example was implemented on an Intel
i7-7700 (3.6 GHz) processor with 8 GB RAM. The algorithm was run 100 times for the trajectory 1, as
shown in Fig. 13 and calculated the average running time. The results are shown in Table IV.
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5. Conclusions
This paper introduces an iterative algorithm for solving the inverse displacement of an HRETR. The
HRETR which is composed of six parallel modules is presented in the paper. The work can be
summarized as follows:

Each of the HRETR’s parallel modules is abstracted as a geometric line segment and point model,
and then the inverse displacement of the HRETR composed of six parallel modules is implemented. The
algorithm process can be divided into forward iteration and backward iteration according to the principle
of forward approximation and inverse pose adjustment. The inverse displacement of the HRETR is
obtained while considering physical joint constraints. The inverse displacement problem of the HRETR
is considered to solve the transformation matrices of each parallel module firstly, and then the inverse
displacement of the parallel module is obtained. In this way, the complex inverse displacement problem
of the HRETR is transformed into the inverse displacement of the parallel module.

The algorithm considering the joints constraints was used to simulate the HRETR composed of six
parallel modules in series. The simulation results demonstrate that motion and configuration of the
HRETR are guaranteed to be smooth. The algorithm uses simple geometric elements instead of complex
structure to describe the joint position relationships of the HRETR, which can be generalized for solving
the inverse displacement of an HRETR.
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