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Abstract

Triclabendazole (TCBZ) remains the drug of choice for treating infections of
the liver fluke, Fasciola hepatica in livestock and has become the main drug used
to treat human cases of the disease as well. Cases of resistance in livestock
continue to be reported, suggesting that the problem is increasing. In order to
address the problem, there is a need for better understanding of drug action.
A ‘state-of-play’ review on different aspects of TCBZ activity was published by
the present author in 2005. The main purpose of the current review is to assess
what progress has been made in the past four years towards understanding the
main aspects of drug activity, including drug pharmacokinetics and
pharmacodynamics and an understanding of the mechanism(s) of resistance.
Also, what advances have been made in identifying alternative compounds and
using drug combinations to enhance TCBZ activity. Stemming from a number of
in vivo studies, it has become evident that fluke isolates of differing sensitivity to
TCBZ differ in some of their biological parameters, and information on this
interesting phenomenon will be presented. An update on the use of TCBZ for
human fascioliasis is also given. The review will indicate what progress has been
made, but will also highlight areas that remain inadequately understood and
require greater research focus.

Introduction

Fasciolosis, caused by the liver fluke, Fasciola hepatica, is
an extremely important disease of livestock in temperate
areas of the world. In recent years, the disease has
undergone a sharp rise, which has been attributed to
climate change. The human form of the disease has also
become a major public health problem in several parts
of the world. Triclabendazole (TCBZ) (marketed as
Fasinexw) has become established as the main drug
used to treat fluke infections in ruminants since its
introduction in the early 1980s, due to its high efficacy
against all stages of infection in the mammalian host. It is
now the drug of choice for human fascioliasis as well,
marketed as Egatenw. This apparently rosy scenario is

being threatened by the development of resistance
among fluke populations, first reported in Australia,
but now present in several countries in western Europe.
The situation is one of concern, given the over-reliance on
a single drug and the zoonotic potential of the disease.
There is a need to learn more about the activity of TCBZ
and the epidemiology of the disease, to counter the threat
of resistance.

Following the Second Ken Mott Symposium at EMOP
IX in Valencia, 2004, I wrote a review on TCBZ
(Fairweather, 2005). The current review, stemming from
last year’s Symposium (the Third Ken Mott Symposium)
held at EMOP X in Paris, 2008, is intended primarily to
provide an update in our understanding of several
aspects of TCBZ activity, based largely on research
published since 2004. For earlier studies, the reader is
referred to my previous review (Fairweather, 2005) and
the review by Keiser et al. (2005). The main topics that will
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be discussed below are: TCBZ pharmacokinetics; the
mechanisms of action and resistance; biological differ-
ences between fluke isolates of known susceptibility to
TCBZ; the development of alternative drugs and control
strategies; and the use of TCBZ for the treatment of
human fascioliasis. Information on the unusual chemical
structure and narrow spectrum of activity of TCBZ was
covered previously and the information will not be
repeated here.

TCBZ pharmacokinetics

The basic pattern of biotransformation of TCBZ in the
ruminant host was established by Hennessy et al. (1987).
Briefly, TCBZ is completely removed from the portal
blood by the liver and cannot be detected in the plasma. It
is oxidized to the sulphoxide (TCBZ.SO) and sulphone
(TCBZ.SO2) metabolites, which are the main metabolites
present in the plasma. Hydroxylation of TCBZ and its two
metabolites takes place in the liver, too, giving rise to the
corresponding hydroxy metabolites, which are excreted
in the bile (Hennessy et al., 1987). The flavin monooxy-
genase (FMO) pathway is the main pathway involved in
the conversion of TCBZ to TCBZ.SO, while it contributes
equally with the cytochrome P450 (P450) enzyme system
to the sulphonation of TCBZ.SO to TCBZ.SO2 (Mottier
et al., 2004; Virkel et al., 2006). It has been shown that
the rumen microflora are capable of carrying out the
sulphoreduction of TCBZ.SO and OH-TCBZ.SO to TCBZ
and OH-TCBZ, respectively, suggesting that the rumen
can act as a reservoir of TCBZ compounds. This could
serve as a slow-release system for the further availability
of TCBZ in the digestive tract, from where it could be
absorbed and passed to the liver (Virkel et al., 2006). TCBZ
can also be oxidized to TCBZ.SO by digestive microflora
prior to its absorption or by the intestinal wall during
absorption (Mestorino et al., 2008). It is evident, then, that
the mechanisms of TCBZ metabolism are complex, but
serve (together with the strong binding to plasma
proteins) to maintain active concentrations of TCBZ
compounds in the host for considerable periods of time,
and this undoubtedly enhances drug efficacy.

A recent study compared the pharmacokinetics of
TCBZ in sheep and cattle (Mestorino et al., 2008).
Parameters for TCBZ.SO were similar in the two species,
although maximum blood levels were reached later in
cattle (30 h as against 22 h in sheep). However, the data
were very different for TCBZ.SO2, which reached a higher
peak concentration and persisted at higher levels for
longer in cattle (Mestorino et al., 2008).

The studies on enzyme pathways cited above (Mottier
et al., 2004; Virkel et al., 2006) were carried out in vitro
with liver microsomes. A follow-up experiment has been
conducted by the same group, to determine whether
co-administration of TCBZ with metabolic inhibitors
would alter the systemic availability of TCBZ metabolites
in a natural host (the sheep). Methimazole (MTZ, an
FMO inhibitor) did not affect TCBZ disposition kinetics
in vivo, although it inhibited both TCBZ.SO and
TCBZ.SO2 formation in vitro (Virkel et al., 2009). This
may have been due to its rapid elimination from the body
after the intravenous administration route used in the

study, rather than the more typical oral route. In contrast,
co-administration with the P450 inhibitors, piperonyl
butoxide (PB) and ketoconazole (KTZ) lead to an increase
in the maximum blood level of TCBZ.SO and greater
plasma availability of this metabolite. The maximum
plasma concentration and bioavailability of TCBZ.SO2

were enhanced following co-administration of TCBZ with
PB, but not with MTZ or KTZ (Virkel et al., 2009). So,
the experiment showed that it is possible to enhance the
availability of TCBZ metabolites, which would extend
the exposure of the fluke to the drugs and lead to an
improvement in the efficacy of TCBZ.

Triclabendazole is marketed in combination with other
anthelmintics and there may be interactions between
the drugs that affect its pharmacokinetics. One such
combination is TCBZ plus ivermectin. Ivermectin itself
has no activity against trematodes such as Fasciola (Shoop
et al., 1995), but a recent study has shown how it can affect
the disposition of TCBZ and its metabolites (Lifschitz
et al., 2009). Thus, the systemic availability of TCBZ was
reduced, but the maximum plasma levels of TCBZ.SO
and TCBZ.SO2 were enhanced and the plasma availability
of the two metabolites was increased for the first 12 and
24 h, respectively (Lifschitz et al., 2009). The relevance of
this observation to dealing with the problem of drug
resistance will be dealt with later in this review.

Impairment of drug metabolism in heavily fluke-
infected animals has been advanced as a possible
explanation for product failure and mis-diagnosis of
TCBZ resistance. This idea has not been tested in
livestock, but a study on patients in Egypt has shown
that fluke infection did not affect either TCBZ pharma-
cokinetics or drug efficacy (El-Tantawy et al., 2007). The
level of infection was not determined, so it is not possible
to know how much liver damage can be tolerated before
drug metabolism is compromised.

Pharmacodynamics and drug action

The extensive metabolism of TCBZ by the host means
that (potentially) the adult fluke is exposed to a number
of different forms of TCBZ. Moreover, each of the
compounds is capable of entering the fluke via diffusion,
entry being closely related to their lipophilicity. TCBZ,
TCBZ.SO and TCBZ.SO2 demonstrate a similar ability to
diffuse into the fluke and their level of diffusion is higher
than that for the corresponding hydroxyl compounds
(Mottier et al., 2004, 2006a).

Entry of TCBZ compounds into the fluke has been
shown to take place principally by means of diffusion
across the tegument, rather than by oral ingestion, a result
that is surprising, perhaps, given the strong binding of the
metabolites to plasma proteins. Two approaches have
been used to confirm this idea, one pharmacological, one
morphological. Both made use of flukes that had been
ligatured to prevent oral entry of drug. Following
incubation in TCBZ.SO, its concentration in the fluke
was similar, irrespective of whether the fluke had been
ligatured or not. When an excess of bovine serum
albumin (BSA) was added to the incubation medium, in
order to allow most of the drug to bind to it, the
concentration of TCBZ.SO was reduced (by 85%) in both
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ligatured and non-ligatured flukes (Mottier et al., 2006a).
A parallel morphological study has been carried out, to
compare drug-induced changes to the tegument and gut
following incubation with TCBZ.SO. Disruption to the
tegument, as assessed by scanning electron microscopy
(SEM), was similar in ligatured and non-ligatured flukes,
indicating that restricting the oral uptake of drug does not
affect the ability of TCBZ.SO to enter the fluke and exert
its effect (Toner et al., 2009). Incubation with TCBZ.SO in
the presence of an excess of BSA led to a reduction in the
level of tegumental disruption. In all experiments, the gut
remained unaffected by TCBZ.SO action, suggesting that
the oral uptake of drug plays only a (very) minor role in
drug entry (Toner et al., 2009). The results of the two
studies complement each other.

In terms of drug action, the fluke is known to play a
more active role than simply being subject to the passive
uptake of drug and its diffusion to the site of action, as it
has been shown to be capable of metabolizing TCBZ to
TCBZ.SO andTCBZ.SO to TCBZ.SO2 (Mottier et al., 2004;
Robinson et al., 2004a).

It is clear from what has been described above, that the
fluke is exposed to a number of different forms of TCBZ.
Since TCBZ.SO is the main metabolite present in both
blood plasma and bile, it has been assumed to be the
active form of TCBZ and even the only active metabolite.
However, after the initial (24–30 h) exposure to TCBZ.SO,
the fluke will be exposed to TCBZ.SO2 for a prolonged
period of time (Hennessy et al., 1987). Moreover,
TCBZ.SO2 has been shown to have some activity in its
own right in vivo: it caused a 41% reduction in worm
burden against a juvenile fluke infection in sheep
(Büscher et al., 1999). In addition, TCBZ.SO2 has been
shown to be capable of binding to fluke tubulin, in a
colchicine binding assay (Fetterer, 1986). A recent study
has been carried out in vitro to compare the action of
TCBZ, TCBZ.SO and TCBZ.SO2 against F. hepatica. It
involved the use of SEM (for surface changes) and
transmission electron microscopy (TEM, for internal
changes) to determine the relative disruption to the
tegument caused by the three compounds (Halferty et al.,
2009). The level of surface disruption induced by the three
compounds varied from region to region, and overall was
similar, but that caused by TCBZ was slightly greater than
that produced by the two metabolites. Internal changes
observed were greatest following treatment with
TCBZ.SO2 and, while TCBZ.SO was also disruptive,
TCBZ was far less disruptive. Combining the results for
surface and internal changes, the order of severity of
disruption was TCBZ.SO2 .TCBZ.SO . .TCBZ (Half-
erty et al., 2009). So, TCBZ.SO2 may well contribute to
drug action in vivo and is not the inactive metabolite that
it was previously thought to be. It may further disrupt
flukes already affected by TCBZ.SO. The hydroxy forms
of TCBZ.SO and TCBZ.SO2 have also been shown to be
capable of disrupting the tegument of F. hepatica
(unpublished observations), so drug action may be the
combined effect of several metabolites, rather than being
due to a single compound.

Some idea of the time-scale of drug action has been
provided by recent studies in sheep. Following treatment
of a juvenile (4-week) infection with TCBZ (10 mg kg21),
flukes were still active at 48 h post-treatment (p.t.) and

displayed limited surface disruption, as observed by SEM
(Halferty et al., 2008). By 72 h p.t., all but one of the
recovered flukes were dead and they displayed a range of
disruption. In most, there was severe swelling over all the
body surface, with areas of tegumental sloughing in the
tail region. Other flukes were more severely affected, with
more widespread loss of the tegument and exposure of
the underlying parenchyma. At 96 h p.t., all the flukes
were dead and they were grossly disrupted. The
tegument had been totally removed and lesions were
present in the basal lamina, exposing the internal tissues
(Halferty et al., 2008). In adult infections, the posterior end
of the fluke’s body becomes elongated and exhibits a
green discolouration after 72 h p.t.. This phenomenon
coincides with the movement of flukes into the gall
bladder and their subsequent expulsion from the sheep
(personal observations). So, drug action is relatively
slow and this would be compatible with a microtubule-
based action, rather than one based on energy disruption,
for example.

Most of the studies on the mechanism of action of TCBZ
have been carried out with TCBZ.SO. The precise
mechanism remains to be fully elucidated, but there is
more evidence for an action against microtubules and
microtubule-based processes than for other possibilities,
such as against energy metabolism or neuromuscular
co-ordination, for example (for a more complete discus-
sion of the evidence, see Fairweather, 2005).

Mechanism of resistance

Since the previous review in 2005, another report of
TCBZ resistance has been published, from north-west
Spain (Alvarez-Sánchez et al., 2006). This means that
resistance has now been reported in several countries in
western Europe, in addition to the original report in
Australia in the mid-1990s (for associated references, see
Fairweather, 2005). It should be noted that not all reports,
anecdotal or otherwise, have been confirmed by rigorous
trials. There is convincing evidence for a number of
isolates used in TCBZ studies: the Dutch, Oberon and
Sligo isolates (previous references are in Fairweather,
2005; see also, Keiser et al., 2007a; McConville et al., 2009a).
It is essential that such supporting data are obtained;
otherwise, the purported cases could be explained by
incorrect (under-) dosing, product failure, reduced
metabolism as a result of liver damage, even inadequate
and incorrect diagnostic tests. Interestingly, in the Spanish
report, the flukes (which we have designated the Leon
isolate) were described as being resistant to albendazole
and clorsulon (in combination with ivermectin) as well
(Alvarez-Sánchez et al., 2006). If validated, this would
be the first instance of multiple drug resistance in the
liver fluke. The Sligo isolate has now been shown to be
resistant at three stages of development in the mamma-
lian host: 3 days, 4 weeks and 12 weeks post-infection
(Coles et al., 2000; Coles & Stafford, 2001; McCoy et al.,
2005; McConville et al., 2009a).

Since TCBZ is a benzimidazole compound, there is
the assumption that its target is tubulin. Immunocyto-
chemical studies using an anti-tubulin antibody have
demonstrated that tubulin immunoreactivity in the
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tegument of TCBZ-susceptible (TCBZ-S) Cullompton
flukes is abolished by treatment with TCBZ.SO, whereas
that in TCBZ-resistant (TCBZ-R) Sligo flukes is unaffected
(Robinson et al., 2002; McConville et al., 2006). Another
assumption following on from this has been that
mutations in the b-tubulin molecule have led to the
development of resistance against TCBZ, as is known to be
the case for other benzimidazoles in nematode parasites.
In the latter, there are three principal substitutions
associated with the presumed drug-binding site: the
phenylalanine–tyrosine substitution at position 200,
the phenylalanine–tyrosine or histidine substitution at
position 167 and the glutamic acid–alanine substitution
at position 198 (Wolstenholme et al., 2004; Ghisi et al.,
2007). Six b-tubulin isotypes have been sequenced in the
TCBZ-S Cullompton isolate and in the TCBZ-R Sligo
and Oberon isolates (Ryan et al., 2008). However, no
differences have been detected between the isotypes in
the three isolates. Phenylalanine is present at position 167
and glutamic acid at position 198 in all six isotypes; at
position 200, tyrosine is present in three, phenylalanine in
two and leucine in one of the isotypes (Ryan et al., 2008).
The presence of tyrosine at position 200 in TCBZ-S flukes
would render the binding site inaccessible to classical
benzimidazoles such as albendazole, and this would go
some way towards explaining why F. hepatica is refractory
to many benzimidazole anthelmintics. In benzimidazole-
resistant nematodes, the drug-binding cleft is closed off
by the presence of tyrosine at position 200 and this forms
the basis of the resistance mechanism (Robinson et al.,
2004b). If TCBZ does target tubulin, its binding site may
be in a different position on the tubulin molecule, but
this remains to be determined.

While, to date, there is no convincing evidence of a role
for tubulin mutations in resistance to TCBZ, there is
evidence to indicate that altered uptake and metabolism
of TCBZ may be involved. Comparison between the
Cullompton (TCBZ-S) and Sligo (TCBZ-R) isolates of
F. hepatica has shown that the diffusion of both TCBZ and
TCBZ.SO is significantly lower in TCBZ-R than in TCBZ-S
flukes (Alvarez et al., 2005; Mottier et al., 2006b).
Interestingly, this was not true for the related benzimi-
dazole, albendazole, whose uptake was similar in both
isolates (Mottier et al., 2006b). The results suggest that the
mechanism is specific to TCBZ and that P-glycoprotein
(Pgp)-linked drug efflux pumps may be involved in the
resistance mechanism. Overexpression of Pgp has been
linked to resistance in nematodes against different classes
of anthelmintics (Kerboeuf et al., 2003; Wolstenholme et al.,
2004). Experiments with Pgp inhibitors have shown that it
is possible to ‘reverse’ the condition of the flukes, from
resistant to susceptible. For example, co-incubation with
ivermectin increased the uptake of TCBZ and TCBZ.SO
in TCBZ-R Sligo flukes to levels comparable to those
in TCBZ-S Cullompton flukes (Mottier et al., 2006b). In
contrast, ivermectin had no impact on the uptake of
albendazole in either TCBZ-S or -R flukes (Mottier et al.,
2006b). The consequence of Pgp inhibition to the
condition of TCBZ-R flukes has been demonstrated in a
separate morphological (SEM) study with another Pgp
inhibitor, R(þ)-verapamil. Co-incubation of R(þ)-vera-
pamil with TCBZ.SO led to severe disruption of the
tegument of TCBZ-R (Oberon) flukes, whereas treatment

with TCBZ.SO on its own (even at a high concentration)
caused minimal changes to the tegumental surface
(Fairweather et al., 2008). The disruption to the TCBZ-R
flukes, which took the form of widespread tegumental
sloughing, was greater than that seen in the TCBZ-S
Cullompton fluke following treatment with TCBZ.SO.
While a change in efflux pump activity may simply
represent a non-specific mechanism (although the
albendazole result suggests that this is not the case),
nevertheless it is likely to play a significant role in the
development of resistance.

There is a marked difference in the ability of TCBZ-S
and TCBZ-R isolates to metabolize TCBZ. Thus, TCBZ-R
(Sligo) flukes have been shown to carry out the
metabolism of TCBZ to TCBZ.SO, and TCBZ.SO to
TCBZ.SO2, at a significantly higher rate than that
achieved by TCBZ-S (Cullompton) flukes (Robinson
et al., 2004a; Alvarez et al., 2005). Methimazole, an FMO
inhibitor, had a significantly greater inhibitory effect on
TCBZ sulphoxidation in TCBZ-R than -S flukes, reducing
it to a level comparable to that in TCBZ-S flukes (Alvarez
et al., 2005). By comparison, the cytochrome P450
inhibitor, PB had a lesser effect on TCBZ.SO formation
and the effect was similar in the two isolates (Alvarez et al.,
2005). These experiments were carried out on microsomal
fractions of flukes. A subsequent study on intact flukes
in vitro has shown that it is possible to reverse the TCBZ-R
condition of a fluke (in this case, the Oberon isolate) by
co-incubation of TCBZ with MTZ (Devine et al., 2009).
Treatment with either TCBZ or TCBZ.SO on their own
resulted in more severe disruption to the TCBZ-S
Cullompton isolate than the TCBZ-R Oberon isolate, as
visualized by surface changes to the tegument (Devine
et al., 2009). Methimazole alone had no effect on either
isolate, but when it was included alongside TCBZ or
TCBZ.SO, disruption to the Oberon isolate was greater
than that to the Cullompton isolate, and greater than that
in both isolates after either drug on its own. Severe
swelling and blebbing of the tegument occurred all over
the body and stripping of the apical plasma membrane
was observed in the oral cone and midbody regions
(Devine et al., 2009). The study showed the morphological
manifestation of what the inhibition of drug metabolism
by the fluke can lead to in terms of the whole fluke.

Biological differences between isolates

Studies on the various isolates of F. hepatica have
revealed interesting differences between them, in relation
to their fitness, which have implications for the spread of
resistance in the field. For example, in a snail and rat
study on the Oberon (TCBZ-resistant) and Fairhurst
(TCBZ-susceptible) isolates, the Oberon isolate was
shown to be faster to egg hatch (by 2 days: 12 days as
against 14 days); faster to produce cercariae (by 4 days:
49 days as against 53 days); and it produced more
cercariae (.4 times as many). Moreover, the metacercar-
iae were more infectious to the rat hosts and the flukes
reached patency more quickly (by 11 days: 59 days as
against 70 days) (Walker et al., 2006). Across the life cycle,
the Oberon isolate could be gaining an approximately
2.5 week advantage over the Fairhurst isolate if the
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isolates were competing with each other. From egg hatch,
it would be infecting the mammalian host ,1 week
before the Fairhurst isolate and it would be releasing eggs
,1.5 weeks earlier. This would give it a considerable
advantage. The results also indicated that the develop-
ment of drug resistance by the Oberon isolate has not led
to a reduction of fitness by comparison with the Fairhurst
isolate. In fact, the data showed that the Oberon isolate
maintained a higher level of fitness throughout the life
cycle. This goes against the general rule that resistance to
benzimidazoles results in reduced fecundity (Maingi et al.,
1990), although this rule is not absolute (Kelly et al., 1978;
Elard et al., 1998). This is important, because if resistant
isolates can maintain fecundity, there will be no reversion
to a drug-susceptible status; this idea is supported by
field data from The Netherlands, which showed no
reversion of TCBZ resistance after a 3-year period when
TCBZ was not used for treatment (Borgsteede et al., 2005).

A separate comparison has been made between
infections of the Cullompton (TCBZ-susceptible) and
Sligo (TCBZ-resistant) isolates in sheep. Sligo flukes were
smaller than their Cullompton counterparts, but migrated
more quickly, reaching the bile ducts 1 week earlier (week
7 post-infection, as against week 8), and they produced
eggs more quickly (60 days as against 75 days). On the
other hand, Sligo flukes produced relatively fewer eggs
(approximately one-third as many as the Cullompton
flukes) and they were less infectious to sheep (24% of the
metacercarial dose reached maturity, as against 57%)
(McConville et al., 2009a). The more rapid egg production
would be an advantageous quality, but the Sligo isolate
appears to have sacrificed a number of physiological
attributes in order to survive TCBZ treatment. The
Cullompton flukes are known to be aspermic and triploid,
so perhaps they can devote more energy to growth,
resulting in their larger size (Hanna et al., 2008).
Spermatogenesis in Cullompton flukes does not proceed
beyond the primary spermatocyte stage, presumably due
to a failure of meiosis. Despite this, Cullompton flukes
produce normal-looking eggs which are capable of
hatching and undergoing parthenogenic development
(Hanna et al., 2008). Sligo flukes show two different
phenotypes: in one, the testis contains fully developed
sperm, whereas in the other, spermatogenesis is halted at
the spermatid stage, due to the failure of nuclear
elongation that leads to sperm formation. The two
phenotypes are present in the same animal and cross-
fertilization between the two takes place (Hanna et al.,
2008). Other fluke isolates (including the Oberon isolate)
undergo full sperm development, are diploid and
produce normal eggs (Hanna et al., 2008). The Cullomp-
ton result shows that, in the field, it would be possible for
there to be a rapid evolution of clonal populations
following selection for resistance. So, the limited data
show the variation between fluke populations and this
needs to be taken into account when understanding
fluke population dynamics and the epidemiology of
fascioliasis.

As well as fluke isolates having differing sensitivities to
TCBZ, studies have shown that they differ in their
response to other anthelmintics. For example, the activity
of nitroxynil (a fasciolicide) has been compared against
four isolates of F. hepatica: the TCBZ-S Cullompton and

Fairhurst isolates and the TCBZ-R Oberon and Sligo
isolates. The impact of nitroxynil action was assessed by
fine structural changes to the tegument and gut. In terms
of the severity of disruption observed, the isolates were
ranked in the following order: Cullompton .Sligo
.Oberon .Fairhurst (McKinstry et al., 2007, 2009).
Interestingly, this ranking does not coincide with
their susceptibility to TCBZ, which was: Cullompton
.Fairhurst .Oberon .Sligo. The Sligo isolate appears to
be particularly susceptible to nitroxynil, whereas the
Fairhurst isolate is more refractory. Such variations
may need to be taken into account in the field when
designing control strategies, although the data on
nitroxynil will only apply to adult flukes as it is not
active against juveniles.

Dealing with resistance

This topic was discussed in the previous review
(Fairweather, 2005). Strategies include the better use of
existing fasciolicides, the use of drug combinations and
the development of new drugs.

Use of current drugs

A number of current drugs have been shown to be
active against the Sligo TCBZ-R isolate of F. hepatica:
albendazole, clorsulon (in combination with ivermectin),
closantel, nitroxynil and oxyclozanide (Coles et al., 2000;
Moll et al., 2000; Coles & Stafford, 2001). In terms of the
response to albendazole and clorsulon, the data for Sligo
is at odds with that for the Leon isolate, which indicated
that the isolate was resistant to these compounds. Perhaps
the drug status of fluke populations from different
geographical regions varies, a point that needs to be
taken into account when considering alternative thera-
pies. The value of using existing flukicides would be
restricted to treatment of adult fluke infections, as they
are not effective against the juvenile stages. However,
there is evidence that, because of the perceived (but
not necessarily proven) problem of TCBZ resistance,
farmers are turning away from the use of TCBZ to older
compounds, such as closantel and nitroxynil (Hanna,
personal communication).

One way to enhance the efficacy of TCBZ would be to
modulate its pharmacokinetics. As described above, this
can be achieved by co-administration of TCBZ with
metabolic and Pgp inhibitors (Lifschitz et al., 2009; Virkel
et al., 2009). The feasibility of adopting this approach
has been demonstrated in studies on a number of
anthelmintics: e.g. albendazole, ivermectin and oxfenda-
zole (Lanusse & Prichard, 1991, 1992; López-Garcia et al.,
1998; Alvinerie et al., 1999; Sánchez et al., 2002; Merino
et al., 2003; Ballent et al., 2006, 2007; see also reviews
by Alvarez et al., 2006; Lespine et al., 2008). More
significantly, co-administration of anthelmintic-plus-
inhibitor has been shown to lead to greater efficacy
against drug-resistant nematodes (Benchaoui & McKellar,
1996; Molento & Prichard, 1999). TCBZ is marketed in
combination with ivermectin and this combination needs
to be examined further, to determine whether it possesses
activity against TCBZ-R fluke infections.
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Use of drug combinations

Drug combinations are a routine part of parasite control
in livestock, often being used to treat mixed infections.
For example, TCBZ is marketed with levamisole,
oxfendazole, ivermectin and abamectin, to provide fluke
and nematode control. Drug combinations are also
considered to be the most effective way of slowing
down the development of resistance and extending the
life span of the drugs (Barnes et al., 1995; Sangster, 2001).
This is particularly true if the drugs are from different
chemical groupings and possess different mechanisms of
action, because this opens up the possibility of producing
additive or synergistic effects. Moreover, the latter would
permit the use of lower quantities of drugs, with the
added advantage of reducing drug residues in host
tissues and in the environment. There are reports of
synergistic interactions between drugs used for schisto-
some and soil-transmitted helminth infections in humans
(see reviews by Albonico, 2003; Utzinger & Keiser, 2004).
Synergistic combinations have also been described for
veterinary infections (e.g. Bennet et al., 1980; Hopkins &
Gyr, 1991). Synergism between TCBZ and clorsulon or
luxabendazole (at greatly reduced dose rates) has been
demonstrated for F. hepatica (data in Fairweather & Boray,
1999). Two recent studies have examined the morpho-
logical effects of a TCBZ þ clorsulon combination against
adult flukes (Meaney et al., 2006, 2007). The two drugs
have different mechanisms of action, with clorsulon
targeting energy metabolism and TCBZ (presumably)
microtubules; also, they have different routes of entry into
the fluke – clorsulon oral and TCBZ trans-tegumental.
The combination of the two drugs at half-normal dose
rates induced greater disruption than either drug on its
own (at reduced and normal levels). Surface changes
observed with the combination treatment were: stripping
of the apical plasma membrane in the anterior half of the
fluke, spine loss, blebbing and swelling (Meaney et al.,
2006). Among the internal changes seen with the
combination were a reduction in the production of
secretory bodies in the tegumental cells, swelling of the
basal infolds and autophagy in the syncytium, flooding of
the internal tissues and disruption to the spines (Meaney
et al., 2007). Such changes are likely to lead to the surface
changes just described. The results pointed to additive or
synergistic effects of the two drugs when used together
and support the concept of employing drug combinations
against fluke infections. The studies were carried out on
the Cullompton (TCBZ-S) isolate of F. hepatica; it remains
to be seen whether the phenomenon can be replicated
in TCBZ-R flukes. In a separate study in sheep, no
synergism was demonstrated between TCBZ and nitrox-
ynil (at normal dose rates) against juvenile (4-week-old)
TCBZ-R (Sligo) flukes (McCoy et al., 2005). The study
showed that the Sligo isolate was resistant to TCBZ at a
juvenile stage; all other studies have been concerned with
the adult fluke.

Development of new drugs

In relation to new compounds, information on the
TCBZ derivative, compound alpha, was presented in the
previous review. It showed promise as an alternative to

TCBZ, since it possesses a spectrum of activity similar to
that of TCBZ itself. A number of studies on compound
alpha have been carried out since 2005. Treatment of both
adult and juvenile TCBZ-S Cullompton flukes in vivo
(in sheep) led to progressive disruption over time: the
disruption took the form of tegumental loss, degeneration
of the sub-tegumental tissues, internal flooding and
disruption of the muscle bundles (McConville et al., 2008,
2009b). The most significant changes occurred between 48
and 72 h p.t., indicating a slow action, even though
maximum blood levels are reached quite quickly – after
only 10–14 h p.t. (Rivero et al., 1998; Ramı́rez et al., 2009).
The effect was more rapid with juvenile than adult flukes:
after 72 h treatment, almost 90% of juvenile flukes were
dead, whereas only 23% of adult flukes were dead at this
time. However, ,50% of the flukes displayed a
discolouration in the midbody region, which coincided
with the loss of the tegument (McConville, unpublished
observations). Compound alpha causes a significant
reduction in tubulin immunostaining in TCBZ-S flukes
(McConville et al., 2006), suggesting that it may share a
target and mode of action similar to those of TCBZ.
Experiments carried out in vitro with adult and juvenile
stages of the Sligo TCBZ-R isolate showed that compound
alpha affects tegumental structure, and more severely
than that induced by TCBZ.SO, although the changes
were not accompanied by any loss of tubulin immuno-
reactivity (McConville et al., 2006, 2007). Unfortunately,
when tested in vivo (in sheep) against the Sligo isolate,
compound alpha treatment did not result in a reduction
of fluke burden at 3 days, 4 weeks and 12 weeks post-
infection (McConville et al., 2009a). So, the in vitro data did
not translate into in vivo efficacy. It is possible that the
flukes can survive any initial impact of drug action and
recover: they are known to be able to mount a stress
response to drug action (McConville et al., 2008; Halferty
et al., 2008). As a consequence of this result, the potential
of compound alpha to replace TCBZ for the treatment of
TCBZ-R fluke infections may be limited. A carbamate
derivative of compound alpha has been synthesized and
shown to possess a high level of efficacy against the gut
paramphistome, Calicophoron calicophorum (Reyes et al.,
2008); unfortunately, its activity against flukes has not
been tested. Tribendimidine is an anthelmintic that is
effective against soil-transmitted helminths and the
intestinal trematode, Echinostoma caproni. When tested
against the Cullompton (TCBZ-S) isolate of F. hepatica,
it had no impact on fluke burdens in rats. Nor was it
effective against Schistosoma mansoni, although it showed
activity against Clonorchis sinensis and Opisthorchis
viverrini (Keiser et al., 2007b).

Recently, there has been an upsurge of interest in
making use of natural plant products that have been
used as traditional medicines in developing countries
(Hammond et al., 1997; Iqbal et al., 2003; Kayser et al., 2003;
Anthony et al., 2005; Crump, 2006; Stepek et al., 2007). The
marketing of ‘Mirazid’, derived from the myrrh tree
Commiphora molmol was discussed in the previous review
and the reader is referred to that review for a discussion of
the controversy surrounding its use as an anti-schistoso-
mal drug (Fairweather, 2005). Other natural products
with reported efficacy against F. hepatica include extracts
of the fern Matteuccia orientalis (Shiramizu et al., 1993); the
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black-fruited galangal Alpinia nigra (Roy & Tandon, 1999);
the fineleaf fumitory Fumaria parviflora, the nickernut
Caesalpinia crista and the black cumin Nigella sativa
(Akhtar et al., 2000); the silk tree Albizia anthelmintica
and the soapberry tree Balanites aegyptiaca (Koko et al.,
2000); the toothache tree Zanthoxylum alatum (Tagboto &
Townson, 2001); persimmon Albizia anthelmintica, the
coral tree Diospyrus, henna Erythrina, Lawsonia and
katigua pyta Trichilla (Iqbal et al., 2003).

Another natural product is genistein. It is an isoflavone
derivative of Flemingia vestita, known as Soh-Phlang in
north-east India, and extracts of the plant are eaten raw as
a cure for various helminth infections, including that
caused by the trematode, Fasciolopsis buski (Rao, 1981).
The activity of genistein has been tested in vitro against
F. hepatica. Incubation of intact flukes at a concentration of
0.27 mg ml21 ( ¼ 1 mM) led to a rapid loss of movement
(in less than 3 h), while exposure of fluke muscle strips led
to significant increases in the frequency and/or ampli-
tude of muscle contractions at concentrations of 10mM to
10 mM (Toner et al., 2008). Genistein is believed to affect
Ca2þ homeostasis as a result of modulating nitric oxide
activity, via changes to cyclic guanosine monophosphate
(cGMP) levels (Das et al., 2007, 2009). Within the short
time-frame of 3 h, genistein caused marked surface
changes to the tegument of F. hepatica: the changes
included widespread blebbing and swelling of the
tegument, and spine loss (Toner et al., 2008). The internal
tissues were severely affected, too: there was reduced
secretory activity together with autophagy in the
tegumental and gastrodermal cells and inhibition of cell
development and differentiation in the testis and vitelline
follicles (Toner et al., 2008). In other organisms, genistein
is known to inhibit mitosis, induce apoptosis and
interfere with signalling pathways, as it is an inhibitor
of tyrosine-specific protein kinases. The pathways are
present in Schistosoma and Echinococcus and the changes
observed in F. hepatica could have a similar basis (for the
relevant references on genistein action and signalling in
helminths, see Toner et al., 2008).

Propolis, or bee glue, is a resinous hive product that has
been used for a number of medicinal purposes and has
anti-protozoal activity (Higashi & de Castro, 1994).
Incubation of Fasciola gigantica in propolis in vitro led to
severe disruption of the surface tegument: there was
swelling, blebbing, loss of spines, formation of lesions
and (in extreme cases) loss of the tegument (Hegazi et al.,
2007a). It was described as being relatively more
disruptive than TCBZ itself. A separate study showed
that propolis inhibits the development and hatching of
fluke eggs (Hegazi et al., 2007b). It is a very complex
mixture of components, so it may be extremely difficult to
identify the active constituent(s).

Although the results of studies on natural products as
discussed above are interesting, it remains to be seen
whether their use will make a significant contribution to
fluke therapy in the future. Much further evaluation and
testing will be required before their true usefulness will be
known. It is relatively easy to find compounds that are
active in vitro, but less so to translate that to efficacy in vivo.

One group of drugs derived from natural products that
has attracted considerable attention in recent years is the
artemisinins. Artemisinin itself was originally isolated

from the wormwood plant Artemisia annua; extracts of the
plant have been used in China for more than 2 millennia
as traditional herbal remedies for the treatment of
various illnesses (Li & Wu, 2003; Woodrow et al., 2005).
Semi-synthetic derivatives of artemisinin were isolated in
the 1970s and are well-established anti-malarial drugs:
they include artemether, artesunate, arteether and their
principal metabolite, dihydroartemisinin (Borstnik et al.,
2002; Woodrow et al., 2005). Further modification of the
compounds led to the development of the synthetic
1,2,4-trioxolanes, which retain the peroxide moiety
essential for antiparasitic activity, yet are simpler
molecules, easier to synthesize and have improved
pharmacokinetic properties (e.g. greater stability, better
absorption, longer half-life). One of the compounds,
OZ277, has gone to clinical trials as part of the Medicines
for Malaria Venture (Vennerstrom et al., 2004). In addition
to their use as anti-malarials, artemisinins are used for
the treatment of schistosome infections, especially in
combination with praziquantel. The combination is
valuable as the artemisinins have activity against juvenile
stages, whereas praziquantel targets the adult worms
(Xiao, 2005; Utzinger et al., 2007). Recent studies have
shown that artemisinin compounds are active against
other trematode parasites, such as C. sinensis, O. viverrini
and E. caproni, both in vitro and in vivo in rodent models
(Keiser et al., 2006a, b, c, 2007c; Shu-Hua et al., 2008; see
also the reviews by Keiser & Utzinger, 2007a, b). In
contrast, artemether (and tribendimidine) lacks activity
against Paragonimus westermani (Xue et al., 2008). Little
is known about the activity of artemisinins against
tapeworm parasites. In one study, artesunate and
dihydroartemisinin (but not artemether) were effective
against the protoscoleces of Echinococcus granulosus in
vitro, but were ineffective against Echinococcus multi-
locularis metacestodes in an in vivo mouse model
(Spicher et al., 2008).

A number of artemisinin compounds have been tested
against F. hepatica, both in vitro and in the rat model:
artemether, artesunate and the synthetic trixolane, OZ78
(Keiser et al., 2006c, d, 2007a; Keiser & Morson, 2008a, b;
O’Neill et al., 2009). They displayed high levels of efficacy
against both adult and juvenile flukes, with relatively
greater activity against the adult stage. The compounds
were also shown to be capable of inducing marked
changes to the surface tegument. The disruption became
progressively more severe over time following treatment
in vivo, leading to the death and expulsion of flukes after
approximately 72–96 h (Keiser & Morson, 2008a, b; Keiser
et al., 2006c, d). Of particular interest is that artemether
and OZ78 showed an extremely high level of efficacy
against the TCBZ-R Oberon isolate in a rodent model
(Keiser et al., 2007a). If that activity could be repeated in a
ruminant animal, this would be a promising break-
through and the result warrants further investigation.

Greater disruption to the tegument was observed
when haemin was incorporated in the culture medium.
This result ties in with the idea that activation of
artemisinin-type compounds depends on the presence
of an iron-containing compound (as would be derived
from haemoglobin in vivo). Activation leads to cleavage
of the peroxide bridge in the drug and the generation of
free radicals. These free radicals are damaging to flukes
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(Xiao et al., 2003). It has been suggested that artemisinins
need to be ingested by the blood fluke, Schistosoma in
order for activation to occur (Xiao et al., 2003), and this
may be true for F. hepatica as well, since it is an
haematophagous feeder. In a recent study on the action of
artemether against F. hepatica, the gut was seen to be more
severely affected than the tegument following treatment
in vivo, and this result supports the idea that oral
ingestion is the main route of entry into the fluke (O’Neill
et al., 2009).

A pilot study in human patients has been carried out
in Vietnam, to compare the impact of artesunate and
TCBZ on relieving the symptoms (abdominal pain) of
fascioliasis. The initial response in the artesunate-treated
group was better than in the TCBZ-treated group, but
3 months after treatment the response was lower (Hien
et al., 2008). The study needs to be followed up by a
more rigorous assessment of the efficacy of artemisinin
compounds, before any conclusion can be reached as to
what role they might play in controlling fluke infections
in humans. The extremely high value placed on these
compounds in malarial areas may limit their use against
other parasites, due to the risk of promoting drug
resistance.

Use of TCBZ for the treatment of human
fascioliasis

In recent years, fascioliasis has emerged as a major
zoonotic disease, with an increase in the number of
human cases, and it is a serious health problem in a
number of countries (Mas-Coma et al., 2005; WHO, 2007).
TCBZ is the drug of choice for treating human fascioliasis:
a summary of its use was given in my previous review
(Fairweather, 2005; see also Keiser et al., 2005; WHO,
2007). The success of a selective treatment programme
targeted to schoolchildren in Egypt has been presented by
Curtale et al. (2005). Despite this success, there was a real
concern that Novartis would stop production of Egatenw,
the human formulation of TCBZ (Curtale, 2006).
Fortunately, that decision was rescinded and Novartis
resumed production. Moreover, the company decided to
donate 600,000 tablets to WHO, to ensure that the drug
was available in endemic countries (Curtale, 2008). Egypt,
Iran, Bolivia, Peru, Vietnam, Georgia and the Yemen have
benefited from this scheme, made possible by the
generosity of Novartis.

TCBZ is also effective against lung infections of human
paragonimiasis (Calvopiña et al., 2003; Keiser et al., 2005),
but showed no activity against the human blood fluke,
Schistosoma mansoni in patients co-infected with Fasciola
spp. (Barduagni et al., 2008).

Conclusions

It is fair to say that a substantial amount of work has
been carried out since the previous review. We have
learned a lot about the pharmacokinetics and pharmaco-
dynamics of TCBZ, although identification of its target
molecule remains tantalizingly elusive. Some progress
has been made on clarifying the mechanism(s) of
resistance and that information may be of use in

designing new strategies to deal with resistance to
TCBZ. But has the knowledge gained actually led to a
greater understanding of these topics? Probably not
entirely, not yet, but the results have opened up new
lines of enquiry to pursue, to edge us closer to a more
complete understanding of TCBZ action in all its facets. In
terms of addressing the problem of resistance, evaluation
of novel compounds and drug combinations has attracted
a lot of interest, but it is uncertain whether this will
translate into marketable therapies. However, one area
highlighted in the previous review remains neglected and
that concerns the development of reliable tests, not just
for diagnosis of fluke infection, but for detection of
resistance. Until tests are standardized, apparent cases
of resistance may continue to be reported that turn out
not to be the case at all and the true extent of resistance
will remain confused.
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