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On some elementary functions

IMRE PATYI

We gather here some material, ‘well-known to the experts’ — see the
short historical discussion at the end — but not often found in the mass-
market textbooks for high schoolers and undergraduates (who would benefit
from it the most), that can be used to discuss ,  and  rigorously in
terms of simple inequalities and high school algebra of numbers,
polynomials, and rational functions along with the completeness axiom of
the real line: 

ex x log x

(C) If  in the number line  for some upper bound  and all
, then the sequence  has a limit  as .
an ≤ an + 1 ≤ B � B

n ≥ 1 an A ∈ � n → ∞
Another standard way to formulate the completeness axiom (C) is to say

that a bounded monotonic sequence in  has a finite limit in .� �

 Most treatments of ,  and  in high school mathematics are
inadequate and largely circular in terms of logical development and
ineffective for calculation, or else they require a lengthy development of
more involved ideas such as continuity, differentiation, integration, and
summation of power series.

ex x log x

 To define  we will use and estimate  as  for  real.

The standard treatment of this limit in elementary calculus is usually
inadequate and circular (it relies on logarithms, often defined as the inverse
of the exponential function, and L'Hospital's rule).  Another elementary
treatment of the same limit relies on the inequality between the arithmetic
mean and the geometric mean of finitely but unboundedly many numbers,
requiring  roots (not easily defined and discussed before the introduction
of  and  or the notions of continuity and the intermediate value

theorem).  Our approach is similar, but we notice that in treating  it

is easier to double  to  rather than augment  to .  In particular, we
will only require simple algebraic properties of polynomials and rational
functions; we will not need even square roots, let alone  roots.

ex (1 +
x
n)n

n → ∞ x

n th
ex log x

(1 +
x
n)n

n 2n n n + 1

n th
 In keeping with doubling, call as usual the numbers 1, 2, 4, , ,

powers of 2.  Let ,

for  real and  being a power of 2.  Note that if , then
 and  since they are the squares of non-zero reals.

… 2m …

an (x) = (1 +
x
n)n

bn (x) = (1 −
x
n)−n

= (1 +
x

n − x)n

x n ≥ 1 n > |x|
an (x) > 0 bn (x) > 0
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Proposition 1:  

(a) If  is real and  is a power of 2 so large that , then the

sequence  increases for any  where  is a

power of 2.

x N ≥ 1
x
N

≥ −1

an (x) = (1 +
x
n)n

n ≥ N n

(b) In particular, if , then  for any

 where  is a power of 2.

x ≥ −1 an (x) = (1 +
x
n)n

≥ 1 + x

n ≥ 1 n

(c) If  is real and  is a power of 2 so large that , then the

sequence  decreases for any

 where  is a power of 2.

x N ≥ 1
x
N

< 1

bn (x) = (1 −
x
n)−n

= (1 +
x

n − x)n

n ≥ N n

(d) If  is a bounded sequence in , then  as

through powers of 2.

Bn � (1 +
Bn

n2 )n

→ 1 n → ∞

(e) If  is real and  is a power of 2 so large that , then 

(i)  for any  where  is a power of 2, and

(ii)  as  through powers of 2.

x N ≥ 1
| x |
N

< 1

an (x) ≤ bn (x) n ≥ N n
an (x)
bn (x)

→ 1 n → ∞

(f) If  are real, then  as  through powers of 2.x, y
an (x) an (y)
bn (x + y)

→ 1 n → ∞

Proof:
(a) We must show that if  is a power of 2, then .
Indeed, 

n ≥ N a2n (x) ≥ an (x)

a2n (x) = (1 +
x

2n)2n

= {(1 +
x

2n)2}n

= {1 +
x
n

+
x2

4n2}n

≥ {1 +
x
n}n

= an (x) ,

where we note that if , then , the quantities in the curly

brackets are non-negative, and the power function  increases for
 and any  where  is a power of 2.

x
N

≥ −1
x
n

≥ −1

t → tn

t ≥ 0 n ≥ 1 n

(b)  This is the special case  of (a) with .an (x) ≥ a1 (x) N = 1

(c)  We must show that if  is a power of 2, then .
Indeed, 

n ≥ N b2n (x) ≤ bn (x)

b2n = (1 −
x

2n)2n

= {(1 −
x

2n)2}−n

= {1 −
x
n

+
x2

4n2}−n
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≤ {1 −
x
n}−n

= bn (x) ,

where we note that if , then , the quantities in the curly

brackets are positive, and the power function  decreases for
and any  where  is a power of 2.

x
N

< 1
x
n

< 1

t → t−n t > 0
n ≥ 1 n

(d)  Let  be a power of 2 so large that  for any power of 2,

all .  Then  also for all  where  is a power of 2.

Applying (b) we get  and

 for any  where  is a power of 2.  So

 for  where  is a

power of 2.  Making  through powers of 2 yields .

N ≥ 1
|Bn|
N

< 1

n ≥ 1
|Bn|
n

< 1 n ≥ N n

(1 +
Bn

n2 )n

≥ 1 +
Bn

n
≥ 1 −

N
n

(1 −
Bn

n2 )n

≥ 1 −
Bn

n
≥ 1 −

N
n

n ≥ N n

1 −
N
n

≤ (1 +
Bn

n2 )n

≤
1

(1 − Bn
n2)n ≤

1
1 − N

n
n > N n

n → ∞ (1 +
Bn

n2 )n

→ 1

(e)  Indeed,  and  as

through powers of 2 by (d).  We can also estimate the additive difference

 rather than its multiplicative analogue .  Indeed, as

, being the power of order  of a number in [0, 1],

we have

an(x)
bn(x)

=
(1 + x

n)n

(1 − x
n)−n = (1 −

x2

n2)n

≤ 1
an (x)
bn (x)

→ 1 n → ∞

bn (x) − an (x)
an(x)
bn(x)

an(x)
bn(x)

= (1 −
x2

n2)n

≤ 1 n ≥ 1

0 ≤ bn(x) − an(x) = (1 −
x
n)−n

− (1 +
x
n)n

= (1 −
x
n)−n⎡

⎢⎣1 − (1 −
x2

n2)n⎤
⎥⎦ (1)

 ≤ (1 −
x
n)−n⎡⎢⎣1 − (1 −

x2

n )⎤⎥⎦ = (1 −
x
n)−n x2

n
≤ (1 −

x
N )−N x2

n
→ 0 (2)

as  through powers of 2, i.e. .  Here we applied
(b) to the power in the square brackets at the end of (1) and (c) in the last
inequality in (2).

n → ∞ bn (x) − an (x) → 0

(f)  We can write  as
an (x) an (y)
bn (x + y)

an (x) an (y)
bn (x + y)

= {(1 +
x
n) (1 +

y
n) (1 −

x + y
n )}n

= {1 +
Bn

n2 }n

→ 1

as  through powers of 2 by (d), since the sequencen → ∞
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 is bounded, for example, by

 for all .

Bn = − (x + y)2 + xy (1 −
x + y

n )
|Bn| ≤ (x + y)2 + |xy| (1 + |x + y|) n ≥ 1

Proposition 2:  Let  be real and  a power of 2 so large that .
The sequences ,  for  where  is a power of 2 have a
common limit  where  is inceasing and converges to
from below and  is decreasing and converges to  from above for

 with  as  through powers of 2.

x N ≥ 1 |x| < N
an (x) bn (x) n > N n

f (x) ∈ (0, ∞) an (x) f (x)
bn (x) f (x)

x ∈ � |x| < N n → ∞

Proof:  This follows from Proposition 1(a, c, e) together with the
completeness axiom (C).

The main characteristic properties of the (natural) exponential function
 are the functional equation  for all  real, and

the tangent line estimate  for  real.
f (x) f (x + y) = f (x) f (y) x, y

f (x) ≥ 1 + x x

Proposition 3:  The function  defined in Proposition 2
satisfies

f : � → (0, ∞)

(a) the functional equation  for all  real, andf (x + y) = f (x) f (y) x, y
(b) the estimate  for all .f (x) ≥ 1 + x x ∈ �

Proof:
(a) If we take a limit in Proposition 1(f) as  through powers of 2,

then we get , i.e. .

n → ∞
f (x) f (y)
f (x + y)

= 1 f (x + y) = f (x) f (y)

(b)  If we take a limit in Proposition 1(b), then we get f (x) ≥ 1 + x
for .  This inequality is also true for , since then

.  (The fact that  for all  follows from
Proposition 1 or from (a) above on writing .)

x ≥ −1 x < −1
f (x) ≥ 0 ≥ 1 + x f (x) ≥ 0 x ∈ �

f (x) = f (x
2 + x

2) = f (x
2)2 ≥ 0

Proposition 4:  If a function  satisfiesf : � → (0, ∞)
(a) the functional equation  for all  real, and f (x + y) = f (x) f (y) x, y
(b) the inequality  for all  real in an interval , where

 is a power of 2, then  coincides on  with the function defined
in Proposition 2.

f (x) ≥ 1 + x x |x| < 1
N

N ≥ 1 f �

Proof:  We show that  for  as

 through powers of 2.  Indeed, , so
, , i.e.  for .  Hence if

, then , whose reciprocal is , i.e.
 for .  If , then there is a power  of 2

so large that .  Hence .  Raising

f (x) = lim
n → ∞

(1 + x
n)n = lim

n → ∞
(1 − x

n)−n x ∈ �

n → ∞ 0 < f (0) = f (0 + 0) = f (0)2

f (0) = 1 1 = f (x + (−x)) = f (x)f (−x) f (x) = 1
f (−x) x ∈ �

|x| < 1
N 1 − x ≤ f (−x) f (x) = 1

f (−x) ≤ 1
1 − x

1 + x ≤ f (x) ≤ 1
1 − x |x| < 1

N x ∈ � n ≥ 1
|x|
n < 1

N f (x) = f (x
n +  …  + x

n) = f (x
n)2
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the inequality  to the  power (an operation
which preserves the directions of the inequalities), we obtain

0 < 1 + 1
x ≤ f (x

n) ≤ 1
1 − x

n
n th

an (x) = (1 + x
n)n ≤ f (x) ≤ (1 − x

n)−n = bn (x) .
Making  through powers of 2 gives , i.e.

the function  equals on  the function defined in Proposition 2.

n → ∞ f (x) = lim
n → ∞

an(x) = lim
n → ∞

bn(x)
f �

The above treatment of the exponential function  has the advantage
that it is very primitive; it only uses high school algebra of numbers,
polynomials, and rational functions.  It does not use any notion of square
roots or facts from calculus, other than the notion of the limit of a sequence
of real numbers, and the completeness axiom (C), which seem unavoidable.
The reader may enjoy imagining how the graph of  is approached by the
right half  of the even power  with its -fold zero
at  marching off to  (where  to infinite order) and by the
left half  of the rational function  with no root but
an -fold pole at  marching off to  (where  to infinite
order).

ex

ex

x > −n an (x) = (1 + x
n)n n

x = −n −∞ ex = 0
x < n bn (x) = (1 + x

n − x)n

n x = n +∞ ex = +∞

 If we admit the notion of the derivative, then we can easily check the
major characterisation of the exponential function  in terms of the initial
value problem  for all  real, and .

f
f ′ (x) = f (x) x f (0) = 1

Proposition 5:  If a function  satisfies the conditions of
Proposition 4, then  has a derivative  on ,  on , and .

f : � → (0, ∞)
f f ′ � f ′ = f � f (0) = 1

Proof:  We already know that  and  for
 from the proof of Proposition 4.  The above inequality enables us to

find the derivative .  Indeed, the difference

quotient above satisfies  for

 (with the inequalities reversed for ), i.e.

 (with the inequalities reversed for ),

whose limit as  exists and equals .  As
for all  real, we see on taking a -partial derivative at  that

 for all .

f (0) = 1 1 + x ≤ f (x) ≤ 1
1 − x

|x| < 1

f ′ (0) = lim
x → 0

f (x) − f (0)
x

1 + x − 1
x

≤
f (x) − 1

x
≤

1
1 − x − 1

x
0 < x < 1 −1 < x < 0

1 ≤
f (x) − 1

x
≤

1
1 − x

−1 < x < 0

x → 0 f ′ (0) = 1 f (x + y) = f (x)f (y)
x, y y y = 0

f ′ (x) = f (x) f (0) = f (x) x ∈ �

 If we admit not only the notion of the derivative  of a function
, but also the fact that  on  if, and only if,

and  on , then we can easily show working solely with the initial
value problem that a function  solving the initial value problem  on

 and  is unique by (i) comparing it with the exponential function
 defined in Proposition 2 and by (ii) showing that  satisfies the conditions

of Proposition 4.

F′
F : � → � F = 0 � F (0) = 0

F′ = 0 �
F F′ = F

� F (0) = 1
f F
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Proposition 6:  Let  be any function with  on .  Then
the following hold:

F : � → � F′ = F �

(a) The functional equation  holds for all
real.

F (0) F (x + y) = F (x) F (y) x, y

(b) If  satisfies the initial value problem  on ,
, then  is of the form  for all .

f : � → � f ′ = f �
f (0) = 1 F F (x) = F (0) f (x) x ∈ �

(c) If , then  for  real satisfies
, , ,

, .  Hence  for  real, and
satisfies the conditions of Proposition 4.

F (0) = 1 G (x) = F (x) − 1 − x x
G (x) = [G (x

2) + x
2]2

+ 2G (x
2) G (x) ≥ 2G (x

2) G (x) ≥ 2nG ( x
2n)

G′ (0) = 0 G (x) ≥ G′ (0) x = 0 G (x) ≥ 0 x F

Proof:
(a)  We must show that the function  is
identically zero.  We keep the variable  and eliminate  by putting

, i.e. .  To show that the latter
form of  vanishes, hold  fixed at any real value, vary , and check that

 and .  Indeed, ,
and

Z = F (0) F (x + y) − F (x) F (y)
x y

x + y = z Z = F (0) F (z) − F (x) F (z − x)
Z z x

Z|x = 0 = 0 ∂ Z
∂ x = 0 Z|x = 0 = F (0) F (z) − F (0) F (z) = 0

∂ Z
∂ x

= −F′ (x)F(z − x) + F(x)F′ (z − x) = −F(x)F(z − x) + F(x)F(z − x) = 0.

(b)  We must show that the function  is identically
zero.  To that end, show that  and .  Indeed,

 and 

Z = F (x) f (−x) − F (0)
Z (0) = 0 Z′ = 0

Z (0) = F (0) f (0) − F (0) = 0

Z′ (x) = F′ (x) f (−x) − F (x) f ′ (−x) = F (x) f (−x) − F (x) f (−x) = 0.
Then , since

 by (a). 
0 = Z (x)f (x) = F(x)f (x)f (−x) − F(0)f (x) = F(x) − F(0)f (x)

f (x) f (−x) = f (x − x) = f (0) = 1

(c)  The function  satisfies the functional equation
for  real by (a).  To show that  for  real, we must check
that  for  real.  Note that ,
which vanishes for  since .  Write

 and put it into the functional equation
 to find that

F F (x + y) = F (x) F (y)
x, y F (x) ≥ 1 + x x

G (x) ≥ 0 x G′ (x) = F′ (x) − 1 = F (x) − 1
x = 0 G′ (0) = F (0) − 1 = 0

F (x) = G (x) + 1 + x
F (x) = F (x

2)2

G(x) + 1 + x = ([G(x
2) + x

2] + 1)2 = [G(x
2) + x

2]2 + 2G(x
2) + x + 1,

i.e. .  Hence  for  real.
Iterating yields

G (x) = [G (x
2) + x

2]2 + 2G (x
2) G (x) ≥ 2G (x

2) x

G (x) ≥ 2G ( x
2) ≥ 4G (x

4) ≥ 8G (x
8) ≥… ≥ 2nG ( x

2n) → G′ (0) x = 0

as , i.e.  for  real.  Here we used the facts thatn → ∞ G (x) ≥ 0 x
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, and  is a difference

quotient for the function  at , i.e. it converges as  (e.g.

with ) to the derivative .

G (0) = F (0) − 1 = 0 kG (x
k ) =

G (x
k) − G (0)
1
k − 0

G (tx) t = 0 k → ∞

k = 2n ∂ G (tx)
∂ t |t = 0

= G′ (tx) x|t = 0
= G′ (0) x = 0

If we invert the functions  and , then we need to
use  roots, which when  is a power of 2 are just iterated square roots,
and obtain the candidates  and  for the
approximation of , ,  being a power of 2.  If we know or
admit that any  is a value of the exponential function  for
some  real, then we can find a square root  by .  Since
the formulas for  and  to approximate the logarithm function feature
square roots, we proceed to study the extraction of a square root using
Newton's iteration (going back at least to the ancient Babylonians).

y = (1 + x
n)n y = (1 − x

n)−n

n th n
An(y) = n(y1/n − 1) Bn(y) = n(1 − y−1/n)

log y y > 0 n ≥ 1
y > 0 y = f (x)

x y > 0 y = f (x
2)

An Bn

Proposition 7:  For  fixed, define a sequence  by ,
 for .  Then

x ≥ 1 rn r0 = x
rn + 1 = 1

2 (rn + x
rn) n ≥ 0

(a)  andrn ≥ 1
(b)  for all .rn ≤ x n ≥ 0
(c) Let  for .  Then  for all .dn = r2

n − x n ≥ 0 dn ≥ 0 n ≥ 0
(d) The sequence  is a bounded decreasing sequence, hence there is an

 with  as .  This  satisfies that  and
.

rn
r ∈ � rn → r n → ∞ r r ≥ 1
r2 = x

Proof:  We prove (a) and (b) by induction on .  If , then
satisfies the inequalities (a) and (b).   We suppose that (a) and (b) are valid
for a value of  and prove them for .  We have 

n n = 0 r0 = x ≥ 1

n ≥ 0 n + 1

rn + 1 − 1 = 1
2 (rn − 1 +

x
rn

− 1) = 1
2 [rn − 1] +

1
2rn

[x − rn] ≥ 0

and  since ,  by

the induction hypothesis.

x − rn + 1 = 1
2 [x − rn] +

x
2rn

[rn − 1] ≥ 0 rn ≤ x rn ≥ 1

(c)  We have , andd0 = r2
0 − x = x2 − x = x (x − 1) ≥ 0

dn+ 1 = r2
n+ 1 − x = ⎡⎢⎣

1
2 (rn +

x
rn

)⎤⎥⎦
2

− x =
1
4 (r2

n + 2x +
x2

r2
n

− 4x) =
1
4 (rn −

x
rn

)2

≥ 0

for .n ≥ 0

(d)  We have 

rn + 1 − rn =
1
2 (rn +

x
rn

) − rn =
1
2 ( x

rn
− rn) =

1
2

x − r2
n

rn
≤ 0
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for  by (a) and (c), i.e. .  Hence the limit
 of  exists by the completeness axiom (C).  Making  in

 gives , which boils down to .

n ≥ 0 1 ≤ rn + 1 ≤ rn ≤ x
r ∈ [1, x] rn n → ∞
rn + 1 = 1

2 (rn + x
rn) r = 1

2 (r + x
r) r2 = x

Proposition 8:  For any  real there is a unique  real with
.

x > 0 s > 0
s2 = x

Proof:  If , then we may take the  given by Proposition 7.  If
, then we may take , where  is given for  by

Proposition 7.  As for the uniqueness, if  and  satisfy ,
then , or  upon division by

.

x ≥ 1 s = r
0 < x < 1 s = 1

r r 1
x > 1

s > 0 t > 0 s2 = t2

0 = s2 − t2 = (s − t) (s + t) s − t = 0
s + t > 0

Proposition 9:
(a) If  and  is a power of 2, then

(i) ,
y > 0 n ≥ 1

A2n (y) ≤ An (y)
(ii) , and
(iii) .

Bn (y) ≤ B2n (y)
Bn (y) ≤ An (y)

(b) If , then ,  and  as
 through powers of 2.

y > 0 y1/n → 1 n(y1/n − 1)2 → 0 n(y1/(2n) − y−1/(2n))2 → 0
n → ∞

(c) If , there is a common limit  such that  converges to
 from above and  converges to  from below, as

through powers of 2.

y > 0 g (y) An (y)
g (y) Bn (y) g (y) n → ∞

(d) The function  defined in (c) satisfies the functional
equation (i)  for all  and the (tangent
line) inequality (ii)  for .

g : (0, ∞) → �
g (xy) = g (x) + g (y) x, y > 0

g (y) ≤ y − 1 y > 0

Proof:
(a)  We show that differences of the sides of the proposed inequalities are
non-negative by completing various squares.
(i)

.
An(y) − A2n(y) = n(y1/n − 1) − 2n(y1/(2n) − 1) = n(y1/n − 2y1/(2n) + 1)
= n (y1/(2y) − 1)2 ≥ 0

(ii)
.  This also follows from (i) noting that

.

B2n(y) − Bn(y) = 2n(1 − y−1/(2n)) − n(1 − y−1/n) = n(1 − 2y−1/(2n) + y−1/n)
= n (1 − y−1/(2n))2 ≥ 0
Bn (y) = −An (1 / y)

(iii)
.

An (y) − Bn (y) = n (y1/n − 1) − n (1 − y−1/n) = n (y1/n − 2 + y−1/n)
= n (y1/(2n) − y−1/(2n))2 ≥ 0

(b)  By (a) the sequence  is bounded since
, i.e. there is a constant  for

each  such that  for all  where  is a power
of 2.  Thus , , and so

An (y) = n (y1/n − 1)
1 − 1

y = B1(y) ≤ An(y) ≤ A1(y) = y − 1 M = M (y)
y > 0 |n (y1/n − 1)| < M n ≥ 1 n

|y1/n − 1| < M / n → 0 0 ≤ n(y1/n − 1)2 < M2/n → 0
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 and  as  through powers of 2.  Then

 as  through powers

of 2 by the previous two limits.

y1/n → 1 n (y1/n − 1)2 → 0 n → ∞

n (y1/(2n) − y−1/(2n))2
=

n (y1/n − 1)2

y1/n →
0
1

= 0 n → ∞

(c)  The existence of the limit  follows from the inequalities
 in (a),

the third part of (b), and the completeness axiom (C) of the real line.

g (y)
B1(y) ≤ B2(y) ≤  …  ≤ B2n(y) ≤ A2n(y) ≤  …  ≤ A4(y) ≤ A2 (y) ≤ A1(y)

(d)  To verify the functional equation (i) , considerg (xy) = g (x) + g (y)

−g(xy) + g(x) + g(y) = lim
n→ ∞

[−2n((xy)1/(2n) − 1) + n(x1/n − 1) + n(y1/n − 1)]
where

−2n((xy)1/(2n) − 1) + n(x1/n − 1) + n(y1/n − 1)

= n(x1/n − 2x1/(2n)y1/(2n) + y1/n) = x1/nn(1 − (y
x)1/(2n))2

→ 1 × 0 = 0

as  through powers of 2 by (b) and (c).  To check the inequality (ii)
, take a limit of  for  as

 through powers of 2.

n → ∞
g (y) ≤ y − 1 An (y) ≤ A1 (y) = y − 1 y > 0
n → ∞

Proposition 10:  If a function  satisfies the functional
equation (a)  for , and the inequality (b)

 for , where  and  is a
power of 2, then  coincides on  with the function defined in
Proposition 9(c).

g : (0, ∞) → ∞
g (xy) = g (x) + g (y) x, y > 0

g (y) ≤ y − 1 1 / r < y < r r = 1 + 1 / N N ≥ 1
g (0, ∞)

Proof:  We show that  for  as

 through powers of 2.  Indeed, , so
, and , or,  for ,

and  for .  If  is a power of 2
so large (depending on ) that  for any power  of 2 with ,
then  can be approximated from below and
above as .  Making

 through powers of 2 concludes the proof.

g(y) = lim
n → ∞

n(y1/n − 1) = lim
n → ∞

n(1 − y−1/n) y > 0

n → ∞ g (1) = g (1·1) = g (1) + g (1)
g(1) = 0 0 = g(1) = g(y·1

y) = g(y) + g(1
y) g (y) = −g (1

y) y > 0
y − 1 ≥ g(y) ≥ −(1

y − 1) = 1 − 1
y

1
r < y < r N0 ≥ 1

y 1
r < y1/n < r n n ≥ N0

g(y) = g(y1/n·… ·y1/n) = ng(y1/n)
Bn(y) = n(1 − 1

y1/n) ≤ g(y) = ng(y1/n) ≤ n(y1/n − 1) = An(y)
n → ∞

 If we admit the notion of the derivative, then we can easily check the
major characterisation of the logarithm function  in terms of the initial
value problem  for all , and .

g
g′ (x) = 1

x x > 0 g (1) = 0

Proposition 11:  If a function  satisfies the conditions of
Proposition 10, then  has a derivative  on , and  solves the initial
value problem  for , and .

g : (0, ∞) → �
g g′ (0, ∞) g

g′ (x) = 1 / x x > 0 g (1) = 0
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Proof:  We already know that  and  for
 from the proof of Proposition 10.  The above enable us to find the

derivative .  Indeed, the difference quotient

satisfies  for  and with

the inequalities reversed for .  Making  yields
.  Taking the -partial derivative at  of the functional

equation , , we get , i.e.
 for .

g (1) = 0 1 − 1
y ≤ g (y) ≤ y − 1

y > 0

g′ (1) = lim
y → 1

g (y) − g (1)
y − 1

1
y

=
1 − 1

y

y − 1
≤

g (y) − g (1)
y − 1

≤
y − 1
y − 1

= 1 y > 1

0 < y < 1 y → 1
g′ (1) = 1 y y = 1

g (xy) = g (x) + g (y) x, y > 0 g′ (x) x = g′ (1) = 1
g′ (x) = 1

x x > 0

 The reader may enjoy imagining how the graph of  is approached
by the lower bounded function  from above, and by the
upper bounded function  from below as .

log y
An (y) = n (y1/n − 1)

Bn (y) = n (1 − y−1/n) n → ∞

We now proceed to check directly that  for  and
 for  real, i.e. that  and  are inverse functions of each other.

f (g (y)) = y y > 0
g (f (x)) = x x f g

Proposition 12:
(a) If ,  in , and  is an integer, then

.
r > 0 |u| , |v| ≤ r � n ≥ 1

|un − vn| ≤ nrn − 1 |u − v|
(b) If , then (i)  and (ii)  as

 through powers of 2.
y > 0 (2 − y−1/n)n → y (2 − y1/n)−n → y

n → ∞
(c) If , then .y > 0 f (g (y)) = y
(d) If  is real, then .x g (f (x)) = x

Proof:

(a) We have .  Applying the triangle

inequality and replacing   under the summation sign by  we get

.  Note that if , then

.

un − vn = (u − v) ∑
n − 1

i = 0
uivn − 1 − i

|u| , |v| r
|un − vn| = |u − v| ∑

n − 1

i = 0
rn − 1 = nrn − 1 |u − v| r ≥ 1

|un − vn| ≤ nrn − 1 |u − v| ≤ nrn |u − v|

(b)  As we get (i) if we take the reciprocal of (ii) applied to , it is enough to
prove (ii).  To that end, write  for some constant power of 2,

, and all  where  is a power of 2.  Rewrite the difference
 as , where ,

.  We give upper bounds for  and  as
, which is positive if  is large enough,

, and .  Let , and note that
, , and .  Hence .  Note

that  by Proposition 2(c) if  is a
power of 2, and

1
y

|y1/n − 1| < M
n

M = M (y) n ≥ 1 n
D = (2 − y1/n)−n − y D = ( 1

2 − y1/n)n − (y1/n)n = un − vn u = 1
2 − y1/n

v = y1/n |u| |v|
2 − y1/n ≥ 2 − (1 + M

n ) = 1 − M
n n

|u| = 1
2 − y1/n ≤ 1

1 − M
n

|v| = y1/n ≤ 1 + M
n r = 1

1 − M
n

r > 1 + M
n |u| ≤ r |v| ≤ r |D| ≤ | 1

2 − y1/n − y1/n| ·nrn

rn = bn (M) ≤ b2M (M) = 4M n ≥ 2M
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1
2 − y1/n − y1/n =

1 − 2y1/n + y2/n

2 − y1/n =
(y1/n − 1)2

2 − y1/n ≤
M2 / n2

1 − M
n

.

So  as  through powers of 2.|D| ≤ M2/n2

1 − M
n
·n·4M → 0 n → ∞

(c) We know that  if  and
is a power of 2.  As  is an increasing function, being the limit of increasing
functions, we have .  We also
know that  if  is real, and  is a power
of 2 so large that .  Applying this to  and

, as both choices of  have  if →∞ through
powers of 2, we obtain 

n (1 − y−1/n) ≤ g (y) ≤ n (y1/n − 1) y > 0 n ≥ 1
f
f (n (1 − y−1/n)) ≤ f (g (y)) ≤ f (n (y1/n − 1))

(1 + x
n)n ≤ f (x) ≤ (1 − x

n)−n x n ≥ 1
|x| / n < 1 x = n (1 − y−1/n)

x = n (y1/n − 1) x x / n → 0

(1 +
n (1 − y−1/n)

n )n

≤ f (g (y)) ≤ (1 −
n (y1/n − 1)

n )−n

,

i.e. , the limit of which by (b) is
 as  through powers of 2, i.e.  for

.

(2 − y−1/n)n ≤ f (g (y)) ≤ (2 − y1/n)−n

y ≤ f (g (y)) ≤ y n → ∞ f (g (y)) = y
y > 0

(d)  Suppose that  is a power of 2 so large that .  Then we can
apply the increasing functions  to the inequality

 as

n |x| / n < 1
An (y) ≥ g (y) ≥ Bn (y)

(1 + x
n)n ≤ f (x) ≤ (1 − x

n)−n

Bn ((1 +
x
n)n) ≤ Bn (f (x)) ≤ g (f (x)) ≤ An (f (x)) ≤ An ((1 −

x
n)−n) .

Thus , or .

Making  through powers of 2 yields , i.e.
for  real.

n(1 −
1

1 + x
n
) ≤ g(f (x)) ≤ n( 1

1 − x
n

− 1) x
1 + x

n
≤ g(f (x)) ≤

x
1 − x

n
n → ∞ x ≤ g(f (x)) ≤ x g(f (x)) = x

x

Logarithms were introduced in the early 1600s by Napier and Briggs
(and Kepler and Bürgi) essentially using the iterated square roots as in
and  above.  The exponential function (or antilogarithm) is probably as
old as well.  Its theory and notation go back at least to Euler, who also gave
us the limit of  and  (for general  not just powers of 2).  Square
roots go back millennia at least to the ancient Babylonians using the method
of Proposition 7.  The tangent line inequality  for

 and  is called Bernoulli's inequality and is centuries old, and
so is its application to studying the power, exponential, and logarithmic
functions.

An
Bn

an bn n → ∞

(1 + x)n ≥ 1 + nx
x > −1 n ≥ 1

While most estimates in this paper are of sufficient accuracy, it is
possible (and normal) to approximate more closely in Proposition 7.   It is
easy to check that the Newton iteration ,  for

 for a real or complex number  with  is conjugate to the
iterated squaring map ,  for , i.e.

r0 = x rn + 1 = 1
2 (rn + x

rn)
n ≥ 0 x Re x > 0

ρ0 = x − 1
x + 1

ρn + 1 = ρ2
n n ≥ 0
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ρn = ρ2n

0 = ( x − 1
x + 1)2n

for  under the Möbius transformation  that maps one square
root  of  (with ) to  and the other square root

 (with negative real part) to , whose inverse transformation

is .  Hence .  If , then

, and so  for , and
as .  The reader may enjoy imagining that the complex plane of  is
subdivided by the two square roots  of  into the
perpendicular bisector of the two points  and the two half planes that
this bisector creates.  If the initial value  falls into the half plane of one
square root , then the iterates stay in that half plane and converge to that
value of .  If the initial value  falls onto the bisector, then it stays there
and it usually undergoes a chaotic motion on the line.  The bisector

 maps to the unit circle  and the iteration for an
initial value  on the bisector undergoes the doubling map of the circle.
The half plane  maps to the interior disc  and
the iteration undergoes repeated squaring and falls quickly into the origin

 which corresponds to convergence to  in the  half plane.
The other half plane  maps to the exterior disc
and the iteration undergoes repeated squaring and escapes quickly to

, which corresponds to convergence to  in the  half plane.

n ≥ 0 ρ = r − x
r + x

r = x x Re x > 0 ρ = 0
r = − x ρ = ∞

r = x 1 + ρ
1 − ρ rn = x 

1 + ρn

1 − ρn
= x 

1 + ρ2n
0

1 − ρ2n
0

x > 0

−1 < ρ0< 1 ρ2n
0 ∈ [0,  1) n > 0 0 ≤ rn − x ≤ 2 xρ2n

0 → 0
n → ∞ r

± x x ∈ � − {0}
± x
r0

x
x r0

|r − x| = |r + x| |ρ| = 1
r0

|r − x| < |r + x| |ρ| < 1

ρ = 0 r = x r
|r − x| > |r + x| |ρ| > 1

ρ = ∞ r = − x r
The method of functional equations and functional inequalities goes

back at least to Cauchy, who also wrote on doing analysis by algebra,
calling it algebraic analysis; it has relevance even today.  The method of
doubling and halving is also standard and has been used many times over
the centuries and is even used nowadays.  The idea that it is easier to double
than augment in the limits that we gave for the exponential and logarithm
functions is also ancient.   In the case of the logarithm it goes back to Napier
and Briggs, and in a more modern form to the paper [1] of Hurwitz, which
treats from the point of view of the iteration of one-variable holomorphic
functions the extraction of square roots, finding logarithms and exponential
values among other elementary functions.  I read this paper of Hurwitz some
15 to 20 years ago.  In the case of the exponential function, the doubling
idea goes back at least to Hurwitz [1], Huntington [2], and Dunkel [3].
Neither of [2, 3] treats both functions  and  and their inverse relations
in detail, but treats one or the other and defines the other as its inverse
function.  A motivation for an elementary and minimalistic treatment of the
first few transcendental functions as early as possible is that we can then use
these functions in the teaching of calculus, avoiding some of the pitfalls of
‘functionless calculus’ in which the only examples to differentiate and
integrate and otherwise study are rational functions and their algebraic
functions.

ex log x
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The fact that none of the above development seems to have yet appeared
in a textbook is responsible in part for its repeated rediscovery in one form
or another, e.g. the case of the exponential function in [4] by Kemény, who
credits Emil Artin with the idea of the doubling definition of the exponential
function; [4] has no bibliographical references.  In the era of online
searching the reader may easily produce a hundred other references as well,
especially to developments via calculus or differential equations.  Were it
possible meaningfully to machine search Euler's copious Latin, the author
would not be surprised by a reference to the same ideas there as well.

None of the sources that I found give the entire treatment in one place
and with as little background as above.  None of the treatments of Hurwitz,
Huntington, Dunkel, and Kemény seems to have trickled down to the mass-
market textbooks for high schoolers and undergraduates in over a century.
Some of the readers could check back a century from today to see if any of
it will finally have found its way into a such a textbook.  Do not hold your
breath.

The author is grateful to the editor and the referee for their remarks.
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