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Abstract

The numerical simulation of the driving beams in a heavy ion fusion power plant is a challenging task, and simulation
of the power plant as a whole, or even of the driver, is not yet possible. Despite the rapid progress in computer power,
past and anticipated, one must consider the use of the most advanced numerical techniques, if we are to reach our goal
expeditiously. One of the difficulties of these simulations resides in the disparity of scales, in time and in space, which
must be resolved. When these disparities are in distinctive zones of the simulation region, a method which has proven to
be effective in other areas~e.g., fluid dynamics simulations! is the mesh refinement technique. We discuss the challenges
posed by the implementation of this technique into plasma simulations~due to the presence of particles and electro-
magnetic waves!. We present the prospects for and projected benefits of its application to heavy ion fusion, in particular
to the simulation of the ion source and the final beam propagation in the chamber. A collaboration project is under way
at Lawrence Berkeley National Laboratory between the Applied Numerical Algorithms Group~ANAG! and the Heavy
Ion Fusion group to couple the adaptive mesh refinement library CHOMBO developed by the ANAG group to the
particle-in-cell accelerator code WARP developed by the Heavy Ion Fusion–Virtual National Laboratory. We describe
our progress and present our initial findings.
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1. INTRODUCTION

Integrated end-to-end simulation of a heavy ion fusion fa-
cility, or even the driver, is not yet possible with current
software and hardware capabilities. Given the range of pa-
rameters that should be scanned by such types of simula-
tions, relying solely on the progress in computer hardware
power is not sufficient. Development and introduction into
our codes of more efficient numerical techniques must be
part of the effort. In this article, we report on the status of an
ongoing effort aimed at introducing the adaptive mesh re-
finement~AMR! technique into particle-in-cell~PIC! mod-
eling. This is part of a more general effort to apply AMR to
plasma modeling. While we currently concentrate on imple-
mentingAMR into electrostatic PIC codes, we also consider
their application to electromagnetic models and Vlasov sim-
ulations. In the first part of this article, we present the mesh

refinement concept, a brief history of AMR~which was
successfully developed for fluid modeling!, and its potential
benefits to heavy ion fusion. The second part will examine
the main issues in applying AMR to models which contain
particles and waves. The ongoing development of an elec-
trostatic AMR–PIC code is based on the coupling of two
existing packages: Chombo~http:00seesar.lbl.gov0ANAG0
chombo! for AMR and WARP~Groteet al., 1996! for PIC.
We present the approach and status of this effort in the third
part, while results of AMR–PIC simulations realized with
a RZ prototype developed in WARP are presented in the
last part.

2. THE MESH REFINEMENT METHOD

The mesh refinement method~MR! is a technique for refin-
ing certain regions of the physical domain in a grid-based
calculation. MR serves as a “numerical microscope,” allow-
ing researchers to “zoom in” on the specific regions of a
problem that are most important to its solution. Rather than
requiring that the whole calculation have the same spatial
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resolution, MR allows different resolutions in different re-
gions of the problem. Areas of interest are covered with a
finer mesh than the surrounding regions; for time-dependent
problems, the finer meshes are also, in general, advanced
with a smaller time step. The avoidance of having to per-
form the entire calculation at the finest resolution makes
possible the solution of a wider range of problems. Some-
times, the areas of the physical domain that need refinement
evolve and automatic redistribution of the refinement be-
comes necessary as the simulation unfolds; this is known as
adaptive mesh refinement~AMR!.

The hierarchical structured grid approach now known as
AMR was first developed by Berger and Oliger~1984! for
hyperbolic partial differential equations. The approach to
adaptive gridding used here was developed for conservation
laws and demonstrated to be highly successful for gas dy-
namics by Berger and Colella~1989! in two dimensions.
Bell et al.~1991! extended the methodology to three dimen-
sions. More recently, AMR has been extended to a variety of
problems and algorithm choices, including, but not limited
to, solving the variable-coefficient Poisson equation, the
Helmholtz equation, the system of hyperbolic conservation
laws governing inviscid gas dynamics, the compressible and
incompressible Navier–Stokes equations, and the equations
that govern reacting flows, such as those that occur in pre-
mixed and nonpremixed combustion. The heavy ion fusion
program will benefit from the introduction of the AMR
technique in several areas of its modeling effort, leading to
integrated simulations of the driver, from source to target.
The modeling of the particle injector in detail offers a spe-
cific challenge due to the presence of a singularity in the
solution at the emitting surface. Convergence studies of the
High-Current Experiment~HCX! injector at the Lawrence
Berkeley National Laboratory~LBNL !, using an axisym-
metric ~RZ! prototype AMR–Poisson solver, have shown
that a very fine resolution is needed around the emitting
surface~see below!. In the accelerator, accurate modeling of
halo generation calls for a detailed description of the beam
edge which the AMR technique will render accessible
through both mesh refinement and adaptivity capabilities.
In the fusion chamber, a self-consistent simulation of a beam
array is still out of reach, and the introduction of AMR
would allow more rapid progress. To take full advantage of
different approximations of the Vlasov–Maxwell system,
we plan to introduce AMR into our PIC electrostatic and
electromagnetic models, and ultimately into our Vlasov
model. The implementation of the PIC electrostatic capabil-
ity is under way, while the other implementations have been
left for future work.

3. APPLICATION TO PARTICLE-IN-CELL
PLASMA SIMULATION

The application of the mesh refinement technique to PIC
plasma simulation needs special care to avoid the introduc-
tion of spurious effects into the model, or at least to mini-

mize them. The main new challenge is the presence of
macroparticles. The introduction of AMR introduces a spu-
rious force that may potentially alter the particle motion to
an unacceptable level. Also, some implementations of AMR
may violate conservation laws and0or introduce nonphysi-
cal nonlinearities~anharmonic forces!. Finally, in the case
of electromagnetic PIC simulations, the introduction ofAMR
is challenging due to the reflection of high frequency waves
at the boundary of a refinement patch and, in general, straight-
forward implementations ofAMR into electromagnetic codes
yield unstable algorithms.

3.1. Gauss theorem and field nonlinearities

Several methods can be envisioned to couple a fine grid and
the coarser grid in which it is enclosed; we discuss two of
them. The most straightforward method consists of, once
the solution has been calculated to the desired precision on
the coarse grid, getting the fine grid patch boundary values
~for Dirichlet boundaries! through interpolation from the
coarse grid solution. All the Dirichlet boundaries having
been set on the fine grid, a solution is then computed in the
interior, and the procedure is recursively performed for any
refinement patch that it contains~this is the procedure that
has been used in the example given in the next subsection
“issues with macroparticles”!.

Another method, which is the default in the Chombo
package~available at http:00seesar.lbl.gov0ANAG0chombo!,
consists of iterating the solution back and forth between a
patch and its mother grid. As in the other method, Dirichlet
boundary values for the fine grid are interpolated from the
coarse grid solution. Then, a specified number of iterations
are performed in the fine grid and the fine and coarse grid
solutions are reconciled during a “synchonization” step which
consists of enforcing the fine grid solution on the coarse grid
nodes located inside the fine grid patch. This procedure is
iterated until convergence.

While the second method has been shown to be of higher
order in accuracy, it violates Gauss’ Law under a nodal
implementation and modifies the coarse grid solution, even-
tually introducing otherwise nonpresent nonlinearities into
that solution. These two effects may be issues for accelera-
tor modeling. Both methods are being implemented and will
be compared.

3.2. Issues with macroparticles

One cornerstone of PIC modeling consists of defining the
charge deposition~from macroparticles to the grid! and field
gathering~from the grid to the macroparticles! in such a way
to avoid generating spurious self-force. However, it can be
shown that, for electrostatic, the introduction of mesh re-
finement does create a spurious image of a particle at the
interface between a coarse and a fine grid refinement patch.
It is easy to demonstrate this effect on a simple example: a
64 3 64 square regular grid~“mother” grid! of undimen-
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sioned lengthL with a local refinement patch consisting of a
323 32 square regular grid of lengthL04. The centers of the
mother grid and the patch grid coincide. A single particle is
initialized at a position$X0,Y0% in the fine grid. For each
time step, the charge~undimensioned! of the particle is
deposited on both grids using linear weighting. The field is
computed on the coarse grid using a Poisson solver, assum-
ing Dirichlet boundary conditionw 5 0 at the boundaries.
The solution is then linearly interpolated from the coarse
grid onto the fine grid boundaries and the field solution is
solved on the fine grid~the first method described in the
preceding subsection!. The field is then linearly interpolated
back to the particle using the same weighting function as for
the charge deposition. The particle is finally advanced using
a leap-frog pusher. If the particle is outside the fine grid,

only the coarse grid is considered for the calculation. Once
the particle reaches the coarse grid boundaries, it experi-
ences a specular reflection. The fine grid is reactivated as
soon as the particle reenters it.

Figure 1 displays the results for a particle initialized at
$X0,Y0% 5 $26,32% ~in the coarse grid mesh size units! and
vx0 5 vy0 5 0. The results using the set of two grids as
described above are compared to a reference case where
the same problem is run on a uniform 1283 128 square
regular grid~so that it has the same resolution as the fine
grid patch!.

The particle is attracted by its image at the boundary and
moves towards the closest boundary. As it should normally
do and does in the reference case, the particle moves toward
the closest boundary and bounces back, and so on. But in the

Fig. 1. Effect of mesh refinement on a single particle motion. Panel a shows the grids configuration. A test particle is initialized in the
fine grid patch and is attracted by its image due to the metallic boundary~at the coarse grid border!. In b, the time evolution of
the particle position is given for an “exact” case~plain line! and for a case with mesh refinement~dashed line!. The perturbation of the
trajectory suggests that the equivalent of a spurious “image” of the real particle is introduced by the mesh refinement.
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case of the two-grid set, the particle is reflected at the inter-
face between the fine grid patch and the coarse mother grid,
meaning that an effect equivalent to the presence of a spu-
rious repulsive image force has been created at the interface
by the local refinement. Techniques~not described here! to
mitigate this effect have been explored and will be imple-
mented if tests on real problems show that it is needed.

3.3. Electromagnetic waves

The modeling of electromagnetic waves poses a specific
challenge to the use of mesh refinement and, more gener-
ally, to the use of non-Cartesian regular grids. This is due to
the fact that wave propagation in vacuum is a process that
has an “infinite memory” of past events so that errors tend to
accumulate, leading to instability. By nature, a given grid
can transport only waves whose wavelengths exceed roughly
twice the mesh spacing. Hence, when refining an area by
patching a fine grid on a coarse one, a band of wavelengths
that can be resolved on the finer grid cannot be resolved
on the coarse one, and are reflected at the fine-coarse grid
interface. Such reflections are evidently unphysical and can
build the field energy up by multiple reflections on the
boundaries of the fine grid. Moreover, as shown in Vay
~2001!, the reflection of these waves at the interface is as-
sociated with an amplification of the reflected wave that can
reach a factor of 10 in the case of refinement both in space
and in time~smaller time steps in the refined region! of a

factor of 3, for a scheme based on “jumps” of fine grid
points over alternate coarse grid points and linear interpola-
tions to connect the two grids. Some improvement can be
obtained by applying an energy conserving scheme~Collino
et al., 1999! which forces, by construction, the reflection
factor to be unity. Adjustable damping, as developed in
Friedman~1990!, can also help by damping the short wave-
lengths that constitute these spurious reflected waves, at the
price of damping physical waves at the same frequencies.
Another approach~Vay, 2001! consists in reducing the re-
flection factor by formally rewriting the multidimensional
wave equation into monodimensional wave equations that
are split upon the direction of propagation of the waves
along an axis. Absorption of the considered waves at effi-
ciency comparable to the first order, or eventually second
order, Engquist and Majda~1977! absorbing boundary con-
dition can be achieved using this technique. Further reduc-
tion of the reflection factor by orders of magnitudes may
require the use of patches surrounded by perfectly-matched-
layer~PML! ~Berenger, 1994; J.-L. Vay, 2002! regions. For
such a technique, for each refinement patch applied to a
coarser grid, an additional patch having the same resolution
as does the coarse grid will be needed. This technique relies
on the fact that short wavelengths present in the fine-gridded
patch will be created by sources located inside this same
patch only. Hence, the short wavelengths can be computed
on the fine patch, independently of the whole domain cal-
culation, and be added to the coarse grid solution, pro-

Fig. 2. Image from movie of an end-to-end WARP simulation of the HCX experiment. This shows the beam, emitted from the source
~left!, propagating through the first quadrupoles.
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vided that the long-wavelength information related to the
same sources have also been calculated independently on
the coarse grid patch and substracted from the whole do-
main solution. Compared to usual mesh refinement tech-
niques, this approach has the advantage of removing the
coupling between the coarse grid and the patch bound-
aries, removing associated problems and facilitating the
implementation.

4. DEVELOPMENT OF THE
WARP-CHOMBO PACKAGE

A nodal implementation of a multigrid AMR solver for the
Poisson equation using Shortly–Weller~“cut cell”! discret-
ization of the Laplacian operator~to account for internal
boundaries at subcell resolution! has been developed in
Chombo. In our configuration, a library containing Chombo’s

Fig. 3. Snapshot of the particle distribution~dark yellow! at the end of a HCX source simulation. Color contour plot of the electrostatic
potential are rendered in vacuum areas~black areas represent conductors!. The red box sets the limits of the mesh refinement patch that
has been used in one of the runs.

Fig. 4. Normalized rms emittance of the beam as a function ofz, as measured at the end of four runs~see text for runs labeling
description!. A higher resolution leads to a lower emittance. Applying a mesh refinement around the emitting area allows to recover
~almost! exactly the emittance profile at a reduce cost~factor of 4 in this case!.
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executable routines is provided to the WARP linker which
merges the two packages together. Appropriate calls to
Chombo routines are made by WARP FORTRAN’s routines
which are triggered by a flag which is set up by the user in
WARP’s Python script interface. For specialized use, some
of the Chombo routines, such as itsAMR Poisson solver, are
callable directly from WARP’s Python interface.

While the production-level general three-dimensional
AMR Poisson solver is being developed in the Chombo
package, we have built a prototype axisymmetric~RZ!
AMR–Poisson solver on the foundations of WARP’sr-z
Poisson solver. This has allowed us to begin to explore the
benefits of AMR for injector simulation, as described in the
next section.

5. EXAMPLE: SIMULATION OF THE HCX
SOURCE WITH WARP-RZ

Figure 2 shows a snapshot taken from a movie of an end-to-
end HCX simulation. As explained in Haberet al.~2002!, a

successful end-to-end simulation requires a very detailed
simulation of the front end. We present some results ob-
tained on the convergence study of the HCX source simula-
tion. To focus on the source, no quadrupole were considered,
which allowed us to benefit from the axisymmetry of the
system, thus reducing the dimensionality of the simulations.
Assuming that we are interested only in the steady-state
solution, the simulations were performed in a “quasi time-
dependent” mode, where the electrostatic field was solved
every 10 time steps. In all the runs, we have used a time step
of 1 ns and the run was stopped after 1000 time steps~1 ms
physical time!. A snapshot of the particle distribution at the
end of the run is given in Figure 3 for a calculation using a
grid of nr 3 nz5 563 640 cells~giving dx ' 3.6 mm and
dz' 0.6 mm!. The number of cells was chosen so that there
are at least 10 grid lines crossing the emitting region in each
dimension~the emitting surface has a radius of 5.08 cm and
an extension of 6.45 mm inz!. We will refer to this run as the
“base run.” We define the simulation parameters of other
runs by two integers,ngf andnpf, which represent, respec-

Fig. 5. Phase-space projections of the beam slice distribution in ther-r ' plane at the end of the runs, for 39 cm, z, 40 cm~see text
for runs labeling description!. A higher resolution leads to a smaller hook. Applying a mesh refinement around the emitting area allows
us to recover the correct length of the hook at a reduced cost~factor of 4 in this case!.
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tively, the multiplicative factor for the number of cells in
each dimension and the number of particles, with respect to
the base run. Hence, a run labeled$ngf 5 2, npf 5 4% had a
grid of 11231280 cells and used four times the number of
macroparticles of the base run. We ran the cases$ngf 5 1,
npf 5 1% ~i.e., base grid!, $ngf 5 2, npf 5 4%, $ngf 5 4,
npf 5 16%, and$ngf 5 2, npf 5 4, with mesh refinement%.
For the last case, a mesh refinement patch having two times
the resolution of the initial grid in each dimension was ap-
plied on the emitter region. The limits of the patch are shown
by a red line on Figure 3. Letcc be the computing cost of a
run; then we have:cc~ngf 5 4, npf 5 16! 5 4cc~ngf 5 2,
npf 5 4! 516cc~ngf 51, npf 51! ' 4cc~ngf 5 2, npf 5 4,
with mesh refinement!. Figure 4 and Figure 5 display, re-
spectively, the emittance as a function ofzand a beam slice
phase-space projection, taken at the end of the runs. From
Figure 4, it follows that higher resolution means a reduction
of the emittance. From Figure 5, we can infer that this emit-
tance reduction is linked to the length of a hook at the edge
of the distribution, which also reduces when the resolution
rises. We remark that we obtained results very close to the
highest resolution case$ngf 5 4, npf 5 16% with the case
$ngf 5 2, npf 5 4, with mesh refinement%, at a fourth of the
computational cost.

6. CONCLUSION

We have discussed the potential benefits of the introduction
of the AMR technique for the heavy ion fusion program, as
well as the difficulties that arise in its application to plasma
and accelerator modeling. We have presented the ongoing
effort of coupling an existing AMR package with the PIC
code WARP and have shown that a significant reduction
factor could be obtained in computer time cost on the sim-
ulation of a key issue for HIF. We conclude from this pre-
liminary study that the introduction of the AMR technique
into beam and plasma simulations offers the potential of

more efficient calculations, leading us to reach the goal of
integrated end-to-end simulation significantly sooner than
would be possible otherwise.
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