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The source mechanism of inertia–gravity waves (IGWs) observed in numerical
simulations of the differentially heated rotating annulus experiment is investigated.
The focus is on the wave generation from the balanced part of the flow, a process
presumably contributing significantly to the atmospheric IGW field. Direct numerical
simulations are performed for an atmosphere-like configuration of the annulus and
possible regions of IGW activity are characterised by a Hilbert-transform algorithm.
In addition, the flow is separated into a balanced and unbalanced part, assuming the
limit of a small Rossby number, and the forcing of IGWs by the balanced part of the
flow is derived rigorously. Tangent-linear simulations are then used to identify the part
of the IGW signal that is rather due to radiation by the internal balanced flow than to
boundary-layer instabilities at the side walls. An idealised fluid set-up without rigid
horizontal boundaries is considered as well, to investigate the effect of the identified
balanced forcing unmasked by boundary-layer effects. The direct simulations of the
realistic and idealised fluid set-ups show a clear baroclinic-wave structure exhibiting
a jet–front system similar to its atmospheric counterparts, superimposed by four
distinct IGW packets. The subsequent tangent-linear analysis indicates that three
wave packets are radiated from the internal flow and a fourth one is probably caused
by boundary-layer instabilities. The forcing by the balanced part of the flow is found
to play a significant role in the generation of IGWs, so it supplements boundary-layer
instabilities as a key factor in the IGW emission in the differentially heated rotating
annulus.

Key words: baroclinic flows, geophysical and geological flows, internal waves

1. Introduction
Inertia–gravity waves (IGWs) are ubiquitous in the Earth’s atmosphere. They

either originate from flow over orography or can have non-orographic sources, such
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as convection or jet–front systems. After being generated in the troposphere, a
large fraction of IGWs propagates vertically and deposits momentum and energy
in the middle atmosphere. As a consequence, the strength of the polar vortex
and the mesospheric meridional temperature gradient are influenced significantly
(Fritts & Alexander 2003). Furthermore, IGWs exert control over the quasi-biennial
oscillation (Baldwin et al. 2001). The state of the stratosphere, in turn, strongly affects
daily weather and climate of the troposphere through downward control (Haynes
et al. 1991; Scaife et al. 2005). This is why a precise representation of IGWs is
essential when performing weather forecasts and climate projections. However, due
to their small-scale structure, only a part of the IGWs can explicitly be resolved
by current weather and climate models. Thus, subgrid-scale parametrisations have
to be developed to take into account the effects of the unresolved on the resolved
dynamics. Therefore, knowledge about the spatial and temporal distribution of the
IGWs as well as an enhanced physical understanding of the ongoing IGW processes
is highly relevant.

There are various approaches to investigate IGW processes, ranging from
atmospheric measurements (satellite, radar or lidar measurements) over theoretical
studies towards numerical and experimental work. In this context, the consideration
of idealised dynamical systems, either experimental or numerical, turns out to be
a useful tool. Their reduced number of degrees of freedom compared to the real
atmosphere facilitates easier extraction of the IGW signals and the description of the
underlying physical processes. Moreover, their reproducibility enables especially
focused investigations of the emission mechanism. Finally, both numerical and
laboratory studies allow parameter sensitivity studies that are of interest as well.
Various studies use this approach to investigate the IGW emission by jets and
fronts. In contrast to orographically and convectively generated IGWs, the physical
understanding of this process is still insufficient to improve existing, highly tuned
parametrisation schemes. Furthermore, there is an increasing desire to also incorporate
sensitivity to changing climate conditions to them. Evidence that the emission of
IGWs by jets and fronts represents a significant contribution to the overall IGW field
was first detected in observational studies. For instance, Uccellini & Koch (1987)
reviewed a series of IGW events observed in the lower troposphere and identified
the jet exit region to be the dominant source region of IGWs in locations without
orography. More recently, these findings were confirmed by a study of Plougonven,
Teitelbaum & Zeitlin (2003) who evaluated radiosonde data from a measurement
campaign over the North Atlantic. In addition, numerical studies have been conducted
aiming to reproduce the IGW signal seen in observations. O’Sullivan & Dunkerton
(1995) were the first to carry out idealised simulations describing flows of realistic
complexity. They detected strong IGW emissions at the jet exit region during the life
cycle of a baroclinic wave. Similar results were found by Wu & Zhang (2004) who
performed mesoscale simulations over the North Atlantic being in good agreement
with satellite observations.

The general understanding of the IGW source mechanism has been changed in
recent years. Many previous experimental and numerical case studies referred to
the classical geostrophic adjustment as a generation process, where an initially
unbalanced rotating fluid converts into a geostrophically balanced state by radiating
IGWs (Uccellini & Koch 1987; Fritts & Luo 1992; Luo & Fritts 1993; O’Sullivan
& Dunkerton 1995). However, no statements are made as to how, why and where
the initial imbalance appears (Plougonven & Zhang 2014). Moreover, this mechanism
misses the fact that the emission of IGWs is a rather continuous process and no final
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IGW emission in the differentially heated rotating annulus 7

adjusted state remains. More recent studies prefer the mechanism of spontaneous
emission (Zhang 2004) which comprises the continuous radiation of IGWs from a
predominantly balanced flow. In order to study this process more precisely, numerical
simulations with an idealised vortex dipole have been proved to be useful (Viúdez
2007; Snyder, Plougonven & Muraki 2009; Wang & Zhang 2010). This system
consists of a cyclone/anticyclone dipole that propagates as a coherent structure on
an f -plane (i.e. the Coriolis parameter is set to a constant value), representing a
simple model of a jet exit region. Results obtained by this configuration show steady
wave packets in front of the dipole associated with the jet exit region (Snyder et al.
2009). Insights into the corresponding source processes can then be gained based on
a tangent-linear analysis, as conducted by Snyder et al. (2009) and Wang & Zhang
(2010). By linearising the flow around a balanced background state a tangent-linear
model describes the linear time evolution of IGWs. This context allows one to
investigate the forcing of IGWs by the purely balanced part of the flow qualitatively
and quantitatively. For instance, the vortex-dipole study of Snyder et al. (2009)
showed that their forcing, obtained by the residual tendency difference between the
time tendencies of a quasi-geostrophic solution and the corresponding full primitive
equation system, appears to be a leading contribution to the IGW signal.

Studies beyond the very idealised dipole system that consider freely generated
jet–front systems more similar to their atmospheric counterparts, are still pending.
A step in this direction is provided by the differentially heated rotating annulus
experiment. This experiment consists of a working fluid which is bounded between
two vertical coaxial cylinders maintaining a constant radial temperature difference.
Additionally, the apparatus rotates with a specific angular velocity. This system is
very popular in geophysical fluid dynamics because it can easily be constructed in
laboratories and compared with numerical studies. When choosing an appropriate set
of physical parameters, baroclinic waves develop which propagate steadily throughout
the domain. Hence, this system is well suited to study the dynamics observed in
atmospheric baroclinic waves at midlatitudes. Various studies were conducted to
investigate baroclinic-wave life cycles and the corresponding jet–front system in the
rotating annulus (Früh & Read 1997; Sitte & Egbers 2000; von Larcher & Egbers
2005; Harlander et al. 2012; Vincze et al. 2014). More recently, the annulus has
also been used to examine the generation and propagation of IGWs. Jacoby et al.
(2011) performed numerical simulations with a classic configuration of the rotating
annulus, where a relatively narrow gap between the two cylinder walls leads to a
ratio between the Brunt–Väisälä frequency N and the inertia frequency f which is
less than one. They observed IGWs originating in the boundary layer located at
the inner cylinder, a region of strong shear and downwelling at particular points
within a large-scale baroclinic wave. After being generated these waves propagate
into the interior of the annulus domain. Similar wave characteristics were found
by Randriamampianina (2013) and Randriamampianina & Crespo del Arco (2015).
However, in contrast to Jacoby et al. (2011), the authors assume that a temperature
overturn in combination with a flow reversal leads to the formation of a billow similar
to that seen in Kelvin–Helmholtz instabilities. When this shear flow reaches the cold
inner cylinder IGWs are triggered. Borchert, Achatz & Fruman (2014) carried out
simulations for a more atmosphere-like configuration of the rotating annulus where
due to a wider gap, a shallower flow and a larger radial temperature contrast N/f > 1
arises. They reported clear indications for additional wave packets generated in the
jet–front system. Unlike the IGWs generated at the inner side walls, these waves are
more relevant for related real atmosphere studies. However, a detailed investigation
of the source mechanism has not been done so far.
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The main goal of our work is an understanding of the source mechanism of the
IGWs originating from the jet–front system in the rotating annulus. The study is based
on the parameter regime identified by Borchert et al. (2014) showing atmosphere-like
conditions for wave emission and propagation. Since boundary-layer instabilities still
seem to be a source in this set-up, the question arises how much the spontaneous
emission by the balanced part of the internal flow contributes to the IGW field. Hence,
the comparative importance of boundary-layer instabilities and of radiation by the
internal flow is investigated by several means: direct simulations of the differentially
heated rotating annulus and of a closely related fluid set-up without rigid side walls.
Balanced and unbalanced flow parts are separated from each other, assuming the limit
of a small Rossby number. In this limit the forcing of IGWs by the internal balanced
flow is derived rigorously. Simulations with a tangent-linear model are then used to
identify the part of the IGW signal that is rather due to radiation by the internal
balanced flow than to boundary-layer instabilities. Our findings indicate that this
forcing plays an important role and support the application of the annulus experiment
for studies of spontaneous IGW emission.

The paper is structured as follows. After providing an overview of the nonlinear
numerical model, § 2 develops the theory of the coupling between balanced and
unbalanced flows in the low-Rossby-number limit, and the tangent-linear equations
used for investigating the IGW radiation from the balanced flow are derived. Section 3
characterises the different wave packets observed in the annulus and presents the
comparative results of the nonlinear and tangent-linear simulations, focusing on the
emission of IGWs from the internal flow. A summary and discussion are found in
§ 4.

2. Model and methodology
2.1. The models

2.1.1. Annulus configuration
A schematic of the differentially heated rotating annulus is shown in figure 1, where

a cylindrical coordinate system consisting of the azimuthal angle ϑ , the radial distance
from the axis of rotation r and the vertical distance from the bottom z is introduced.
The experiment consists of two vertical coaxial cylinders. The inner cylinder at radius
r= a is cooled (T = Ta) and the outer cylinder at radius r= b is heated (T = Tb). The
tank is filled with water up to a height d. Furthermore, the whole apparatus rotates
at a specific angular velocity Ω , forcing the fluid particles to experience Coriolis and
centrifugal accelerations.

The physical parameters used in this study are listed in table 1. Since deviations of
the density 1ρ̂ from the constant background density ρ̂0 at the reference temperature
T0 = (Ta + Tb)/2 are relatively small (|1ρ̂| < 0.01ρ̂0) in the considered temperature
range, the dynamics of the system is described by the Boussinesq approximation. The
pressure field is also divided up into a time-independent vertically varying background
field p̂0 and a deviation 1p̂. The former is defined assuming hydrostatic equilibrium
between the pressure gradient, gravity and the centrifugal acceleration, i.e.

∇p̂0 = gρ̂0 − [Ω × (Ω × r)]ρ̂0, (2.1)

where ∇ = eϑ(1/r)∂/∂ϑ + er∂/∂r+ ez∂/∂z, g=−gez is the gravitational acceleration,
Ω =Ωez is the angular-velocity vector and −Ω × (Ω × r)=Ω2rer is the centrifugal
acceleration. Here eϑ , er and ez are the azimuthal, radial and vertical unit vectors,
forming a left-handed coordinate system in this order.
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IGW emission in the differentially heated rotating annulus 9

FIGURE 1. Schematic of the differentially heated rotating annulus experiment.
Temperatures Ta and Tb are prescribed at the inner (r= a) and outer (r= b) cylinder walls.
d represents the fluid height and Ω the angular velocity of the system. A cylindrical
coordinate system consisting of the azimuthal angle ϑ , the radial distance from the
axis of rotation r and the vertical distance from the bottom z is defined. The dotted
rectangular boxes indicate the regular cylindrical finite-volume grid. Courtesy of Borchert
et al. (2014).

Inner radius, a 20 cm
Outer radius, b 70 cm
Fluid depth, d 4 cm
Inner wall temperature, Ta 15 ◦C
Outer wall temperature, Tb 45 ◦C
Angular velocity, Ω 0.08 rad s−1 (0.76 rpm)
ρ1 −2.923× 10−4 K−1

ρ2 −3.917× 10−6 K−2

ν0 8.160× 10−3 cm2 s−1

ν1 −2.292× 10−2 K−1

ν2 2.819× 10−4 K−2

κ0 1.477× 10−3 cm2 s−1

κ1 2.758× 10−3 K−1

κ2 −1.259× 10−5 K−2

Ekman number, Ek 6× 10−3

Thermal Rossby number, Roth 0.5

TABLE 1. Physical parameters and derived dimensionless quantities for the
atmosphere-like configuration developed in Borchert et al. (2014).

The momentum equation under the Boussinesq approximation can then be written
as

∂v

∂t
=−∇ · (vv + pI − σ )− 2Ω × v + gρ − [Ω × (Ω × r)]ρ, (2.2)
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where p≡1p̂/ρ̂0, ρ ≡1ρ̂/ρ̂0 and v= ueϑ + ver +wez is the velocity vector, I is the
unit tensor and σ represents the viscous stress tensor,

σ = ν[∇v + (∇v)T], (2.3)

with the kinematic viscosity ν and the superscript T indicating the transpose. The
continuity equation is given by

∇ · v = 0, (2.4)

and the thermodynamic energy equation and the equation of state are

∂T
∂t
=−∇ · (vT)+∇ · (κ∇T), (2.5)

ρ = ρ1(T − T0)+ ρ2(T − T0)
2, (2.6)

where T is the temperature, κ is the thermal diffusivity and ρ1 and ρ2 are fluid-
dependent coefficients. The thermal diffusivity κ and the kinematic viscosity ν also
depend on temperature and are fitted by parabolas

ν = ν0[1+ ν1(T − T0)+ ν2(T − T0)
2
], (2.7)

κ = κ0[1+ κ1(T − T0)+ κ2(T − T0)
2
]. (2.8)

Strictly speaking, we use an extension of the original Boussinesq approximation since
temperature dependence is incorporated in different fluid properties in addition to the
density (Hignett et al. 1985). The values of the coefficients ρ1,2, ν0,1,2 and κ0,1,2 are
listed in table 1. As illustrated in Borchert et al. (2015), these fits capture the fluid
properties very well in the considered temperature range. As also shown there, for a
smaller temperature difference between the annulus walls than considered in our study,
the model shows good agreement with corresponding laboratory studies. Experimental
validation of the appropriateness of the Boussinesq approximation in settings as
considered here, with a comparatively large temperature difference, hence still seems
highly desirable. Nonetheless, we do not expect that this approximation significantly
influences the dynamics of the system. By scale analysis Gray & Giorgini (1976)
have investigated under which conditions the traditional Boussinesq approximation
holds, without temperature dependence in the fluid properties. Scrutiny of that study
indicates that under the conditions considered here all non-Boussinesq extensions are
probably negligibly small.

The physical parameters used in this study (see table 1) are taken from Borchert
et al. (2014). The configuration developed therein provides atmosphere-like conditions,
since, in particular, the spatially averaged Brunt–Väisälä frequency N is larger than
the inertial frequency f = 2Ω . As explained in detail in § 3.1.1, the stratification N
is caused and maintained by the overturning circulation arising from the temperature
gradient between the two side walls. This is why the temperature difference between
top and bottom 1Tvert is approximately equal to the radial temperature difference Tb−

Ta. Hence, N can be estimated by

N ≡

√
g|ρ1(1Tvert)|

d
≈

√
g|ρ1(Tb − Ta)|

d
, (2.9)

leading to N/f = O(10), which is approximately one order less than in the upper
troposphere of midlatitudes (Esler & Polvani 2004). The importance of N and f in
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IGW emission in the differentially heated rotating annulus 11

the theoretical description of IGWs becomes particularly clear when considering the
dispersion relation of IGWs under Boussinesq approximation (Fritts & Alexander
2003),

ω̂2
=

N2(k2
+ l2)+ f 2m2

k2 + l2 +m2
=N2 cos2(α)+ f 2 sin2(α), (2.10)

where ω̂ is the intrinsic frequency, k, l, m are the zonal (azimuthal in the annulus
context), meridional (negative radial) and vertical wavenumbers and α = arctan
(m/
√

k2 + l2) is the angle between the phase propagation and the horizontal plane.
Thus, for a given value of ω̂, α is determined by the ratio of N to f . Moreover, the
specific choice of parameters determines if the flow state will become baroclinically
unstable, leading to the formation of baroclinic waves. As discussed in detail in
Borchert et al. (2015), a guideline for understanding the instability mechanism is
provided by the quasi-geostrophic model developed by Eady (1949). Introducing
the Rossby deformation radius Ld = Nd/f and the dimensionless Burger number
Bu= L2

d/(b− a)2, the model predicts the flow to become unstable if

Bu≡
(

Ld

b− a

)2

<
(µc

π

)2
, (2.11)

with (µc/π)
2
= 0.583 (Hide & Mason 1975). Further dimensionless numbers used to

describe the flow properties are provided by the Rossby number Ro and the Ekman
number Ek. With U and L being characteristic horizontal velocity and length scales
of the large-scale flow, the Rossby number

Ro≡
U
fL

(2.12)

describes the ratio of the inertial force to the Coriolis force of a rotating fluid. As
explained in § 2.2.1, this value can be used for a scale separation between large-scale
balanced motions and IGWs (Vanneste 2013). A rough estimate of Ro can be obtained
by inserting the thermal wind into the general definition (2.12), then yielding the
thermal Rossby number (Borchert et al. 2015)

Roth ≡
dgρ1|Tb − Ta|/f (b− a)

f (b− a)
=

(
N
f

d
b− a

)2

≈ 0.5. (2.13)

The Brunt–Väisälä frequency N2 can be reinserted in the Rossby number, due to the
equality of vertical and radial temperature differences in our configuration. The Rossby
number thus happens to be equal to the Burger number of the flow. The Ekman
number

Ek=
ν0

Ωd2
≈ 0.006 (2.14)

represents the ratio of viscous forces to Coriolis force. The value is larger than
the typical value observed in the actual atmosphere, since we only consider a thin
layer of water moving at a relatively low velocity. However, the process of interest
(IGW emission) seems to be largely unaffected by this, even though it impacts the
subsequent dissipation.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

88
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.883


12 S. Hien, J. Rolland, S. Borchert, L. Schoon, C. Zülicke and U. Achatz

2.1.2. Cartesian, doubly periodic configuration
Previous studies indicate that IGWs in the differentially heated rotating annulus

originate both from the jet–front system and from the boundary layer located at the
inner side wall of the annulus (Jacoby et al. 2011; Randriamampianina 2013; Borchert
et al. 2014; Randriamampianina & Crespo del Arco 2015). We wish to contribute to
the improvement of the physical understanding of the source processes, so we focus
on IGWs originating from the jet–front system. Two supplementary approaches are
therefore pursued here to quantify the role of this process, as compared to boundary-
layer instabilities. In both approaches first the forcing of IGWs by the balanced part
of the flow is identified, and then its effect is quantified using a tangent-linear model.
In one set of investigations we stick to the annulus geometry where radial-boundary-
layer processes always seem to matter. We also consider an idealised fluid-flow set-up
without rigid side walls. This is achieved by adapting our model configuration to a
Cartesian geometry with periodic boundary conditions in both horizontal directions.
On the one hand we can demonstrate by this approach that an emission of IGWs by
the jet–front system takes place, since side wall effects are excluded by construction.
On the other hand we can quantify the contribution of both processes to the IGW field.
For the doubly periodic configuration we introduce a left-handed Cartesian coordinate
system represented by the unit vectors ex, ey and ez (with correspondences eϑ → ex,
er→ ey and ez = ez). The equation system to be solved is still given by (2.2)–(2.6),
but the energy conservation equation (2.5) is modified to include a forcing term F
causing a baroclinically unstable hyperbolic tangent temperature profile

∂T
∂t
=−∇ · (vT)+∇ · (κ∇T)+ F, (2.15)

with

F=−
1
τ
(T − Tr), (2.16)

and

Tr = Ta + (Tb − Ta)

(
1−

1
2

[
tanh

{
1
σy

(
y
Ly
−

1
4

)}
− tanh

{
1
σy

(
y
Ly
−

3
4

)}])
,

(2.17)
where Ta and Tb are the minimum and maximum forced temperatures (Tb>Ta) and σy

is the relative thickness of the temperature jump in the forcing. τ is a relaxation time
which modulates the amplitude of the temperature forcing. Choosing 1/τ = 1/1000 s
turns out to affect the temperature profile appropriately. Moreover, this choice ensures
that the relaxation acts on time scales well above the dynamical time scales of interest
in the spontaneous emission process. Figure 2 displays the hyperbolic temperature
profile Tr and the values of its parameters and the corresponding dimensionless
quantities can be found in table 2. The domain size is chosen such that we expect
it to accommodate one wavelength of the baroclinic wave. Beyond the Cartesian
geometry without solid horizontal walls, however, the set-up is still very close to the
annulus set-up: water is used as working fluid with the same viscous and diffusive
properties as described in § 2.1.1.
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FIGURE 2. (Colour online) Tangent hyperbolic temperature profile Tr(y) as implemented
in the Cartesian, doubly periodic model configuration. See expression (2.17) for the
functional dependence.

Zonal length, Lx 63 cm
Meridional length, Ly 100 cm
Fluid depth, d 4 cm
Minimum forced temperature, Ta 10 ◦C
Maximum forced temperature, Tb 50 ◦C
Angular velocity, Ω 0.157 rad s−1 (1.5 rpm)
Relaxation time, τ 1000.0 s
Temperature forcing thickness, σy 0.06
Ekman number, Ek 3× 10−3

Thermal Rossby number, Roth 0.2

TABLE 2. Physical parameters and derived dimensionless quantities for the doubly
periodic Cartesian configuration.

2.1.3. Numerical methods
The numerical model used for the simulations of the differentially heated rotating

annulus is the same as used by Borchert et al. (2014, 2015). It makes use of
a finite-volume algorithm to solve the equation system (2.2)–(2.6) numerically.
Therefore, the annulus volume is subdivided into volume cells of azimuthal width
1ϑ , radial width 1r and vertical extension 1z and the variables are discretised on a
staggered C-grid (Arakawa & Lamb 1977). In contrast to the studies of Borchert et al.
(2014, 2015) in which the implicit subgrid-scale parametrisation ALDM (adaptive
local deconvolution method, Hickel, Adams & Domaradzki 2006) is implemented
through a special handling of the advective terms, we determine the fluxes from
the surrounding volume-averaged velocities using the second-order centred-difference
option of the model. This is justified since our numerical simulations are carried
out with a relatively high spatial resolution allowing explicit resolution of most of
the small-scale processes. The time integration of the four prognostic equations for
the velocity fields v = (u, v, w) and the temperature T is done using a low-storage
third-order Runge–Kutta method (Williamson 1980) with an adaptive time step
determined by the instantaneous velocity field. The pressure field p is diagnosed from
the three velocity components by solving a Poisson equation which ensures that the
continuity equation (2.4) is satisfied.
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2.2. IGW radiation by the balanced part of the flow in the rotating annulus
Here, we systematically analyse the interaction between the balanced flow part and the
IGWs (constituting the unbalanced part of the flow), and identify the forcing of IGWs
by the balanced flow. This is conditioned on a manageable separation of the flow and
its dynamical equations into balanced and unbalanced parts. For this reason we here
restrict ourselves to linear balance conditions and a determination of the balanced flow
from the inversion of linear potential vorticity (PV), as is strictly appropriate in the
limit of a small Rossby number (Charney 1948; Hoskins, McIntyre & Robertson 1985;
Pedlosky 1987; Achatz et al. 2017). This approach is supplemented by the extraction
of balanced vertical motion and horizontal divergence by the application of the omega
equation.

2.2.1. Balanced and unbalanced flow parts and their interaction
In order to examine the characteristics and sources of IGWs as precisely as possible,

the extraction of the IGW signal from the remaining flow is essential. One possible
way to do that is presented in Borchert et al. (2014) who determine the large-scale
part of the flow by a moving average. The difference between the full and the
averaged field is then associated with the small-scale part including the IGW signal.
Furthermore, a linear modal decomposition is applied to estimate the contribution of
the IGWs to the small-scale structures of the flow. Here, we choose another definition
for the separation of the flow into a balanced (subscript b) and unbalanced (subscript
u) part v

B
p

=
v

B
p


b

+

v
B
p


u

. (2.18)

The first term on the right-hand side satisfies appropriate balance relations (e.g. the
geostrophic and the hydrostatic balance) and can be determined from the left-hand side
state by potential vorticity inversion (e.g. Davis & Emanuel 1991). The unbalanced
flow is given by the difference between the full and the balance fields and contains the
IGWs. Note that we introduced the buoyancy B=−ρg, and that the pressure p and
the buoyancy B represent deviations from the mean thermal stratification p̂0 = p̂0(z)
and B̂0 = dp̂0/dz. The introduction of this separation also enables investigation of
the coupling between the large-scale balanced part and the IGWs. Many different
definitions can be found in the literature to determine the balanced part of the
flow ranging from rather simple balance assumptions to more complex higher-order
balance approaches (e.g. Warn et al. 1995; Zhang et al. 2000; Viúdez & Dritschel
2006; Snyder et al. 2009; Wang & Zhang 2010). In general, the balanced part of the
flow should capture the large-scale motion of the stratified fluid (i.e. the baroclinic
waves) as precisely as possible.

In most models potential vorticity is assumed to be a key variable of the large-scale
horizontal flow to which the balanced part of the flow shall be the only contribution
by definition. After computing the PV from the full flow state, the balanced part
of the flow is computed diagnostically from the PV using balance relations (PV
inversion, e.g. Hoskins et al. 1985; McIntyre & Norton 2000; Vanneste 2013). Based
on theoretical considerations, but also for practical purposes, we take a slightly
different route here. In our configuration of the differentially heated rotating annulus
(see § 2.1) the Rossby number is small (Ro < 1) in most locations. As shown by
Bühler & McIntyre (2005) in the Lagrangian mean and by Achatz et al. (2017) in
the Eulerian perspective, in that limit IGWs contribute to the nonlinear part of PV,
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IGW emission in the differentially heated rotating annulus 15

while the linear part is determined exclusively by a geostrophically and hydrostatically
balanced component, as also in quasi-geostrophic theory (Charney 1948; Pedlosky
1987; Vallis 2006). Moreover, as can be verified from their polarisation relations,
linear IGWs have no linear PV (Phillips 1963; Mohebalhojeh & Dritschel 2001;
Smith & Waleffe 2002). Hence we define a so-called balanced flow so that it satisfies
the geostrophic and hydrostatic balance relations

f ez × ub =−∇hpb, (2.19)

Bb =
∂pb

∂z
, (2.20)

with the horizontal velocity ub, and so that it yields the total linear PV. Consequently,
we have

Π = ζ +
f

N2

∂B
∂z
=Πb = ζb +

f
N2

∂Bb

∂z
=

1
f
∇

2
qgpb. (2.21)

Herein, ζ = ez · (∇h × u) represents the vertical component of the vorticity, ∇h is
the horizontal part of the nabla operator, ζb = ez · (∇h × ub) is the balanced vertical
vorticity and ∇2

qg ≡ (∇
2
h + f 2/N2∂2/∂z2) is the quasi-geostrophic Laplacian. Naturally

this also implies that the remainder of the flow (henceforth called the unbalanced part,
as it contains the IGW part and all of the imbalance, in addition to a usually weaker
balanced contribution), uu=u−ub and Bu=B−Bb, does not contribute to linear PV

Πu = ζu +
f

N2

∂Bu

∂z
= 0, (2.22)

where ζu = ez · (∇h × uu) is the unbalanced vertical vorticity. To avoid
misunderstandings, we also note that the balanced pressure pb that we obtain from
inverting linear PV in (2.21) is only approximately identical to the geostrophic
pressure, i.e. the leading-order part in a Rossby-number expansion of the total
pressure fluctuations. As shown by Muraki, Snyder & Rotunno (1999) for the
hydrostatic case, e.g. the next-order corrections to the balanced flow, that one might
term the ageostrophic flow, do enter linear PV, so that ageostrophic linear PV does
not vanish. However, these next-order corrections are smaller by O(Ro), so that the
(non-vanishing) deviations between balanced flow, as defined here, and the geostrophic
flow are small in the limit of small Ro. This then does not outweigh the practical
advantage we have from the linear flow decomposition just described, as the latter
allows a straightforward reformulation of the dynamics in terms of an interaction
between balanced flow and unbalanced (IGW carrying) flow, as described below.

Nonetheless, as what we call unbalanced flow does contain some balanced
contributions if the Rossby number is sufficiently large (e.g. McWilliams 1985;
Muraki et al. 1999), our diagnostics below will go a step further by extracting the
contributions from unbalanced flow balanced to next order in the Rossby number,
using the quasi-geostrophic omega equation. Moreover, in order to validate the
assumption that the unbalanced part of the flow mainly consists of IGWs, we
have also applied a linear modal decomposition of the balanced and unbalanced
flow, as described in Borchert et al. (2014). The amounts of energy contained in
the geostrophic and in the IGW modes (not shown) do indeed confirm that the
unbalanced part of the flow is dominated by IGWs since the geostrophic energy in
the unbalanced flow is approximately one order of magnitude less in amplitude than
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16 S. Hien, J. Rolland, S. Borchert, L. Schoon, C. Zülicke and U. Achatz

the IGW energy. By the same means we have also convinced ourselves that the
balanced flow does not contain any IGW energy at all.

For an investigation of the interaction between balanced and unbalanced flow, we
follow Borchert et al. (2014) and simplify the dynamical equations by neglecting
friction, heat conduction and centrifugal acceleration. Furthermore, we replace the
thermodynamic energy equation by an equivalent equation for the buoyancy. The
resulting Boussinesq system is (Vallis 2006)

Du
Dt
=−f ez × u−∇hp, (2.23)

Dw
Dt
= B−

∂p
∂z
, (2.24)

DB
Dt
=−N2w, (2.25)

0=∇h · u+
∂w
∂z
, (2.26)

where D/Dt = ∂/∂t + v · ∇ is the material derivative. As shown in appendix A, one
can derive from these equations a prognostic equation for the (balanced) linear PV,
and hence for the balanced flow,

DΠ
Dt
=−

(
ζ −

f
N2

∂B
∂z

)
δ −

∂u
∂z
·

(
ez ×∇hw+

f
N2
∇hB

)
. (2.27)

Note that DΠ/Dt has no purely balanced contribution since δ= δu (see (2.60)), w=wu
and (∂ub/∂z) · ∇hBb = 0. Therefore, Π is conserved in the absence of an unbalanced
flow component (i.e. when u= ub and B= Bb).

To obtain a set of prognostic equations for the unbalanced flow, we now decompose
the variables into a geostrophically and hydrostatically balanced and an unbalanced
part as described in § 2.2.1. Additionally, we make use of the geostrophic and
hydrostatic balance relations (2.19), (2.20) and the fact that the unbalanced flow, as
defined here, has zero linear PV (2.22). This leads to the prognostic system

Duu

Dt
=−f ez × uu −∇hpu −

(
Dub

Dt

)
b

−

(
Dub

Dt

)
u

, (2.28)

Dwu

Dt
= Bu −

∂pu

∂z
, (2.29)

DBu

Dt
=−N2wu −

(
DBb

Dt

)
b

−

(
DBb

Dt

)
u

, (2.30)

0=∇h · uu +
∂wu

∂z
(2.31)

0= ζu +
f

N2

∂Bu

∂z
. (2.32)

Here, the material derivatives of the balanced fields on the right-hand side, both
actually functions of the balanced and unbalanced flow components, have been further
subdivided into a purely balanced and an unbalanced part. As shown in appendix B,
these are (

Dub

Dt

)
b

=
1
f

ez ×

[
∇h

(
Dpb

Dt

)
b

−∇hub · ∇hpb

]
, (2.33)
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IGW emission in the differentially heated rotating annulus 17(
DBb

Dt

)
b

=
∂

∂z

(
Dpb

Dt

)
b

−
∂ub

∂z
· ∇hpb, (2.34)

with (
Dpb

Dt

)
b

=∇
−2
qg (∇

2
qgub · ∇hpb) (2.35)

and (
Dub

Dt

)
u

=
1
f

ez ×

[
∇h

(
Dpb

Dt

)
u

−∇hvu · ∇pb

]
, (2.36)(

DBb

Dt

)
u

=
∂

∂z

(
Dpb

Dt

)
u

−
∂vu

∂z
· ∇pb, (2.37)

with (
Dpb

Dt

)
u

=∇
−2
qg

(
f

DΠ
Dt
+ 2∇qgvu · · ∇∇qgpb +∇

2
qgvu · ∇pb

)
. (2.38)

Herein, ∇−2
qg denotes the inversion of the quasi-geostrophic Laplacian defined in (2.21)

and ∇qg ≡ ∇h + ez( f /N)∂/∂z (provided that N2 > 0) such that ∇2
qg = ∇qg · ∇qg. In

addition, ·· denotes the double scalar product of two tensors (definition in appendix B).
We have thus obtained a rigorous reformulation of the Boussinesq system (2.23)–(2.26)
in terms of an interaction between balanced (geostrophic and hydrostatic) and
unbalanced flow parts. Of central importance for the further investigations is the
observation that even in the initial absence of any unbalanced flow part, and hence
also IGWs, the balanced part of the material derivative of the balanced pressure in
(2.35) can be non-zero, as well as the balanced material derivatives of balanced wind
(2.33) and balanced buoyancy (2.34). This is a direct forcing of the unbalanced flow
in (2.28) and (2.30) by the balanced (geostrophic and hydrostatic) flow!

2.2.2. Boundary conditions for the inversion problems
The dynamical decomposition described above entails various inversions that are

only well defined with the corresponding boundary conditions, and also turn out to
be very sensitive to them. These are non-trivial in the non-periodic directions. To
begin with, the linear PV (2.21) is to be inverted to obtain the balanced pressure pb,
which is then used to obtain the balanced horizontal velocity field ub and the buoyancy
distribution Bb using (2.19) and (2.20). The corresponding radial boundary condition
in the annulus set-up is obtained from assuming zero azimuthal balanced flow at the
side walls. Due to the geostrophic balance (2.19) the radial balanced pressure gradient
must vanish, (

∂pb

∂r

)
r=a,b

= 0. (2.39)

The vertical boundary condition, both for the annulus and for the doubly periodic
Cartesian set-up, is obtained from hydrostatic equilibrium (Zhang et al. 2000)(

∂pb

∂z

)
z=0,d

= B|z=0,d. (2.40)

For the solution of (2.35) and (2.38) we obtain the vertical boundary condition

∂

∂z

(
Dpb

Dt

)
=

D
Dt
∂pb

∂z
+
∂v

∂z
· ∇pb
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=
DBb

Dt
+
∂v

∂z
· ∇pb

=
∂v

∂z
· ∇pb for z= 0, d. (2.41)

Here, we make use of the hydrostatic equilibrium (2.20) and the buoyancy equation
(2.25), together with w(z = 0) = w(z = d) = 0. Next we separate the terms into a
balanced and an unbalanced part,

∂

∂z

(
Dpb

Dt

)
b,u

=
∂vb,u

∂z
· ∇pb for z= 0, d. (2.42)

Analogously, the radial boundary conditions, only for the annulus set-up, can be
derived as

∂

∂r

(
Dpb

Dt

)
=

D
Dt
∂pb

∂r
+
∂v

∂r
· ∇pb

=
∂v

∂r
· ∇pb for r= a, b, (2.43)

where again the azimuthal balanced velocity ub = 1/f (∂pb/∂r) vanishes at the radial
boundaries. Finally we obtain

∂

∂r

(
Dpb

Dt

)
b,u

=
∂vb,u

∂r
· ∇pb for r= a, b. (2.44)

All operator inversions are done using a preconditioned biconjugate gradient stabilised
(BiCGSTAB) method (Van der Vorst 1992).

2.2.3. A tangent-linear model to describe the unbalanced flow
For a systematic investigation of the balanced forcing of the unbalanced flow, and

how much it contributes to the IGW emission in the differentially heated rotating
annulus, we make use of a tangent-linear model to simulate the dynamics of the
unbalanced part of the flow on the geostrophically and hydrostatically balanced
background. Such an approach seems reasonable when the amplitudes of the
unbalanced flow are sufficiently small and nonlinear self-interactions can be neglected
over a certain integration period. Snyder et al. (2009) and Wang & Zhang (2010)
have already used tangent-linear models to study the spontaneous IGW emission in a
vortex dipole. In their studies the forced linear model simulations compare well with
the IGWs signal seen in the fully nonlinear model. In this section we present our
tangent-linear approach, compare it to those used by others and finally summarise
some technical details. To clarify our concept, we rewrite the annulus equations
(2.27)–(2.32) as follows:

∂sb

∂t
=Gb(sb, su), (2.45)

∂su

∂t
= Gu(sb, su)

= Fu(sb)+ Lu(sb)su +Nu(su), (2.46)
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IGW emission in the differentially heated rotating annulus 19

where sb(x, t) and su(x, t) are the balanced and unbalanced prognostic variables, and
Gb(sb, su) is the nonlinear tendency of the balanced flow. The nonlinear tendency
Gu(sb, su) of the unbalanced flow is decomposed into a forcing Fu(sb) depending
only on the balanced flow, a linear part with an operator Lu(sb) and the nonlinear
unbalanced self-interaction terms Nu(su) that are all quadratic in the unbalanced
variables. In our tangent-linear model we prescribe the balanced flow from an exact
solution of the nonlinear annulus equations, and assume sufficiently weak unbalanced
amplitudes in su so that Nu can be neglected. This leads to the linear prognostic
system (

∂su

∂t

)
lin

=Fu(sb)+ Lu(sb)su. (2.47)

Since each term on the right-hand side contributes additively to the temporal evolution
of the unbalanced part su, causes and effects can be assigned more easily to each other
than would be possible in the fully nonlinear system. This enables us to explicitly
quantify how much the balanced forcing contributes to unbalanced tendencies. Both
terms on the right-hand side in (2.47) are important influencing factors for the
evolution of a wave packet. Their different roles can be understood by considering
the linear system as a simple forced oscillator (Plougonven & Zhang 2014). Fu forces
a range of frequencies/wavelengths and controls the amplitude of su. In contrast, the
linear operator Lu mainly influences the structure of the wave packet by affecting
the location, orientation and frequency of the wave. This becomes particularly clear
when the linear model is initialised with zero unbalanced part and only the (generally
non-zero) term Fu(sb) leads to a forcing of the unbalanced flow and thus may induce
IGWs.

The tangent-linear model is obtained by linearising the equation system (2.28)–
(2.32), with prescribed time-dependent balanced flow as observed in the nonlinear
model integrations. Most of the terms already show a tangent-linear structure. Only
the material derivatives on the left-hand side and the material derivative of the PV
(2.27), used in (2.38), are affected by the linearisation leading to

∂uu

∂t
=−ub · ∇uu − f ez × uu −∇hpu −

(
Dub

Dt

)
u,lin

−

(
Dub

Dt

)
b

, (2.48)

∂wu

∂t
=−ub · ∇wu + Bu −

∂pu

∂z
, (2.49)

∂Bu

∂t
=−ub · ∇Bu −N2wu −

(
DBb

Dt

)
u,lin

−

(
DBb

Dt

)
b

, (2.50)

0=∇h · uu +
∂wu

∂z
, (2.51)

0= ζu +
f

N2

∂Bu

∂z
, (2.52)

where (
Dub

Dt

)
u,lin

=
1
f

ez ×

[
∇h

(
Dpb

Dt

)
u,lin

−∇hvu · ∇pb

]
, (2.53)(

DBb

Dt

)
u,lin

=
∂

∂z

(
Dpb

Dt

)
u,lin

−
∂vu

∂z
· ∇pb, (2.54)
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with (
Dpb

Dt

)
u,lin

=∇
−2
qg

[
f
(

DΠ
Dt

)
lin

+ 2∇qgvu · · ∇∇qgpb +∇
2
qgvu · ∇pb

]
(2.55)

and (
DΠ
Dt

)
lin

= −

(
ζb −

f
N2

∂Bb

∂z

)
δu −

∂ub

∂z
·

(
ez ×∇hwu +

f
N2
∇hBu

)
−

f
N2

∂uu

∂z
· ∇hBb. (2.56)

These equations form a closed forced system for the linear unbalanced flow
components. Note that in the limit of small Rossby number, small IGW scales
and small aspect ratio, the wave equation of Plougonven & Zhang (2007) could be
derived from this system. However, such a step is not necessary for the numerical
integration of our model, and we instead keep it in the present more general form.

It seems worthwhile comparing our approach to related studies by others.
Plougonven & Zhang (2007) suggested a forcing of the unbalanced flow that
corresponds to the total material derivatives of the balanced flow on the right-hand
sides of (2.28) and (2.30). This approach was also used by Wang & Zhang (2010).
However, these material derivatives have an unbalanced part that is due to the
unbalanced flow and belongs to the linear operator. This problem was avoided by
Snyder et al. (2009) who obtained a linear model by prescribing a time-dependent
balanced flow from the integration of a quasi-geostrophic model. This would
correspond to integrating (2.27) with zero right-hand side. The linear equations
are then forced by the residual tendency difference between the time tendencies of
the quasi-geostrophic solution and the full primitive equations. In contrast to this
approach, we use the real time-dependent balanced flow as results from the full
dynamics. To extract the part of the nonlinear forcing (subscript b in the material
derivatives on the right-hand side in (2.48)–(2.52)) which is exclusively due to the
balanced flow, we have to take the steps described above. This enables more direct
exploration of the role of the balanced flow in the generation and propagation of the
IGWs which are included in the unbalanced flow.

For consistency, the viscous friction and the heat conduction appearing in the full
system (2.2)–(2.6) are also implemented in the tangent-linear equations. We have also
performed sensitivity tests changing the values of ν and κ in order to investigate their
influence on the linear dynamics and to test their ability as simplified parametrisation
of the neglected nonlinearities. However, it turns out that no modifications from the
original values (see (2.7) and (2.8)) are required for the integration time periods we
are interested in. Numerically, the quasi-geostrophically and hydrostatically balanced
part is calculated each time step from the full fields (see § 2.2.1). Therefore, and for
all following considerations, N2 is assumed to be constant throughout the domain
allowing an efficient model performance. This is justifiable, since the actual vertical
profile of N2 does not depart strongly from a uniform value in the region of interest
(0.5 < z < 3.5 cm). The balanced fields serve as background for the tangent-linear
model which is integrated parallel to the full model. However, some tests show that,
independently of the initial condition, the linear unbalanced flow components diverge
after a few seconds of integration time. Further investigations point out very fast
growth rates at the inner and outer cylinders of the annulus, most likely caused by
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IGW emission in the differentially heated rotating annulus 21

boundary-layer instabilities. In order to suppress these growth rates at the side walls,
the linear fields are multiplied by a window function

α(r?)=


1, |r?|6 βLy

1
2

{
1+ cos

[
π(|r?| − βLy)

Ls

]}
, βLy < |r?|6

[
β + γ (1− β)

]
Ly

0, else

(2.57)

at each time step. Therein, Ls = γ (1 − β)Ly and β, γ are freely selectable tuning
parameters. Varying these values does not influence the occurrence of the IGWs.
Therefore, we decided to use β = 0.95 and γ = 1.0, whereby only grid points located
near the side walls are affected. Note that for simplicity reasons we shift the origin
of the radial coordinate to the radius r? = r − (a + b)/2 before applying (2.57) on
the fields. In general, this modification has two major impacts. On the one hand
the wave emission in the internal region and, in particular, in the vicinity of the jet
exit region might be influenced causing a reduced correlation between the full and
the linear model fields. However, on the other hand the application of the window
function also inhibits the generation of IGWs at the boundaries as seen in Jacoby
et al. (2011) and Randriamampianina & Crespo del Arco (2015). As a consequence,
we can further concentrate on the part of the IGW signal resulting from spontaneous
imbalances rather than from boundary-layer instabilities. Obviously, such a window
function is not to be used in the doubly periodic Cartesian set-up.

2.2.4. Balanced vertical velocity and horizontal divergence from the quasi-geostrophic
omega equation

The separation into geostrophic/hydrostatic and unbalanced flow entails that
horizontal velocity divergence and vertical velocity are, to leading order in Ro,
exclusively due to the unbalanced flow. However, if we include terms of next order
in Ro into the definition of the balanced flow part, the horizontal divergence has a
non-vanishing balanced part δbal (as is known from the quasi-geostrophic theory). This
part can be diagnosed from the QG omega equation (Hoskins, Draghici & Davies
1978; Holton 2004; Danioux et al. 2012)

∇
2
qgwbal =−

2
N2
∇h ·Q, (2.58)

with the boundary conditions wbal(z= 0)= wbal(z= d)= 0. Q=∇hub · ∇hBb depends
only on the balanced fields. The result is then used to estimate the balanced part

δbal =−
∂wbal

∂z
(2.59)

of the total horizontal velocity divergence

δ = δbal + δunbal. (2.60)

As this next-order definition of the balanced flow part is widely used in the literature,
we will use δunbal = δ − δbal as an indicator for IGWs in the following sections.
Corresponding imbalance diagnosis is equivalent to the use of the nonlinear balance
residual of the divergence equation, as suggested by Zhang (2004). To see this one
can refer to the expansions given by McWilliams (1985). There it is shown that
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the nonlinear balance residual in the divergence equation vanishes to O(Ro2) if
Rossby and Froude number are of the same order, as is the case in quasi-geostrophic
theory. The balanced divergence from the quasi-geostrophic omega equation is exact
to O(Ro) so that the corresponding divergence residual also indicates imbalance
to O(Ro2). Finally we also note that the error we introduce by using in Q the
balanced flow, given by ub and Bb, instead of the geostrophic flow, in the sense of
the leading-order expansion of all variables in terms of the Ro, is by O(Ro) smaller
than δbal.

2.3. Introduction of wave diagnosis
The unbalanced horizontal velocity divergence δunbal introduced in the previous section
is already a very useful quantity to detect IGW packets. In order to obtain quantitative
information on the local wave properties such as wavenumbers or amplitudes,
another methodology is developed based on phase-independent estimates (Schoon &
Zülicke 2017). Therefore, complex quantities are constructed for an amplitude–phase
presentation (von Storch & Zwiers 2002; Zimin et al. 2003; Sato, Kinoshita &
Okamoto 2013). The complex values of a function f (x) are found with the Hilbert
transform in the x-direction,

f̂ = f (x)+ iHx[ f ]. (2.61)

The amplitude
Ax[ f ] =

(
f (x)2 +Hx[ f ]2

)1/2
(2.62)

gives an estimate of the local envelope of an oscillating function. The phase

ϕx[ f ] = arctan
(

Hx[ f ]
f (x)

)
(2.63)

is used to derive an estimate of the absolute wavenumber

kx[ f ] =
∣∣∣∣∂ϕx[ f ]
∂x

∣∣∣∣ . (2.64)

For three-dimensional data, we combine the wavenumber-weighted estimates of all
directions as

A[ f ]2 =wxAx[ f ]2 +wyAy[ f ]2 +wzAz[ f ]2, (2.65)

wd[ f ] =
kd[ f ]2

kx[ f ]2 + ky[ f ]2 + kz[ f ]2
, d= (x, y, z). (2.66)

This way, amplitude and wavenumbers are available at each point.

3. Results
3.1. Large-scale baroclinic background flow

3.1.1. Annulus
The simulation strategy is similar to that applied by Borchert et al. (2014).

First of all, we perform a coarse two-dimensional (2-D → without azimuthal
dependence) simulation to obtain an azimuthally symmetric asymptotic steady state
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FIGURE 3. (Colour online) Contour lines of the azimuthally symmetric, stationary 2-D
solution of the rotating annulus experiment: (a) zonal velocity u2D (in cm s−1), (b)
temperature T2D (in ◦C) and (c) pressure p2D (in cm2 s−2).

(after an integration time of 36 000 s), indicated by the asymptotic behaviour of
the volume-averaged kinetic and potential energies. The corresponding 2-D fields
of zonal velocity u2D, temperature T2D and pressure p2D are displayed in figure 3.
These fields are in first order in geostrophic and hydrostatic balance showing a
typical thermal wind shape: the zonal velocity (figure 3a) increases with height
exhibiting maximum wind speeds near the fluid surface. The temperature (figure 3b)
as well as the pressure field (figure 3c) show positive vertical gradients (∂T2D/∂z> 0,
∂p2D/∂z> 0). The positive temperature gradient corresponds to a stable stratification
due to a decrease of density with height (compare (2.6)). In addition, the flow is
baroclinically unstable with respect to the Eady condition (2.11). Since our choice of
parameters triggers a steady azimuthal baroclinic wavenumber of three, we restricted
the following three-dimensional (3-D) simulations to one azimuthal wavelength with
2π/3-periodicity in azimuthal direction. This measure allows for a three times higher
azimuthal grid resolution enabling explicit resolution of most of the small-scale
features. The full 3-D model is initialised with the 2-D steady fields superimposed by
a random low-amplitude temperature perturbation. A coarse model run is then carried
out until a baroclinic wave with a constant amplitude established (after 2100 s).
The spatial resolution used for the coarse simulations is Nϑ = 80, Nr = 80 and
Nz= 30, where Nϑ , Nr and Nz represent the numbers of grid cells in azimuthal, radial
and vertical directions. Next, the fields are interpolated to a finer grid (Nϑ = 160,
Nr = 160 and Nz = 90) and further model integrations are done for 1100 s until
the artefacts of the interpolation have disappeared. The results obtained from the
3-D simulations are given in figure 4, showing horizontal cross-sections of various
fields. The pressure distribution p3D shows a minimum in the middle of the domain
(figure 4a) which agrees with the location of an alternating vortex structure visible
in the vertical component of the relative vorticity ζ = (∇× v) · ez (figure 4b). This
system is characterised by an asymmetric structure showing an intense vortex (ζ > 0)
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FIGURE 4. (Colour online) Horizontal cross-section (at z=3d/4=3 cm) of a 3-D rotating
annulus simulation: (a) pressure p3D (in cm2 s−2), (b) vertical component of relative
vorticity ζ (in s−1), (c) absolute value of horizontal velocity |u3D| (in cm s−1) and (d)
temperature T3D (in ◦C) after 3200 s of integration time.

in the centre of the pressure minimum which is surrounded by a low-amplitude
spread-out vortex (ζ < 0). Comparable background flow characteristics are found
in vortex-dipole studies (Viúdez 2008; Wang, Zhang & Snyder 2009) where the
generation and propagation process of IGWs is investigated. Figure 4(c,d) displays
the absolute value of the horizontal velocity and the temperature distribution. A jet
(indicated by maximum wind speeds) is meandering around the pressure minimum
accompanied by a temperature front (strong horizontal temperature gradients); they
form a jet–front system. Additionally, regions of strong decrease in wind speeds,
most clearly visible to the right of the pressure minimum, are referred to as jet exit
regions.

Similar structures were present in the simulations of O’Sullivan & Dunkerton (1995)
which show enhanced IGW signals in the jet exit region when simulating a life cycle
of baroclinic instability. As already discussed in Hide (1967), the vertical temperature
gradient ∂T/∂z (see figure 3) in the annulus configuration arises and is maintained by
a meridional circulation which transfers heat from the heated outer cylinder towards
the cold inner cylinder. This circulation is quite similar to the meridional overturning
in the ocean which is created by sideways convection (Vallis 2006). In contrast, Vincze
et al. (2016), for instance, used a vertical salinity gradient to generate a stratification
in the annulus experiment.

3.1.2. Cartesian doubly periodic configuration
For the doubly periodic Cartesian configuration the simulation strategy is similar to

that conducted in the cylindrical model explained above (§ 3.1.1). However, in contrast
to the cylindrical configuration, the numerical resolution remains unchanged during the
simulations. We choose Nx= 90, Ny= 480 and Nz= 30 grid points in zonal, meridional
and vertical direction. A steady 2-D simulation lasting for 10 000 s is followed by
a 3-D model run until a baroclinic wave is fully developed. It turns out that the
maximum amplitude of the baroclinic wave appears after 345 s of integration time.
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FIGURE 5. (Colour online) Contour lines of the azimuthally symmetric, stationary 2-D
solution of the doubly periodic Cartesian model: (a) zonal velocity u2D (in cm s−1) and
(b) temperature T2D (in ◦C).
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FIGURE 6. (Colour online) Horizontal cross-section (at z = 3d/4 = 3 cm) of the 3-D
doubly periodic Cartesian model: (a) zonal velocity u3D (in cm s−1) and (b) temperature
T3D (in ◦C) after 345 s of integration time.

The initial baroclinic-wave cycle is followed by weaker life cycles. The emission of
IGWs occurs in each baroclinic wave cycle. We focus on the first cycle since it shows
the largest IGW signal. Figure 5 shows the fields obtained from the 2-D simulation.
The zonal velocity (figure 5a) and the temperature fields (figure 5b) satisfy the thermal
wind relation to good approximation. As expected from the gradient of the temperature
along the y-direction, two upper-level jets are visible pointing in opposite directions.
Horizontal cross-sections at z= 3d/4= 3 cm from the subsequent 3-D simulations are
presented in figure 6. A baroclinic-wave structure is fully developed indicated by two
meandering jets in each half of the domain (figure 6a). In addition, the formation of
two temperature fronts can be observed in figure 6(b).

3.2. IGW signal
The upcoming sections first describe the IGW characteristics appearing in the
nonlinear dynamics. After that, these results are compared with corresponding
tangent-linear simulations. The fields from the nonlinear annulus and the doubly
periodic simulations presented in § 3.1 are used to initialise the tangent-linear model
(henceforth this initial state is referred to as the state at t= 0).
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FIGURE 7. (Colour online) Diagnosing balanced part in total horizontal velocity
divergence in the nonlinear annulus simulations: (a) total horizontal divergence δ, (b)
balanced horizontal divergence δbal as diagnosed from the omega equation and (c)
unbalanced horizontal divergence δunbal = δ − δbal. Results show contour lines of a
horizontal cross-section (at z = 3 cm) 20 s after the point of initialisation of the
tangent-linear model. All fields in s−1.

3.2.1. Balanced horizontal divergence
In many previous studies (O’Sullivan & Dunkerton 1995; Wang et al. 2009; Mirzaei

et al. 2014) the horizontal velocity divergence δ,

δ =∇h · u=
1
r

[
∂u
∂ϑ
+
∂(rv)
∂r

]
, (3.1)

turns out to be a well-suited indicator for IGWs. Borchert et al. (2014) also used this
quantity to locate possible regions of IGW activity within the rotating annulus flow.
However, it is well known that δ also includes a balanced part δbal which should be
subtracted in order to make the IGW signal particularly clear. In this study we take
this into account and concentrate on the horizontal divergence obtained by subtracting
the balanced part using the quasi-geostrophic omega equation (see § 2.2.4). In order to
solve the omega equation numerically, we first apply a window function as defined in
(2.57) on the right-hand side in (2.58). The reason for this is the very strong gradients
of ∇ · Q at the inner and outer side walls of the annulus leading to non-physical
high values of wbal at the walls when inverting (2.58). This measure is not critical
since the structure and the amplitude of wbal in the relevant inner domain is only very
little affected by this modification (not shown). Before presenting the results of the
wave packet analysis provided in the subsequent sections we briefly demonstrate the
impacts of the considerations explained above. Therefore, we choose as an example an
integration time of t= 20 s when the appearance of the distinct IGW packets is most
illustrative. Figure 7(a) displays the horizontal divergence (3.1) and figure 7(b) the
balanced part δbal obtained from inverting the omega equation (see (2.58)). δbal only
consists of a few rather large-scale features with comparable or smaller amplitudes
than δ. A ‘couplet’ (Yasuda, Sato & Sugimoto 2015) of horizontal divergence, most
clearly visible in δbal, is striking in the lower left part of the domain. It is associated
with a descent–ascent motion (wbal ∝−δbal) and was first reported by Viúdez (2007).
However, in that study the upwelling and downwelling motions are not present in
the balanced vertical velocity field obtained from the omega equation, and the source
is attributed to the material rate of change of the ageostrophic differential vorticity.
The difference between the full and the balanced part, here referred to as unbalanced
horizontal divergence δunbal, is presented in figure 7(c). In general, there are only small
differences between δ and δunbal and particularly, the wave structures seen in δ are
not affected when subtracting δbal. Thus, we can confirm the assumption of Borchert
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FIGURE 8. (Colour online) As in figure 7, but for the doubly periodic Cartesian model
at t= 0 s.
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FIGURE 9. (Colour online) Characterisation of wave packets observed in the rotating
annulus: (a) contour plot of horizontal cross-section (at z = 3 cm) of δunbal in cylinder
geometry and (b) the corresponding Cartesian projection. The locations of four different
wave packets (WP1–WP4) are highlighted. Contour values ranging from −0.05 s−1 to
0.05 s−1 (see figure 7).

et al. (2014) that the balanced part, as defined by quasi-geostrophic balance, does not
dominate in the divergence signal.

For consistency reasons we applied the same methodology also on the data of the
doubly periodic Cartesian configuration. In contrast to the annulus, the application of
a window function is not required before inverting the omega equation. The resulting
fields are shown in figure 8. The balanced horizontal divergence is characterised by
large-scale signals with maximum values located at the respective temperature fronts
(see figure 6). As already seen in the annulus configuration, the amplitudes are of the
same order or weaker than those of the total divergence. Moreover, the small-scale
signal predominates in the unbalanced horizontal divergence.

3.2.2. Properties of wave packets in the annulus simulations
This section provides a quantitative overview over the wave packets seen in the

numerical simulations of the rotating annulus experiment. The analysis can serve
as reference for related experimental studies. We consider the unbalanced horizontal
divergence field δunbal at time t= 20 s shown in figure 9. In addition to the cylindrical
geometry (a), it shows the corresponding Cartesian projection (b) required as input for
the wave diagnosis (see § 2.3). Compared to the baroclinic background fields at t=0 s,
illustrated in figure 4, the general structure remains unchanged at t= 20 s except for
a slight drift in anticlockwise azimuthal direction. As highlighted in figure 9, four
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different wave packets (WP1–WP4) can be identified. These wave packets are emitted
distinctly and are not the result of an initial single wave packet that splits during
its evolution. WP1 originates from the horizontal divergence couplet described in
§ 3.2.1. The couplet is located at the jet axis of the baroclinic wave (x≈ 0.7 rad and
r ≈ 53 cm in figure 9b) and the wave packet extends from 0.29 < x < 0.67 rad and
44< r < 57 cm. These findings agree with the vortex-dipole study of Viúdez (2007).
He also found such a couplet along the axis of the dipole and argued that it is the
initial state of a frontal IGW packet. WP2 exhibits a spiral structure arranged around
the pressure minimum of the baroclinic wave (1.06< x< 1.27 rad and 40< r< 55 cm
in figure 9b). This wave structure, which was already found in Borchert et al. (2014),
is similar to the IGWs observed in vortex-dipole studies (e.g. Snyder et al. 2007,
2009; Viúdez 2007). Both the wave packets detected therein and WP2 travel almost
stationary with the respective vortex structures. Lin & Zhang (2008) show that these
wave packets are initially plane waves, then begin winding up around the pressure
minimum and finally form the observed spiral pattern. WP3 is located close to WP1
at 0.38 < x < 0.67 rad and 30 < r < 47 cm propagating behind the frontal structure
of the baroclinic wave. As described below in § 3.3.1, this wave packet is probably
generated at the inner side wall of the annulus and then propagates towards the
interior of the domain. A further wave packet (WP4) is present at the jet stream near
the outer cylinder wall (0.64< x< 1.00 rad, 62< r< 67 cm in figure 9b).

A more quantitative characterisation of the wave packets is obtained by applying
the wave diagnosis (see § 2.3). By taking a mean constant azimuthal extent Lx =

2π/3 (a+ (b− a)/2) = 94.25 cm, different wave parameters including wavenumbers
k = kxeϑ − kyer + kzez, amplitudes A = (Ax, Ay, Az) and corresponding energies are
calculated.

The IGW energy is diagnosed from the horizontal divergence field δ according to
the formula

e=
〈δ2
〉

k2
h
, (3.2)

with horizontal wavenumber kh =
(
k2

x + k2
y

)1/2. Equation (3.2) has been derived
from the polarisation relations for hydrostatic IGWs (see equation (10) in Zülicke
& Peters (2006) or equation (A4) in Marks & Eckermann (1995)). It is assumed
that the divergence is mainly unbalanced and resembles IGW modes. For a local
phase-independent estimate of its variance (equal to half of the squared amplitude)
and the related horizontal wavenumber the Hilbert transform is used to give

e=
1
2

A[δ]2

kx[δ]2 + ky[δ]2
. (3.3)

The results are compiled in table 3. In order to simplify the comparison with
laboratory data, we provide wavelengths λ = 2π/|k| instead of wavenumbers.
Furthermore, figure 10 presents horizontal cross-sections of the weighted amplitude
A (2.66) (a) and of the wavelengths λ (b). The four earlier defined wave packets
(WP1–WP4) are highlighted. Considering the wave parameters in table 3, WP2
located at the pressure minimum is the strongest WP in amplitude and therefore
in energy. The wave diagnosis shows the difference between WP1 and WP3 by the
wavenumber in the y-direction ky underlining the different orientation of the two wave
packets. WP4 shows the highest wavelength.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

88
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.883


IGW emission in the differentially heated rotating annulus 29

20

30

40

50

60

70

20

30

40

50

60

70

0.004
0.002
0

0.006
0.008
0.010
0.012
0.014
0.016
0.018
0.020

0.5
0

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

x (rad) x (rad)

r 
(c

m
)

(a) (b)

WP1 WP1

WP4 WP4

WP3 WP3

WP2 WP2

FIGURE 10. (Colour online) Wave diagnosis output of rotating annulus experiment:
horizontal cross-sections (at z = 3 cm) of amplitude A in s−1 (a) and wavelength λ in
cm (b). The locations of four different wave packets (WP1–WP4) are highlighted.

Parameter WP1 WP2 WP3 WP4

kx (cm−1) 1.2467 0.9948 1.5069 0.6761
ky (cm−1) 1.2219 1.0565 0.4202 1.1297
kz (cm−1) 1.8144 1.7998 1.7598 1.4050
λ (cm) 2.4955 2.7177 2.6684 3.2629
A (s−1) 0.0140 0.0218 0.0084 0.0074
e (10−5 cm2 s−2) 3.2160 11.2840 1.4416 1.5796

TABLE 3. Tabular overview of the wave parameters of WP1, WP2, WP3 and WP4
calculated by the wave diagnosis.

3.3. Tangent-linear simulations
In this section the influence of the forcing by the internal balanced flow on the IGW
field is investigated and compared to the generation by boundary-layer instabilities.
The tangent-linear model is therefore integrated with this forcing. To suppress the
effect of boundary-layer dynamics, the window function (2.57) is applied at every time
step. With the same purpose we consider the corresponding dynamics in the doubly
periodic Cartesian set-up without side walls. Given a state from the fully nonlinear
simulation, separated into the balanced and unbalanced parts for initialisation of
the tangent-linear model, two different initial states are chosen for the unbalanced
part of the flow. First, the unbalanced part is set to zero at t = 0 s to focus on the
development of the unbalanced flow radiated spontaneously by the geostrophically and
hydrostatically balanced part. Second, the tangent-linear model is initialised with the
unchanged unbalanced part, to observe how its structure develops with and without
the balanced forcing.

3.3.1. Initially vanishing unbalanced flow part
First, we present the results of the tangent-linear simulations starting with vanishing

unbalanced flow part. By initialising the linear model with zero unbalanced part we
can focus on two aspects. First, we can verify whether the forced tangent-linear
model is capable of reproducing the signal seen in the fully nonlinear simulations,
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FIGURE 11. (Colour online) Horizontal cross-sections (at z= 3 cm) of the geostrophically
and hydrostatically balanced forcing terms for the annulus model at initial time t=0 s: see
(2.33) and (2.34). Forcing of (a) unbalanced zonal velocity uu (in cm s−2), (b) unbalanced
radial velocity vu (in cm s−2) and (c) unbalanced buoyancy Bu (in cm s−3).
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FIGURE 12. (Colour online) Unbalanced horizontal velocity divergence in the annulus (at
z= 3 cm) of (a) the nonlinear model and (b) the tangent-linear model. Results are shown
20 s after the initialisation of the tangent-linear simulation with zero unbalanced part. The
location of wave packets is highlighted by WP1–WP4 for the nonlinear and WP1′, WP2′,
WP4′ for the linear model. WP3 is not existent in the tangent-linear model. Units in s−1.

to justify the main assumptions made in the derivation of the tangent-linear model,
namely the smallness of the unbalanced fields compared to the balanced fields and the
neglect of the nonlinear unbalanced terms. Second, we can quantify the contribution
of the purely balanced, nonlinear forcing terms on the right-hand side of the linear
system. Only these terms initially contribute to the time evolution of the unbalanced
fields and therefore their role as an IGW source can be quantified. Figure 11(a–c)
illustrates the horizontal structure of the forcing terms (2.33) and (2.34) included
in the zonal (azimuthal) and meridional (radial) momentum and in the buoyancy
equation (2.48)–(2.50). In general, all fields consist of rather large-scale patterns with
relatively large amplitudes around the pressure minimum. Moreover, the signal of
the couplet of horizontal divergence is clearly visible left of the low pressure centre,
particularly in the forcing of the buoyancy (figure 11c). The forcing terms exhibit
typical (rotated) dipole structures at both locations and the amplitudes of the forcing
of the horizontal velocity components are of the same order. A similar situation is
found in the vortex-dipole study of Snyder et al. (2009), where large-scale patterns
also only exist in the centre of the vortex dipole in the case of the horizontal velocity
and the potential temperature forcing. The amplitudes of the velocity forcings are also
of the same order; however, the fields show tripolar or even quadrupolar structures.
The results of the tangent-linear simulations are shown in figure 12 in the form of
the unbalanced horizontal velocity divergence of the full (figure 12a) and the linear
model (figure 12b). The fields are plotted after t = 20 s of integration time when
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there is maximum agreement between the full and the linear fields. Wave packet WP1
which is observed in the full model also appears in the tangent-linear simulations
where it is highlighted by WP1′. Furthermore, the tangent-linear simulations show
wave activity at the pressure minimum, referred to as WP2′. WP3 is not existent in
the tangent-linear configuration. Wave packet WP4 also develops in the tangent-linear
model (WP4′), even if the wave amplitude is weaker compared to the full model.

Although the extent of WP1′ is shorter than that of WP1 and the wave amplitudes
are slightly overestimated, the reproducibility of WP1 by the linear model implies that
the ascent–descent couplet also develops in the linear dynamics. The spiral structure of
WP2′ is more pronounced than in the full model (WP2), indicating a stronger vortex
structure simulated by the linear model. The explanation for the absence of WP3 in
the linear model is that it is generated by boundary-layer instabilities occurring at
the inner side wall of the annulus and propagates into the interior of the domain. As
mentioned in § 1, proposed generation mechanism for the radiation of such waves are,
for instance, discussed in Jacoby et al. (2011) and Randriamampianina & Crespo del
Arco (2015). Due to the application of the window function implemented in our linear
model (see § 2.2.3) we suppress these processes. Consequently, such wave packets
cannot be found in the linear simulations. Likewise, the development of WP4′ at the
jet stream near the outer cylinder wall is affected by the window function resulting in
weaker amplitudes. The fact that WP1 and, to some extent, WP2 and WP4 also form
in the forced linear model supports the assumption that part of the IGWs observed
in the rotating annulus experiment actually originate from the jet–front system and
not from boundary-layer instabilities. Since we initialise our linear equations with
a vanishing unbalanced part we can explicitly show that the balanced forcing terms
induce the generation of the IGWs. The different structure and amplitude of WP2′
might be explained by two main reasons. As shown in § 3.2.2, WP2 exhibits the
largest amplitude of all WPs. Therefore, nonlinear self-interactions might play an
important role in shaping WP2. In addition, quasi-geostrophic theory is assumed to
be less accurate for a flow with relatively strongly curved trajectories (e.g. Fultz
1991; Warn et al. 1995; Zhang et al. 2000), a circumstance which is present for the
vortex observed in our study. And indeed, we observe that the band of relatively
strong velocity amplitude around the pressure minimum (see figure 4c) is less well
reproduced in ub than other regions of the velocity field (not shown). In order to
underpin the previous statements, we consider the results obtained from the modified
Cartesian, doubly periodic model. In this case boundary-layer effects from side walls
can definitely be excluded. As initial state we use the simulation output described in
§ 3.1.2 showing a fully baroclinic-wave structure along with already pronounced IGW
signals. The results which are most illustrative after t = 5 s of integration time are
provided in figure 13 where horizontal cross-sections of the horizontal divergence of
the nonlinear (figure 13a) and the forced linear model (figure 13b) are displayed. In
principle, the full model exhibits two wave packets, WPC1 and WPC2, each appearing
at the temperature fronts in the region with the maximum horizontal wind speeds (see
figure 6). The tangent-linear simulation results show very good agreement. The two
wave packets are captured well in both location and amplitude. Since there are only
minor differences in the two divergence fields, the capabilities of the tangent-linear
model to simulate the dynamics seen in the full system are supported once more.
Moreover, the results strengthen the assumption that part of the IGWs observed in
the annulus actually come from the dynamics taking place in the inner region which
is unaffected by cylinder walls.

The wave packets presented here are emitted during a baroclinic-wave life cycle
and are eventually dissipated. New wave packets are emitted during each life
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FIGURE 13. (Colour online) Unbalanced horizontal velocity divergence (in s−1) in the
Cartesian model configuration (at z = 3 cm) of (a) the nonlinear model and (b) the
tangent-linear model. Results are shown 5 s after starting the linear simulation with zero
unbalanced part. Location of wave packets are highlighted by WPC1 and WPC2 for the
nonlinear and WPC1′ and WPC2′ for the linear model.
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FIGURE 14. (Colour online) Time series of the volume average of the horizontal
divergence δ and of the total kinetic energy of the flow Ekin starting at the same time
as the tangent-linear simulations. (a) In the rotating annulus, (b) in the Cartesian model.
The time average is subtracted from the kinetic-energy time series.

cycle, as long as they present the required forcing properties. We can illustrate this
somewhat periodic emission, and then dissipation, of IGW following the life cycles by
considering the time series of the volume-averaged horizontal divergence in view of
the total kinetic energy of the flow, sampled during the direct numerical simulations.
The first quantity indicates the amount of IGW activity while the second points to
the state of the large-scale flow. In the annulus configuration, this shows a surge
of the IGW activity in the time interval considered for tangent-linear simulations
(figure 14a). The amplitude of IGW activity grows until 150 s after the start of
tangent-linear simulations and then collapses at 200 s, as indicated by the increase,
and then decrease, of the volume-averaged horizontal divergence. Visualisations
(not shown) indicate that nearly no wave packets are present in the flow in the
time interval [200; 275] s. IGW then reappear, concomitantly with the increase of
volume-averaged horizontal divergence. The kinetic-energy variations indicate that
each of these emission events occur during two successive baroclinic-wave life cycles.
The picture is very similar in the Cartesian model simulations. A strong growth
of horizontal divergence occurs during the first IGW emission (figure 14b), studied
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FIGURE 15. (Colour online) Unbalanced horizontal velocity divergence (in s−1) in the
annulus (at z = 3 cm) for different model set-ups. (a,b) Fields of the nonlinear model
at (a) initial time t = 0 s and (b) after 20 s of integration time. (c,d) Results of the
corresponding forced (c) and unforced (d) linear simulations after 20 s of integration time.
All simulations are initialised with the same unbalanced field shown in (a). Location of
wave packets is highlighted by WP1–WP4 for the nonlinear, WP1′–WP3′ for the forced
linear and by WP1′′–WP3′′ for the unforced linear model. WP4 is hardly identifiable in the
tangent-linear configurations. The Pearson correlation coefficient showing the correlation
between the two linear and the nonlinear horizontal cross-sections can be found in the
lower right corner.

by tangent linear simulations. We again find a series of successive growth, and then
decay, of IGW activity. Note that in the Cartesian configuration, the amplitude of each
event decreases cycle after cycle and that the duration over which IGW are emitted is
shorter (150 s in annulus simulations versus 30 s in Cartesian simulations). We can
directly correlate the appearance and increase of IGW activity to the forcing we have
identified. There are several other competing effects that lead to them being sustained
during a smaller or longer duration. In both cylindrical and Cartesian configurations
the relatively high Ekman number means that viscosity (and thermal diffusion) will
dissipate the IGW faster than in atmospheric conditions. A stronger shear near the
inner wall of the annulus helps to maintain IGW longer in this location, leading to a
longer lifetime of each IGW wave packet.

3.3.2. Initially non-zero unbalanced part
Next, we perform tangent-linear simulations with an initially non-zero unbalanced

state. In addition to the full and the forced linear model simulations, we present
results in which the geostrophically and hydrostatically balanced forcing terms are
set to zero. It is important to note that in our initial state IGWs already exist
within the domain. Thus, the main purpose of this analysis is to compare the
influence of the forcing on existing waves. Figure 15(a) shows a cross-section of
the horizontal divergence field (at z = 3 cm) serving as initial state for all model
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FIGURE 16. (Colour online) Time evolution of 3-D correlation coefficient between
tangent-linear and nonlinear simulations for the annulus model configuration. Solid line:
correlation between the nonlinear and the forced linear model. Dashed line: correlation
between the nonlinear and the unforced linear model.

configurations. The corresponding results after 20 s of integration time are presented
in figure 15(b) for the full model, and in figure 15(c,d) for the forced and the
unforced tangent-linear model. Additionally, in order to evaluate the linear results
more quantitatively, the Pearson correlation coefficients of the (un)forced linear and
the full horizontal cross-sections are computed. For this, only those grid points
are taken into account which are not affected by the application of the window
function (see § 2.2.3). Since these simulations are initialised with identical unbalanced
fields, there is a correlation of one between the tangent-linear and the nonlinear
fields at the beginning. After 20 s of integration time, the forced tangent-linear model
(figure 15c) shows a correlation of 0.5, whereas the correlation of the unforced model
(figure 15d) is significantly lower (0.2). A particular reason for the lower correlation
in the unforced configuration is the more pronounced spiral structure around the
pressure minimum compared to the full and the forced tangent-linear models. A time
evolution of the 3-D correlation coefficients is provided in figure 16. Compared to the
forced annulus simulations (solid line), the correlation of the unforced linear model
(dashed line) initially decreases much faster until both curves show a quite similar
slope. After approximately t= 35 s of integration time, the forced correlation starts to
converge towards the unforced one. From this time on, the forced linear fields move
clearly away from the dynamics observed in the full model, probably caused by the
neglect of the nonlinearities and by the use of the window function.

Wave packets WP1–WP3 can be identified in both linear simulations, labelled
with WP1′–WP3′ in the forced and WP1′′–WP3′′ in the unforced tangent-linear
configuration (see figure 15). In general, both linear simulations capture the
positions, wavelengths and orientations of wave packets WP1 and WP3. However,
an amplification of the wave amplitudes can be observed in both systems. The
shape of WP2 is still reasonably present in the forced model (WP2′). In contrast,
wave packet WP2′′, which is only affected by the linear operator Lu, shows clear
differences in structure and a significant overestimation of the amplitudes. Hence,
WP2 is continuously affected by the balanced part of the flow. As already mentioned
in § 3.3.1, the fact that WP4 is hardly identifiable in the (un)forced tangent-linear
simulations is again a result of the window function which damps the development of
the wave packet. In summary, we can state that the forcing of IGWs by the balanced
flow has a significant influence on the time development of the overall structure of
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WP2, manifested by the much faster decrease in correlation in the unforced model.
However, there is only a minor impact on the propagation of the small-scale wave
packets WP1 and WP3 which were already present at initial time. This is consistent
with the theoretical consideration given in § 2.2.3.

Unfortunately, it is not possible to perform corresponding experiments in the
doubly periodic Cartesian configuration. When initialising the model with a non-zero
unbalanced field, the linear fields start to diverge after a few seconds of integration
time. In particular, we detect unbounded linear instabilities at grid scale. The reason
for this is most likely the neglect of the nonlinear terms which leads to an increased
energy cascade towards small-scale structures causing exponential growth of the latter.
Nevertheless, the results obtained during the short stable time period confirm the
results of the annulus investigations. The correlation of the unforced model decreases
faster compared to the forced one. Moreover, there seems to be no direct impact on
the wave propagation of already existing wave packets which, in this configuration,
must have been radiated by the internal flow.

4. Conclusions

This study investigates the role of internal flow dynamics, as opposed to
boundary-layer instabilities, in the generation of IGWs observed in numerical
simulations of the differentially heated rotating annulus experiment. The focus is
on an atmosphere-like configuration of the annulus with a ratio of N/f > 1 (Borchert
et al. 2014). This set-up of the experiment has not been investigated in the laboratory
yet, and it certainly pushes the limits of validity of the Boussinesq approximations.
Although we believe that the latter still apply here, final experimental validation is
pending, and hence highly desirable. For a clearer view of the internal dynamics, not
affected by instabilities at the side wall, we also consider a closely related set-up
with doubly periodic horizontal boundary conditions where the baroclinically unstable
large-scale state is forced by thermal relaxation.

On the larger scales, our simulations show a baroclinic-wave structure exhibiting
a jet–front system similar to its atmospheric counterpart. Additionally, small-scale
structures which are associated with IGWs occur in four distinct wave packets in
the annulus set-up and in two wave packets in the doubly periodic set-up. These
wave packets are diagnosed as part of the unbalanced flow. Here, geostrophic and
hydrostatic equilibrium are used as balance concepts, and the balanced flow is
obtained by potential vorticity inversion and application of the quasi-geostrophic
omega equation. The generation of unbalanced flow is investigated systematically
by reformulating the dynamics in terms of an explicit interaction between balanced
and unbalanced flow. The balanced forcing of the unbalanced flow is identified,
and its effect is studied in tangent-linear models of the unbalanced flow. In these
the time-dependent balanced flow is prescribed, as diagnosed from the nonlinear
simulations, and all nonlinear self-interactions of the unbalanced flow are neglected.
The tangent-linear simulations of the annulus set-up indicate that three wave packets
are radiated from the internal flow, whereas a fourth one is most likely generated
at the side wall of the annulus. Moreover, it turns out that the forcing of the IGWs
by the internal balanced flow significantly contributes to the overall wave generation.
The unbalanced flow forced in the doubly periodic set-up very clearly exhibits the
same structure as observed in the wave packets from the nonlinear simulations. The
relatively strong temperature contrast between the two side walls might suggest that
convective gravity wave generation (e.g. Beres, Alexander & Holton 2004; Song &
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Chun 2005) also contributes to the observed signal. We do not see any convective
cells in our simulations, however, so this process seems to be excluded.

Our study provides deepened insight into the findings of Borchert et al. (2014) who
performed simulations in the same annulus configuration. They observe clear IGW
signals close to the inner boundary and within the baroclinic wave. Based on our
investigations we are now able to assign source regions and corresponding generation
mechanisms of the respective wave patterns. In principle, we underpin the assumption
made by Borchert et al. (2014) that a significant part of the IGWs observed in the
simulations actually originates from the jet–front system. Along with the wave pattern
arranged around the pressure minimum of the baroclinic wave, we observe additional
wave packets developing from a couplet of horizontal divergence, also being generated
within the internal flow, and at the jet-stream located near the outer cylinder wall.
Without doubt, there is a substantial part of IGWs which is generated at the inner
side wall before propagating into the interior of the annulus domain. This mechanism
is studied extensively by Jacoby et al. (2011) and Randriamampianina & Crespo del
Arco (2015). However, both of these studies consider a traditional annulus set-up with
N/f < 1.

The internal forcing mechanism considered in our study is due to the balanced
flow. We therefore conclude that part of the IGWs are generated continuously from
the time-dependent large-scale balanced flow. Our balance concept relies on small
Rossby numbers, and partial contribution of higher-order balanced components to our
unbalanced flow cannot be excluded. We do observe only modest Rossby numbers,
however, so we take the forcing as an indication of spontaneous imbalance (Zhang
2004; Vanneste 2013). This is interesting not only because the differentially heated
rotating annulus experiment allows experimental investigations of this process in
the laboratory, but also because it exhibits a more complex, more realistic jet–front
system compared to the idealised vortex-dipole studies of Snyder et al. (2009) and
Wang & Zhang (2010). We hope that the systematic flow and dynamics decomposition
employed here can help systematic investigations of IGW radiation by jets and fronts
in even more realistic atmospheric simulations, following the overall aim to develop
and improve corresponding physically based source parametrisations.
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Appendix A.
Based on the PV defined in (2.21) we can derive a prognostic equation for the PV

as follows:
DΠ
Dt
=

Dζ
Dt
+

f
N2

D
Dt

(
∂B
∂z

)
, (A 1)

with f , N2
= const. Therein, the material derivative of the vertical component of the

vorticity is (Vallis 2006)

Dζ
Dt
=−( f + ζ )δ −

∂u
∂z
· (ez ×∇hw) (A 2)
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and, using (2.24) and (2.26),

D
Dt

(
∂B
∂z

)
=

(
N2
+
∂B
∂z

)
δ −

∂u
∂z
· ∇hB. (A 3)

As a result we obtain

DΠ
Dt
=−

(
ζ −

f
N2

∂B
∂z

)
δ −

∂u
∂z
·

(
ez ×∇hw+

f
N2
∇hB

)
. (A 4)

Appendix B.
Here, we extract the purely balanced part in Dub/Dt and DBb/Dt as it is required

as forcings in the tangent-linear model in § 2.2.3. Therefore, we apply the material
derivative to (2.19) and (2.20) which gives

Dub

Dt
=

1
f

ez ×

(
D
Dt
∇hpb

)
=

1
f

ez ×

(
∇h

Dpb

Dt
−∇hv · ∇pb

)
(B 1)

DBb

Dt
=

D
Dt
∂pb

∂z
=
∂

∂z

(
Dpb

Dt

)
−
∂v

∂z
· ∇pb. (B 2)

To obtain an expression for Dpb/Dt we first consider

∇qg
Dpb

Dt
=

∂

∂t
∇qgpb +∇qg (v · ∇pb)

=
∂

∂t
∇qgpb +∇qgv · ∇pb + (v · ∇)∇qgpb

=
D
Dt
∇qgpb +∇qgv · ∇pb (B 3)

and then we calculate

∇
2
qg

Dpb

Dt
=∇qg · ∇qg

Dpb

Dt
=∇qg ·

D
Dt
∇qgpb +∇qg · (∇qgv · ∇pb). (B 4)

The first term on the right-hand side can be written as

∇qg ·
D
Dt
∇qgpb =

∂

∂t
∇

2
qgpb +∇qg · (v · ∇∇qgpb)

=
∂

∂t
∇

2
qgpb +∇qgv · · ∇∇qgpb + (v · ∇)∇

2
qgpb

=
D
Dt
∇

2
qgpb +∇qgv · · ∇∇qgpb (B 5)

and the second as

∇qg · (∇qgv · ∇pb)=∇
2
qgv · ∇pb +∇qgv · · ∇∇qgpb, (B 6)

where ·· denotes the double scalar product. Given two dyads ab and cd, with a, b, c
and d being arbitrary vectors, their double scalar product is defined as (Zdunkowski
& Bott 2003)

ab · · cd= (b · c) (a · d)= a · (b · cd)= (ab · c) · d= (d · a) (c · b)= cd · · ab. (B 7)
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Furthermore, given an arbitrary normal basis ei, i = 1, 2, 3, in which two tensors A
and B are measured, A= Aijeiej and B= Bklekel, their double scalar product reads

A · ·B= AijBkleiej · · ekel = AijBkl
(
ej · ek

)
(ei · el)= AijBji. (B 8)

In summary we have

∇
2
qg

Dpb

Dt
=

D
Dt
∇

2
qgpb + 2∇qgv · · ∇∇qgpb +∇

2
qgv · ∇pb (B 9)

so that, with ∇2
qgpb = fΠ ,

Dpb

Dt
=∇

−2
qg

(
f

DΠ
Dt
+ 2∇qgv · · ∇∇qgpb +∇

2
qgv · ∇pb

)
. (B 10)

Finally, we can separate the balanced part in Dpb/Dt,

Dpb

Dt
=

(
Dpb

Dt

)
b

+

(
Dpb

Dt

)
u

, (B 11)

with (
Dpb

Dt

)
b

=∇
−2
qg

(
∇

2
qgub · ∇hpb

)
, (B 12)(

Dpb

Dt

)
u

=∇
−2
qg

(
f

DΠ
Dt
+ 2∇qgvu · · ∇qgpb +∇

2
qgvu · ∇pb

)
. (B 13)

Note that ∇qgub · · ∇∇qgpb does not contribute to the balanced part in Dpb/Dt. Using

abh · · cd= (bh · c) (a · d)= (bh · ch) (a · d)= abh · · chd, (B 14)

where bh is an arbitrary horizontal vector, we obtain

∇qgub · · ∇∇qgpb = ∇qgub · · ∇h∇qgpb =
1
f

[
∇qg (ez ×∇hpb)

]
· · ∇h∇qgpb

= −
1
f
(∇qg∇hpb︸ ︷︷ ︸

≡A

×ez) · · ∇h∇qgpb =−
1
f
(A× ez) · ·A

T. (B 15)

Since a tensor can be formulated as a sum of dyads A=
∑

i aibi (compare (B 8)), we
can apply (Wilson 1929; Zdunkowski & Bott 2003)

(ab× c) · · de = [(b× c) · d] (a · e)=− [d · (c× b)] (a · e)
= − [b · (d× c)] (a · e)=−b · [(a · e) (d× c)]=−b · [a · (ed× c)]
= −ba · · (ed× c)=− (ab)T · ·

[
(de)T × c

]
(B 16)

to (B 15), which yields

−
1
f
(A× ez) · ·A

T
=

1
f

AT
· · (A× ez)=

1
f
(A× ez) · ·A

T, (B 17)

where in the last step A · ·B = B · ·A (compare (B 7)) has been used. The equation
(B 17) can only be satisfied if ∇qgub · · ∇∇qgpb = 0.
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