
Proceedings of the Royal Society of Edinburgh, 135A, 863–886, 2005

Heat equation with singular potential
and singular data

M. Nedeljkov, S. Pilipović and D. Rajter-Ćirić
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Nets of Schrödinger C0-semigroups (Sε)ε with the polynomial growth with respect to
ε are used for solving the Cauchy problem (∂t − ∆)U + V U = f(t, U),
U(0, x) = U0(x) in a suitable generalized function algebra (or space), where V and U0
are singular generalized functions while f satisfies a Lipschitz-type condition. The
existence of distribution solutions is proved in appropriate cases by the means of
white noise calculus as well as classical energy estimates.

1. Introduction

Nets of C0-semigroups depending on a small parameter ε with the polynomial
growth rate with respect to ε are used in solving a class of heat equations with
singular coefficients and data. Singular coefficients (viewed as generalized functions)
of a partial differential equation (PDE) are regularized to become nets of smooth
functions depending on ε ∈ (0, 1). A PDE regularized in such a way is then solved
by means of an appropriate net of semigroups. The net of solutions obtained in this
way represents a generalized function. Moreover, a priori bounds imply that a net
of solutions contains a convergent sequence leading to a distributional solution of a
linear or semilinear equation with singular data and/or potential.

The framework for our analysis constitutes various Colombeau-type generalized
function spaces and algebras [9]. They contain embedded distributions and, with
the notion of association (instead of the strict equality), naturally extend notions of
the weak limit and the equality in distribution theory. We also refer to [4,10,20,22]
for the properties of Colombeau-type algebras (and distributions embedded therein)
and their use in a theory of PDEs. A global theory of generalized functions can be
found in [13,14]. Weak solutions and their local symmetries are the subject of [12].
For the classical theory of parabolic PDEs we refer the reader to [18].

In § 2 (and the appendix) we introduce generalized semigroups which map alge-
bras of generalized functions into themselves. Such ideas appear in [6]. Appropriate
equivalence relations of nets of C0-semigroups (Sε)ε and nets of infinitesimal gen-
erators (Aε)ε are introduced and it is shown that they uniquely determine each
other.

Generalized function spaces and algebras and generalized semigroups allows us
to work in a framework where other types of equations and singularities can also
be studied.
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The solution concept for the equation ∂tG = AG is defined through the existence
of the limit

ε−a sup
t∈[0,T )

‖∂tGε − AεGε‖L2 → 0, ε → 0,

for every a > 0, where (Aε)ε is an appropriate net of operators representing
an infinitesimal generator A. Another approach, with uniformly continuous semi-
groups, is made in [19] and it is closely related to the theory of regularized deriva-
tives [23].

Note that the analysis of families of semigroups and corresponding families of
resolvents and infinitesimal generators dates back to Trotter [29] and has been
used since by many authors. Here our global theory of generalized semigroups is
interpreted through the nets of semigroups related to Schrödinger operators ∆−Vε,
ε ∈ (0, 1). Such nets determine the generalized C0-semigroups used in solving linear
and semilinear parabolic equations ∂tU−(∆−V )U = f , U |t=0 = U0, with a singular
potential V and singular initial data U0.

Concerning semilinear parabolic equations with singularities and potential V = 0,
[8] gave the stimulus for many papers in this direction. Let us now mention the
papers of Kato [15], Kato and Ponce [16], Kozono and Yamazaki [17] and Biagioni et
al . [7]. In general, in these papers, conditions on the growth order of a nonlinear term
(for example, f(u) = u|u|p, V ≡ 0) and the order of singularity of the initial data
lead to a unique global solvability in an appropriate Kato-type space. For instance,
in [7], the Cauchy problem for a semilinear parabolic equation ∂tu−∆u+g(u) = 0,
t > 0, x ∈ R

n, is considered, where g(u) is a locally Lipschitz real-valued function
and the initial data are singular, i.e. they belong to the strong dual of the Banach
space Ck

b (Rn) ⊂ Ck(Rn) of functions with bounded derivatives up to order k. This
problem in the case when n = 1, g(u) = u3 is solved in [11] by use of an algebra
of generalized functions, and the classical solutions are recovered when the initial
data are Lp-functions.

In the present paper some classes of linear and semilinear Cauchy problems are
solved in the generalized function space GC1,W 2([0, T ) : R

n), T > 0 (for n � 3 it is an
algebra), which is a generalization of the space C1([0, T ) : W 2(Rn)). The initial data
U0 and potential V are taken to be elements of generalized function spaces GW 2(Rn)
and GW 1(Rn), generalizations of Sobolev spaces W 2(Rn) and W 1(Rn), respectively.
The use of nets in Sobolev spaces admits singular initial data as embedded singular
distributions. They can have the form

U0 =
p∑

i=0

f
(i)
i , fi ∈ L2, i = 0, 1, . . . , p,

or
p∑

i=0

s∑
j=1

δ(i)(· − xj).

Theorem 3.2, a special case of theorem 3.10, gives a unique solution to

(∂t − ∆)U + V U = 0, U(0, x) = U0(x), x ∈ R
n, (1.1)

where the potential V and initial data U0 are singular distributions, for example, the
delta distribution or its powers. In the cases V = δm, V = δα ∈ GW 1,∞(Rn), m ∈ N,
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α ∈ (0, 1) (for m �= 1 and α ∈ (0, 1) these generalized functions are not embedded
Schwartz distributions), equation (1.1), with U0 ∈ GW 2(Rn), has a unique solution
U(t, x) ∈ GC1,W 2([0, T ) × R

n). If n > 1, V = δm and (Uε)ε is a representative of
the solution to equation (1.1), (Uε)ε has a subsequence (Uεν (t, x))ν∈N converging
in L2([0, T ) × R

n) weakly to Ũ(t, x) = e−∆tU0(x), the solution to equation (1.1)
with V = 0. This is the first of our two main theorems, theorem 3.3. Its proof is
closely related to notions of Brownian motion, hitting times and polars [25]. Since a
point in R is not a polar set, in the case n = 1 and V = δα, α ∈ (0, 1), we have the
same result as in theorem 3.3 but proved in a different way (proposition 3.5). In the
case where V = δ ∈ GW 1,∞(R1) and U0 ∈ L2(Rn), there exists a L2([0, T ) × R

n)-
convergent subsequence (Uεν

(t, x))ν∈N, but we do not find that it is a distributional
solution to (1.1) with V = 0 (proposition 3.6).

We refer to [2,3] and the references in [2] for singular perturbations of the oper-
ator −∆, for example ∆U(x) − αU(0)δ(x), and the corresponding approximating
procedure with a net (∆ − 〈δε, ·〉δε)ε leading to Schrödinger-type equations. Here
we underline the difference between this procedure and that where we use the net
of operators (∆ − δε)ε.

Let f(t, u) ∈ C1([0, t) × R). The semi-linear Cauchy problem

(∂t − ∆)U + V U = f(t, U), U(0, x) = U0(x),

where V ∈ GW 1,∞ , U0 ∈ GW 2 and f is of global Lipschitz class, is considered in
the last section. In our second main theorem, theorem 3.10, the existence and the
uniqueness of a generalized function solution is proved. With U0 = δ (V and f
satisfy the quoted assumptions) in example 3.11 (see also example 3.8), taking L1

spaces instead of L2 spaces and using the appropriate compactness arguments, we
obtain the existence of a net of solutions involving a distributional solution.

2. Spaces and algebras of generalized functions

2.1. Generalized function algebra

Denote by Ω an open set of R
n and by W r,s(Ω), r ∈ N0, 1 � s � ∞, the Sobolev

space of functions with all distributional derivatives of order |α| � r in Ls(Ω),
equipped with the usual norm [1]. We simply write W r(Ω) if s = 2. We refer to [5]
and [21] for the algebras GLp,Lq and GLp .

Notation fε = O(εa), f : (0, 1) → C, means that |fε| � Cεa, 0 < ε < ε0, for some
constants C > 0 and ε0 ∈ (0, 1). In that case, we say that (fε)ε has a moderate
bound, or it is of moderate growth, or simply moderate. A net of functions (gε)ε in
some Banach space (B, ‖ · ‖B) is called moderate (of moderate growth) if the above
estimate holds for (‖gε‖B)ε.

Definition 2.1. EC1,W 2([0, T ) : R
n) (respectively, NC1,W 2([0, T ) : R

n), T > 0, is
the vector space of nets (Gε)ε,

Gε ∈ C0([0, T ) : W 2(Rn)) ∩ C1((0, T ) : L2(Rn)), ε ∈ (0, 1),

with the property that there exists a ∈ R (respectively, for every a ∈ R) such that

max
{

sup
t∈[0,T )

‖Gε(t)‖W 2 , sup
t∈(0,T )

‖∂tGε(t)‖L2

}
= O(εa), ε → 0. (2.1)
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Quotient space

GC1,W 2([0, T ) : R
n) = EC1,W 2([0, T ) : R

n)/NC1,W 2([0, T ) : R
n)

is a Colombeau-type vector space.
Dropping the condition on ∂tGε in (2.1), one obtains the spaces EC0,W 2([0, T ) :

R
n), NC0,W 2([0, T ) : R

n) and GC0,W 2([0, T ) : R
n).

The following lemma is a consequence of Sobolev-type inequalities, i.e. of the
fact that, for only n � 3, the inclusion mapping from W 2(Rn) into L∞(Rn) is
continuous.

Lemma 2.2. If n � 3, then EC1,W 2([0, T ) : R
n) is an algebra with respect to the

pointwise multiplication and NC1,W 2([0, T ) : R
n) is an ideal of EC1,W 2([0, T ) : R

n).
In particular, GC1,W 2([0, T ) : R

n) is an algebra. The same assertion holds for the
spaces

EC0,W 2([0, T ) : R
n), NC0,W 2([0, T ) : R

n) and GC0,W 2([0, T ) : R
n).

Substituting the W 2-norm with the L2-norm in (2.1) we obtain the spaces

EC0,L2([0, T ) : R
n), NC0,L2([0, T ) : R

n) and GC0,L2([0, T ) : R
n).

The canonical embedding ιL2 : GC1,W 2([0, T ) : R
n) → GC0,L2([0, T ) : R

n) is
defined by ιL2((Gε)ε + NC0,W 2([0, T ) : R

n)) = (Gε)ε + NC0,L2([0, T ) : R
n).

Now we define the space GW r,s(Rn), r ∈ N0, 1 � s � ∞. EW r,s(Rn) (respectively,
NW r,s(Rn)) as the space of nets (Gε)ε of functions Gε ∈ W r,s(Rn), ε ∈ (0, 1), with
the property that there exists a ∈ R (respectively, for every a ∈ R) such that

‖Gε‖W r,s(Rn) = O(εa), ε → 0.

Both spaces are vector spaces and NW r,s(Rn) is a subspace of EW r,s . Thus, in
this case, the Colombeau-type vector space is defined by

GW r,s(Rn) = EW r,s(Rn)/NW r,s(Rn).

We shall use the fact that GW 2(Rn) := GW 2,2(Rn) is a multiplicative algebra
if n � 3.

Definition 2.3. An element V ∈ GW r,s(Rn) is of logarithmic type if it has a
representative (Vε)ε ∈ EW r,s(Rn) with the property

‖Vε‖W r,s(Rn) = O(log ε−1), ε → 0.

2.2. Generalized semigroups

Proofs of assertions in this subsection are given in the appendix. Various technical
conditions in definitions 2.4 and 2.8 are related to the expected assertion of theo-
rem 2.9: ‘different generalized infinitesimal generators define different generalized
C0-semigroups’.

Let (E, ‖·‖) be a Banach space and let L(E) be the space of all linear continuous
mappings E → E.
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Definition 2.4. SEM ([0,∞) : L(E)) is the space of nets (Sε)ε of strongly con-
tinuous mappings Sε : [0,∞) → L(E), ε ∈ (0, 1) with the property that, for every
T > 0, there exists a ∈ R such that

sup
t∈[0,T )

‖Sε(t)‖ = O(εa), ε → 0. (2.2)

SN([0,∞) : L(E)) ⊂ SEM ([0,∞) : L(E)) is a space with the following properties.

(i)
sup

t∈[0,T )
‖Nε(t)‖ = O(εb), ε → 0, (2.3)

for every b ∈ R and T > 0.

(ii) There exist t0 > 0 and a ∈ R such that

sup
t<t0

∥∥∥∥Nε(t)
t

∥∥∥∥ = O(εa), ε → 0. (2.4)

(iii) There exists a net (Wε)ε in L(E) and ε0 ∈ (0, 1) such that

lim
t→0

Nε(t)
t

x = Wεx, x ∈ E, ε < ε0. (2.5)

(iv)
‖Wε‖ = O(εb), ε → 0, for every b > 0. (2.6)

Proposition 2.5. SEM ([0,∞) : L(E)) is an algebra with respect to the composi-
tion and SN([0,∞) : L(E)) is an ideal of SEM ([0,∞) : L(E)).

We define a Colombeau-type algebra as the factor algebra

SG([0,∞) : L(E)) = SEM ([0,∞) : L(E))/SN ([0,∞) : L(E)).

Elements of SG([0,∞) : L(E)) will be denoted by S = [Sε], where (Sε)ε is a
representative of the class.

Definition 2.6. S ∈ SG([0,∞) : L(E)) is called a generalized C0-semigroup if it
has a representative (Sε)ε such that, for some ε0 > 0, Sε is a C0-semigroup for
every ε < ε0.

In the following we will use only representatives (Sε)ε of a generalized C0-semi-
group, Sε being a C0-semigroup itself for ε small enough.

Proposition 2.7. Let (Sε)ε and (S̃ε)ε be representatives of a generalized C0-semi-
group S, with infinitesimal generators Aε, ε < ε0, and Ãε, ε < ε̃0, respectively,
where ε0 and ε̃0 correspond (in the sense of definition 2.6) to (Sε)ε and (S̃ε)ε,
respectively.

Then D(Aε) = D(Ãε), for every ε < ε̄0 = min{ε0, ε̃0} and Aε − Ãε can be
extended to an element of L(E), again denoted by Aε − Ãε.

Moreover, ‖Aε − Ãε‖ = O(εa), ε → 0, for every a ∈ R.
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Now we define infinitesimal generators of generalized C0-semigroups. Denote by
A the set of pairs ((Aε)ε, (D(Aε))ε), where Aε is a closed linear operator on E
with a dense domain D(Aε) ⊂ E, for every ε ∈ (0, 1). We introduce an equivalence
relation in A:

((Aε)ε, (D(Aε))ε) ∼ ((Ãε)ε, (D(Ãε))ε)

if there exists ε0 ∈ (0, 1) such that D(Aε) = D(Ãε), for every ε < ε0, and for every
a ∈ R there exist Ca > 0 and εa � ε0 such that

‖(Aε − Ãε)x‖ � Caεa‖x‖, x ∈ D(Aε), ε � εa. (2.7)

Since Aε has a dense domain in E, Rε := Aε − Ãε can be extended to an operator
in L(E), denoted again by Rε, satisfying ‖Rε‖ = O(εa), ε → 0, for every a ∈ R.
(Such a net of operators (Rε)ε will be called a zero operator net.)

We denote by A the corresponding element of the quotient space A/ ∼. Due to
proposition 2.7, the following definition makes sense.

Definition 2.8. A ∈ A/ ∼ is an infinitesimal generator of a generalized C0-
semigroup S = [Sε] if there exists a representative (Aε)ε of A and ε0 ∈ (0, 1)
such that Aε is the infinitesimal generator of Sε, for every ε < ε0.

Theorem 2.9. Let S and S̃ be generalized C0-semigroups with infinitesimal gener-
ators A and Ã, respectively. If A = Ã, then S = S̃.

Remark 2.10. Let the assumptions of definition 2.4 hold. Moreover, assume a
stronger assumption than (2.2), i.e. there exist M > 0, a ∈ R and ε0 ∈ (0, 1)
such that

‖Sε(t)‖ � Mεaeαεt, ε < ε0, t � 0,

where 0 < αε < α, for some α > 0. Then we obtain the corresponding subalgebra of
SG([0,∞) : L(E)). For this subalgebra we can formulate the Hille–Yosida theorem
in the usual way.

For the whole algebra of generalized C0-semigroups SG([0,∞) : L(E)) a Hille–
Yosida-type theorem is still an open problem.

In the sections which follow, we use only semigroups of Schrödinger-type opera-
tors.

Example 2.11 (semigroups of Schrödinger-type operators). Let V ∈ GW 1,∞(Rn)
be of logarithmic type. Then differential operators Aεu = (∆ − Vε)u, u ∈ W 2(Rn),
ε < 1, are infinitesimal generators of C0-semigroups Sε, ε < 1, and (Sε)ε is a
representative of a generalized C0-semigroup S ∈ SG([0,∞) : L(L2(Rn))).

Let ε < 1. Operator Aε is the infinitesimal generator of the corresponding C0-
semigroup Sε : [0,∞) → L(L2(Rn)) defined by the Feynman–Kac formula:

Sε(t)ψ(x) =
∫

Ω

exp
(

−
∫ t

0
Vε(ω(s)) ds

)
ψ(ω(t)) dµx(ω), t � 0, x ∈ R

n, (2.8)

for ψ ∈ L2(Rn), where Ω =
∏

t∈[0,∞) Rn (Rn is completion of R
n) and µx is the

Wiener measure concentrated at x ∈ R
n (see [26,28]).
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The assumption on V implies that there exists C > 0 such that

|Sε(t)ψ(x)| � exp
(
t sup

s∈Rn

|Vε(s)|
) ∫

Ω

|ψ(ω(t))| dµx(ω)

� εCt(4πt)−n/2
∫

Rn

exp
(

−|x − y|2
4t

)
|ψ(y)| dy

= εCtEn(t, ·) ∗ |ψ(y)|,

for every t > 0, x ∈ R
n and ε < 1.

Recall that the heat kernel is given by

En(t, x) =
1

(4πt)n/2 exp
(

−x2

4t

)
, t > 0, x ∈ R

n,

and its L1(Rn)-norm equals 1 for every t > 0. By the Young inequality,

|Sε(t)ψ| � eCt‖En(t, ·)‖L1(Rn)‖ψ‖L2(Rn), t > 0, ε < 1.

Therefore, there exists M > 0 such that

sup
t∈[0,T )

‖Sε(t)ψ‖L2 � MεCT ‖ψ‖L2 , ε < 1,

for every T , i.e. (Sε(t))ε, t ∈ [0,∞), satisfies relation (2.2) and S = [Sε] ∈
SG([0,∞) : L(L2(Rn))).

In the following we will assume that E = L2. For elements of GL2 , the action of
a generalized C0-semigroup S = [Sε] is defined by

SG = [Sε(t)Gε], [Gε] ∈ GL2 .

3. Heat equations with singular potentials and data

This section is devoted to solving a class of heat equations with singular poten-
tials and singular data. First, let us note that the multiplication of elements G ∈
GW 1,∞(Rn) and W ∈ GC1,W 2([0, T ) : R

n) gives an element in GC1,W 1([0, T ) :
R

n): if (Gε)ε ∈ EW 1,∞(Rn) and (Wε)ε ∈ EC1,W 2([0, T ) : R
n), then (GεWε)ε ∈

EC1,W 1([0, T ) : R
n). Similarly, if (Gε)ε ∈ NW 1,∞(Rn) or (Wε)ε ∈ NC1,W 2([0, T ) :

R
n), then the product (GεWε)ε belongs to the ideal NC1,W 1([0, T ) : R

n). Thus the
multiplication of V ∈ GW 1,∞(Rn) and U ∈ GC1,W 2([0, T ) : R

n) in

∂tU(t, x) − ∆U(t, x) + V (x)U(t, x) = 0, U(0, x) = U0(x). (3.1)

makes sense.

Definition 3.1. Let A be represented by a net (Aε)ε of operators Aε : W 2(Rn) →
L2(Rn), ε < ε0. G ∈ GC1,W 2([0, T ) : R

n), T > 0, is said to be a solution to
∂tG = AG with initial data G|t=0 = G0 ∈ GW 2(Rn) if

sup
t∈(0,T )

‖∂tGε(t, ·) − AεGε(t, ·)‖L2(Rn) = O(εa), for every a ∈ R

and the restriction of G to the line t = 0 equals G0 ∈ GW 2(Rn).
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The solution is unique if for any other solution G̃ ∈ GC1,W 2([0, T ) : R
n), with the

same initial data
ιL2(G) = ιL2(G̃).

The next theorem is a special case of theorem 3.10.

Theorem 3.2. Let V ∈ GW 1,∞(Rn) be of logarithmic type, U0 = [U0ε] ∈ GW 2(Rn)
and S = [Sε] be defined as in example 2.11. Let T > 0.

Then U = SU0 ∈ GC1,W 2([0, T ) : R
n) given by the representative Uε(t, x) =

Sε(t)u0ε(x), t � 0, x ∈ R
n, ε < 1, is the unique solution to (3.1) in the sense of

definition 3.1.

Note that, if in (3.1) Vε is substituted by Vε + Rε, (Rε)ε ∈ NW 1,∞ , we have the
same generalized solution.

3.1. Powers of the generalized delta function as a potential

Let (φε)ε be a net of mollifiers

φε = ε−nφ(·/ε), ε ∈ (0, 1), (3.2)

where φ ∈ C∞
0 (Rn),

∫
φ(x) dx = 1 and φ(x) � 0, x ∈ R

n. It represents the gener-
alized delta function δ = [φε] ∈ G(Rn).

Put Aε = ∆−φε and Ãε = ∆−φ̃ε, ε < 1. Different φε values (with the prescribed
properties on φ above) define different infinitesimal generators. Let us show this.
The equality of infinitesimal generators would imply that

‖(Aε − Ãε)u‖2
L2 = ε−2n

∫
Rn

|φ(y) − φ̃(y)|2|u(εy)|2 dt � Caεa‖u‖2
L2 , ε < 1

for every a > 0 (and corresponding Ca > 0). Thus, it follows that φ = φ̃.
Let m ∈ N. We will use δm = [φm

ε ]m∈N as the definition of mth power of δ ∈
G(Rn). Let

Aε,mu = (∆ − φm
ε )u, u ∈ W 2(Rn), ε < 1.

Aε,m is the infinitesimal generator of the semigroup

Sε,m : [0,∞) → L(L2(Rn)), Sε(t) = exp((∆ − φm
ε )t), t � 0 (cf. [11]).

It follows that (Sε,m)ε is a representative of a generalized C0-semigroup Sm ∈
LG([0,∞) : L(L2(Rn))).

Let ε < 1 and ψ ∈ L2(Rn). We know that Sε,mψ is given by

Sε,m(t)ψ(x) =
∫

Ω

exp
(

−
∫ t

0
φm

ε (ω(s)) ds

)
ψ(ω(t)) dµx(ω), x ∈ R

n, t � 0. (3.3)

Since φε(x) � 0, x ∈ R
n, ε < 1, it follows that the set {Sε,m : ε ∈ (0, 1), t � 0} is

bounded in L(L2(Rn)) (not only moderately). Thus, (2.2) holds for (Sε,m)ε.
Our goal is to prove the following theorem, where the assumption n � 2 is crucial.
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Theorem 3.3. Let n � 2, m ∈ N, T > 0 and U0 ∈ W 2(Rn). Then

Uε,m(t, x) =
∫

Ω

exp
(

−
∫ t

0
ε−mnφm

(
ω(s)

ε

)
ds

)
U0(ω(t)) dµx(ω),

t � 0, x ∈ R
n, ε < 1, (3.4)

defines a representative of a solution U ∈ GC1,W 2([0, T ) : R
n) to

∂tU(t, x) − ∆U(t, x) + δm(x)U(t, x) = 0, U(0, x) = U0(x). (3.5)

The solution is unique in the sense of definition 3.1.
Moreover, for every t > 0, the net in (3.4) converges to

Ũ(t, ·) = e−∆tU0(·) in L1(Ω, µx) (3.6)

uniformly in x ∈ K ⊂⊂ R
n (this notation means that the closure of K is compact).

For the proof of theorem 3.3 we need several notions and properties of n-dimen-
sional Brownian motions. Recall that the hitting time τA of a subset A of R

n is
defined by τA = inf{t > 0 : ω(t) ∈ A} (tA = ∞ if ω(t) �∈ A for all t > 0). We refer
to [25, ch. 1, § 2], for the elementary properties of hitting times. Recall, a Borel
set A is said to be polar if

µx({ω ∈ Ω : ω(t) ∈ A for some t < ∞}) = 0.

We will use the fact that every one-point set is polar for n � 2. This is not true for
n = 1 and that is the essential reason for different results in the cases n � 2 and
n = 1.

Let Bε = {x ∈ R
n : ‖x‖ � ε}, B = B1. Take ε ∈ (0, 1), t > 0 and define

WBε
(t) = {τBε

< t} = {ω : ω(s) ∈ Bε for some s ∈ (0, t)}, WBε
=

⋃
t>0

WBε
(t).

Clearly, WBε(t) ⊂ WBε(s), 0 < t � s. Note that

WBε
(s) \ WBε

(t) = {t � τBε
< s}, 0 < t < s

and

WBε(s) \ WBε(t) ⊂ WBε \ WBε(t) ⊂ {t − 1 < τBε}, s > t > 1.

Lemma 3.4.

(1) For every compact subset K of R
n and ε < 1 there exists Cε > 0 such that

µx(WBε) � Cε.

(2) limε→0 supx∈K µx(WBε
) = 0.

Proof. (1) By proposition 2.2 in [25], for every compact subset K of R
n and m ∈ N

there exists tm > 0 such that

µx(WBε \ WBε(tm)) < 2−m, x ∈ K. (3.7)
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Choose an increasing sequence (tm)m such that tm+1 > tm + 1, m ∈ N and that
(3.7) holds for every m ∈ N.

We have

WBε = WBε(tm) ∪
∞⋃

k=m

(WBε(tk+1) \ WBε(tk)),

and

µx(WBε) = µx(WBε(tm)) +
∞∑

k=m

µx(WBε(tk+1) \ WBε(tk)), x ∈ K.

Now the assertion in (1) follows by proposition 2.6 in [25] and by (3.7).

(2) Since the intersection of balls is the polar set {0}, the assertion in (2) follows
by (1).

Proof of theorem 3.3. Let t > 0, ε < 1. We will use the notation of lemma 3.4.
Then the complement of WBε is given by CWBε = {ω : |ω(s)| � ε, 0 < s � t}. We
have

Uε,m(t, x) =
∫

Ω

exp
(

−
∫ t

0
ε−mnφm

(
ω(s)

ε

)
ds

)
U0(ω(t)) dµx(ω)

= I1ε(t, x) + I2ε(t, x),

where

I1ε(t, x) =
∫

WBε (t)
exp

(
−

∫ t

0
ε−mnφm

(
ω(s)

ε

)
ds

)
U0(ω(t)) dµx(ω),

I2ε(t, x) =
∫

CWBε (t)
exp

(
−

∫ t

0
ε−mnφm

(
ω(s)

ε

)
ds

)
U0(ω(t)) dµx(ω).

We have I1ε → 0 uniformly on compact sets K ⊂ R
n as ε → 0, because

µx(WBε(t)) → 0 as ε → 0

uniformly for x ∈ K. Since
∫

CWBε (t)
exp

(
−

∫ t

0
ε−mnφm

(
ω(s)

ε

)
ds

)
U0(ω(t)) dµx(ω)

�
∫

CWBε (t)
U0(ω(t)) dµx(ω), x ∈ R

n (t > 0 is fixed)

and CWBε
(t) ⊃ CWBε → Ω, as ε → 0, we have

Uε,m(t, x) →
∫

Ω

U0(ω(t)) dµx(ω) = Ũ(t, x) as ε → 0

in L1(Ω, µx) uniformly on compact sets K ⊂ R
n.

Powers of the generalized delta function, δα, α ∈ (0, 1), are defined in this paper
by

δα = [(φε)α ∗ φε], ε ∈ (0, 1). (3.8)
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The reason for introducing (3.8) is simple: When α ∈ (0, 1), functions φα
ε , ε < 1

are not smooth, in general. Note that the generalized function [φε ∗ φε] is only
associated with the generalized delta function δ = [φε], rather than being equal to
it (

∫
(φε ∗ φε − φε)ψ dt → 0 as ε → 0, for every ψ ∈ D).

Since one-point sets are not polar for n = 1, we cannot use the same arguments
as in the case n � 2.

Proposition 3.5. Let α ∈ (0, 1), T > 0 and U0 ∈ W 2(R). Then we define by

Uε(t, x) =
∫

Ω

exp
(

−
∫ t

0
(φε)α ∗ φε(ω(s)) ds

)
U0(ω(t)) dµx(ω),

t > 0, x ∈ R, ε < 1, (3.9)

a representative of a solution U(t, x) ∈ GC1,W 2([0, T ) × R) to

∂tU(t, x) − ∆U(t, x) + δα(x)U(t, x) = 0, U(0, x) = U0(x). (3.10)

The solution is unique in the sense of definition 3.1.
Net (3.9) has a subsequence (Uεν ,α(t, x))ν∈N, converging to

Ũ(t, x) = e−∆tU0(x), t � 0, x ∈ R,

in the weak topology of L2([0, T ) × R).

Proof. Note that functions in W 2(R) are continuous and bounded. The solution to
equation (3.10) has a representative

Uε,α(t, x) = Sε,α(t)U0(x), t ∈ [0, T ), x ∈ R, ε < 1,

where Sε,α(t) is the semigroup generated by Aε,α = ∆ − (φε)α ∗ φε. Thus, (3.9)
holds. As in theorem 3.2, Uε,α ∈ C0([0, T ) : W 2(R)) ∩ C1((0, T ) : L2(R)), for every
T > 0 and ε < 1. Since {Uε,α; ε < 1} is bounded in L2([0, T ) × R) and hence is
relatively compact with respect to the weak topology, we find that there exists a
sequence (εν)ν∈N such that

Uεν ,α(t, x) = Sεν ,α(t)U0(x) → U(t, x), εν → 0,

in the sense of weak topology in L2([0, T ) × R). Let x ∈ R, t ∈ (0, T ) and ε < 1.
Using Duhamel’s principle we have

Uε,α(t, x) =
∫

R

En(t, x − y)U0(y) dy +
∫ t

0

∫
R

En(t − s, x − y)

× 1
εα

∫
R

φα

(
y

ε
− u

)
φ(u) du Uε,α(s, y) dy ds,

=
∫

R

En(t, x − y)U0ε(y) dy +
∫ t

0

∫
R

En(t − s, x − yε)ε1−α

×
∫

Rn

φα(y − u)φ(u) du Uε,α(s, yε) dy ds. (3.11)
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We will show that the last term in (3.11) tends to zero as ε → 0 in the sense of
weak convergence. This proves that (Uεν ,α(t, x))ν weakly converges to e−∆tU0(x)
in L2([0, T ) × R).

The Sobolev lemma and the assumption given on the initial data and φ imply
that

sup
t∈(0,T )

‖Uε,α(t, ·)‖L∞ < ∞.

Let ψ ∈ D((0, T ) × R). Put

Jεν = ε1−α
ν

∫ T

0

∫
R

∫ t

0

∫
R

1
(4π(t − s))1/2 exp

(
− (x − ενy)2

4(t − s)

)

×
(∫

R

φα(y − u)φ(u) du

)
Uεν ,α(s, ενy) dy dsψ(t, x) dxdt, ε < 1, ν ∈ N.

The Fubini–Tonelli theorem and a suitable change of variables imply that

Jεν = ε1−α

∫ T

0

∫
R

(∫ t

0

∫
R

1
(4πs)1/2 exp

(
− (x − ενy)2

4s

)

×
(∫

R

φα(y − u)φ(u) du

)
ψ(t, x)Uεν ,α(t − s, ενy) dxds

)
dy dt

=:
∫ T

0

∫
R

ε1−αWεν ,α(y, t) dy dt, ε < ε0, ν ∈ N.

Now,

|Wεν ,α(y, t)| � C1

∫ t

0

∫
R

1
(4πs)1/2 exp

(
− (x − ενy)2

4s

)

× |ψ(t, x)||Uεν
(t − s, ενy)| dxds

� C

∫ t

0

∫
R

1
(4πs)1/2 exp

(
− (x − ενy)2

4s

)
dxds = Ct,

for ε < ε0, ν ∈ N, y ∈ R and t ∈ (0, T ), since we have already proved that
{Uε,α, ε < ε0} is bounded.

Then Lebesgue’s dominated convergence theorem gives Jεν → 0 as ν → ∞. This
proves that (Uεν ,α(t, x))ν converges to e−∆tU0(x) in the sense of weak convergence
in L2([0, T × R)).

Using the arguments of weak compactness as at the beginning of the proof of
proposition 3.5, we have the following assertion.

Proposition 3.6. Let T > 0, δ ∈ GW 1,∞(R) be defined by (3.2) and U0 ∈ W 2(R).
Let U be a solution to equation (3.1) with V = δ. Then there is a decreasing sequence
(εν)ν∈N converging to zero and U1 ∈ L2([0, T ) × R) such that

Uεν (t, x) = Sεν (t)U0(x) → U1(t, x),

in the sense of the weak topology in L2([0, T ) × R), T > 0.
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(Sε(t) is the semigroup generated by Aε = ∆ − φε, ε < 1.)
Note that we do not find that U1 is equal to e−t∆U0 as in proposition 3.5.

Remark 3.7. Theorem 3.3 holds with

V =
m∑

i=1

aiδ
i+αi(x), m ∈ N, ai > 0 and αi ∈ (0, 1)

with appropriate definitions of the powers δi+αi , i = 1, . . . , m. Also, appropriate
generalizations of propositions 3.5 and 3.6 can be made in this sense.

Example 3.8. Consider

∂tU(t, x) − ∆U(t, x) + V (x)U(t, x) = 0, U(0, x) = δ(x), (3.12)

where V ∈ W 1,∞(Rn). With (φε)ε as in (3.2), we have a net of approximated
solutions

Uε(t, x) =
∫

Ω

exp
(

−
∫ t

0
V (ω(s)) ds

)
φε(ω(t)) dµx(ω), t � 0, x ∈ R

n, ε < 1.

Assume n > 1. We will show that there exists a sequence (Uεν )ν∈N converging to

U ∈ Lq
loc((0, T ), Rn), 1 � q <

n

n − 1

in Lq
loc((0, T ), Rn), such that ∂tU = (∆ − V )U in D′((0, T ), Rn).

Let ε < 1 be fixed. Then Uε ∈ C0([0, T ) : L1(Rn)) ∩ C1((0, T ) : L1(Rn)) and
Uε(t, ·) ∈ W 2,1(Rn) for every t > 0. Again, by the estimates which are to follow,
we will prove that (tUε)ε is bounded in W 1,1((0, T ) × R

n). We will give uniform
estimates with respect to ε. There exists C > 0 such that

|Uε(t, x)| �
∫

Ω

|φε(ω(t))| dµx(ω) = C(4πt)−n/2
∫

Rn

exp
(

−|x − y|2
4t

)
φε(y) dy,

for every t > 0, x ∈ R
n and ε < 1. Therefore,

‖Uε‖L1((0,T )×Rn) � C‖φε‖L1 , ε < 1.

We will use the estimate (see [7]):

sup
t>0

‖tm/2+n(1−1/r)/2∂α
x En(t, ·)‖Lr < ∞, |α| � m, 1 � r � ∞. (3.13)

Let t ∈ (0, T ), ε < 1, i ∈ {1, . . . , n}, x ∈ R
n. Then taking m = 1 and r = 1, one has

t1/2∂xiUε(t, x) =
∫

Rn

t1/2∂yiEn(t, y)U0ε(x − y) dy

+
∫ t

0
t1/2

∫
Rn

(t − s)1/2∂yiEn(t − s, y)

× Vε(x − y)Uε(s, x − y)
(t − s)1/2 dy ds.
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Then

‖t1/2∂xi
Uε(t, ·)‖L1 � ‖t1/2∂xi

En(t, ·)‖L1‖U0ε‖L1

+ T

∫ t

0
‖(t − s)1/2∂xi

En(t − s, ·)‖L1
‖Vε‖L∞‖Uε(s, ·)‖L1

(t − s)1/2 ds

implies (with suitable C > 0) that

sup
t∈(0,T )

‖t1/2∂xi
Uε(t, ·)‖L1 � C, ε < 1.

Similar estimates with m = 2, r = 1, (3.13) and the previous step imply that

t∂xixj Uε(t, x)

=
∫

Rn

t
∂

∂yi∂yj
En(t, y)U0ε(x − y) dy

+ t

∫ t

0

∫
Rn

(t − s)1/2 ∂

∂yi
En(t − s, y)

(∂/∂xj)Vε(x − y)Uε(s, x − y)
(t − s)1/2 dy ds

+ t

∫ t

0

∫
Rn

(t − s)1/2 ∂

∂yi
En(t − s, y)

Vε(x − y)(∂/∂xj)Uε(s, x − y)
(t − s)1/2 dy ds.

This gives
sup

t∈(0,T )
‖t∂xixj

Uε(t, ·)‖L1 � C, ε < 1.

Since
∂

∂t
(tUε(t, x)) = Uε(t, x) + (∆x − V )(Uε(t, x)),

it follows that

sup
t∈(0,T )

∥∥∥∥ ∂

∂t
(tUε)

∥∥∥∥
L1

� C, ε < 1.

Thus (tUε)ε is bounded in W 1,1((0, T ) × R
n). By the Rellich–Kondrachov com-

pactness theorem (see [27, ch. 2, theorem 1.1]), there exists a sequence

hν(t, x) = tUεν (t, x), (t, x) ∈ (0, T ) × R
n, ν ∈ N,

converging to h(t, x) in Lq
loc((0, T ) × R

n), 1 � q < n/(n − 1). It follows that

Uεν (t, x) → h(t, x)
t

= U(t, x) in Lq
loc((0, T ) × R

n), ν → ∞,

and U(t, x) ∈ Lq
loc((0, T ) × R

n). Then

∂tU = (∆ − V )U in D′((0, T ) × R
n).

3.2. The Lipschitz nonlinear case

Lemma 3.9. Let f ∈ C1([0, T ) × R) be real valued, f(t, 0) = 0, t ∈ [0, T ) and

|f(t, y1) − f(t, y2)| � L0(t)|y1 − y2|, y1, y2 ∈ R, t ∈ [0, T ), (3.14)

for some positive bounded function L0 : [0, T ) → R and some s > 0.
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Then (Uε)ε �→ (f(t, Uε))ε defines the mappings

EC0,W 1([0, T ) : R
n) → EC0,W 1([0, T ) : R

n),
NC0,W 1([0, T ) : R

n) → NC0,W 1([0, T ) : R
n)

and the corresponding mapping [Uε] �→ [f(t, Uε)]

GC0,W 1([0, T ) : R
n) → GC0,W 1([0, T ) : R

n).

Proof. We will prove that (Uε)ε ∈ EC0,W 1([0, T ) : R
n) implies that (f(t, Uε))ε ∈

EC0,W 1([0, T ) : R
n). The other parts of the proof follow in a similar way.

One has to show that there exists a ∈ R such that

sup
t∈[0,T )

‖f(t, Uε)‖W 1(Rn) = O(εa), ε → 0,

if there exists b ∈ R such that

sup
t∈[0,T )

‖Uε‖W 1(Rn) = O(εb), ε → 0.

Relation (3.14) implies

‖f(t, Uε)‖L2 � L0(t)‖Uε‖L2 , t ∈ [0, T ), ε < 1.

Thus, there exists a ∈ R such that

sup
t∈[0,T )

‖f(t, Uε)‖L2 = O(εa), ε → 0.

Differentiation of f(t, Uε) with respect to some spatial variable xi gives

‖∂yf(t, Uε)∂xiUε‖L2 � ‖∂yf(t, Uε)‖L∞‖∂xiUε‖L2 � L0(t)‖∂xiUε‖L2 ,

where ∂y denotes the differentiation with respect to the second variable.
Thus, the moderate bound of ‖Uε‖W 1 implies a moderate bound for

‖∂yf(t, Uε)‖L2 , ε < 1,

and the assertion follows.

Theorem 3.10. Let T > 0, V ∈ GW 1,∞(Rn) be of logarithmic type and U0 ∈
GW 2(Rn). Suppose that f ∈ C1([0, T ) × R) is real valued, f(t, 0) = 0, t ∈ [0, T )
and that (3.14) holds. Then there exists a net (Uε)ε of solutions to

∂tUε(t, x) = (∆ − Vε)Uε(t, x) + f(t, Uε(t, x)), Uε(0, x) = U0,ε(x), ε < 1, (3.15)

such that U = [Uε] ∈ GC1,W 2([0, T ) : R
n) is the solution to

∂tU = (∆ − V )U + f(t, U) (3.16)

in the sense of definition 3.1. Moreover, the solution to equation (3.16) is unique
in the sense of the same definition.
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Proof. Recall that U ∈ GC1,W 2([0, T ) : R
n) means that Uε ∈ C0([0, T ) : W 2(Rn))∩

C1((0, T ) : L2(Rn)), ε < 1, and there exists a ∈ R such that

sup
t∈[0,T )

‖Uε(t)‖W 2 , sup
t∈(0,T )

‖∂tUε(t)‖L2 = O(εa), ε → 0.

Let ε < 1 be fixed. The classical solution to (3.15) satisfies

Uε(t, x) = Sε(t)U0ε(x) +
∫ t

0
Sε(t − s)f(s, Uε(s, x)) ds, t ∈ [0, T ), x ∈ R

n, (3.17)

where Sε is a representative of generalized C0-semigroup generated by Aε = ∆−Vε

(we refer to [24, ch. 6, theorem 1.5]).
We also have

Uε(t, x) =
∫

Rn

En(t, x − y)U0ε(y) dy

+
∫ t

0

∫
Rn

En(t − s, x − y)Vε(y)Uε(s, y) dy ds

+
∫ t

0

∫
Rn

En(t − s, x − y)f(s, Uε(s, y)) ds, (t, x) ∈ (0, T ) × R
n.

(3.18)

The assumptions that V ∈ GW 1,∞(Rn) is of log-type and (3.14) imply that there
exists C > 0 such that

‖Uε(t, ·)‖L2 � ‖En(t, ·)‖L1‖U0ε‖L2

+
∫ t

0
‖En(t − s, ·)‖L1‖Vε‖L∞‖Uε(s, ·)‖L2 ds

+
∫ t

0
‖En(t − s, ·)‖L1‖f(s, Uε(s, ·))‖L2 ds

� ‖U0ε‖L2 +
∫ t

0
‖Vε‖L∞‖Uε(s, ·)‖L2 ds

+
∫ t

0
L0(s)‖Uε(s, ·)‖L2 ds

� ‖U0ε‖L2 + C log(1/ε)
∫ t

0
(1 + L0(s))‖Uε(s, ·)‖L2 ds,

for t ∈ (0, T ), i.e. there exists a ∈ R such that

‖Uε(t, ·)‖L2 � ‖U0ε‖L2 exp
(

C log(1/ε)
∫ t

0
(1 + L0(s)) ds

)
= O(εa), ε → 0,

(3.19)
uniformly for t ∈ [0, T ) (since L0(s) is bounded for s ∈ [0, T )). Here we use again
the fact that Uε(t, ·) → Uε(0, ·) in L2(Rn) as t → 0, ε < 1.
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Differentiating (3.18) with respect to some spatial variable, we have

∂xiUε(t, x) =
∫

Rn

En(t, y)∂xiU0ε(x − y) dy

+
∫ t

0

∫
Rn

∂yi
En(t − s, y)Vε(x − y)Uε(s, x − y) dy ds

+
∫ t

0

∫
Rn

∂yiEn(t − s, y)f(s, Uε(s, x − y)) dy ds,

for (t, x) ∈ (0, T )×R
n. Young’s inequality and the previously mentioned arguments

for the estimate of ‖∂xi
Uε(t, ·)‖L2 imply the existence of C > 0 such that

‖∂xiUε(t, ·)‖L2

� ‖En(t, ·)‖L1‖∂xiU0ε‖L2

+
∫ t

0
(t − s)−1/2‖(t − s)1/2∂yiEn(t − s, ·)‖L1‖Vε‖L∞‖Uε(s, ·)‖L2 ds

+
∫ t

0
(t − s)−1/2‖(t − s)1/2∂yiEn(t − s, ·)‖L1‖f(s, Uε(s, ·))‖L∞ ds

� ‖∂xi
U0ε‖L2 + C log(1/ε)

∫ t

0
(t − s)−1/2(1 + L0(s))‖Uε(s, ·)‖L2 ds,

uniformly for t ∈ (0, T ). By the previous part of the proof it follows that there
exists a ∈ R such that supt∈(0,T ) ‖∂xiUε(t, ·)‖L2 = O(εa), ε → 0. Moreover, using
the same inequalities, we find, for every ε < 1, that

‖∂xiUε(t, ·) − ∂xiU0,ε‖L2 → 0 as t → 0.

After another space-like differentiation one obtains (for t ∈ (0, T ))

‖∂xixj
Uε(t, ·)‖L2 � ‖En(t, ·)‖L1‖∂xixj

U0ε‖L2

+
∫ t

0
(t − s)−1/2‖(t − s)1/2∂yiEn(t − s, ·)‖L1

× (‖∂xj
V ‖L∞‖Uε(s, ·)‖L2 + ‖V ‖L∞‖∂xj

Uε(s, ·)‖L2) ds

+
∫ t

0
(t − s)−1/2‖(t − s)1/2∂yiEn(t − s, ·)‖L1

× ‖∂uf(s, Uε(s, ·))‖L∞‖∂xj Uε(s, ·)‖L2 ds.

Now, by the use of the bounds on ∂uf and already obtained bounds for ‖∂xiUε‖L2 ,
we obtain a moderate bound for all the second derivatives of Uε.

The same inequalities also imply that, for every ε < 1,

‖∂xixj Uε(t, ·) − ∂xixj
U0,ε‖L2 → 0 as t → 0.

Thus, Uε ∈ C0([0, T ) : W 2(Rn)), ε < 1, and the first part of (2.1) holds.
A moderate bound for the derivative with respect to the time variable t ∈ (0, T )

follows directly from the equation itself.
Thus Uε ∈ C1([0, T ) : L2(Rn)), ε < 1, and the second part of (2.1) holds, i.e. [Uε]

is a solution to (3.16).
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Let us show the uniqueness of the above solution.
Let U1ε and U2ε be two solutions to equation (3.15) such that both satisfy (2.1).

Denote Gε = U1ε − U2ε, ε < 1 and Hε(t, ·) = f(t, U1ε) − f(t, U2ε), t ∈ [0, T ), ε < 1.
Then Gε is a solution to

∂tGε(t, x) = (∆ − Vε)Gε(t, x) + Hε(t, x) + Nε(t, x),
(Gε(0, x))ε = (N0ε(x))ε ∈ NW 2(Rn),

where (Nε)ε ∈ NC0,L2([0, T ) : R
n). By (3.14), we have

‖Hε(t, x)‖ � L0(t)Gε(t, x), t ∈ [0, T ), x ∈ R
n.

Let ε < ε0. We then have

Gε(t, x) =
∫

Rn

En(t, x − y)N0ε(y) dy

+
∫ t

0

∫
Rn

En(t − s, x − y)Vε(s, y) ds

+
∫ t

0

∫
Rn

En(t − s, x − y)(Hε(s, y) + Nε(s, y)) ds,

(t, x) ∈ (0, T ) × R
n.

This implies (with suitable C > 0) that

‖Gε(t, ·)‖L2 � ‖En(t, ·)‖L1‖N0ε‖L2

+
∫ t

0
‖En(t − s, ·)‖L1‖Vε‖L∞‖Gε(s, ·)‖L2 ds

+
∫ t

0
L0(s)‖En(t − s, ·)‖L1‖Gε(s, ·)‖L2 ds

+
∫ t

0
‖En(t − s, ·)‖L1‖Nε(s, ·)‖L2 ds

� ‖N0ε‖L2 + C log(1/ε)
∫ t

0
(1 + L0(s))‖Gε(s, ·)‖L2 ds

+
∫ t

0
‖Nε(s, ·)‖L2 ds, t ∈ (0, T ),

and, for every a ∈ R,

‖Gε(t, ·)‖L2 =
(

‖N0ε‖L2 + T sup
t∈(0,T )

‖Nε(t, ·)‖L2

)

× exp
(

C log
(

1
ε

) ∫ t

0
(1 + L0(s)) ds

)

= O(εa), ε → 0,

uniformly for t ∈ (0, T ). Therefore, the solution is unique in GC1,L2([0, T ) : R
n).
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Example 3.11. Assume n � 2, T > 0, V ∈ W 1,∞(Rn), and f ∈ C1([0,∞) × R
n)

satisfies f(s, 0) = 0 and |f(s, y1)− f(s, y2)| � C|y1 − y2| for s ∈ [0,∞), y1, y2 ∈ R
n.

Let U0(x) = δ(x), x ∈ R
n, i.e. U0ε = φε(x), ε < 1 (cf. (3.2)). Then, for fixed

ε < 1,

∂tUε(t, x) = (∆x − V (x))Uε(t, x) + f(t, Uε(t, x)), Uε(0, x) = φε

has a unique classical solution Uε in C0([0, T ), L1(Rn)) ∩ C1((0, T ), L1(Rn)) and
Uε(t, ·) ∈ W 2,1(Rn) for every t > 0. Again we have Uε(t, x) ∈ C0((0, T ) : W 2(Rn)),
ε < 1.

We will show that there exists a sequence (Uεν
)ν∈N converging to

U ∈ Lq
loc((0, T ), Rn), 1 � q < n/(n − 1),

in Lq
loc((0, T ), Rn) such that ∂tU = (∆ − V )U in D′((0, T ), Rn).

There holds

‖Uε(t, ·)‖L1 � ‖U0ε‖L1 +
∫ t

0
‖V ‖L∞‖Uε(s, ·)‖L1 ds +

∫ t

0
C‖Uε(s, ·)‖L1 ds,

0 < t < T. (3.20)

This implies ‖Uε(t, ·)‖L1 � C, t ∈ (0, T ), ε < 1.
Let i = 1, . . . , n, t ∈ (0, T ), x ∈ R

n and ε < 1. Then

t1/2∂xiUε(t, x)

=
∫

Rn

t1/2∂yi
En(t, y)U0ε(x − y) dy

+ t1/2
∫ t

0

∫
Rn

∂xi
En(t − s, x − y)Vε(y)Uε(s, y) dy ds

+ t1/2
∫ t

0

1√
t − s

∫
Rn

√
t − s∂xiEn(t − s, x − y)Vε(y)Uε(s, y) dy ds

+ t1/2
∫ t

0

1√
t − s

∫
Rn

√
t − s∂xi

En(t − s, x − y)f(s, Uε(s, y)) dy ds.

This implies that

‖t1/2∂xiUε(t, ·)‖L1

� ‖t1/2∂yi
En(t, ·)‖L1‖U0ε‖L1

+
√

T

∫ t

0

1√
t − s

‖
√

t − s∂xiEn(t − s, ·)‖L1‖Vε‖L∞‖Uε(s, ·)‖L1 ds

+
√

T

∫ t

0

1√
t − s

‖
√

t − s∂xi
En(t − s, ·)‖L1‖Vε‖L∞‖Uε(s, ·)‖L1 ds

+
√

T

∫ t

0

1√
t − s

‖
√

t − s∂xi
En(t − s, ·)‖L1‖f(s, Uε(s, ·))‖L∞‖Uε(s, ·)‖L1 ds.

By (3.13) there exists a constant CT > 0 such that

‖t1/2∂xiUε(t, ·)‖L1 � CT , t ∈ (0, T ), ε < 1. (3.21)
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For the second derivatives we have

t∂xixj Uε(t, x)

=
∫

Rn

t∂yiyj
En(t, y)U0ε(x − y) dy

+ t

∫ t

0

∫
Rn

(t − s)1/2∂xi
En(t − s, x − y)

∂xj
(Vε(y)Uε(s, y))
(t − s)1/2 dy ds

+ t

∫ t

0

∫
Rn

(t − s)1/2∂xiEn(t − s, x − y)
∂xj (f(s, Uε(s, y))Uε(s, y))

(t − s)1/2 dy ds.

Again by the previous step and (3.13) it follows that, for some C > 0,

sup
t∈(0,T )

‖t∂xixj Uε(t, ·)‖L1 � C, ε < 1.

Using equation (3.16), this implies

sup
t∈(0,T )

∥∥∥∥t
∂

∂t
Uε(t, ·)

∥∥∥∥
L1

� C, ε < 1.

Thus {tUε(t, x) : ε < 1} is bounded in W 1,1((0, T ) × R
n) and, as in example 3.8,

there exist a sequence of functions hν(t, x) = tUεν
(t, x), ν ∈ N, and a function

h(t, x) in Lq
loc((0, T ) × R

n), 1 � q < n/(n−1) such that hν → h in Lq
loc((0, T )×R

n),
ν → ∞.

We have

Uεν (t, x) → h(t, x)
t

= U(t, x) in Lq
loc((0, T ) × R

n), ν → ∞,

and U(t, x) ∈ Lq
loc((0, T ) × R

n) satisfies

∂tU = (∆ − V )U + f(t, U) in D′((0, T ) × R
n).
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Appendix A. Generalized semigroups: proofs

First, we give a remark concerning definition 2.4. It is enough that (2.5) holds for
all x ∈ Λ, where Λ is a dense subspace of E. This is a consequence of (2.4) and
(2.6): fix ε < ε0 and let (xn)n be a sequence in Λ such that xn → x ∈ E. Then the
estimate∥∥∥∥Nε(t)x

t
− Wεx

∥∥∥∥ �
∥∥∥∥Nε(t)

t

∥∥∥∥‖x − xn‖ +
∥∥∥∥Nε(t)xn

t
− Wεxn

∥∥∥∥ + ‖Wε‖‖xn − x‖,

implies (2.5) for every x ∈ E.
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Proof of proposition 2.5. Let

(Sε(t))ε ∈ SEM ([0,∞) : L(E)) and (Nε(t))ε ∈ SN ([0,∞) : L(E)).

We will prove that

(Sε(t)Nε(t))ε, (Nε(t)Sε(t))ε ∈ SN ([0,∞) : L(E)),

where Sε(t)Nε(t) denotes the composition of Sε(t) and Nε(t). The other parts of
the assertions can be proved in a similar way.

Let ε < ε0. By (2.2) and (2.3), for some a ∈ R and every b ∈ R,

‖Sε(t)Nε(t)‖ � ‖Sε(t)‖ · ‖Nε(t)‖ = O(εa+b), ε → 0.

The same holds for ‖Nε(t)Sε(t)‖. Properties (2.2) and (2.5) yield

sup
t<t0

∥∥∥∥Sε(t)Nε(t)
t

∥∥∥∥ � sup
t<t0

‖Sε(t)‖ sup
t<t0

∥∥∥∥Nε(t)
t

∥∥∥∥ = O(εa), ε → 0,

for some t0 > 0 and a ∈ R. Also,

sup
t<t0

∥∥∥∥Nε(t)Sε(t)
t

∥∥∥∥ = O(εa), ε → 0,

for some t0 > 0 and a ∈ R.
Let ε < ε0 be fixed. Then∥∥∥∥Sε(t)Nε(t)

t
x − Sε(0)Wεx

∥∥∥∥
=

∥∥∥∥Sε(t)
Nε(t)

t
x − Sε(t)Wεx + Sε(t)Wεx − Sε(0)Wεx

∥∥∥∥
� ‖Sε(t)‖

∥∥∥∥Nε(t)
t

x − Wεx

∥∥∥∥ + ‖Sε(t)Wεx − Sε(0)Wεx‖.

By (2.2) and (2.5) as well as by the continuity of t �→ Sε(t)(Wεx) at zero, it
follows that the last expression tends to zero as t → 0. Similarly, we have∥∥∥∥Nε(t)Sε(t)

t
x − WεSε(0)x

∥∥∥∥
=

∥∥∥∥Nε(t)
t

Sε(t)x − Nε(t)
t

Sε(0)x +
Nε(t)

t
Sε(0)x − WεSε(0)x

∥∥∥∥
�

∥∥∥∥Nε(t)
t

∥∥∥∥‖Sε(t)x − Sε(0)x‖ +
∥∥∥∥Nε(t)

t
(Sε(0)x) − Wε(Sε(0)x)

∥∥∥∥.

Assumptions (2.4), (2.5) and (2.2) imply that the last expression tends to zero
as t → 0. Thus, (2.5) is proved for (Nε(t)Sε(t))ε in both cases.

Proof of proposition 2.7. Let (Nε)ε = (Sε − S̃ε)ε. It is an element of SN ([0,∞) :
L(E)). Let ε < ε̄0 be fixed and x ∈ E. Then

Sε(t)x − x

t
− S̃ε(t)x − x

t
=

Nε(t)
t

x.
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Letting t → 0, this implies that D(Aε) = D(Ãε). Thus

(Aε − Ãε)x = lim
t→0

Sε(t)x − x

t
− lim

t→0

S̃ε(t)x − x

t

= lim
t→0

Nε(t)
t

x = Wεx, x ∈ D(Aε). (A 1)

Since D(Aε) is dense in E, properties (2.5), (2.6) and (A 1) imply that, for every
a ∈ R, ‖Aε − Ãε‖ = O(εa), as ε → 0.

We collect some obvious properties of semigroups (see [24]) in the following propo-
sition.

Proposition A.1. Let A ∈ A/ ∼ and S be a generalized C0-semigroup with the
infinitesimal generator A. Then there exists ε0 ∈ (0, 1) such that, for fixed ε < ε0,
the following hold:

(a) t �→ Sε(t)x : [0,∞) → E is continuous for every x ∈ E;

(b) lim
h→0

1
h

∫ t+h

t

Sε(s) ds = Sε(t)x, x ∈ E;

(c)
∫ t

0
Sε(s)xds ∈ D(Aε), x ∈ E;

(d) Sε(t)x ∈ D(Aε) for every x ∈ D(Aε), t � 0, and

d
dt

Sε(t)x = AεSε(t)x = Sε(t)Aεx;

(e) for every x ∈ D(Aε) and every t, s � 0,

Sε(t)x − Sε(s)x =
∫ t

s

Sε(τ)Aεxdτ =
∫ t

s

AεSε(τ)xdτ.

Let (Sε)ε and (S̃ε)ε be representatives S, with infinitesimal generators (Aε)ε and
(Ãε)ε, respectively. Then the previous proposition implies that, for every a ∈ R and
t � 0, ∥∥∥∥ d

dt
Sε(t) − ÃεSε(t)

∥∥∥∥ = O(εa), ε → 0.

Proof of theorem 2.9. Let ε be small enough and x ∈ D(Aε) = D(Ãε). Proposi-
tion A.1(d) and the chain rule imply that, for every t � 0, the mapping

s �→ S̃ε(t − s)Sε(s)x, s ∈ [0, t],

is differentiable and

d
ds

(S̃ε(t − s)Sε(s)x) = −ÃεS̃ε(t − s)Sε(s)x + S̃ε(t − s)AεSε(s)x, s ∈ [0, t].
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Assumption A = Ã implies Aε = Ãε + Rε, where (Rε)ε is a zero operator net
([Rε] = 0). Since Ãε commutes with S̃ε, it follows that

d
ds

(S̃ε(t − s)Sε(s)x) = S̃ε(t − s)RεSε(s)x, t � s � 0,

for every x ∈ D(Aε). After integration, this implies that

S̃ε(t − s)Sε(s)x − S̃ε(t)x =
∫ s

0
S̃ε(t − u)RεSε(u)xdu, t � s � 0.

Now let s = t. Then

Sε(t)x − S̃ε(t)x =
∫ t

0
S̃ε(t − u)RεSε(u)xdu, t � 0, x ∈ D(Aε). (A 2)

Since D(Aε) is dense in E and all the operators in the above inequality are contin-
uous, we have

Sε(t)y − S̃ε(t)y =
∫ t

0
S̃ε(t − u)RεSε(u)y du, t � 0, y ∈ E.

Let us prove that (Nε)ε = (Sε − S̃ε)ε ∈ SN([0,∞) : L(E)). Equality (A 2) and
definition 2.4 imply that, for some C > 0 and a, ã ∈ R,

sup
t∈[0,T )

‖Nε(t)‖ � sup
t∈[0,T )

∫ t

0
‖S̃ε(t − u)‖‖Rε‖‖Sε(u)‖ du

� TCεa+ã‖Rε‖.

Thus (Nε(t))ε satisfies (2.3) since ‖Rε‖ = O(εb), as ε → 0, for every b ∈ R.
Condition (2.4) follows from the boundedness of (S̃ε)ε and (Sε)ε on each bounded
domain [0, t0), the properties of (Rε)ε and the expression

∥∥∥∥Nε(t)
t

∥∥∥∥ =
∥∥∥∥1

t

∫ t

0
S̃ε(t − u)RεSε(u) du

∥∥∥∥
� ‖S̃ε(t)‖‖Rε‖‖Sε(t)‖ � const., t � t0.

Also,

lim
t→0

Nε(t)
t

x = lim
t→0

S̃ε(t)x − x

t
− lim

t→0

Sε(t)x − x

t
= Rεx, x ∈ D(Aε).

Thus, (2.5) holds for a dense subset of E, and this concludes the proof.
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