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On Safety Metrics related to Aircraft
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ICAO safety standards require low probabilities of collision of the order of 5¬10−D per hour.

Such low probabilities are virtually impossible to confirm through simulations, implying the

need for alternative and related safety metrics, which are easier to use. Several such

alternative safety metrics are discussed in this paper. For example, it is shown that if the r.m.s.

position error σ is less than about one-tenth L}σC 10 of the minimum separation distance

L, then the probabilities of collision will be less than the ICAO standard, in the case of

aircraft flying in opposite directions on parallel tracks. This result is derived from an

analytical formula based on the statistical application of a Gaussian probability distribution

to a worst-case collision scenario and a rather different result L}σC 20 arises for a Laplace

probability distribution. The implication is that the ICAO standard of low probability of

collision can be satisfied, by checking that the r.m.s. position error does not exceed a given

value, though that value is dependent on the shape of the ‘ tail ’ of the probability

distribution. Whether the condition is met can be checked in simulations, by measuring the

drift between the intended and actual trajectory, due to all factors (navigation inaccuracy,

atmospheric disturbances, trajectory drift between position updates, etc.). Thus the r.m.s.

deviation from the intended trajectory can be used as a safety metric, as an alternative to the

probability of collision, using the formulas and tables provided. The formulas concern a

variety of possible safety metrics, including the maximum and cumulative probabilities of

coincidence, probabilities of overlap, collision rates and collision probabilities ; the tables

apply to horizontal and vertical separation in controlled and transoceanic airspace. The

sensitivity of the results to the probability distribution assumed (Gaussian or Laplace)

suggests the introduction of a parametric family exponential of probability distributions, of

which these are particular cases. A choice of the parameter is given that could lead to a

probability distribution with a ‘ tail ’ shape more suited to typical Air Traffic Management

(ATM) scenarios than the Gaussian and Laplace distributions, while being simpler than

multi-parameter distributions.
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.1. INTRODUCTION. One of the important aspects of future ATM scen-
arios< is to increase capacity without reducing safety.= This requires consideration of

smaller separations> together with measures ensuring that the risk of collision is

reduced and the need for collision avoidance manoeuvres? is not increased. The

methods of calculation of probability of collision have been developed in considerable

detail@–
B involving both collectionC

–
<; and analysis<<–

<> of traffic data. A good example

is the Reduced Vertical Separation Minima (RVSM), halving the vertical separation

in controlled air space from 2000 ft to 1000 ft, based on a careful study of collision
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probabilities.<? The latter was based on flight data on aircraft altitude deviations fitted

by appropriate probability distributions,<@–
=> generally non-Gaussian.=?–

=A For the

purpose of establishing a safety metric, the probability of collision is the most obvious

choice, but it is not the only one. Other related parameters may be used as safety

metrics,=B which may be advantageous if they are easier to measure.

In order to identify potential safety metrics, the starting point is to review the

methods of calculation collision probability, which identify the probability of

deviation as an upper bound for some simple ATM scenarios ; alternatively, the

probability of deviation leads to a probability of coincidence and, through the aircraft

size, to a probability of overlap. Use of the general probability distributions from the

theory of statistics, identifies the r.m.s. position error as the essential safety parameter ;

it applies to double or multiple collisions and specifies the probability of deviation.

The safety assessment should consider not only the probability of coincidence, but

also the probability of overlap; the sensitivity of results to the case of different

probability distributions should also be assessed. The preceding relations involve the

minimum separation distance, which is chosen according to the ATM scenario, e.g.

horizontal separation in controlled and transoceanic airspace, and vertical separation.

The preceding one-dimensional assessments can be combined in three-dimensional

estimates for comparison with the ICAO Target Level of Safety (TLS) standard.

Given the sensitivity of the results to the probability distribution assumed, a

parametric family is introduced, and its parameters chosen to match aircraft altitude

deviation data.

2. SAFETY REQUIREMENTS FOR AIRCRAFT COLLISION

AVOIDANCE. A natural safety metric is the probability of collision, for which

the probability of deviation may serve as an upper bound in some conditions. An

alternative is to use the probability of deviation to calculate the probability of

coincidence, leading to the probability of overlap via appropriate integrations.

2.1. Safety volume and collisions due to penetration. To each aircraft may be

associated a ‘safety volume’, so that a collision between aircraft occurs when their

safety volumes first touch. Thus the probability of collision depends on the intended

flight paths of the aircraft, and the deviations from them, which could lead to their

safety volumes overlapping. A simple approximation to the safety volume of an

aircraft is a rectangle with sides equal to the length R
x
, span R

y
and height R

z
of the

aircraft. The exact safety volume would depend on the shape of the aircraft and its

angular position (heading and bank angle) relative to other aircraft ; the rectangular

safety volume is a simple approximation that over-estimates slightly the collision risk

(an even simpler but more crude single aircraft size parameter is the radius R of a

sphere containing the aircraft).

The collision rate between two aircraft is given by the probability that the safety

volume of one of the aircraft is penetrated on any side,@ viz. :

P
r
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z
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where: the (P
x
, P

y
, P

z
) are the probabilities of separations of less than (R

x
, R

y
, R

z
)

respectively along track, across track and in altitude, and (N
x
, N

y
, N

z
) the frequency

with these separation reduce to less than (R
x
, R

y
, R

z
) ; Σxyz

ijk
means the sum of the three
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cyclic permutations of (i, j, k)@ (x, y, z). The frequencies of penetration (N
x
, N

y
, N

z
)

are the probabilities of deviation (P
x
, P

y
, P

z
) divided by the time periods (t

x
, t

y
, t

z
)

when the deviations exceed (R
x
, R

y
, R

z
), viz. :

i@x, y, z : N
i
¯P

i
}t

i
, (2)

and thus:
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In order to obtain a collision rate per aircraft pair, this must be summed over the

safety volume of the aircraft :

P
a
¯&Rx

;

dx&Ry

;

dy&Rz

;

dz P
r

E

F
x, y, z

G

H
. (4)

Note that the probabilities of deviation (P
x
, P

y
, P

z
) have the dimensions of the

inverse of length L−<, the frequency of penetration (N
x
, N

y
, N

z
) has dimensions of the

inverse of length and time L−<T−<, the collision rate (3) has dimensions L−>T−<, and

the collision probability (4) has the dimensions of the inverse time T−<, and thus can

be compared directly to the ICAO TLS standard.

If the collision rate (3) varies slowly over the aircraft size, the collision rate per

aircraft pair (4) simplifies to:
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The frequency of penetration is@ approximately:

N
i
¯P

i
Va

i
}2R

i
, (6)

where: V-
i
is the average rate of change of relative position between aircraft, and

relates to the time spent at separation larger than R
i
by (2) viz. :

t
i
¯ 2R

i
}Va

i
. (7)

Substituting (7) in (5) yields for the collision rate per aircraft pair is given by:
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The collision probability is the collision rate per pair multiplied by the time the

aircraft spend in close proximity:

P
c
¯ 3

prox

P
a
T

a
, (9)

summed for all cases where aircraft fly by each other. This sum is dimensionless and

will depend on the ATM scenario, viz. the geometry of flight paths and traffic flows

along them. These general formulas will be illustrated in some simple cases in the

sequel.

2.2. Probability of deviation as an upper bound. If it is assumed that along track,

across track and altitude flight data deviations are statistically independent, then the

collision probability in three dimensions is the product of three one-dimensional
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collision probabilities. The one-dimensional case of (1)@ (3), e.g. for along track

deviations is that in which there are no across track or altitude penetrations, viz. :
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The integration in (4) now applies only in dx, viz. :

P
a
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y
R
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;

P
r
dx, (11)

and assuming that the collision rate varies slowly over the length of the aircraft, this

is approximated by:
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Bearing in mind that the probabilities of deviation cannot exceed unity :

P
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y
, P

z
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z
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x
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x
}t

x
(13)

the collision rate has the upper bound (13). Using (7) specifies the upper bound to the

collision rate as :
P

a
% <

=
P

x
Va

x
. (14)

For aircraft flying in parallel paths in:

(a) opposite directions, V- −
x
¯ 2V is twice the airspeed:

Va −
x
¯ 2V : P−

a
%P

x
V ; (15)

(b) in the same direction V- +
x
¯ 2∆V is twice the speed error:

Va +
x
¯ 2∆V : P+

a
%P

x
∆V. (16)

Note that the collision rate is much larger for aircraft flying in the opposite direction

than for aircraft flying in the same direction:

P+

a
}P−

a
C∆V}V' 1; (17)

this is partly compensated by the aircraft spending much longer in the proximity of

each other when the total collision probability is calculated, as will be shown in (24).

The result (15) shows that a bound for the collision rate for aircraft flying in

opposite directions along parallel tracks is specified by the probability of deviation

times the airspeed. Thus the collision probability per unit distance:

P
d
@P−

a
}V%P

x
, (18)

has for upper bound the probability of deviation. This is a very simple result, which

supplies an estimate of the order of magnitude of collision probability=B, and will be

used later. In the case of two aircraft on parallel tracks, the probability of collision

(9) is the collision rate per pair P
a

multiplied by the time the aircraft spend in

proximity:
P

c
¯P

a
T

a
. (19)

For the case of aircraft flying in opposite directions the proximity time is short :

T−

a
¯R

x
}2V, (20)

but the collision rate is high (15), leading to a collision probability :

P−

c
¯P−

a
T−

a
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=
P
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https://doi.org/10.1017/S0373463301001667 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463301001667


NO. 1 ON SAFETY METRICS RELATED TO AIRCRAFT SEPARATION 43

Figure 1. In the derivation of the equivalent safety metrics it may be assumed that, for the

minimum separation distance L, the probability of collision is higher in 2-D than in 3-D.

Figure 2. For an encounter geometry in 2-D, i.e. flight paths in the same plane, it may be assumed

that the collision probability is higher the more often the two aircraft are at minimum separation

distance, i.e. higher in Figure 2 than in Figure 1.

Figure 3. It follows from maximum probability of collision will be for two aircraft flying always

at minimum separation distance, e.g. parallel paths, and it will be higher than the probability of

triple or multiple collisions.

one-half the probability of deviation times aircraft size ; for the case of aircraft flying

in the same direction, the time spent in proximity is long, viz. the length l of the flight

path divided by the speed:
T+

a
¯ l}V, (22)

but the collision rate is low (16), leading to a probability of collision:

P+

c
¯P+

a
T+

a
¯P

x
l ∆V}V, (23)

which equals the probability of deviation times the length of the flight path, times the

velocity error divided by the speed. The probabilities of collision for aircraft flying in

the same and opposite directions are in the ratio

P+

c
}P−

c
¯ 2(l}R

x
) (∆V}V) (24)

of twice the length of flight path divided by aircraft size, times the speed error divided

by the speed, showing a competition of opposite effects : (i) the first factor is larger

than unity for aircraft flying in the same direction, a longer distance than the aircraft

size ; (ii) the second factor is smaller then unity, with the speed error being a fraction

of airspeed, smaller for more accurate flying.

2.3. Probability of overlap and aircraft size. The one-dimensional collision

probability may be considered, taking as an example across track deviations, for

aircraft flying in the same plane, with minimum lateral deviation L (Figure 1). The

probability of collision is larger (Figure 2) the more often the aircraft are at minimum

separation distance L. The worst case (Figure 3) is when both aircraft are always at

https://doi.org/10.1017/S0373463301001667 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463301001667


44 L. M. B. C. CAMPOS AND J. M. G. MARQUES VOL. 55

the minimum separation distance L, which implies that they fly in the same direction

at the same speed. If the probability of lateral deviation x is P
<
(x) for the first aircraft

and P
=
(L®x) for the lateral deviation L®x of the second aircraft, the probability of

coincidence is :
P
<=

(x)¯P
<
(x)P

=
(L®x). (25)

The cumulative probability of coincidence for all possible lateral positions :

Pa (L)¯&+¢

−¢

P
<
(x)P

=
(L®x)dx (26)

is the convolution of the probabilities of deviations of each aircraft. The probability

of overlap is obtained approximately<? by integrating over the aircraft size :

P
b
C&R

;

Pa
x
(y)dy. (27)

Substitution of (26) into (27) gives as approximate formula for the probability of

overlap:

P
b
C&R

;

dy&+¢

−¢

dx P
<
(x)P

=
(L®x), (28)

to be compared with<? the exact value:

P
b
¯&+¢

−¢

dx P
<
(x)&x+R

x−R

dy P
=
(y®x). (29)

Note that the probability of deviation P
<
, P

=
has the dimensions of inverse of length

L−<, the probability of coincidence (25) has the dimensions of inverse square of length

L−=, the cumulative probability of coincidence (26) has the dimensions inverse of

length L−<, and the probability of overlap (27) has no dimensions. The cumulative

probability of coincidence (26) has the same dimensions as (18), allowing a

comparison with the ICAO TLS standard. In order to consider the various

probabilities associated with collisions in more detail, it is necessary to assume a

probability distribution for the deviations.

3. USE OF GENERAL PROBABILITY DISTRIBUTIONS AND

STATISTICS. The central limit theorem of the theory of statistics suggests a

Gaussian probability distribution for position error, although there are counter-

arguments that make it advisable to consider alternative probability distributions.

The Gaussian distribution can serve as an example that double collisions are more

likely than multiple collisions ; it also serves as example to calculate the maximum

probability for coincidence between two aircraft.

3.1. The effect of r.m.s. position error. Consider next, two aircraft flying on

parallel paths at a constant distance L (Figure 3) equal to the minimum separation

distance. In this collision scenario, the aircraft can at all times drift into positions less

than a minimum separation distance apart. The minimum separation distance is in

general smaller in the vertical direction than in the lateral or longitudinal direction;

a similar analysis would apply to aircraft on the same flight path with a given

longitudinal separation. In general, it will be assumed that along track, across track

and altitude errors are statistically independent. Thus the three-dimensional collision
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Figure 4. In the case of aircraft flying on parallel paths a minimum separation distance L, a

coincidence will occur if the lateral position errors are x and L®x, for any value of x.

problem is decoupled into three one-dimensional collision problems. Each may have

different parameters, e.g. separation distances but the basic analysis is the same.

A convenient assumption would be that the position error satisfies Gaussian

statistics for both aircraft. Note that the central limit theorem of the theory of

probability =@ indicates that a long sequence N of statistically independent events, in

this case position errors, tend to a Gaussian distribution with an accuracy of order

1}oN, if the Lindeberg condition=A is met, that events with large separation make a

small contribution to the total variance. These two conditions, viz. (i) Lindeberg and

(ii) large number of events can be questioned: aircraft collisions are extremely rare

events, involving large deviations from the mean. Thus the number of statistically

independent events may not be enough to justify a law of large numbers. Also,

collisions correspond to the ‘tails ’ of the probability distribution, i.e. the large

deviations, which the Lindeberg condition assumes to make a small contribution to

the variance. The theoretical counter-arguments to the Gaussian distribution seem to

be supported by observations of navigation errors,<? which suggest<@–
=> that some

form of generalized exponential distribution could be more appropriate. In order to

assess the sensitivity of results to the assumed probability distribution, the Gaussian

is considered first, then the Laplace, and then an exponential parametric family

including both is considered. Starting with the Gaussian case, the probability of the

first aircraft having a lateral position error x is :

P
<
(x)¯

1

σo2π
exp

A

B

®
x=

2σ=

C

D

, (30)

where: σ is the r.m.s. position error.

3.2. Case of double vs. multiple coincidences. The Gaussian probability dis-

tribution (30) is taken with zero mean, because the average position error should be

zero, i.e. the mean flight path is a straight line. The Gaussian probability distribution

with zero mean (30) involves a single parameter σ, which is the r.m.s. position error

due to all factors affecting the aircraft flight path, e.g. atmospheric disturbances,

inaccuracies of the navigation system, pilot or controller distraction, aircraft drift

between position fixes, etc. The same Gaussian statistics are assumed to apply to the

second aircraft, so

P
=
(x)¯P

<
(L®x)¯

1

σo2π
exp

A

B

®
(L®x)=

2σ=

C

D

, (31)

is the probability it has a lateral position error L®x, leading (Figure 4) to a

coincidence with the first aircraft at position x, if both aircraft were represented as
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mass points. Taking into account finite aircraft size, e.g. R
<
for the first and R

=
for the

second, means that a collision occurs when the centres of mass are at a distance of not

more than R@ (R
<
­R

=
)}2; this approach will be followed subsequently with the

Laplace probability distribution. In the present case of the Gaussian distribution, it

will be assumed that the effect of aircraft size is to reduce the minimum separation

distance from L to L®R (the conditions of validity of this assumption will be

discussed later) ; in this case, the aircraft size is more important if it is not negligible

relative to the separation, and less important otherwise.

Using the preceding assumptions, the probability of coincidence of the two aircraft

at position x is thus the product of the two probabilities.

P
<=

(x)¯P
<
(x)P

=
(x)¯P

<
(x)P

<
(L®x). (32)

The probability of coincidence of three aircraft

P
<=>

(x)¯P
<
(x)P

=
(x)P

>
(x)%P

<=
(x), (33)

could never exceed the probability of coincidence of two aircraft, since P
>
(x)% 1.

Thus the highest coincidence probability remains that specified by (32) for two

aircraft.

3.3. Position for the highest probability of coincidence. From (30), (31) and (32),

it follows that the probability that two aircraft, flying at minimum separation distance

L, with Gaussian statistics with the same r.m.s. position error σ, coincide at position

x is given by:

P
<=

(x)¯
1

2πσ>

exp

A

B

®
x=­(L®x)=

2σ=

C

D

. (34)

Note that the coincidence is possible for any lateral position x from ³¢ i.e.

®¢!x!­¢. The extremum in the probability of collision occurs if the first

derivative is zero:

0¯
dP

<=

dx
(x)¯®

1

2πσ ?

(2x®L)exp

A

B

®
x=­(L®x)=

2σ=

C

D

, (35)

i.e. the extremum in the coincidence probability occurs for 2x®L¯ 0, i.e. x¯L}2

halfway between the two parallel paths (Figures 5 and 6).

Figure 5. Each aircraft on a parallel path at minimum separation distance L, with identical

Gaussian distributions of position error, leads to a maximum probability of coincidence P
m

at

mid-position, and cumulative coincidence probability P- which depends on the region of overlap.

https://doi.org/10.1017/S0373463301001667 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463301001667


NO. 1 ON SAFETY METRICS RELATED TO AIRCRAFT SEPARATION 47

Figure 6. Both the maximum probability of coincidence per square mile P
m
, and the cumulative

probability of coincidence per mile P- , reduce as the r.m.s. position error σ becomes smaller

relative to minimum separation distance L, ensuring that the ICAO Target Level of Safety is met

for values of less than about one-tenth σ}L% 0±1, if Gaussian statistics are used.

Thus the position for extreme probability of coincidence is x¯L}2, and is given

by:

x¯L}2: P
m

¯P
<=

(L}2)¯
1

2πσ =

exp

A

B

®
E

F

L

2σ

G

H

=
C

D

, (36)

which is the extremum for the probability of coincidence. This extremum is actually

a maximum, because the second derivative :

d=P
<=

dx=

(x)¯®
1

πσ ?

A

B

1®
E

F

2x®L

2σ =

G

H

=
C

D

exp

A

B

®
x=­(L®x)=

2σ =

C

D

, (37)

is negative at a mid-position:

d=P
<=

dx=

E

F

L

2

G

H

¯®
1

πσ ?

exp

A

B

®
L=

2σ =

C

D

! 0, (38)

Thus the maximum probability of coincidence (36) occurs at the mid-position

between the two flight paths, as should be expected for two aircraft with identical

r.m.s. position errors σ.

4. MAXIMUM AND CUMULATIVE PROBABILITIES OF COINCI-

DENCE OR OVERLAP. Since coincidences can occur at all positions, i.e. not

only at the position of maximum probability, it is appropriate to calculate also a

cumulative probability of coincidence over all possible positions of coincidence. The

latter leads to a formula relating the probability of coincidence to the r.m.s. position

error, for a given minimum separation distance. In order to assess the sensitivity of

the coincidence probabilities to the choice of distributions, an exponential is

considered instead of Gaussian, as well as integration leading to the probability of

overlap.

4.1. Cumulative probability of coincidence for all positions. The highest prob-

ability of coincidence (36) is not the only relevant result, because coincidences can

also occur for other positions x1L}2, even if they are less likely ; in fact, the
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probability of coincidence (34) decays rapidly for x greater than L, but remains close

to the maximum for x close to L}2. One way to address this aspect is to consider the

total of cumulative probability of coincidence, summed or integrated over all possible

positions ®¢!x!­¢ transverse to the flight paths and in the same plane, viz. :

Pa @&+¢

−¢

P
<=

(x)dx, (39)

which is specified (34) by:

Pa ¯
1

2πσ=
&+¢

−¢

exp

A

B

®
2x=­L=®2xL

2σ=

C

D

dx (40)

and thus depends only on separation distance L and r.m.s. position error σ. In order

to determine explicitly this relation P- (L, σ), the integral over x in (40) must be

evaluated.

The change of variable :

y@ (x®L}2)}σ, dx¯σdy, (41a, b)

leads to:

y=¯ (2x=®2xL­L=}2)}(2σ=)¯ (2x=®2xL­L=)}(2σ=)®L=}4σ=, (42)

and transforms (41) into:

Pa ¯
1

2πσ
exp

A

B

®
L=

4σ=

C

D

&+¢

−¢

exp[®y=]dy, (43)

where the last factor:

&+¢

−¢

exp[®y=]dy¯oπ, (44)

is the well-known Gaussian integral.

4.2. Probability of coincidence versus separation distance and r.m.s. position error.

Substituting (44) into (43) leads to:

Pa ¯
1

2σoπ
exp

A

B

®
E

F

L

2σ

G

H

=
C

D

, (45)

namely, the cumulative probability of coincidence P- as a function of separation

distance L and r.m.s. position error σ due to all causes. For a fixed separation distance

L, it is possible to use as a safety metric, instead of the cumulative probability of

coincidence P- , the r.m.s. position error σ.

Before proceeding to evaluate the result (45), it may be worthwhile to recall the

eight assumptions related to its derivation, namely that :

(a) the probability of coincidence in 2-D is higher than in 3-D;

(b) the probability of coincidence in 2-D is highest for paths spaced by the

minimum separation distance L at all times;

(c) the probability of coincidence between two aircraft is higher than that between

three or more aircraft ;

(d) the probability of lateral position error is specified by Gaussian statistics with

zero mean and variance σ = ;
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(e) that along track, across track and altitude errors are statistically independent,

so that each can be treated as a separate one-dimensional problem, with

different parameters, e.g. separation distances ;

(f ) that the effect of finite aircraft sizes R
<

and R
=
, is to reduce the minimum

separation distance from L to L®R, with R@ (R
<
­R

=
)}2 specifying the

distance of closest approach of the two aircraft ;

(g) that the aircraft fly in unbounded airspace without altitude or terrain

limitations, or restricted areas, which may be true in cruise, but not in other

flight phases ;

(h) the aircraft dynamics is not taken into account, allowing arbitrary displace-

ments, and thus leading to an over-estimate of the probability of coincidence,

i.e. to upper bounds.

Since several of the assumptions have already been discussed, one may proceed to

consider (d) and (g) ; they are re-considered next, to assess the extent to which they

affect coincidence probabilities.

4.3. Effect of aircraft size and Laplace distribution on probability of overlap.

There are both theoretical and observational<?, =? counter-arguments to the use of a

Gaussian probability distribution for position errors, and a Laplace distribution has

often been used@
–
B instead:

P
;
(x)¯

1

σo2
exp

A

B

®o2
rxr
σ

C

D

, (46)

where: σ is again the r.m.s. position error. The coincidence probabilities are mainly

affected by large deviations x(σ, i.e. the ‘ tails ’ of the probability distribution; since

the Laplace distribution (46) decays more slowly than the Gaussian (30), it should

lead to larger probabilities of coincidence. Besides this difference from the preceding

calculation, the joint probability that aircraft one is at position x and aircraft two is

at position y will be considered:

P
;
(x, y)¯P

;
(x)P

;
(y)¯

1

2σ =

exp

A

B

®
o2

σ
(rxr­ryr)

C

D

, (47)

so that an overlap occurs if the separation L®x®y is less than half the sum

R@ (R
<
­R

=
)}2 of aircraft sizes R

<
and R

=
:

Ph ¯&
rL−y−xr%R

P
;
(x, y)dy ; (48)

substitution of (47) in (48), for the case x, y" 0:

Ph ¯
e
−

o
=x

σ

2σ=
&L−x+R

L−x−R

e
−

o
=y

σ dy, (49)

leads to a result :

Ph ¯
e
−

o
=x

σ

2o2σ

12
34

e−
o
=
L−x−R

σ ®e−
o
=
L−x+R

σ

56
78
, (50)
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which is independent of x :

Ph ¯
1

σo2
e
−

o
=L

σ sinh

A

B

o2R

σ

C

D

. (51)

This result may be simplified for ξ@o2L}σ large or small, noting that sinhξC ξ for

ξ' 1 and sinhξC eξ}2 for ξ( 1, so that :

(a) if the aircraft size is small relative to the r.m.s. position error, which is the usual

case, the probability of overlap:

Ro2'σ : Ph C
R

σ=

e−
o
=
L
σ, (52a)

gains a small factor R}σ' 1 and is proportional to aircraft size ;

(b) in the opposite case, which is less likely, of aircraft size large relative to the r.m.s.

position error, in the probability of overlap:

Ro2(σ : Ph C
1

2o2σ
e

−
o
=(L−R)

σ , (52b)

the aircraft size subtracts from the separation.

If the aircraft size is much smaller than the separation L<R, then the cumulative

joint probability becomes independent of aircraft size. Since the cumulative joint

probability (51) is independent of position, the product by the aircraft size specifies

(27) the probability of overlap:

P
b
¯RPh ¯

R

σo2
e−

o
=
L
σ sinh

E

F

o2R

σ

G

H

, (53)

which is dimensionless. The Laplace distribution (46) leads to the cumulative joint

probability (51), which is generally larger than the cumulative probability of

coincidence (45) associated with the Gaussian distribution (30), viz. :

(a) the main difference is the argument of the exponential, viz. o2L}σ in (51) and

one-eighth the square (L}2σ)=¯ (o2L}σ)=}8 in (45), the latter being much

larger for L}σ( 1, and leading to smaller probabilities ;

(b) the multiplying factor is also larger 1}(σo2)E 0±707}σ for the Laplace (51)

than for the Gaussian 1}(2σoπ)E 0±282}σ distribution (45).

5. APPLICATION TO SEPARATION IN CONTROLLED AND

UNCONTROLLED AIRSPACE. The difference between the Gaussian and

Laplace distributions will become apparent in the application to vertical separation

and horizontal separation in controlled and uncontrolled airspace.

5.1. Application to horizontal separation in controlled airspace. Gaussian cumula-

tive probability of coincidence (45) is most convenient use in logarithmic form:

logPa ¯®[L}(2σ)]=®logσ®log 2® <

=
logπ, (54)

where: the constant values can be inserted:

logPa ¯®0±25(L}σ)=®logσ®1±2655. (55)
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Taking L
h
¯ 5 nm for the lateral separation distance specified by ICAO in controlled

airspace leads to:

logPa
h
¯®6±25}σ =

h
®logσ

h
®1±2655, (56)

as the relation between cumulative probability of coincidence P-
h
and r.m.s. position

error σ
h
in Table 1. It can be seen from the table that large r.m.s. horizontal position

Table 1. Equivalent safety metrics for five nautical mile horizontal separation.

Probability

distribution Gaussian Laplace

r.m.s. position

error

Cumulative

probability of

coincidence

Maximum probability

of coincidence Exponential factor

Cumulative joint

probability

σ
h

(nautical miles)

P-
h

(per-nautical mile)

P
mh

(per-square nautical mile)

P4
fh

(per nautical mile)

P4
h

(per nautical mile)

3 4±70¬10−= 8±83¬10−> 4±46¬10−= 6±92¬10−?

2 2±96¬10−= 8±34¬10−> 2±06¬10−= 4±79¬10−?

1 5±45¬10−? 3±07¬10−? 1±20¬10−> 5±58¬10−@

0±9 1±40¬10−? 8±76¬10−@ 6±08¬10−? 3±14¬10−@

0±8 2±02¬10−@ 1±43¬10−@ 2±56¬10−? 1±49¬10−@

0±7 1±16¬10−A 9±38¬10−B 8±29¬10−@ 5±51¬10−A

0±6 1±36¬10−C 1±28¬10−C 1±80¬10−@ 1±40¬10−A

0±5 7±83¬10−<= 8±84¬10−<= 2±04¬10−A 1±90¬10−B

0±4 7±65¬10−<C 1±08¬10−<B 7±43¬10−C 8±66¬10−D

0±3 6±51¬10−>< 1±23¬10−>; 2±73¬10−<; 4±96¬10−<<

0±2 1±95¬10−AC 5±51¬10−AC 3±12¬10−<@ 7±32¬10−>;

0±1 1±04¬10−<>> 5±85¬10−<=D 2±76¬10−>; 1±33¬10−>;

errors σ
h

of 2 to 3 nm, still below the minimum separation distance L
h
¯ 5 nm, give

high cumulative probabilities of coincidence. A smaller r.m.s. position error of the

order 0±7 to 1 nm would lead to lower probabilities of coincidence (10−? to 10−A),

which could be tested in simulations; the aim of these simulations would be to check

that the formula (56) for the cumulative probability of coincidence. The main use of

the formula (56) is for smaller r.m.s. position errors, as it shows that a value of

σ% 0±5 nm leads to a cumulative probability of coincidence of less than P-
h

% 7±83¬10−<= per nautical mile ; for an aircraft cruising at a speed not exceeding

V¯ 600 kt, this leads to a cumulative probability of collision P-
h
V% 4±7¬10−D per

hour, which meets the ICAO requirement of less than 5¬10−D in the conditions for

which (18) holds.

Specifying a larger r.m.s. position error quickly increases the probability of collision,

e.g. to P-
h
% 1±36¬10−C for σ

h
¯ 0±6 nm. A smaller r.m.s. position error decreases

coincidence probability to minute levels, e.g. P-
h
% 6±51¬10−>< for σ¯ 0±3 nm, but

this places an unnecessarily severe demand on position accuracy, which could be

costly to meet in terms of aircraft on-board equipment and hard to comply with by

the ground-based ATM system. The r.m.s. position error σ
h
¯ 0±5 nm of one-tenth the

separation distance L
h
¯ 5 nm¯ 10σ

h
, is a fairly robust result for meeting the ICAO

target safety level (TLS), since:
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(a) a larger r.m.s. position error will rapidly increase the cumulative probability of

coincidence to unacceptable levels ; and

(b) a smaller r.m.s. position error reduces the cumulative probability of coincidence,

but is unnecessary.

The ICAO target level of safety (TLS) of low probability of collision (5¬10−D per

hour) can be obtained, with a five nautical mile minimum separation distance L
h
¯

5 nm, by requiring a σ
h
¯ 0±5 nm r.m.s. position error; the latter leads to a cumulative

probability of coincidence not exceeding P-
h
% 7±83¬10−<= per nautical mile flown, or

P-
h
D% 1±69¬10−B for a D¯ 40000 km¯ 21587 nm flight around the earth on a great

circle. This low upper bound for the cumulative probability of coincidence makes it

unnecessary todemandahigher r.m.s. positionaccuracy.Todegrade the r.m.s. position

accuracy would quickly lead to much higher probabilities of coincidence. The safety

standard of 0±5 nm r.m.s. position error should include all causes of position error, e.g.

inaccuracy of the navigation system, effects of atmospheric disturbances, trajectory

drift between updates of position fixes, etc. The 0±5 nm r.m.s. position error is easy to

use as a safety metric in simulations: it just requires calculation of the r.m.s. deviation

from the desired flight path. The preceding discussion has been based on the Gaussian

cumulative probability of coincidence (56) per nautical mile flown by one aircraft. It

is also possible to use the Gaussian maximum probability of coincidence (36) per

square nautical mile, i.e. per nautical mile flown by each aircraft :

P
m

¯ (0±1592}σ =)exp [®0±25(L}σ)=], (57)

or for five nautical mile minimum separation distance:

P
mh

¯ (0±1592}σ =
h
)exp(®6±25}σ =

h
). (58)

The values of the Gaussian maximum probability of coincidence (58) are indicated in

Table 1, for the same values of r.m.s. position error σ
h

as used for the cumulative

probability of coincidence (56). For the previously recommended r.m.s. position error

not exceeding σ% 0±5 nm, the maximum probability of coincidence would be

P
mh

% 8±84¬10−<= per nautical mile flown by each aircraft. For a D¯ 21587 nm

flight around the earth on a great circle, the maximum probability of coincidence

would be P
mh

D=% 4±12¬10−>.

Table 1 also includes in the fourth column the factor in the exponential joint

probability (51) that is independent of aircraft size :

Ph
f
¯

1±4142

σ
exp

A

B

®1±4142
L

σ

C

D

, (59)

in the case of five nautical mile lateral separation:

Ph
fh

¯
1±4142

σ
exp[®7±0711}σ]. (60)

The aircraft size appears in the exponential joint probability (51) :

Ph ¯Ph
f
sinh [1±4142R}σ], (61)

indicated in the fifth column of Table 1 for an aircraft span R
y
¯ 200 ft¯ 60±8 m¯

3±29¬10−=nm:
Ph

h
¯Ph

fh
sinh [4±6525¬10−=}σ]. (62)
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Table 2. Cumulative and maximum probabilities of deviation for vertical separation.

Probability

distribution Gaussian Laplace

Vertical

separation

error

Cumulative

probability of

coincidence

Maximum probability

of coincidence Exponential factor

Cumulative joint

probability

σ
v

( ft)

P-
v

(per-nautical mile)

P
mv

(per-square nautical mile)

P4
fv

(per nautical mile)

P4
v

(per nautical mile)

500 1±26 8±66 1±02 1±44¬10−<

400 8±99¬10−< 7±70 6±26¬10−< 1±11¬10−<

300 3±55¬10−< 4±06 2±57¬10−< 6±80¬10−=

200 1±65¬10−= 2±84¬10−< 3±65¬10−= 1±32¬10−=

100 2±38¬10−<; 8±17¬10−D 6±20¬10−@ 4±76¬10−@

90 7±51¬10−<> 2±86¬10−<< 1±43¬10−@ 1±24¬10−@

80 2±33¬10−<A 9±97¬10−<@ 2±26¬10−A 2±27¬10−A

70 1±70¬10−=< 8±35¬10−=; 2±07¬10−B 2±47¬10−B

60 1±98¬10−=D 1±13¬10−=B 8±32¬10−D 1±22¬10−C

50 1±28¬10−?= 8±75¬10−?< 8±95¬10−<< 1±73¬10−<;

40 1±28¬10−AB 4±66¬10−AA 9±50¬10−<? 2±70¬10−<>

30 1±32¬10−<<D 1±98¬10−<<B 9±65¬10−<D 5±05¬10−<C

It can be seen in Table 1 that the correction for aircraft size (62) is more important

for large r.m.s. position error and not very significant for small σ. Thus the Laplace

joint probability is dominated, for small r.m.s. position error σ, by the exponential

factor (60), which ismuch larger than the Gaussian. The r.m.s. position errorwas taken

as low as σ¯ 0±1 nm, because a small Laplace joint probability requires a smaller

value of σ than a comparable Gaussian cumulative probability. A r.m.s. position error

of σ¯ 0±25 nm or L}σ¯ 20 is needed for a Laplace exponential factor P4
fh

¯
2±94¬10−<= per nautical mile, and a cumulative joint probability P4

h
¯ 5±50¬10−<> per

nautical mile ; this meets the ICAO TLS standard of S¯ 5¬10−D per hour, for speeds

up to V¯S}P4
h
¯ 9±09¬10> kt, which substantially exceeds the speed capability of

current airliners.

5.2. Application to reduced vertical separation minima. The values indicated in

Table 1 are calculated from (56), (58), (60) and (62), and apply to a five nautical mile

minimum horizontal separation distance in controlled airspace; the formulae (55),

(57), (59) and (61) could also be applied to other minimum separation distances, e.g.

to the vertical instead of the horizontal separation distance. The horizontal separation

distance L
h
¯ 5 nm used in (56, 58, 60, 62) is that which applies to flight in controlled

air space, for which the vertical separation is L
v
¯ 1000 ft¯ 0±1645 nm at lower flight

levels (below FL 290) ; the same vertical separation distance is being applied for

higher flight levels<? where the earlier value of 2000 ft is being replaced by the RVSM

(Reduced Vertical Separation Minima) of L
v
¯ 1000 ft¯ 305 m¯ 0±1645 nm. Using

this value in (55) specifies the cumulative probability of coincidence due to error in

vertical position σ
v
:

logPa
v
¯®6±7631¬10−>}σ=

v
®logσ

v
®1±2655, (63)

which is indicated in Table 2. The cumulative probability of coincidence is relatively

large for vertical separation error of more than 200 ft and can even exceed unity, since
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the values indicated are upper bounds. For a vertical separation error of σ¯ 100 ft,

the cumulative probability of coincidence does not exceed P-
v
% 2±38¬10−<; per

nautical mile or P
v
D% 5±14¬10−A for a great circle tour of the earth. The

recommended r.m.s. error for vertical separation is smaller σ
v
¯ 90 ft, i.e. about one-

eleventh of the minimum vertical separation L
v
¯ 1000 ft, i.e. σ

v
}L

v
¯ 0±09. Note that

the recommended r.m.s. horizontal position error σ
h
¯ 0±5 nm was one-tenth σ

h
}L

h
¯

0±1 of the minimum horizontal separation L
h
¯ 5 nm. The reason for a smaller

relative value here is that a r.m.s. vertical position error σ
v
¯ 90 ft leads to an upper

bound for the cumulative probability of coincidence P-
v
% 7±51¬10−<>per nautical

mile ; for the fastest commercial aircraft (Concorde), which cruises at a speed of V¯
1166 kt, the cumulative probability of collision does not exceed P-

v
V% 8±76¬10−<;

per hour, which meets the ICAO TLS standard of less than 5¬10−D per hour, in the

condition for which (18) holds.

The Gaussian maximum probability of coincidence per square mile (57), can also

be calculated for the reduced vertical separation minima of L
v
¯ 1000 ft¯ 0±1645 nm:

P
mv

¯ (0±1592}σ =
v
)exp(®6±7631¬10−>}σ =

v
), (64)

and is also indicated in Table 2. For the recommended r.m.s. vertical position error of

σ
v
¯ 90 ft, the maximum probability of coincidence is P

mv
% 2¬10−<< per nautical

mile flown by each aircraft, or P
mv

D=% 1±33¬10−= for a great circle tour of the earth

suggesting that a smaller r.m.s. position error be considered. For two aircraft with a

cruise speed not exceeding V% 547 kt, the maximum probability of coincidence

P
mv

% 9±97¬10−<@ per square nautical mile, for a σ
v
¯ 80 ft vertical r.m.s. position

error, leads to an upper bound for the maximum probability of coincidence of

P
mv

V =% 2±98¬10−D per flight hour squared, below the ICAO modified TLS value of

5¬10−Dper hour squared.

The Laplace exponential factor (59) for the same vertical separation is given by:

Ph
fv

¯
1±4142

σ
exp

A

B

®
0±2326

σ

C

D

, (65)

per nautical mile, and is not affected by aircraft size ; the values in Table 2 show that

the Gaussian cumulative probability of coincidence is much smaller than for the

Laplace exponential factor. The aircraft size enters through the factor (61) in the

cumulative joint probability :

Ph
v
¯Ph

fv
sinh [1±1631¬10−=}σ], (66)

where the aircraft size was taken to be the height R
z
¯ 50 ft¯ 15±2 m¯

8±2245¬10−> nm. The correction for aircraft size is less than unity for small r.m.s.

altitude error σ! 90 ft and becomes larger than unity for σ" 90 ft. A rather smaller

r.m.s. altitude error σ
h
¯ 40 ft, which is very small compared to the separation L

v
}σ

v

¯ 25 leads to a Laplace cumulative joint probability P4
h
¯ 2±70¬10−<> per nautical

mile, which is consistent with the ICAO TLS standard S¯ 5¬10−D per hour for

speeds up to V¯S}P4
h
¯ 1±85¬10? kt.

5.3. Application to horizontal separation for transoceanic routes. The vertical

separation L
v
¯ 1000 ft applies both to flight in controlled air space and to

transoceanic routes at lower flight levels. The lateral separation for the latter is
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Table 3. Application to horizontal separation in transoceanic routes.

Probability

distribution Gaussian Laplace

Vertical

separation

error

Cumulative

probability of

coincidence

Maximum

probability

of coincidence Exponential factor

Cumulative joint

probability

σ
t

(nautical miles)

P-
t

(per nautical mile)

P
mt

(per-square

nautical mile)

P4
ft

(per-square

nautical mile)

P4
t

(per-square

nautical mile)

40 1±22¬10−= 5±67¬10−@ 4±24¬10−> 3±70¬10−A

30 3±46¬10−> 6±51¬10−@ 2±79¬10−> 3±24¬10−A

20 1±99¬10−> 4±19¬10−@ 1±02¬10−> 1±78¬10−A

10 3±48¬10−A 1±96¬10−A 2±92¬10−@ 1±02¬10−B

9 4±68¬10−B 2±94¬10−C 1±27¬10−@ 4±92¬10−C

8 2±75¬10−C 1±94¬10−D 4±38¬10−A 1±91¬10−C

7 4±25¬10−<; 3±43¬10−<< 1±10¬10−A 5±48¬10−D

6 6±53¬10−<> 6±14¬10−<? 1±70¬10−B 9±89¬10−<;

5 1±31¬10−<B 1±48¬10−<C 1±21¬10−C 8±44¬10−<<

4 2±63¬10−=@ 3±70¬10−=B 2±17¬10−D 1±89¬10−<<

3 3±50¬10−?@ 6±58¬10−?A 2±45¬10−<> 2±85¬10−<@

2 2±71¬10−DD 7±65¬10−<;; 2±65¬10−<D 4±62¬10−=<

L
t
¯ 60 nm rather than L

h
¯ 5 nm for the former. Thus the Gaussian cumulative

probability of coincidence (55) is given by:

logPa
t
¯®900}σ =

t
®logσ

t
®1±2655, (67)

and is indicated in Table 3 for several values of the r.m.s. horizontal position error. For

the case of interest, i.e. σ
t
much smaller than L

t
¯ 60 nm, the cumulative Gaussian

probability of coincidence decreases with σ
t
, rapidly for σ

t
less than 20 nm. For a

recommended r.m.s. horizontal position error not exceedingσ
t
¯ 6 nm, the cumulative

probability of coincidence does not exceed P-
t
% 6±53¬10−<> per nautical mile ; for a

great circle tour of the earth D¯ 40 000 km¯ 21587 nm, the cumulative probability

of coincidence would be less than P-
t
D% 1±41¬10−C. For Concorde cruising at twice

the speed of sound in the stratosphere V¯ 1166 kt, the cumulative probability of

coincidence P-
t
V% 7±61¬10−<; per flight hour, meets the ICAO TLS standard of no

more than 5¬10−D per hour, in the conditions for which (18) holds. Note that the

recommended r.m.s. horizontal separation error σ
t
¯ 6 nm is about one-tenth σ

t
}L

t
¯

0±1 of the horizontal separation L
t
¯ 60 nm for transoceanic routes, as it was ten

percent for the horizontal separation σ
h
}L

h
¯ 0±1 in controlled airspace, and a little

less (nine percent) σ
v
}L

v
¯ 0±09 for the vertical separation in both cases.

Table 3 also indicates the maximum probability of coincidence (57) for the

horizontal separation L
t
¯ 60 nm, calculated from:

P
mt

¯
0±1592

σ =
t

exp

A

B

®
900

σ =
t

C

D

. (68)

The maximum probability of coincidence is relatively small and reduces slowly as the

r.m.s. horizontal position error reduces from σ
t
¯ 30 nm to 10 nm; this result is of
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possible interest for fast time simulations. For the recommended r.m.s. horizontal

position error σ
t
¯ 6 nm, the maximum probability of coincidence is P

mt
% 6±19¬

10−<? per square nautical mile. For two aircraft on a great circle tour of

the earth D¯ 21587 nm, the maximum probability of coincidence would be

P
mt

D=% 2±86¬10−@, if they flew in parallel all the time at minimum separation

distance. For two aircraft cruising at V% 547 kt, the maximum probability of

coincidence would not exceed P
mt

V =% 1±83¬10−C per flight hour squared, somewhat

in excess of the modified ICAO TLS standard 5¬10−D per flight hour squared.

The Laplace exponential factor probability (59) for lateral separation L
t
¯ 60 nm

in transoceanic airspace is given by:

Ph
ft

¯
1±4142

σ
exp

A

B

®
84±853

σ

C

D

, (69)

per nautical mile, and is again higher than the Gaussian cumulative coincidence

probability, as seen in Table 3. The correction (61) for aircraft size is :

Ph
t
¯Ph

ft
sinh[3±4894¬10−=}σ], (70)

for an aircraft length R
x
¯ 150 ft¯ 45±7 m¯ 2±4674¬10= nm. For these large r.m.s.

position errors σ&2 nm aircraft size is important. A r.m.s. position error of σ
t
¯ 3 nm,

very small compared with the separation L
t
}σ

t
¯ 20 nm leads to a Laplace cumulative

joint probability P4
t
¯ 2±85¬10−<@ per nautical mile, which is much smaller than the

exponential factor P4
ft

¯ 2±45¬10−<> per nautical mile. Both would meet the ICAO

TLS standard for all current aircraft speeds V%S}P4
ft

¯ 2±04¬10? kt and V%S}P4
t

¯ 1±75¬10A kt, the latter by a wide margin.

6. THREE-DIMENSIONAL SEPARATION WITH GAUSSIAN OR

LAPLACIAN STATISTICS. The preceding results on one-dimensional

separation can be extended to three-dimensions, and show again much sensitivity to

the tail shape of probability distributions, as can be confirmed from simple order-of-

magnitude estimations.

6.1. Separation in altitude, and along and across track. The preceding analysis of

one-dimensional separation, can be combined for two and three-dimensional

separation, for example; for aircraft staggered along parallel tracks. Consider :

(a) a L
y
¯ 60 nm lateral separation in transoceanic airspace, with σ

y
¯ 5 nm r.m.s.

position error, leading by Table 3 to a Gaussian cumulative probability of coin-

cidence P
y
¯ 1±31¬10−<B (Laplace joint cumulative probability 8±44¬10−<<)

per nautical mile ;

(b) a L
x
¯ 5 nm along track stagger, with a σ

x
¯ 0±7 nm longitudinal position

error, leading by Table 1 to a Gaussian cumulative probability of coincidence

P
x
¯ 1±16¬10−A(Laplace joint cumulative probability 5±52¬10−A) per nautical

mile.

Then the combined two-dimensional probability of coincidence is P
x
P

y
¯

1±52¬10−=>(4±65¬10−<A) per nautical mile squared. If there is an altitude difference

L
z
¯ 1000 ft and vertical r.m.s. position error σ

z
¯ 90 ft, Table 2 gives the correspond-

ing Gaussian cumulative probability of coincidence P
z
¯ 7±51¬10−<>(Laplace joint

cumulative probability 1±24¬10−@) per nautical mile ; hence, the combined three-
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dimensional probability of collision is P
>
¯P

x
P

y
P

z
¯ 1±14¬10−>@(5±77¬10−=<) per

nautical mile cubed. This shows that stagger and altitude difference combined with

lateral separation lead to very low probabilities of coincidence. Taking for the aircraft

‘size ’ a span R
y
¯ 200 ft¯ 60±8 m¯ 3±29¬10−= nm, a lengthR

x
¯ 150 ft¯ 45±7 m¯

2±47¬10−= nm and height R
z
¯ 50 ft¯ 15±2 m¯ 8±22¬10−> nm, the aircraft volume

is R
>
¯R

x
R

y
R

z
¯ 6±68¬10−A(nm)>, and the Gaussian (Laplace) cumulative prob-

ability of overlap P- ¯P
>
R

>
¯ 7±62¬10−?<(3±85¬10−=A) is dimensionless. It has been

assumed that the aircraft remain always at the minimum separation distance, but if

this happened say only a fraction of the time (40%, f¯ 0±4), the probability of

collision would be further reduced to fP- ¯ 3±04¬10−?<(1±54¬10−=A). The significant

difference between Gaussian and Laplace probabilities will be discussed next.

6.2. Relation with the ICAO Target Level of Safety. The main conclusion of the

preceding analysis is that an ICAO target level of safety (TLS) of the probability of

collision of less than 5¬10−D per flight hour can be ensured, in the conditions for

which (18) is valid, by requiring a r.m.s. position error of about one-tenth to one-

eleventh of the minimum separation distance if a Gaussian probability distribution is

assumed. As typical examples :

(a) a r.m.s. horizontal position error of σ
h
¯ 0±5 nautical mile for flight in controlled

air space, with a minimum horizontal separation distance of L
h
¯ 5 nautical

miles, hence L
h
}σ

h
¯ 10;

(b) a r.m.s horizontal position error σ
t
¯ 6 nm for flight in transoceanic airspace

with a minimum horizontal separation distance of L
t
¯ 60 nm, hence L

t
}σ

t
¯

10;

(c) a r.m.s. altitude (or vertical separation) error of σ
h
¯ 90 ft for flight in controlled

or uncontrolled airspace with minimum altitude separation L
t
¯ 1000 ft, hence

L
h
}σ

h
¯ 11.

These r.m.s. position errors (σ
h
, σ

v
, σ

t
) are easy-to-use safety metrics, since they can

be assessed in simulations, by measuring the deviation of the actual from the intended

trajectory, respecting the minimum separation distances (L
h
, L

v
, L

t
). The metrics

(σ
h
, σ

v
, σ

t
) are comprehensive in that they include all causes of position error, viz.

instrumental, environmental and man-made, due to airborne sensing and ground

control.

The apparently universal result that the r.m.s. position error σ should one order-of-

magnitude less σ}L% 0±1 than the minimum separation distance L, emerges from the

preceding detailed analysis, and can be justified roughly as follows. The probability

of coincidence being considered is for two aircraft flying at the minimum separation

distance L, e.g. on parallel paths (Figure 3). Viewed head-on (Figures 5 and 6) each

aircraft carries a Gaussian probability distribution for position error, for which the

same variance σ = is assumed for both aircraft. If the position error is large, i.e. σ}L

not far from unity, the aircraft carry wide probability distributions, with significant

overlap, and high-probability of collision (Figure 5) ; if the r.m.s. position error is

small, in the sense σ}L; 1, then the probability distributions are narrowly

concentrated on each aircraft, and decay rapidly away from them, leading to small

overlap and low probability of collision. Note that, in Figures 5 and 6:

(a) the maximum probability of coincidence is the product of probabilities of

collision at the ‘crossing point ’ of the two curves ;
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(b) the cumulative probability of coincidence is not the shaded area, but rather the

integral (26), although the former may serve as rough qualitative indication for

comparison of the cases of ‘high’ (Figure 5) and ‘ low’ (Figure 6) probability

of coincidence.

6.3. Order of magnitude estimate of coincidence probabilities. The probability of

coincidence is dominated by exponential in the Gaussian bivariate distribution:

P(x)C exp

A

B

®
x=­(L®x)=

2σ =

C

D

, (71)

so that :

P(L}2)C exp

A

B

®
L=

4σ =

C

D

, (72)

for a separation x¯L}2. Taking L}σ¯ 10 leads to logP- C®25 or P- C 1±4¬10−<<,

which is a low value for either :

(a) the cumulative probability of coincidence per mile P- , or

(b) the maximum probability of coincidence per square mile P
m
.

For flights not exceeding the perimeter of the earth D¯ 4¬10? km¯
2±158¬10? nm, the probabilities of coincidence P- DC 3±0¬10−B or P

m
D=C 6±5¬10−>

are small. For the fastest subsonic airliners in cruise V% 547 kt, the probability of

coincidence per flight hour P- V% 7±6¬10−D is of the order of the ICAO target level

of safety of 5¬10−D. This brief order-of-magnitude justification is no replacement for

the detailed analysis in the paper, but it may serve as a simple indication of order of

magnitude of the results.

The same kind of order of magnitude assessment can be applied to the Laplace

cumulative joint probability distribution (51), where the dominant term is still the

exponential logPC®o2L}σ. The same low value of probability of coincidence

logP4 C®25 needed to satisfy the ICAO TLS standard, now leads to L}σC 25}
o2E 18, i.e. a separation about 18 times larger than the r.m.s. position error. This is

confirmed by the more detailed calculations, showing:

(a) a r.m.s. position error σ
h
¯ 0±25 nm for horizontal separation L

h
¯ 5 nm in

controlled airspace, hence L
h
}σ

h
¯ 20;

(b) a r.m.s. position error σ
t
¯ 3 nm for transoceanic lateral separation L

t
¯ 60 nm,

hence L
t
}σ

t
¯ 20;

(c) a r.m.s. altitude error σ
v
¯ 40 ft for a RVSM of L

h
¯ 1000 ft, hence L

v
}σ

v
¯ 25.

The significant differences found between the Gaussian and Laplace probability

distributions, confirms that the probabilities of coincidence are very sensitive to tail

shape. This is also suggested by Figures 5 and 6, where it is seen that the shaded area

depends very much on the small probabilities of large deviations. Thus it is important

to choose the ‘right ’ probability distribution, and the Gaussian and Laplace forms

offer only a limited choice, with rather different results. This suggests the introduction

of a continuous family of probability distributions, of which the Gaussian and the

Laplace distributions are particular cases. This family would allow a more precise fit
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to collected flight data, and a more accurate calculation of coincidence collision

probabilities.

7. THE GENERALIZED EXPONENTIAL FAMILY OF PROBA-

BILITY DISTRIBUTIONS. The Gaussian (30) and Laplace (46) probability

distributions are respectively the particular cases k¯ 2 and k¯ 1 of the generalized

probability distribution:

F
k
(x)¯A exp (®arxrk), (73)

where: A, a are two constants, viz. : (para 7.1.) the normalization constant A is

determined by the condition of unit total probability :

1¯&+¢

−¢

F
k
(x)dx ; (74)

(para 7.2.) the constant a relates to the variance σ= r.m.s. error :

σ=¯&+¢

−¢

x=F
k
(x)dx. (75)

Each value of k specifies one member of the family (73) of probability distributions,

viz. :

(a) k! 0 may be excluded because it would lead to zero probability at the centre

F
k
(0)¯ 0 and constant probability at infinity F

k
(³¢)¯A ;

(b) k¯ 0 is an uniform distribution;

(c) 0!k! 1 leads to ‘tails ’ decaying more slowly than for the Laplace

distribution, k¯ 1;

(d) 1!k! 2 leads to tail decay between the Laplace and the Gaussian case k¯
2;

(e) k" 2 would certainly lead to collision probabilities smaller than Gaussian,

which would be misleading in the ATM application.

Comparison with flight data suggests (para 7.3.) a value k¯ 0±5.

7.1. Normalization constant for unit total probability. In order to calculate the

normalization constant, (73) is substituted into (74) :

1

A
¯ 2&+¢

;

exp(®axk)dx. (76)

The change of variable :

ξ¯ axk :
1

2A
¯

a−</k

k &+¢

;

ξ</k−<e−ξdξ, (77)

reduces the integral to a Gamma function:

Γ(α)@&+¢

;

ξα−<e−ξdξ, (78)

of argument α¯ 1}k, viz. :

ka</k}(2A)¯Γ(1}k). (79)

https://doi.org/10.1017/S0373463301001667 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463301001667


60 L. M. B. C. CAMPOS AND J. M. G. MARQUES VOL. 55

Substituting (79) in (73) leads to:

F
k
(x)¯

ka</k

2Γ(1}k)
exp(®arxrk), (80)

as the normalized probability distribution.

7.2. Variance or r.m.s. position error as parameter. The parameter a in (80) can be

related to the r.m.s. deviation σ in (75), viz. :

σ =¯
ka</k

Γ(1}k)&
+¢

;

x= exp(®axk)dx. (81)

The same change of variable as in (77), viz. :

ξ¯ axk : σ =¯
a−=/k

Γ(1}k)&
+¢

;

ξ >/k−<e−ξdξ, (82)

leads again to a Gamma function (78), this time of argument α¯ 3}k :

a=/kσ =¯Γ(3}k)}Γ(1}k). (83)

Substituting of a from (83) into (80) leads to the family of probability distributions:

F
k
(x)¯

1

2σ

k

Γ(1}k)AΓ(3}k)

Γ(1}k)
exp

1

2
3

4

®
A

B

Γ(3}k)

Γ(1}k)

C

D

k/=
E

F

rxr
σ

G

H

k
5

6
7

8

, (84)

with the r.m.s. deviation σ as parameter.

7.3. Comparison with altitude deviations from flight data. In (73) and (84) a zero

mean µ¯ 0 was assumed. If the mean is not zero µ1 0, then x is replaced by x®µ,

leading to:

F
k
(x)¯

1

2σ

1

Γ(1­1}k)AΓ(3}k)

Γ(1}k)
exp

1

2
3

4

®
A

B

Γ(3}k)

Γ(1}k)

C

D

k/=
E

F

rx®µr
σ

G

H

k
5

6
7

8

, (85)

as the generalized exponential distribution with mean µ and variance σ =, where was

used the property of the Gamma function:

Γ(α­1)¯αΓ(α). (86)

It can be checked that the case k¯ 1 is the Laplace distribution, viz. :

F
<
(x)¯

1

σo2
exp

E

F

®o2
rx®µr

σ

G

H

, (87)

agrees with (46) for µ¯ 0. Using the property (86) of the Gamma function together

with
Γ(1}2)¯oπ, (88)

shows that the case k¯ 2 coincides with the Gaussian distribution, viz. :

F
=
(x)¯

1

σo2π
exp

E

F

®
rx®µr=

2σ=

G

H

, (89)

agrees with (30) for µ¯ 0. The more interesting instances of the new family of

probability distributions (83), for ATM applications, should be 1!k! 2 and

0!k! 1.
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Figure 7. The exponential probability distribution (85) with weight k¯ 0±53 close to one-half

(90) approximates the altitude deviations measured for aircraft in flight.<?

In Figure 7, the distributions of large altitude errors in real flight<? is shown to be

consistent with the extended exponential probability distribution (83) with k¯ 0±5,

viz.

F
</=

(x)¯
1

σA
15

2
exp

1

2
3

4

®q120Arx®µr
σ

5

6
7

8

, (90)

is a simple and relatively accurate probability distribution for position errors.

8. CONCLUSION. It has been pointed out@–
B that the Laplace distribution

k¯ 1 underestimates the ‘tails ’ of the probability distribution, and the uniform

distribution k¯ 0 overestimates, so that a more accurate assessment of collision risk

lies somewhere in between 0!k! 1. The value k¯ 0±5 is consistent with these

observations, and arises out a comparison with altitude deviations of aircraft

measured from flight data.<? This data has been closely fitted <@
–
=> using double

exponential or Gaussian probability distributions, with five parameters, allowing a

close match both to the ‘body’ and ‘tails ’ of the probability distribution. The choice

of a generalized exponential distribution with weight k¯ 0±5 is much simpler, in that

it involves a single parameter (besides the mean), viz. the r.m.s. deviation σ, which is

readily estimated from the data. Given the various sources of error involved in

estimation of collision risk, this simple one-parameter probability distribution may

do nearly as well as more complex multi-parameter models.

The probability distribution for large rare deviations is the key input is assessing

collision risk. The actual calculation, for a simple or complex ATM scenario, involves

several other probabilities, all related to the probability of deviation of a single

aircraft from its flight path. The difference between simple and complex ATM

scenarios depends on the number of aircraft involved and their relative paths, which

determine how many proximities have to be considered; the calculations become

more complex for higher traffic densities and crossings from many different
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directions. Based on the (i) probability of deviation from the flight path of a single

aircraft, the calculation of collision rates or assessment of collision risks, involves

several others probabilities which could serve as intermediate safety metrics ; (ii) the

probability of coincidence of two aircraft at the same position; (iii) the maximum

probability of coincidence, at the most likely position of coincidence; (iv) the

cumulative probability of coincidence, at all possible positions ; (v) the probability of

overlap, taking into account finite aircraft size. These can be used to calculate (vi)

collision rates, which can be compared to the ICAO TLS standard per unit time or

(vii) per unit distance. The dimensionless (viii) collision probability for a given traffic

system over a given time is the final safety metric, which depends on many

parameters, since most of the preceding are used as building blocks.
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LIST OF SYMBOLS

l length of the flight path (22)

t
i

time period during which deviation exceed R
i
, with i@x, y, z (2)

L separation distance between aircraft (25)

N
i

frequency of separation less than R
i
, with i@x, y, z (2)

F
k

generalized exponential probability distribution (70, 80, 81)

F
<

Laplace probability distribution (83)

F
=

Gaussian probability distribution (85)

F
</=

probability distribution for ATM scenarios (86)

P probability distribution

P
a

collision rate (4)

P³
a

collision rate for aircraft flying on parallel tracks in the same}opposite

directions (15, 16)

P
b

probability of overlap (27)

P
c

probability of collision (9)

P³
c

probability of collision for aircraft flying in the same}opposite

directions (21, 23)

P
d

probability per unit distance (18)

P
i

probability of separation less than R
i
, with i@x, y, z (1)

P
m

maximum probability of collision between aircraft

P
r

probability of penetration safety volume (1)

P
;

Laplace probability of an aircraft having a given position error (46)

P
<

Gaussian probability of the first aircraft having a given

position error (30)

P
=

Gaussian probability of the second aircraft having a

given position error (31)

P
<=

probability of coincidence of the two aircraft (25)

P
<=>

probability of coincidence of three aircraft (33)

P- cumulative probability of coincidence (26)

P4 cumulative joint probability (48)

R
x

aircraft length (5)

R
y

aircraft span (5)

R
z

aircraft height (5)

R aircraft size (27)

T³
a

time spent in proximity for aircraft flying on parallel tracks in

the same}opposite directions (20, 21)

V airspeed (15)

V-
i

average rate of change of relative position between aircraft (6)

∆V airspeed error (16)

σ root mean square position error (30)

3
prox

proximity sum (9)

3
>

i=<

sum (3) over i@x, y, z

3
xyz

ijk

sum (1) of the three cyclic permutations of (i, j, k)@ (x, y, z)

0
>

j=<

product (3) over j@x, y, z
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