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Numerical simulation is the generally used method for studying stochastic resonance (SR),

which is a kind of non-linear phenomenon that usually occurs in non-linear bistable systems.

It has been found that the input signal needs to be over-sampled during the numerical

simulation of SR. In this paper we provide an explanation of this phenomenon based on a

stability analysis of the bistable system. We begin by studying the stability of a discrete

model of a bistable system in numerical simulations. We then give a theoretical derivation of

the stability conditions for the simulation model with different parameters, and carry out

numerical experiments to show that the results coincide with the predictions of the theory.

We explain why the input signal needs to be over-sampled in the simulation and provides

guidelines for the choice of system parameters for the bistable system and the sampling time

step in the numerical simulation of SR. Finally, we present the results of simulations

showing an example of SR occurring in a bistable system and an example of weak periodic

signal detection when it is processed by a bistable system.

1. Introduction

In the last twenty years, stochastic resonance (SR) in bistable systems has been extensively

exploited both theoretically and experimentally. SR is a non-linear phenomenon of bistable

systems arising in conjunction with a periodic stimulus and noise (Benzi et al. 1981;

Hu et al. 2003; Leng and Wang 2003; Jung and Hanggi 1991; Yang and Hu 2004;

Gammaitoni 1968; McNamara and Wiesenfeld 1998). When the non-linearity of the

bistable system, periodic input signal and noise satisfy a sort of matching condition, the

response of the system to the weak input becomes enhanced and the plot of the output

signal-to-noise ratio against the intensity of the noise has a peak. As a result of this

property, SR has been shown to have potential for applications in signal processing.

Numerical simulation is the most commonly used method for studying SR in bistable

systems (Asdi and Tewfik 1995; Gang et al. 2007; Min and Ying 2010). A suitable

system for study is a discrete model of a bistable system, which can demonstrate SR.

So the first problem we must address is the stability of the discrete model of a bistable

system, which is of great importance for the simulation of SR. However, there are no
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existing research reports describing the quantitative relationship between the sampling

time (sampling frequency), system parameters and the stability of the discrete model. In

fact, the stability of the discrete system is dominated by the parameters of the bistable

system and the sampling time. The sampling time is usually determined by experiment.

It is well known that SR is suitable for low frequency signals, and that the signal should

be over-sampled in numerical simulations, since otherwise the output of the system will

diverge (Leng and Wang 2003; Jung and Hanggi 1991; Yang and Hu 2004). The reason

for the divergence of the output is related to the stability of the discrete model of the

bistable system.

1.1. Organisation of the paper

In Section 2, we present a stability analysis of the discrete model of a bistable systems

using a theoretical derivation. In Section 3, we give the numerical simulation results for

the output of the bistable for different sampling times – these results show the validity

of the stability analysis and why the low-frequency input periodic signal should be over-

sampled. We conclude the section by showing that SR can occur in the bistable using

a numerical method and giving an example of the detection of a weak periodic signal.

Finally, we give a brief summary in Section 4.

2. Stability analysis of the discrete model of a bistable system

At present, the most commonly studied SR system is the bistable system. The dynamic

equation of a bistable system driven by weak sinusoidal signal and noise can be described

by the following Langevin equation (Gammaitoni 1968):

dx

dt
= ax − bx3 + A sin(2πft) + n(t) (1)

where a > 0, b > 0 and n(t) is Gaussian white noise with

〈n(t)〉 = 0

〈n(t)N(t′)〉 = σ2δ(t − t′),

where 〈·〉 is the ensemble average. The system’s two stable states are located at ±
√

a/b,

and σ2 is the variance of the noise. In a numerical simulation, the continuous system

should be translated to a discrete model. Here, we use the first-order Euler numerical

method to discretise equation (1). Assuming the sample frequency is fs, the sampling time

step h = 1/fs. Letting

u(t) = A sin(2πft) + n(t),

the discrete form of equation (1) becomes

xn+1 − xn = h(axn − bx2
n + un). (2)

We first assume the input u(t) to be zero and the initial value x(0) = x0 to be a real

number not equal to zero. Equation (2) then turns into the iterative equation

xn+1 = (1 + ah − bhx2
n). (3)
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We will now analyse the stability of equation (3). We will first consider the case where

xn satisfies

1 + ah − bhx2
n < −1. (4)

This means that xn+1 and xn will have opposite signs, and |xn+1| > |xn|. Therefore,

bhx2
n+1 > bhx2

n,

and

1 + ah − bhx2
n+1 < 1 + ah − bhx2

n < −1.

Iterating equation (3), we have

|xn+2| > |xn+1|,
and xn+2 and xn+1 have opposite signs. In a similar way, we can derive

|xn+2| < |xn+3| < |xn+4| · · · ,

and the output of the discrete system will tend to infinity. So the necessary condition for

equation (3) to be stable is

1 + ah − bhx2
n � −1,

which can be solved for the inequality to give

|xn| <
√

ah + 2

bh
. (5)

In the case of equality, the output of the system is

|xn| ≡
√

(ah + 2)/(bh),

and consecutive outputs are opposite in sign. So the system produces a persistent

oscillation.

If we let

|xlim| ≡
√

(ah + 2)/(bh)

and assume that

|xn| < |xlim|,
there is also the possibility of the output of the discrete model tending to infinity – we

will discuss this case further.

Let

f(x) = (1 + ah)x − bhx3.

f(x) is odd and has a maximum value at

xmax =
√

(1 + ah)/(3bh)

in the interval (-xlim, xlim), and

f(xmax) = 2
3
(1 + ah)

√
(1 + ah)/(3bh).

According to the property of odd functions, f(x) has a minimum value at x = −xmax, so

f(x) is an increasing function in the interval (-xmax, xmax). When x is ±
√
a/b, we have
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f(x) = x; when |x| <
√
a/b with x �= 0, we have |f(x)| > |x|. If we let

xmax =
√

(1 + ah)/(3bh),

we have f(xz) = 0 and f(−xz) = 0. We will now discuss the stability of the model (3) for

four cases:

— Case f(xmax) > xmin
The solution of the inequality for this case is

ah > 2. (6)

Figure 1 shows the curve of f(x) for the interval considered in this case. As f(x) is an

odd function, the numeric area of x0 can be reduced; any real number in the interval

(0, xmax) is taken as the initial value x0. Because

f(xmax) > xlim,

there must be a left neighbourhood of xmax, denoted by K , such that ∀x ∈ K , there

is f(x) > xlim. According to the necessary stability condition given by equation (3),

if a real number in the neighbourhood K is taken as the initial value, the output of

the discrete model of equation (3) must tend to infinity. Now assuming that xn ∈ K ,

according to the property of f(x), we have f(xn) > xn, and we can write

xn = f(xn − 1),

so we have

f(xn) > f(xn − 1).

Because f(x) is an increasing function in the interval, we must have xn > xn−1. In a

similar way, we can show

xn > xn−1 > xn−2 > · · · ,
and the series tend to zero. This shows that there must exist a countless number

of initial points x0 ∈ (0, ε), so after a limited number of iterations, the output of

equation (3) will tend to infinity.

In fact, there also exist initial points in the interval (0, xmax) such that after the nth

iteration, the output of equation (3) will give

f(xn+1) = xn

or

f(xn+1) = −xn.

But if the influence of the input signal u(n) is considered, the system output will not

maintain the equilibrium states and a tiny perturbation will make the output depart

from these states and tend towards infinity. So, if a real number in the interval (0, xmax)

is taken as the initial value, the output of equation (2) will diverge.

Because the numeric area of f(x) in the interval is the same as that in the interval

(0, xmax), if a real number in the interval (xmax, xz) is taken as the initial value, we get

similar results as for taking a point in (0, xmax) as the initial value, and the output of
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Fig. 1. Curve of f(x) = 4x − 3x3, with a = 1, b = 1, h = 3

the system defined by equation (2) will diverge. It can be proved that if any point in

(xz, xlim) is taken as the initial value, after n iterations we have

f(xn) ∈ (−xz, xz).

And because f(x) is odd, the output of equation (2) will diverge if a real number in

(−xz, 0) is taken as the initial value. To summarise, the output of the discrete model

(2) will tend to infinity if any real number in the interval (−xlim, xlim) is taken as the

initial value, and it is thus unsuitable for numerical simulation of SR in the bistable

system.

— Case xz < f(xmax) < xlim
In this case, the solution of the inequality is

3
√

3
2

− 1 < ah < 2. (7)

Figure 2 shows the curve of f(x) for the interval [−xlim, xlim].

It can be proved that if a real number in the interval (−xlim, xlim) is taken as the

initial value, the output of equation (4) will oscillate between a range of positive and

negative values. If the influence of the input signal is taken into account, the output

of system (4) will tend to diverge, and it is thus unsuitable for numerical simulation

of SR in the bistable system.

— Case f(xmax) < xz and xmax <
√
a/b

In this case, the solution of the inequality is

1
2
< ah < 3

√
3

2
− 1. (8)

Figure 3 shows the curve of f(x) for the interval [−xlim, xlim].

In this case, if a real number in the interval (−xlim, xlim) is taken as the initial value, the

output of system (3) will oscillate locally within a range of positive or negative values.
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Fig. 2. Curve of f(x) = 2.7x − 1.7x3, with a = 1, b = 1, h = 1.7

Fig. 3. Curve of f(x) = 2x − x3, with a = 1, b = 1, h = 1

Hence, the output will always have the same sign, the actual sign in a particular case

being determined by the initial value.

— Case f(xmax) �
√
a/b

In this case, the solution of the inequality is

ah < 1
2
. (9)
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Fig. 4. Curve of f(x) = 1.2x − 0.2x3, with a = 1, b = 1, h = 0.2

Figure 4 shows the curve of f(x) for the interval [−xlim, xlim]. In this case, if a real

number in the interval (−xlim, xlim) is taken as the initial value, the output of system (4)

will tend to stable points ±
√
a/b.

This completes our analysis of the stability of the discrete model of the bistable system.

It is obvious that when the output diverges (ah > 2) or oscillates between a range of

negative and positive values (3
√

3/2 − 1 < ah < 2), the model is unsuitable for numerical

simulation of SR. However, it is suitable for numerical simulation of SR when the output

converges to the stable points (ah � 1/2). But we need to investigate whether it is suitable

for SR simulation when the output oscillates locally (1/2 < ah < 3
√

3/2 − 1). Through

simulation experiments, it has been found that when (1/2 < ah � 1), the amplitude of

the local oscillation of the system output is very small, and attenuates gradually, so the

oscillation has no influence on the accuracy of the simulation of SR. To summarise, the

condition required for a suitable numerical simulation of SR in the bistable system is

ah � 1

|x0| � xlim.
(10)

When the influence of the input signal and noise is taken into account, the output of

the system (3) will tend to infinity when the noise intensity is too large. The reason for

this is that when the noise intensity is too large, after the nth iteration we have

|xn + un| > xlim.

So, in order to avoid divergence of the output, we need to reduce the sampling time

step to increase the value of xlim.

In the next section, we will discuss numerical experiments on the discrete model of the

bistable system to validate the analysis given in the current section.
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Fig. 5. Output of system (2) with a = 1 and b = 1 for different time steps (a) h = 3, (b) h=1.9,

(c) h=1.5, (d) h=1, (e) h=0.5, (f) h=0.2

3. Numerical simulation experiments on the discrete model of the bistable system

3.1. Stability of the numerical simulation of the bistable system

In order to verify the stability condition presented in the previous section, we used different

sampling time steps in solving equation (4). Using values for the system parameters

a = b = 1, the output results for equation (4) obtained using Euler’s numerical integral

method are shown in Figure 5 for different time steps and an initial value for x0 of 0.01.

Figure 5(a) shows that when ah = 3, the output diverges. Figure 5(b) shows that when

ah = 1.9, the output oscillates between a range of negative and positive values. Figure 5(c)

shows that when ah = 1.5, there is oscillation within a range of positive values. Figure

5(d) shows that when ah = 1, the oscillation amplitude around the stable state x = 1

is very small. Figures 5(e) and 5(f) show that when ah � 0.5, the output tends rapidly
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to the stable state x = 1. These numerical simulation results are in accordance with the

theoretical analysis.

According to adiabatic approximation theory and the linear response theory of SR

(Jung and Hanggi 1991; McNamara and Wiesenfeld 1998), the frequency of the periodic

signal should satisfy f � 1. Here we let f = 0.01Hz and A = 0.01, so according to the

sampling theorem, the sample frequency should be larger than 2f. But even if the sample

frequency fs = 40f (that is, h = 2.5s), the output of the system shown in equation (1) still

diverges because we have ah > 2. In fact, the frequency must be larger than 100f for the

system to exhibit the SR phenomenon in the bistable system. This kind of phenomenon

is called over-sampling of the input signals in SR. The basic reason for the over-sampling

is that during the numerical simulation, the most important condition is that the discrete

model of the bistable should be stable. Hence, the stability condition in equation (9) leads

directly to the necessity of over-sampling of the input signals.

3.2. Stochastic resonance in the bistable system

We carried out a numerical simulation to show stochastic resonance in the bistable system.

Figure 6 shows the outputs of system (1) driven by a signal with noise of different noise

intensity with signal parameters A = 0.3 and f = 0.01Hz, sample frequency fs = 5Hz

(h = 0.2s), and system parameters a = 1 and b = 1. This is suitable for simulation of

SR because we have ah = 0.2. Figure 6(a) shows that the output of the bistable system

oscillates locally within a single stable state in accordance with the signal frequency.

Figure 6(b) shows occasional hopping between two stable states. Figure 6(c) shows that

with increasing noise, the hopping between the two stable states becomes synchronised

with the periodic signal, and SR is exhibited. Figure 6(d) shows that when the noise

intensity is too large, the hopping is mainly decided by the noise. Summarising, Figure 6,

shows that the system (2a) exhibits a typical SR phenomenon.

The bistable system can be used to extract a weak periodic signal from strong

background noise using the SR mechanism. To show this, we passed the mixed signal

through the model of the bistable system and analysed the spectrum of the output signal

of the system. The system parameters are as follows: a = b = 1, A = 0.5 and f = 0.1Hz.

The over-sampling frequency fs is 200 times that of the periodic signal, so fs = 20Hz

(that is, h = 0.05s). Figure 7 shows the mixed input signal and the output signal of the

bistable system:

— Figure 7(a) shows the waveform of the mixed signal;
— Figure 7(b) shows the spectrum of the mixed signal;
— Figure 7(c) shows the waveform of the output signal;
— Figure 7(d) shows the spectrum of the output signal.

It can be seen from Figure 7(d), that there is a clear frequency component at f = 0.1Hz,

and the noise fades obviously, whereas Figure 7(b) shows the frequency component of the

periodic signal is submerged in noise and is difficult to distinguish from the mixed signal

spectrum. During the process, some energy of the noise is transferred to the energy of the

periodic signal, so the weak periodic signal is enhanced through the bistable system using

the SR mechanism.
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Fig. 6. Output of system (2a) for different time steps (a) σ = 0, (b) σ = 0.3, (c) σ = 1.0, (d) σ = 3

4. Conclusions

In the paper, we have analysed the stability of the discrete model of a bistable system,

which is of great importance for the simulation of SR. We have derived a stability

condition for the system and carried out numerical experiments whose results coincide

with the theoretical predictions. We also explained why a low frequency input periodic

signal should be over-sampled during numerical simulation of SR.

https://doi.org/10.1017/S0960129513000716 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000716


Dynamic analysis and numerical simulation of a discrete model of a bistable system 11

Fig. 7. Simulation of detection of weak perioidic signal with f = 0.1Hz

In the current paper, we used a first-order Euler method for discrimination; if we had

used a Runge–Kutta method, the accuracy of the output would have increased, though it

would have had little effect on the stability condition for the discrete model.

These research results provide guidelines for the choice of system parameters and

sampling time step in numerical simulations of SR in bistable system. SR has been

proposed as a means for improving periodic signal detection in a wide variety of systems,

and our numerical simulation of weak periodic signal detection showed the benefit of SR.
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