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Abstract

In this paper, we propose a novel and highly effective variational Bayesian expectation maximization-
maximization (VBEM-M) inference method for log-linear cognitive diagnostic model (CDM). In the
implementation of the variational Bayesian approach for the saturated log-linear CDM, the conditional
variational posteriors of the parameters that need to be derived are in the same distributional family as
the priors, the VBEM-M algorithm overcomes this problem. Our algorithm can directly estimate the item
parameters and the latent attribute-mastery pattern simultaneously. In contrast, Yamaguchi and Okada’s
(2020a) variational Bayesian algorithm requires a transformation step to obtain the item parameters for
the log-linear cognitive diagnostic model (LCDM). We conducted multiple simulation studies to assess the
performance of the VBEM-M algorithm in terms of parameter recovery, execution time, and convergence
rate. Furthermore, we conducted a series of comparative studies on the accuracy of parameter estimation
for the DINA model and the saturated LCDM, focusing on the VBEM-M, VB, expectation-maximization,
and Markov chain Monte Carlo algorithms. The results indicated that our method can obtain more stable
and accurate estimates, especially for the small sample sizes. Finally, we demonstrated the utility of the
proposed algorithm using two real datasets.

Keywords: cognitive diagnostic assessments; expectation-maximization algorithm; log-linear cognitive diagnostic model;
Markov chain Monte Carlo; variational Bayesian algorithm

1. Introduction

Cognitive diagnostic assessments (CDAs) have developed rapidly over the past several decades, and
they are widely used in educational and psychological research (de la Torre, 2009, 2011; de la Torre &
Douglas, 2004; DiBello et al., 2007; Haberman & von Davier, 2007; Henson et al., 2009; Junker & Sijtsma,
2001; Rupp et al., 2010; Templin & Henson, 2006; von Davier, 2014a). The primary motivation for the
development of CDAs is to ascertain whether or not a student has mastered some fine-grained skills or
attributes that are required to solve a particular item. More specifically, not only can CDAs be used to
analyze in detail the strengths and weaknesses of students in the areas they are learning, but they can
also provide powerful tools to help teachers improve classroom instruction.
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There is a wide variety of cognitive diagnostic models (CDMs) available in the published CDA
literature (DiBello et al., 2007; Rupp & Templin, 2008b), and many of these are built on strong cognitive
assumptions about the processes involved in problem-solving. These CDMs can be broadly classified
into three different types: compensatory, non-compensatory, and general models. Compensatory mod-
els are based on the assumption of attribute compensation, which means that although the examinee
may not have mastered all the attributes involved in an item, they are still more likely to score well on
that item if they have mastered some of its attributes. This is because the attributes that the examinee
has mastered can “compensate” for the other attributes that they have not mastered. The most famous
compensatory model is the deterministic inputs, noisy “or” gate (DINO) model (Templin & Henson,
2006) and the linear logistic model (LLM; Maris, 1999). In contrast, non-compensatory models are
constructed under the assumption of attribute conjunction, which means that under the assumption
of an ideal response, an examinee can score on an item only after mastering all of the attributes
involved in that item; otherwise, he or she will not be able to answer the item correctly. The widely used
non-compensatory (conjunctive) models are the deterministic inputs, noisy and gate (DINA) model
(Haertel, 1989; Junker & Sijtsma, 2001; Macready & Dayton, 1977) and the reduced reparameterized
unified model (rRUM; Hartz, 2002). Some general CDM frameworks have also been established that
include a variety of widely applied CDMs, such as the log-linear CDM (LCDM; Henson et al., 2009),
the generalized DINA (GDINA; de la Torre, 2011) model, and the general diagnostic model (von
Davier, 2008). Although DINA, DINO, rRUM, and LLM were developed from different application
backgrounds, they can in fact be viewed as special cases of the LCDM by restricting certain parameters
to zero in its saturated version. Henson et al. (2009) detailed how the LCDM can be transformed
into our traditional models such as DINA, DINO, rRUM, and LLM through parameter restrictions.
Additionally, Ma and de la Torre (2016) elucidated that the LCDM and GDINA models are equivalent
in their saturated forms.

Parameter estimation is the basis of model applications, and it is a prerequisite for interpretation
of complicated data in the field of educational psychology. Several strategies have been developed
to estimate the parameters of CDMs. Algorithms based on maximum likelihood have been widely
used to estimate CDMs in the frequency framework. Examples using a marginal maximum likelihood
method to estimate the parameters of several CDMs via an Expectation-Maximization (EM) algorithm
(Dempster et al., 1977) can be found in the literature (de la Torre, 2009, 2011; Ma & de la Torre,
2016; Ma & Guo, 2019; Maris, 1999). Some available R packages, such as “CDM” (George et al., 2016)
and “GDINA” (Ma & de la Torre, 2020), have been developed to estimate CDM parameters. However,
algorithms based on maximum likelihood have some disadvantages, as elaborated by Yamaguchi and
Templin (2022); for example, there is the possibility of a local maximum being reached by a maximum
likelihood algorithm. Accordingly, it is challenging to discern whether parameter estimates are obtained
from a global maximum, even if a multiple starting value method is used to evaluate their optimality. In
addition, calculation of the variability (standard errors) of parameter estimates depends on asymptotic
theory in the likelihood framework, and an asymptotic distribution with parameter restrictions may
not be correct when small sample sizes are involved.

In parallel with maximum likelihood-based methods, Bayesian statistical methods have also gained
widespread attention for inferring various types of CDM parameters (e.g., Chung, 2019; Culpepper,
2015, 2019, Culpepper & Hudson, 2018; DeCarlo, 2012; de la Torre & Douglas, 2004; Henson et al.,
2009; Jiang & Carter, 2019; Liu, 2022; Liu et al., 2020; Zhan et al., 2019). More specifically, de la Torre
and Douglas (2004) implemented a Metropolis–Hastings (MH) algorithm for estimating the higher-
order DINA model parameters. Henson et al. (2009) also adopted the MH algorithm to estimate
LCDM parameters. Liu et al. (2020) and Liu (2022) developed the Metropolis–Hastings Robbins–
Monro (MH-RM) algorithm (Cai, 2010) to estimate CDM parameters. With the help of conjugate prior
distributions, Culpepper (2015) proposed a Gibbs sampling algorithm to estimate the parameters of
the DINA model; the corresponding R package “dina” was developed by Culpepper in (2015). On the
basis of the work of Culpepper (2015), a new No-U-Turn Gibbs sampler was proposed by da Silva
et al. (2018) to estimate the parameters of the DINA model. In addition, the Gibbs sampling algorithm
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has also been used for updating the Q-matrix in CDMs (Chung, 2019; Culpepper, 2019; Culpepper &
Hudson, 2018). DeCarlo (2012) developed the software OpenBUGS (Thomas et al., 2006) for estimating
reparameterized DINA model parameters. Zhan et al. (2019) published a tutorial for estimating various
types of CDM estimation using the R package “R2jags” (Su & Yajima, 2015), which is associated with
the JAGS program (Plummer, 2003). Jiang and Carter (2019) estimated the parameters of the LCDM by
means of the Hamiltonian Monte Carlo (HMC) algorithm (Neal, 2011) in the Stan program (Carpenter
et al., 2017). However, the computationally intensive nature of Markov chain Monte Carlo (MCMC)
estimation for the CDM parameters presents a major hurdle to its widespread use in the empirical
application of Bayesian approaches to the study of education when faced with large samples, numerous
items, numerous attributes, and complex models (Yamaguchi & Okada, 2020a; Oka et al., 2023).

Researchers have recently become interested in the variational inference (VI) method as a more flex-
ible and less computationally intensive alternative to traditional Bayesian statistical methods (Bishop,
2006; Blei et al., 2017; Cho et al., 2021; Grimmer, 2011; Jaakkola & Jordan, 2000; Jeon et al., 2017; Oka &
Okada, 2023; Rijmen et al., 2016; Urban & Bauer, 2021; Yamaguchi, 2020; Yamaguchi & Martinez, 2023;
Yamaguchi & Okada, 2020a, 2020b). Compared to the traditional MCMC methods, the VI method is a
deterministic approximation approach that is based on posterior density factorization. This method
accomplishes its goal of rapidly and efficiently dealing with large amounts of complex educational
psychology data (e.g., large numbers of samples, items, and attributes) by transforming the statistical
inference problem of the posterior density into an optimization problem. In view of their many benefits,
VI algorithms have been developed to estimate a variety of psychological models such as item response
theory models (Rijmen et al., 2016; Urban & Bauer, 2021), generalized linear mixed models (Jeon et al.,
2017), and CDMs (Oka et al., 2023; Oka & Okada, 2023; Yamaguchi, 2020; Yamaguchi & Martinez, 2023;
Yamaguchi & Okada, 2020a, 2020b).

Recently, Yamaguchi and Okada (2020b) introduced a VI method specifically tailored for the DINA
model, marking a significant advancement in this field. This method was derived based on the optimal
variational posteriors for each model parameter. Subsequently, Yamaguchi (2020) further extended VB
inference applications by developing an algorithm for the multiple-choice item of the DINA model
(MC-DINA). This extension to MC-DINA demonstrated the flexibility and computational efficiency
of VB methods. Subsequently, Yamaguchi and Okada (2020a) developed a VB inference algorithm for
saturated CDMs. They ingeniously introduced a G-matrix, reformulating existing generalized CDMs,
typically parameterized by attribute parameters, into a Bernoulli mixture model. This reformulation
facilitated conditionally conjugate priors for model parameters, simplifying the derivation process and
enhancing algorithmic efficiency. Oka et al. (2023) sustained this trajectory of innovation by developing
a VB algorithm for a polytomous-attribute saturated CDM. Their work, building on the foundational
research of Yamaguchi and Okada (2020a), not only advanced the field but also incorporated parallel
computing configuration. This significantly improved the computational efficiency of the VB algorithm,
demonstrating its evolving capability to handle more complex CDM structures. Simultaneously, Oka
and Okada (2023) tackled scalability challenges in CDMs by developing an estimation algorithm for the
Q-matrix of DINA model. Their approach, integrating stochastic optimization with VI in an iterative
algorithm, showcased the adaptability and robustness of VB methods in dealing with large-scale CDMs.
This series of developments highlight the ongoing progress and effectiveness of VB methods in the
estimation of diverse models within the CDMs framework.

To date, no VB algorithms have been developed to directly estimate the item parameters in
the LCDM with a logit link function. This is largely due to the challenges in directly deriving the
conditional posterior density of these item parameters. Although Yamaguchi and Okada (2020a)
proposed the variational EM (VEM) algorithm to estimate the saturated LCDM, they actually used
the least-squares transformation method (de la Torre et al., 2011) to convert the estimates of the item
response probability of the item-specific attribute-mastery pattern parameters, obtained through the
VEM algorithm, into the corresponding item parameters of the LCDM. Furthermore, Yamaguchi
and Templin (2022) employed a one-to-one mapping within the Bayesian framework to equivalently
transform the item response probability parameters, obtained through the Gibbs sampling algorithm,
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into item parameters in the LCDM model. This paper effectively bridges this gap by proposing a novel
and highly effective variational Bayesian EM-maximization (VBEM-M) algorithm for estimating the
saturated LCDM. Briefly, we obtained a tight lower bound on the likelihood function of the LCDM
model using Taylor expansion (Jaakkola & Jordan, 2000), where the item parameters take a quadratic
form. This allows for the existence of a conjugate prior distribution, enabling the implementation of
the VI method. Consequently, the VI algorithm can be executed in the LCDM by deriving a specific
posterior distribution for the item parameters, originating from the Gaussian prior distribution that
serves as the conjugate prior for item parameters.

We outline the benefits from the following perspectives to highlight the advantages by which the
VBEM-M algorithm excels above the other algorithms. First, our VBEM-M algorithm overcomes the
problem of the conditional variational posteriors of the parameters that need to be derived being in
the same distributional family as the priors in the implementation of the VI method for the saturated
LCDM formulation. Second, the VBEM-M algorithm can directly estimate the item parameters and
latent attribute-mastery pattern (also called “attribute profile”) simultaneously, unlike Yamaguchi and
Okada’s (2020a) VEM algorithm, which requires a two-step process to acquire the estimation of item
parameters. Third, the VBEM-M algorithm can obtain a more stable and accurate estimate than an
EM algorithm, especially in high-dimensional and small sample size conditions. Finally, our VBEM-M
algorithm offers considerable benefits in computing time compared to the time-consuming traditional
MCMC algorithms. This is because we use the VI method to transform a posterior inference issue into
an optimization problem.

The rest of this paper is organized as follows. Section 2 presents the LCDM and its special case,
the DINA model; Section 3 introduces the specific implementation of the VBEM-M algorithm for
estimating the LCDM. Section 4 presents three simulation studies that evaluate the performance of the
VBEM-M algorithm in parameter recovery across different simulation conditions and compares the
performance of the VBEM-M, VB, MCMC, and EM algorithms. Section 5 uses two empirical examples
to demonstrate the model estimation results of these four algorithms. Finally, some concluding remarks
are presented in Section 6.

2. Cognitive diagnostic models

2.1. Log-linear cognitive diagnostic model
In this study, we focused on the LCDM. This is because it is a general model that contains a large
number of models that have been previously discussed, such as DINA, DINO, rRUM, and LLM (Henson
et al., 2009). More importantly, the LCDM can provide a parameterization that not only enables it to
characterize the differences between the various models but also offers support for more complex data
structures (Henson et al., 2009). In fact, any possible set of constraints for the saturated form LCDM can
be used to define a model that fits the item response in the framework of cognitive theory. Moreover,
a better understanding of the relationships between compensatory models and non-compensatory
models can be described in the general parametric form. After this, a brief introduction to the LCDM
will be given.

First, we define several indices that will be important throughout this paper. Each examinee is
denoted by i (i = 1,⋯,N), each item by j (j = 1,⋯,J), each attribute by k (k = 1,⋯,K), and the latent
class corresponding to an attribute profile is denoted by l (l = 1,⋯,L). We consider the latent attribute
αik to be a binary variable, where the absence or presence of the corresponding attribute is represented
by the values 0 and 1, respectively. αi = (αi1,⋯,αik,⋯,αiK)T is a vector of K-dimensional latent attribute
profiles for the ith examinee. In light of the categorical nature of the latent classes, αi belongs to one of
L = 2K latent attribute profiles. Defining α̃l = (α̃l1,⋯,α̃lk,⋯,α̃lK)T as the attribute profile for examinees
of class l, where α̃lk is 1 if the examinees of class l acquire skill k and 0 otherwise, will be useful in the
following.
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Ã = (α̃1,⋯,α̃l,⋯,α̃L)T denotes a matrix of L×K dimensions containing all the attribute profiles. The
Q-matrix(Tatsuoka, 1983) is a J ×K matrix used to describe the relationship between attributes and
items, where qT

j = (qj1,⋯,qjk,⋯,qjK), and qik ∈ {0,1} is a vector of the jth row of the Q-matrix; that is,
Q = (q1,⋯,qj,⋯,qJ)

T: qik = 1 if the attribute k is required by item j, and qik = 0 otherwise. Next, a binary
latent indicator variable zi = [zi1,⋯,zil,⋯,ziL]T is introduced, which satisfies ∑L

l=1 zil = 1, where zil = 1
denotes the ith examinee belonging to the lth attribute profile (i.e., αi = α̃l). Let xij be the observed item
response for the ith examinee to the jth item: xij = 1 if the ith examinee gives the correct answer for
the jth item, and it is 0 otherwise. The corresponding item response matrix for all examinees answering
all items is X = (x1,⋯,xi,⋯,xN)T, where xi = (xi1,⋯,xij,⋯,xiJ)T, i = 1,⋯,N. Then, the probability of a
correct response for the LCDM can be expressed as

P(xij = 1∣αi = α̃l,ηj,λj,qj) =
exp(λT

j h(α̃l,qj)+ηj)
1+exp(λT

j h(α̃l,qj)+ηj)
, (1)

where ηj is the intercept parameter, and exp(ηj)/(1+exp(ηj)) indicates the probability that an examinee
answers correctly on item j if he or she does not master any of the attributes examined on that item.
λj = (λj1,⋯,λjK,λj12,⋯,λj12⋯(K−1)K)T is the slope parameter vector, which is composed of a D×1 vector,
where D = 2K −1. h(α̃l,qj) represents a set of linear combinations of α̃l and qj:

λT
j h(α̃l,qj) =

K
∑
k=1

λjkα̃lkqjk+
K
∑
k=1

∑
k′>k

λjkk′ α̃lkα̃ik′qjkqjk′ +⋯+λj12⋯(K−1)K

K
∏
k=11

α̃lkqjk. (2)

Combining the latent variable zi and Eq. (2), the LCDM can be rewritten as

P(xij = 1∣Ã,zi,ηj,λj,qj) =
L
∏
l=1

P(xij = 1∣αi = α̃l,ηj,λj,qj)
zil . (3)

2.2. DINA model
The DINA model, as a special case of the LCDM, has a relatively straightforward structure and
widespread adoption in cognitive diagnostic assessments; specialized software packages are also avail-
able for a number of estimation techniques grounded in the model. Therefore, we provide a short
overview of the traditional DINA model and its interconversion with the LCDM. Two-item parameters
have been introduced in the traditional DINA models for each item j: sj is the slipping parameter and gj
is the guessing parameter, and the probability of a correct response can be written as

P(xij = 1∣αi = α̃l,gj,sj) = g1−γlj
j (1− sj)γlj,

γlj =
K
∏
k=1

αqjk
lk ,

(4)

where γij is the ideal response pattern. γlj = 1 indicates that examinee i possesses all the required
attributes for item j; otherwise, γlj = 0. The parameters sj and gj can be formally defined by

sj = P(xij = 0∣γlj = 1),
gj = P(xij = 1∣γlj = 0).

(5)

Since the estimation approach presented in this work is based on the LCDM, we must first convert the
DINA model to LCDM format. Our next topic is the connection between the DINA model and the
LCDM and how they may be converted back and forth.

Let K̃ j = {k ∶ attribute k is measured by item j} denote an indicator set of attributes investigated by
item j and K∗j denote the number of investigated attributes. Then, the DINA model can be rewritten in
theform:
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P(xij = 1∣αi = α̃l,gj,sj) =
exp

⎛
⎝

ηj+λjK̃j1K̃j2⋯K̃jK∗j
∏

k∗∈K̃j

αlk∗qjk∗
⎞
⎠

1+exp
⎛
⎝

ηj+λjK̃j1K̃j2⋯K̃jK∗j
∏

k∗∈K̃j

αlk∗qjk∗
⎞
⎠

, (6)

where

ηj = − log( gj

1−gj
),

λjK̃j1K̃j2⋯K̃jK∗j
= −ηj+ log(1− sj

sj
) .

(7)

For simplicity, we denote λjK̃j1K̃j2⋯K̃jK∗j
as λj and the DINA model is equivalent to the following form:

P(xij = 1∣αi = α̃l,gj,sj) =
exp(ηj+λj

K
∏
k=1

αqjk
lk )

1+exp(ηj+λj
K
∏
k=1

αqjk
lk )

. (8)

While this study focuses mostly on the LCDM, various variants of the LCDM, such as the DINO model,
LLM, and saturated LCDM, are also discussed. We will therefore not go into great depth here; instead,
the reader should refer to the Supplementary Material for the necessary information.

3. Variational Bayesian EM-maximization algorithm for the LCDM

3.1. Variational Bayesian EM algorithm
Since it is straightforward to convert an approximate conditional posterior distribution problem into
an optimization problem using VI methods, these techniques see extensive application in inferring
Bayesian models in the area of machine learning (Beal, 2003; Bishop, 2006; Jordan et al., 1999). Next,
we briefly outline the implementation process of the variational Bayesian EM (VBEM) algorithm (Beal,
2003). Assume that the observed dataset y = (y1,⋯,yi,⋯,yN) is produced by modelM, where modelM
consists of the latent variables ζ = (ζ1,⋯,ζ i,⋯,ζN) and model parameters θ. Next, we specify a variational
density family Q over the unknown variables ζ and θ. The purpose of this is to establish the optimal
approximation q(ζ,θ) ∈ Q to their posterior distribution using this specified variational density (i.e.,
q(ζ,θ) ↝ p(ζ,θ∣y)). Next, we introduce the concept of the evidence lower bound (ELBO), which is
critical for determining the optimal q(ζ,θ). Let p(y∣M) be a marginal density of the model M; the
ELBO can then be represented as a lower bound of the logarithm marginal density logp(y∣M):

logp(y∣M) = log∫ p(y,ζ,θ)dζdθ

= log∫ q(ζ,θ)p(y,ζ,θ)
q(ζ,θ) dζdθ

≥ ∫ q(ζ,θ) log p(y,ζ,θ)
q(ζ,θ) dζdθ Jensen’s inequality

= Eq(ζ,θ)[logp(y,ζ,θ)− logq(ζ,θ)]
≜ L(q(ζ,θ)),

(9)

whereL(q(ζ,θ)) is denoted as the ELBO, which is a function of the free distribution q(ζ,θ). We need to
maximizeL(q(ζ,θ))with respect to q(ζ,θ) so that it tends more closely to logp(y∣M). Blei et al. (2017)
presented a formula connecting logp(y∣M)with the ELBO and the Kullback–Leibler (KL) divergence:
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logp(y∣M) = L(q(ζ,θ))+KL(q(ζ,θ)∥p(ζ,θ∣y)). (10)

Since logp(y∣M) is a constant with respect to q(ζ,θ), maximizing the ELBO is actually equivalent
to minimizing the KL distance. Specifically, the optimal q(ζ,θ) we obtained in the variational density
family Q is the density that minimizes the KL divergence between the posterior distribution p(ζ,θ∣y)
and itself. To further simplify the variational density q(ζ,θ), we assume that it satisfies mean-field theory.
Mean-field theory has been widely used in variational Bayesian inference (Beal, 2003; Blei et al., 2017;
Jordan et al., 1999; Wand et al., 2011). In the mean-field theory, latent variables are mutually independent
and each is governed by a separate factor in the variational density, allowing the variational density
q(ζ,θ) to be decomposed into q(ζ)q(θ). An iterative optimization procedure is implemented by seeking
to maximize the mean-field variational density of a parameter of interest while fixing the others. The
VB algorithm can be divided into the following two steps:

VBE step: qnew(ζ i) =
1
Zζ i

exp[∫ qold(θ) logp(ζ i,yi∣θ)dθ]

∝ exp{Eqold(θ)[logp(yi,ζ,θ)]},for ∀i,

VBM step: qnew(θ) = 1
Zθ

p(θ)exp[∫ qnew(ζ) logp(ζ,y∣θ)dζ]

∝ exp{Eqnew(ζ)[logp(y,ζ,θ)]},

(11)

where Zζ i
and Zθ are the normalizing constants. To sum up, the variational density for the latent

variable is updated in the VBE step, while the variational density for the model parameters is updated
in the VBM step. Therefore, the prerequisite to be able to implement the VBEM algorithm is that the
posterior distribution of all parameters, either latent variables or model parameters, should have a
closed form. The VEM algorithm proposed by Yamaguchi and Okada (2020a, 2020b) in educational
psychometric research is essentially identical to the VBEM algorithm provided by Beal (2003), with the
only differences being in nomenclature.

3.2. Variational methods in Bayesian logistic regression
As mentioned above, implementing the VBEM algorithm requires a closed form for the posterior
distributions of each parameter. Therefore, the VBEM algorithm cannot be directly applied to the LCDM
based on the logit link function. To overcome this challenge, we adopt Jaakkola and Jordan’s (2000)
variational Bayesian method for logistic regression models to estimate the more complex LCDM in
the cognitive diagnostic framework. Specifically, their method uses a Taylor expansion on the logistic
function to obtain a tight lower bound, facilitating parameter representation in a Gaussian distribution
form that is easily implementable for VI. Next, we will provide the mathematical expression that Jaakkola
and Jordan (2000) used for performing the first-order Taylor expansion and the specific derivation of
the tight lower bound.

Consider the logistic function σ(ω) = 1/(1+exp(−ω)). The corresponding log logistic function can
be derived as

logσ(ω) = − log(1+exp(−ω)) = ω
2
− log(exp(ω

2
)+exp(−ω

2
)) . (12)

Denote that

f (ω) = − log(exp(ω
2
)+exp(−ω

2
)) .

By calculating the second derivative, we can determine that f (ω) is a convex function about the variable
ω2. Therefore, any tangent line of f (ω) can serve as its lower bound, as it will always be less than or
equal to f (ω). A tight lower bound function for f (ω) can be obtained by executing a first-order Taylor
expansion on the function f (ω) in terms of the variable ω2 at the point ξ2,
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f (ω) ≥ f (ξ)+ ∂f (ξ)
(∂ξ2) (ω2− ξ2) = f (ξ)− 1

2ξ
(σ(ξ)− 1

2
)(ω2− ξ2). (13)

According to Eqs.(12) and (13), we can derive a tight lower bound of σ(ω) with the specific form as

σ(ω) ≥ σ(ξ)exp((ω− ξ)
2

−τ(ξ)(ω2− ξ2)), τ(ξ) = 1
2ξ
(σ(ξ)− 1

2
), (14)

which results in a quadratic form on ω.
Regarding the LCDM, which also employs a logistic form, ω represents a set of linear combinations.

These combinations involve unknown item parameters, an individual’s latent attribute vector, and
the known Q-matrix within the LCDM framework (for further details, please refer to Eqs. (1) and
(2)). Based on Eq. (14), we can derive a quadratic form for the item parameter. Consequently, the
VI algorithm can be implemented in the LCDM by deriving a specific posterior distribution for
item parameters using the Gaussian prior distribution, which serves as the conjugate prior for these
parameters. In the next subsection, we will focus on elucidating the process of deriving the tight lower
bound in the LCDM using Eq. (14).

3.3. Tight lower bound for the LCDM
In this section, the goal is to derive the tight lower bound for LCDM as outlined above. We first
conducted a transformation on the item response data in the LCDM to make it easier to acquire the
tight lower bound term of the likelihood function before providing the implementation of our VBEM-
M algorithm. The item response data xij = {0,1} is transformed into yij = {−1,1} with the help of the
equation yij = 2xij − 1. Let λ∗j = (ηj,λT

j )T and h∗jl = (1,h(α̃l,qj)); the item response probability of yij is
then given by

P(yij = 1∣αi = α̃l,λ∗j ,qj) = P(xij = 1∣αi = α̃l,λ∗j ,qj) =
1

1+exp(−λ∗T
j h∗jl )

,

P(yij = −1∣αi = α̃l,λ∗j ,qj) = P(xij = 0∣αi = α̃l,λ∗j ,qj) =
1

1+exp(λ∗T
j h∗jl )

.
(15)

Recalling the logistic function form, the item response probability of yij can then be rewritten as follows:

p(yij∣αi = α̃l,λ∗j ,qj) = σ(yijλ∗T
j h∗jl ). (16)

Therefore, the likelihood based on the introduced latent variable z can be represented by

p(Y∣z,Ã,λ∗,Q) =
N
∏
i=1

J
∏
j=1

L
∏
l=1

σ(yijλ∗T
j h∗jl )zil . (17)

According to Eq. (14), the tight lower bound function for σ(yijλ∗T
j h∗jl ) is determined by performing a

first-order Taylor expansion with respect to the variable (yijλ∗T
j h∗jl )2 at the point ξ2

ijl. Therefore, a tight
lower bound of the likelihood forthe LCDM can be derived by:
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p(Y∣z,Ã,λ∗,Q) =
N
∏
i=1

J
∏
j=1

L
∏
l=1

σ(yijλ∗T
j h∗jl )zil

≥
N
∏
i=1

J
∏
j=1

L
∏
l=1

⎧⎪⎪⎨⎪⎪⎩
σ(ξijl)exp

⎛
⎝

yijλ∗T
j h∗jl − ξijl

2
−τ(ξijl)(λ∗T

j h∗jl h∗T
jl λ∗j − ξ2

ijl)
⎞
⎠

⎫⎪⎪⎬⎪⎪⎭

zil

≜ p(Y∣z,Ã,λ∗,Q).

(18)

Given that the tight lower bound for the likelihood function is of exponential form, using the multi-
variate normal distribution as a conjugate prior distribution for λ∗ will yield a closed-form posterior
distribution. Due to these considerations, in the subsequent computations, we implement the VBEM-
M algorithm using the tight lower bound of the likelihood function rather than the original likelihood
function. Moreover, it is important to highlight that a new local parameter, ξijl, has been introduced
at this stage. Determining the optimal value for ξijl is an essential part of our analysis. In this paper, we
implement a maximization process to ascertain the most suitable value for ξijl. The detailed methodology
behind this process will be elaborated in the following subsection.

3.4. Fully Bayesian representation of the joint posterior distribution
In the fully Bayesian framework, statistical inference relies on the selection of the prior distribution. The
posterior distribution can be derived by combining the prior distribution (prior information) with the
likelihood function (sample information). Prior distributions from the following Bayesian hierarchical
structures will be considered in this study:

yij ∼ p(yij∣zi,Ã,λ∗,Q), p(zi∣π) =
L
∏
l=1

πzil
l ,0 ≤ πl ≤ 1,

L
∑
l=1

πl = 1,

p(π) = p(π1, . . . ,πL) = Dirichlet (δ0),δ0 = (δ01, . . . ,δ0L),
p(λ∗j ) = MVN(λ∗0 ,ID+1),λ∗0 = (η0,λ0),
λ0 = ( λ0,1,⋯,λ0,K

-...................../....................0
main effect terms

, λ0,K+1,⋯,λ0,D
-............................../..............................0
interaction terms

) = (λ0,main,⋯,λ0,main
-......................................./.......................................0

main effect terms

, λ0,inter,⋯,λ0,inter
-...................................../....................................0

interaction terms

),

p(η0) =N(μη0,σ
2
η0),

p(λ0,main) = N(μλ0,main,σ
2
λ0,main)I (c,∞),

p(λ0,inter) = N(μλ0,inter,σ
2
λ0,inter),

(19)

where ID+1 is a (D + 1)-dimensional identity matrix. Parameter c is a truncation parameter. Some
literature restricts the main effect terms of λ to non-negative values (Zhan et al., 2019). To address
this, a truncation parameter c is introduced to adjust the range of values for the prior parameter
λ0,main. For example, when c is set to −∞, there is no restriction on λ0,main, while setting c = 0 restricts
λ0,main to non-negative values. In practice, users can adjust the value of c to restrict the range of λ0,main
according to their specific requirements. Let Ω = (δ0,μη,σ2

η,μλ,σ2
λ), the joint posterior distribution of

(Y,z,π,λ∗,λ∗0 ∣Q,Ω,Ã) based on the tight lower bound can be represented by

p(Y,z,π,λ∗,λ∗0 ∣Q,Ω,Ã) = p(Y∣z,Ã,λ∗,Q)p(z∣π)p(π)p(λ∗∣λ∗0 )p(λ∗0 )

∝
N
∏
i=1

J
∏
j=1

L
∏
l=1

⎧⎪⎪⎨⎪⎪⎩
σ(ξijl)exp

⎛
⎝

yijλ∗T
j h∗jl − ξijl

2
−τ(ξijl)(λ∗T

j h∗jl h∗T
jl λ∗j − ξ2

ijl)
⎞
⎠

⎫⎪⎪⎬⎪⎪⎭

zil

×
N
∏
i=1

L
∏
l=1

πzil
l

L
∏
l=1

πδ0l
l

J
∏
j=1

exp
⎧⎪⎪⎨⎪⎪⎩
−
(λ∗j −λ∗0 )T(λ∗j −λ∗0 )

2

⎫⎪⎪⎬⎪⎪⎭
exp{−(η0−μη0)2

2σ2
η0

}
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×exp
⎧⎪⎪⎨⎪⎪⎩
−
(λ0,main−μλ0,main)2

2σ2
λ0,main

⎫⎪⎪⎬⎪⎪⎭
I (λ0,main > c)exp

⎧⎪⎪⎨⎪⎪⎩
−
(λ0,inter −μλ0,inter)2

2σ2
λ0,inter

⎫⎪⎪⎬⎪⎪⎭
× const, (20)

where const denotes a constant. The logarithm of p(Y,z,π,λ∗,λ∗0 ∣Q,Ω,Ã) can be further expressed as

logp(Y,z,π,λ∗,λ∗0 ∣Q,Ω,Ã)

=
N
∑
i=1

J
∑
j=1

L
∑
l=1

zil

⎧⎪⎪⎨⎪⎪⎩
log(σ(ξijl))+

yijλ∗T
j h∗jl − ξijl

2
−τ(ξijl)(λ∗T

j h∗jl h∗T
jl λ∗j − ξ2

ijl)
⎫⎪⎪⎬⎪⎪⎭

+
N
∑
i=1

L
∑
l=1

zil logπl+
L
∑
l=1

δ0l logπl−
J
∑
j=1

(λ∗j −λ∗0 )T(λ∗j −λ∗0 )
2

− (η0−μη0)2

2σ2
η0

−
(λ0,main−μλ0,main)2

2σ2
λ0,main

I (λ0,main > c)−
(λ0,inter −μλ0,inter)2

2σ2
λ0,inter

+ const.

(21)

3.5. Implementation of VBEM-M algorithm for LCDM
Assuming that the joint variational density of (z,π,λ∗,λ∗0 ) for the LCDM satisfies mean-field theory,
the following equation holds:

q(z,π,λ∗,λ∗0 ) = (
N
∏
i=1

q(z))q(π)
⎛
⎝

J
∏
j=1

q(λ∗j )
⎞
⎠

q(η0)q(λ0,main)q(λ0,inter). (22)

Let Θ = (z,π,λ∗,λ∗0 ); in terms of Eqs. (9) and (21), the ELBO L(q(Θ)) can then be derived as

L(q(Θ)) = Eq(z,π,λ∗,λ∗0 )[logp(Y,z,π,λ∗,λ∗0 ∣Q,Ω,Ã)− logq(z,π,λ∗,λ∗0 )]
≥ Eq(z,π,λ∗,λ∗0 )[logp(Y,z,π,λ∗,λ∗0 ∣Q,Ω,Ã)− logq(z,π,λ∗,λ∗0 )]

= Eq(z,π,λ∗,λ∗0 )[
N
∑
i=1

J
∑
j=1

L
∑
l=1

zil

⎧⎪⎪⎨⎪⎪⎩
log(σ(ξijl))+

yijλ∗T
j h∗jl − ξijl

2
−τ(ξijl)(λ∗T

j h∗jl h∗T
jl λ∗j − ξ2

ijl)
⎫⎪⎪⎬⎪⎪⎭

+
N
∑
i=1

L
∑
l=1

zil logπl+
L
∑
l=1
(δ0l−1) logπl−

J
∑
j=1

(λ∗j −λ∗0 )T(λ∗j −λ∗0 )
2

− (η0−μη0)2

2σ2
η0

−
(λ0,main−μλ0,main)2

2σ2
λ0,main

I (λ0,main > c)−
(λ0,inter −μλ0,inter)2

2σ2
λ0,inter

−
N
∑
i=1

L
∑
l=1

zil logπ∗il −
L
∑
l=1
(δ∗l −1) logπl−

J
∑
j=1

(λ∗j −m∗j )TV∗−1
j (λ∗j −m∗j )
2

+
(η0−μ∗η0)

2

2σ∗2
η0

+
(λ0,main−μ∗λ0,main

)2

2σ∗2
λ0,main

I (λ0,main > c)−
(λ0,inter −μ∗λ0,inter

)2

2σ∗2
λ0,inter

]+ const

≜ L∗(q(Θ),ξ),

(23)

where L∗(q(Θ),ξ) is a tight lower bound of L(q(Θ)). Next, we maximize L∗(q(Θ),ξ) to obtain
estimates of latent variables z, model parameters (π,λ∗), hyperparameters λ∗0 , and local point parameter
ξ. Specifically, there are three steps to the implementation process:

(a) VBE step: update variational density for latent variable;
(b) VBM step: update variational densities for model parameters and hyperparameters;
(c) M step: update local point parameter ξ by maximizing L∗(q(Θ),ξ).
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Table 1. Estimation procedure of the VBEM-M algorithm

VBEM-M Algorithm

Input: δ0, μη0
, σ2

η0
, μλ0,main , σ2

λ0,main
,μλ0, inter , σ2

λ0, inter
, e0, T

Initialization: E
(0)

q(η0)
[η0], E

(0)

q(λ0d)
[λ0d], E

(0)

q(λ∗j )
[λ∗j ], E

(0)

q(λ∗j )
[λ∗j λ∗T

j ].

Repeat

(a) VBE-step: update q∗(zi) according to Eq. (25).

(b) VBM-step:

(b1) update q∗(π) according to Eq. (27).

(b2) update q∗(λ∗j ) according to Eq. (29).

(b3) update q∗(η0) according to Eq. (31).

(b4) update q∗(λ0,main) according to Eq. (33).

(b5) update q∗(λ0, inter) according to Eq. (35).

(c) M-step: update ξijl using Eq. (37).

Until the absolute difference ofL∗(q(Θ),ξ) between two adjacent iterations is less than

e0 or t >T, where e0 is the convergence threshold and T is the maximum iterations.

Figure 1. Graphical illustration of the VBEM-M algorithm implementation process. Let Θ∗(t) = (π(t),λ∗(t),λ∗(t)
0 ). the variational

density of the latent variable z(t+1) is updated in the VBE-step. In VBM-step, the variational densities for model parameters and

hyperparameters Θ∗(t+1) are updated. In M-step, we update ξ∗(t+1) by maximizing L(q(z(t+1),Θ∗(t+1)),ξ∗(t)).

In the following text, q∗(⋅) denotes the optimal variational posterior in each iteration. To keep
things simple, we only present the core formulation for updating. The specifics can be found in the
Supplementary Material. The estimation procedure of the VBEM-M algorithm is shown in Table 1. In
Table 1 and subsequent tables, all parameters are estimated using their posterior means. In addition, the
specific implementation process of each step for the VBEM-M algorithm is shown in Figure 1.

(a) VBE step. In this step, we update the variational density of zi for each i, where i = 1,⋯,N. q∗(zi)
is derived to be a categorical distribution with parameter π∗i . That is,
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q∗(zi∣π∗i ) =
L
∏
l=1

π∗zil
il , (24)

where

π∗il =
ρil

∑L
l=1 ρil

,

ρil = exp
⎧⎪⎪⎨⎪⎪⎩

J
∑
j=1
{ log(σ(ξijl))+

yijEq(λ∗j )[λ
∗
j ]Th∗jl − ξijl

2

−τ(ξijl)(h∗T
jl Eq(λ∗j )[λ

∗
j λ∗T

j ]h∗jl − ξ2
ijl)}+Eq(π) log(πl)

⎫⎪⎪⎬⎪⎪⎭
.

(25)

(b) VBM step. In this step, we update the variational density for π, λ∗j (j = 1,⋯,J), η0, λ0,main and
λ0,inter.

(b1) Update the variational density for π
q∗(π) is derived to be a Dirichlet distribution with parameter δ∗. That is,

q∗(π∣δ∗) ∝
L
∏
l=1

πδ∗l −1
l , (26)

where

δ∗l =
N
∑
i=1

Eq(zi)[zil]+δ0l. (27)

(b2) Update the variational density for λ∗j
q(λ∗j ) is proportional to a multivariate normal distribution with mean vector m∗j and covariance V∗j .

That is,

q∗(λ∗j ∣m∗j ,V∗j ) ∝ exp
⎧⎪⎪⎨⎪⎪⎩
−
(λ∗j −m∗j )TV∗−1

j (λ∗j −m∗j )
2

⎫⎪⎪⎬⎪⎪⎭
, (28)

where

V∗−1
j = I−1

D+1+2
N
∑
i=1

L
∑
l=1

Eq(zi)[zil]τ(ξijl)h∗jl h∗T
jl ,

m∗j =V∗j (λ∗0 +
1
2

N
∑
i=1

L
∑
l=1

Eq(zi)[zil]yijh∗jl) .
(29)

(b3) Update the variational density for η0
q∗(η0) is proportional to a normal distribution with mean μ∗η0 and variance σ∗2

η0 . That is,

q∗(η0∣μ∗η0,σ
∗2
η0 ) ∝ exp{−

(η0−μ∗η0)
2

2σ∗2
η0

}, (30)

where

(σ∗2
η0 )
−1 = J+ 1

σ2
η0

,

μ∗η0 = σ∗2
η0

⎛
⎝

μη0

σ2
η0

+
J
∑
j=1
(Eq(λ∗j )[λ

∗
j ])η

⎞
⎠
,

(31)

where Eq(λ∗j )[λ
∗
j ]η is the corresponding expected value of the element ηj in the vector λ∗.
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(b4) Update the variational density for λ0,main
q∗(λ0,main) is proportional to a truncated normal distribution with mean μ∗λ0,main

and variance σ∗2
λ0,main

.
Specifically,

q∗(λ0,main∣μ∗λ0,main,σ
∗2
λ0,main) ∝ exp

⎧⎪⎪⎨⎪⎪⎩
−
(λ0,main−μ∗λ0,main

)2

2σ∗2
λ0,main

⎫⎪⎪⎬⎪⎪⎭
I (c,∞), (32)

where

(σ∗2
λ0,main)

−1 = J∗main+
1

σ2
λ0,main

,

μ∗λ0,main = σ∗2
λ0,main

⎛
⎝

μλ0,main

σ2
λ0,main

+
K
∑
d=1
∑
j∈Jd

(Eq(λ∗j )[λ
∗
j ])λd

⎞
⎠
,

(33)

where J∗main denotes the number of all main effect terms, Jd = {j ∶ λjd ≠ 0}, and Eq(λ∗j )[λ
∗
j ]λd is the

corresponding expected value of the element λjd in the vector λ∗.
(b5) Update the variational density for λ0,inter
q∗(λ0,inter) is proportional to a truncated normal distribution with mean μ∗λ0,inter

and variance σ∗2
λ0,inter

.
Specifically,

q∗(λ0,inter ∣μ∗λ0,inter,σ
∗2
λ0,inter) ∝ exp

⎧⎪⎪⎨⎪⎪⎩
−
(λ0,inter −μ∗λ0,inter

)2

2σ∗2
λ0,inter

⎫⎪⎪⎬⎪⎪⎭
, (34)

where

(σ∗2
λ0,inter)

−1 = J∗inter +
1

σ2
λ0,inter

,

μ∗λ0,inter = σ∗2
λ0,inter

⎛
⎝

μλ0,inter

σ2
λ0,inter

+
D
∑

d=K+1
∑
j∈Jd

(Eq(λ∗j )[λ
∗
j ])λd

⎞
⎠
,

(35)

where J∗inter denotes the number of all interaction terms.
(c) M step. In this step, we update the local point parameter ξijl (i = 1,⋯,N; j = 1,⋯,J; l = 1,⋯,L). To

obtain the optimal ξijl, we need to maximize L∗(q(Θ),ξ) by computing the derivative of ξijl to zero:

∂L∗(q(Θ),ξ)
∂ξijl

= 0. (36)

Therefore, we have

ξ2
ijl = ξ2

jl = h∗T
jl Eq(λ∗j )[λ

∗
j λ∗T

j ]h∗jl . (37)

Considering the aforementioned presentation of the VBEM-M algorithm, it is clear that we need to
compute a large number of expectations using categorical, Dirichlet, normal, multivariate normal, and
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truncated normal distributions. Some formulae for calculating these expectations are as follows:

Eq(zi)[zil] = π∗il , Eq(π) log(πl) = ψ(δ∗l )−ψ(
L
∑
l=1

δ∗l ),

Eq(λ∗j )[λ
∗
j ] = μ∗j , Eq(λ∗j )[λ

∗
j λ∗T

j ] = Σ∗j +μ∗j μ∗T
j ,

Eq(η0)[η0] = μ∗η0, Eq(η0)[(η0−μ∗η0)
2] = σ∗2

η0 ,

Eq(λ0,main)[λ0,main] = μ∗λ0,main +σ∗2
λ0,main

ϕ(u)
Φ(u),u =

c−μ∗λ0,main

σ∗λ0,main

,

Eq(λ0,main)[(λ0,main−μ∗λ0,main)
2] = σ∗2

λ0,main (1−μ∗λ0,main

ϕ(u)
Φ(u)),

Eq(λ0,inter)[λ0,inter] = μ∗λ0,inter, Eq(λ0,inter)[(λ0,inter −μ∗λ0,inter)
2] = σ∗2

λ0,inter,

(38)

where ψ(⋅) is ψ(x) = d
dx logΓ(x), Γ(x) = ∫ ∞0 t(x−1) exp(−t)dt, ϕ(⋅) is the density function of a standard

normal distribution, and Φ(⋅) is the cumulative distribution function of a standard normal distribution.

4. Simulation study

In the following simulation studies, we address three primary concerns: First, the performance of
the VBEM-M algorithm under various conditions for the DINA model; second, the performance of
the VBEM-M algorithm, based on the DINA model, compares to Yamaguchi and Okada’s (2020b)
VB method, the MCMC algorithms within the full Bayesian framework, and the EM algorithm in
the frequency framework under different simulation settings; third, the performance of the VBEM-
M algorithm is compared with the VB, MCMC, and EM algorithms under the saturated LCDM with
different simulation conditions. Supplementary Material showcases the performance of the VBEM-M
algorithm for the DINA model under different initial values and in other widely used CDMs, including
the DINO model and LLM.

4.1. Data generation
Item response data xij is generated from a Bernoulli distribution with probability of correct response
P(xij = 1∣αi,λ∗,qj). The true values of the item parameters based on DINA model are constrained by
considering four different levels of noise to investigate the correlation between noise and recovery.
For each item, the following scenarios are considered. (a1) Low noise level (LNL): sj = gj = 0.1, with
corresponding true values ηj = −2.1972, λj = 4.3944. (a2) High noise level (HNL): sj = gj = 0.2, with
corresponding true values ηj = −1.3863, λj = 2.7726. (a3) Slipping higher than guessing (SHG): sj = 0.2,
gj = 0.1, with corresponding true values ηj = −2.1972, λj = 3.5835. (a4) Guessing higher than slipping
(GHS): sj = 0.1, gj = 0.2, with corresponding true values ηj = −1.3863, λj = 3.5835.

To generate the attribute-mastery patterns, we used the same procedure as Chiu and Douglas (2013),
which takes into account the correlations among the attributes. Specifically, α∗i = (α∗i1,⋯,α∗ik,⋯,α∗iK)T are
generated from a multivariate normal distribution; that is, α∗i ∼N(0K,ΣK×K), where 0K = (0, . . . ,0)T

K×1
and

ΣK×K =
⎡⎢⎢⎢⎢⎢⎣

1 . . . σ
⋮ ⋱ ⋮
σ . . . 1

⎤⎥⎥⎥⎥⎥⎦K×K

,

where the off-diagonal elements of ΣK×K are σ. As σ increases from 0 to 1, the correlation between
attributes also increases from 0 to maximum. The relationships between the attribute profiles αi and
α∗i can be expressed as αik = 1 if α∗ik > 0 and αik = 0 otherwise. Although the Q-matrices are created
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randomly, they still conform to the identifiability constraints outlined by Chen et al. (2015, 2017), Liu
and Andersson (2020), and Xu and Shang (2018). We present the Q-matrices used in these simulations
in the Supplementary Material.

4.2. Prior distributions
The prior parameter δ0 is set as δ0 = 1L (Culpepper, 2015; Zhan et al., 2019), where 1L denotes a
L-dimensional vector with all elements equal to 1. The hyperparameters are chosen as follows: μη0 = −2,
μλmain = μλinter = 0, and σ2

η0 = σ2
λmain

= σ2
λinter

= 10.

4.3. Estimation software
We implemented four different approaches, namely, the VBEM-M algorithm, VB algorithm, MCMC
sampling algorithm, and EM algorithm, using the R programming language (R Core Team, 2017) on
a desktop computer equipped with Intel (R) Core (TM) i5-10400 CPU @ 2.90GHz, 16GB RAM. To
enhance the computational efficiency of the VBEM-M method, we utilized two R packages, “Rcpp”
(Eddelbuettel & Francois, 2011) and “RcppArmadillo” (Eddelbuettel & Sanderson, 2014), to call the
C++ programming language. The R code of our VBEM-M algorithm can be found in the Supplementary
Material. We used the R package “variationalDCM” (Hijikata et al., 2023) to implement the VB method.
The MCMC sampling algorithms were implemented separately using the R packages “dina” (Culpepper
& Balamuta, 2019), which is integrated with the C++ program, and “R2jags” (Su & Yajima, 2015) which
is associated with the JAGS program (Plummer, 2003). The EM algorithm was implemented using the
R packages “GDINA” (Ma & de la Torre, 2020) and “CDM” (George et al., 2016), respectively.

4.4. Convergence diagnosis
The VBEM-M algorithm was considered converged if the absolute difference between two consecutive
iterations was less than e0 = 10−4, or if the number of iterations T had reached 2,000. When using the
R packages “dina” and “R2jags” to implement the MCMC sampling algorithms, for the DINA model,
Culpepper (2015) demonstrated that it would have converged after 750 iterations, thus the chain length
was set to 2,000 and the first 1,000 iterations were set as a “burn-in” period. For the saturated LCDM,
we chose a chain length of 10,000, with a burn-in of 5,000. For the EM algorithm, when employing the
R package “GDINA,” the convergence criteria is when the maximum absolute change in item success
probabilities between consecutive iterations was smaller than e0 = 10−4 or when T exceeded 2,000. In
addition, when using the R package “CDM,” iteration will end if the maximal change in parameter
estimates is below e0 = 0.001.

4.5. Evaluation Criteria
For item parameters and class membership probability parameters, we assess the accuracy of parameter
estimation using bias and root mean square error (RMSE). For attribute parameters, we adopt the
following two evaluation indices: the pattern-wise agreement rate (PAR), which indicates the rates of
correct classification for attribute patterns, and is formulated as

PAR = 1
N

N
∑
i=1
I(α̂i = αi), (39)

and the attribute-wise agreement rate (AAR), which signifies the rates of correct classification for
individual attributes, and is defined as

AAR(k) = 1
N

N
∑
i=1
I(α̂ik = αik), (40)
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where αi is the true value of the ith student’s attribute profile and α̂i is the estimated value of αi. α̂ik is
the estimated value of αik for the specific attribute k.

4.6. Simulation study 1
In this simulation study, we explored the performance of the VBEM-M algorithm under various
simulation conditions. We set the test length to J = 30, the number of attributes was set to K = 5,
and the corresponding Q-matrix is shown in the Supplementary Material. The following manipulated
conditions were considered: (A) number of examinees N = 1,000 and 2,000; (B) correlation among
attributes σ = 0, 0.3 and 0.7; and (C) noise levels LNL, HNL, SHG, and GHS. Fully crossing different
levels of these three factors yields 24 conditions (2 sample sizes × 3 correlations × 4 noise levels). There
were 100 replications for each simulation condition. The recovery results of parameters are displayed in
Tables 2 and 3 and Figure 3.

The following conclusions can be drawn from Tables 2 and 3. (1) Given the correlation and noise
levels, when the number of examinees is increased from 1,000 to 2,000, the average RMSE, the average
bias, and standard deviation (SD) for η, λ, and π show decreasing trends. For example, when the
correlation among attributes is 0.3 and the LNL is applied, increasing the number of examinees from
1,000 to 2,000 results in the average bias of η decreasing from -0.0140 to -0.0077, and the average bias
of λ decreasing from 0.0307 to 0.0133. The average RMSE of η decreases from 0.1369 to 0.0981, the
average RMSE of λ from 0.2337 to 0.1669, and the average RMSE of π from 0.0022 to 0.0016. The
SD of η decreases from 0.0937 to 0.0664, the SD of λ decreases from 0.1617 to 0.1152, and the SD of
π decreases from 0.0051 to 0.0037. (2) When the number of examinees and the noise level are given,
with increasing σ, the average RMSE for η increase somewhat. This indicates that η is less impacted by
the correlation between attributes. λ is substantially more impacted by σ; specifically, the average bias
and RMSE for λ tend to decrease markedly as σ increases. In the meanwhile, RMSE for π also tend to
decrease as σ increases. For example, when the number of examinees is fixed at 1,000 and the LNL noise
level is applied, the average bias are –0.0118, 0.140, 0.104, respectively, and the average RMSE rises from
0.1351 to 0.1388 when σ increases. The change in bias and RMSE of η are found to be slight. However,
the decreases in bias and RMSE are markedly greater for λ, with the average bias of λ decreasing from
0.0365 to 0.0279 and the corresponding average RMSE decreasing from 0.2560 to 0.2216. For π, the
average bias remains at 0.0000 in all conditions, while the average RMSE exhibits the largest change
in the HNL condition, decreasing from 0.0058 to 0.0048. (3) The accuracy of attribute profile recovery
is highest under the LNL condition because the noise is the lowest. For example, with a fixed number
of examinees at 1,000 and a correlation of σ = 0, the PAR is 0.9025 under the LNL condition and only
0.6736 under the HNL condition. Under the LNL condition, the AAR values for five attributes exceed
0.9667 across various sample sizes and levels of attribute correlation. Moreover, the accuracy of attribute
profile recovery tends to improve as σ increases.

In Figure 3, as an explanation, we only show the recovery results for the LNL and HNL based on
the sample size N = 1,000. On each item, the bias of η are almost the same for the LNL and the HNL.
Furthermore, when the correlation between attributes is strengthened (σ from 0 to 0.7), there is no
difference between the bias and RMSE of η in the LNL (HNL). It was also discovered that, for both
low and high levels of noise, the RMSE of η is lower when the items evaluate more attributes. At low
noise levels, for instance, the RMSE of η for the first item evaluating one attribute is greater than that
for the eleventh item evaluating the first three attributes together. For λ, although the bias of λ differs on
each item at low and high noise levels, the values of bias are basically around 0. Similarly, for both low
and high levels of noise, the RMSE of λ is lower when items have higher correlation among themselves.
This is because as the attribute correlation increases, more accurate estimates of α are obtained, which
in turn enhances the accuracy of λ estimates. This also provides an empirical guarantee for our later
practical research. That is, when designing the items, we should aim to achieve higher correlations
between attributes to increase the accuracy of parameter estimation.
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Table 2. The accuracy of item parameters and class membership probability parameters using the VBEM-M algorithm in simulation study 1

N = 1,000 N = 2,000

LNL η λ π η λ π

RMSE(Bias) SD RMSE(Bias) SD RMSE(Bias) SD RMSE(Bias) SD RMSE(Bias) SD RMSE(Bias) SD

σ = 0 0.1351(–0.0118) 0.0920 0.2560(0.0365) 0.1765 0.0022(0.0000) 0.0053 0.0976(–0.0038) 0.0652 0.1877(0.0150) 0.1260 0.0015(0.0000) 0.0038

σ = 0.3 0.1369(–0.0140) 0.0937 0.2337(0.0307) 0.1617 0.0022(0.0000) 0.0051 0.0981(–0.0077) 0.0664 0.1669(0.0133) 0.1152 0.0016(0.0000) 0.0037

σ = 0.7 0.1388(–0.0104) 0.0967 0.2216(0.0279) 0.1516 0.0021(0.0000) 0.0045 0.1004(–0.0073) 0.0687 0.1600(0.0135) 0.1078 0.0015(0.0000) 0.0032

η λ π η λ π

HNL RMSE(Bias) SD RMSE(Bias) SD RMSE(Bias) SD RMSE(Bias) SD RMSE(Bias) SD RMSE(Bias) SD

σ = 0 0.1131(–0.0038) 0.0844 0.2240(0.0261) 0.1621 0.0058(0.0000) 0.0053 0.0797(–0.0038) 0.0559 0.1605(0.0132) 0.1155 0.0041(0.0000) 0.0038

σ = 0.3 0.1126(–0.0088) 0.0859 0.1979(0.0138) 0.1489 0.0056(0.0000) 0.0051 0.0813(–0.0016) 0.0609 0.1417(0.0069) 0.1059 0.0039(0.0000) 0.0037

σ = 0.7 0.1130(–0.0080) 0.0889 0.1738(0.0144) 0.1393 0.0048(0.0000) 0.0045 0.0822(–0.0038) 0.0629 0.1297(0.0101) 0.0990 0.0036(0.0000) 0.0032

η λ π η λ π

SHG RMSE(Bias) SD RMSE(Bias) SD RMSE(Bias) SD RMSE(Bias) SD RMSE(Bias) SD RMSE(Bias) SD

σ = 0 0.1406(–0.0093) 0.0919 0.2218(0.0217) 0.1667 0.0035(0.0000) 0.0053 0.1029(–0.0061) 0.0652 0.1649(0.0156) 0.1185 0.0025(0.0000) 0.0038

σ = 0.3 0.1440(–0.0100) 0.0935 0.2135(0.0171) 0.1534 0.0033(0.0000) 0.0051 0.1026(–0.0070) 0.0665 0.1475(0.0130) 0.1090 0.0025(0.0000) 0.0037

σ = 0.7 0.1478(–0.0156) 0.0968 0.1932(0.0240) 0.1444 0.0032(0.0000) 0.0045 0.1027(–0.0106) 0.0688 0.1362(0.0144) 0.1026 0.0021(0.0000) 0.0032

η λ π η λ π

GHS RMSE(Bias) SD RMSE(Bias) SD RMSE(Bias) SD RMSE(Bias) SD RMSE(Bias) SD RMSE(Bias) SD

σ = 0 0.1038(–0.0064) 0.0844 0.2537(0.0279) 0.1729 0.0035(0.0000) 0.0053 0.0729(–0.0011) 0.0599 0.1852(0.0141) 0.1227 0.0026(0.0000) 0.0038

σ = 0.3 0.1073(–0.0047) 0.0860 0.2262(0.0193) 0.1573 0.0035(0.0000) 0.0051 0.0752(0.0005) 0.0610 0.1650(0.0131) 0.1119 0.0025(0.0000) 0.0037

σ = 0.7 0.1071(–0.0074) 0.0889 0.2031(0.0186) 0.1466 0.0032(0.0000) 0.0045 0.0763(–0.0023) 0.0630 0.1470(0.0080) 0.1042 0.0023(0.0000) 0.0032

Note: The values outside parentheses represent the RMSE, while the values inside the parentheses indicate the bias. These reflect the average RMSE, bias and SD for all intercept parameters η, slope parameters λ,
and class membership probability parameters π.
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Table 3. The accuracy of attribute profile parameters using the VBEM-M algorithm in simulation study 1

N = 1,000 N = 2,000

LNL AAR1 AAR2 AAR3 AAR4 AAR5 PAR AAR1 AAR2 AAR3 AAR4 AAR5 PAR

σ = 0 0.9792 0.9667 0.9880 0.9672 0.9903 0.9025 0.9787 0.9667 0.9876 0.9669 0.9900 0.9007

σ = 0.3 0.9807 0.9718 0.9877 0.9712 0.9918 0.9107 0.9803 0.9727 0.9876 0.9719 0.9914 0.9120

σ = 0.7 0.9821 0.9799 0.9874 0.9797 0.9941 0.9290 0.9827 0.9807 0.9872 0.9803 0.9940 0.9307

N = 1,000 N = 2,000

HNL AAR1 AAR2 AAR3 AAR4 AAR5 PAR AAR1 AAR2 AAR3 AAR4 AAR15 PAR

σ = 0 0.9102 0.8959 0.9334 0.8919 0.9413 0.6736 0.9098 0.8939 0.9332 0.8935 0.9413 0.6731

σ = 0.3 0.9137 0.9085 0.9372 0.9039 0.9497 0.6980 0.9150 0.9111 0.9375 0.9061 0.9491 0.7031

σ = 0.7 0.9345 0.9335 0.9512 0.9286 0.9608 0.7724 0.9364 0.9350 0.9520 0.9301 0.9628 0.7781

N = 1,000 N = 2,000

SHG AAR1 AAR2 AAR3 AAR4 AAR5 PAR AAR1 AAR2 AAR3 AAR4 AAR15 PAR

σ = 0 0.9525 0.9443 0.9707 0.9406 0.9766 0.8172 0.9516 0.9458 0.9724 0.9432 0.9761 0.8213

σ = 0.3 0.9596 0.9452 0.9740 0.9435 0.9762 0.8266 0.9592 0.9462 0.9739 0.9432 0.9762 0.8269

σ = 0.7 0.9689 0.9618 0.9777 0.9604 0.9826 0.9871 0.9693 0.9630 0.9785 0.9614 0.9831 0.8734

N = 1,000 N = 2,000

GHS AAR1 AAR2 AAR3 AAR4 AAR5 PAR AAR1 AAR2 AAR3 AAR4 AAR15 PAR

σ = 0 0.9476 0.9442 0.9689 0.9416 0.9762 0.8153 0.9489 0.9462 0.9685 0.9424 0.9762 0.8186

σ = 0.3 0.9476 0.9521 0.9667 0.9467 0.9783 0.8238 0.9485 0.9519 0.9665 0.9478 0.9780 0.8248

σ = 0.7 0.9624 0.9620 0.9755 0.9584 0.9818 0.8630 0.9623 0.9623 0.9753 0.9590 0.9813 0.8635

Note: AAR1 represents the correct classification rate for the first attribute, AAR2 for the second attribute, AAR3 for the third attribute, AAR4 for
the fourth attribute, and AAR5 for the fifth attribute. PAR stands for the pattern-wise agreement rate.

Additionally, we assess the performance of the VBEM-M algorithm under different initial values
(please see the Supplementary Material for details), and the results showed that our VBEM-M algorithm
is not affected by the different initial values.

4.7. Simulation study 2
The purpose of this simulation study is to compare the proposed method with Yamaguchi and Okada’s
(2020b) VB method, the MCMC sampling algorithms, and the EM algorithm in terms of parameter
accuracy for the DINA model. Specifically, the R package “variationalDCM” was used to implement
Yamaguchi and Okada’s (2020b) VB method, while the R packages “dina” and “R2jags” were used to
implement the MCMC sampling algorithms. The EM algorithm was implemented using the R packages
“GDINA” and “CDM”.

The simulation design is as follows: the test length was fixed at J = 30, and the number of attributes
was set to K = 5. The varying conditions of the simulation are as follows: (D) The number of examinees
N = 200, 500, 1,000, and 2,000; (E) correlation among attributes σ = 0, 0.3, and 0.7; and (F) LNL and
HNL conditions. Fully crossing different levels of these two factors yields 24 conditions (4 sample sizes
× 3 correlations × 2 noise levels). Each simulation condition was replicated 100 times. The recovery
results of item parameters and attribute profile recovery for all six methods are shown in Tables 4 and 5.
Due to the space limit, we only present the results with the correlation σ = 0.3 in Tables 4 and 5; the
other two correlation cases (σ = 0 and σ = 0.7) are given in the Supplementary Material. Figure 2 depicts
the boxplots of the bias and RMSE for η, λ, and π estimated by the six methods with σ = 0.3 under the
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Figure 2. The bias and RMSE of η and λ for each item in the simulation study 1. The Q-Matrix denotes the skills required for each item

along the x axis, where the black square =“1” and white square =“0”.

LNL condition. Table 6 shows the computation time for these six methods under the same conditions.
Here, the displayed computation time is the average time across 100 replications.

In Tables 4 and 5, as well as in the subsequent simulation studies, the RMSE and bias mentioned are
the average RMSE and average bias. From Tables 4 and 5, we can draw the following conclusions: (1) The
VBEM-M algorithm consistently outperforms the other five methods in terms of achieving lower RMSE
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Table 4. The accuracy of item parameters and class membership probability parameters using the VBEM-M, VB, MCMC-dina,

MCMC-R2jags, EM-GDINA, and EM-CDM algorithms for the DINA model under the σ = 0.3 condition in simulation study 2

η

VBEM-M VB MCMC-dina MCMC-R2jags EM-GDINA EM-CDM

N = 200 0.2759(–0.0439) 0.3068(0.0255) 0.3043(0.0291) 0.3045(0.0267) 0.3660(–0.0533) 0.3659(–0.0531)

N = 500 0.1881(–0.0191) 0.1973(0.0112) 0.1968(0.0127) 0.1970(0.0120) 0.2050(–0.0172) 0.2050(–0.0172)

N = 1,000 0.1370(–0.0103) 0.1400(0.0052) 0.1400(0.0059) 0.1400(0.0055) 0.1426(–0.0088) 0.1426(–0.0088)

N = 2,000 0.0974(-0.0033) 0.0987(0.0046) 0.0988(0.0050) 0.0987(0.0048) 0.0994(–0.0024) 0.0994(–0.0024)

λ

LNL VBEM-M VB MCMC-dina MCMC-R2jags EM-GDINA EM-CDM

N = 200 0.4500(0.1151) 0.5507(–0.1284) 0.5470(–0.1441) 0.5554(–0.1670) 1.0239(0.2478) 1.0238(0.2478)

N = 500 0.3284(0.0541) 0.3552(–0.0502) 0.3551(–0.0564) 0.3567(–0.0656) 0.3961(0.0555) 0.3961(0.0555)

N = 1,000 0.2437(0.0295) 0.2532(–0.0243) 0.2527(–0.0272) 0.2539(–0.0317) 0.2638(0.0263) 0.2638(0.0263)

N = 2,000 0.1780(0.0129) 0.1814(–0.0146) 0.1814(–0.0159) 0.1817(–0.0183) 0.1845(0.0104) 0.1845(0.0104)

π

VBEM-M VB MCMC-dina MCMC-R2jags EM-GDINA EM-CDM

N = 200 0.0055(0.0000) 0.0055(0.0000) 0.0055(0.0000) 0.0055(0.0000) 0.0056(0.0000) 0.0056(0.0000)

N = 500 0.0034(0.0000) 0.0034(0.0000) 0.0034(0.0000) 0.0034(0.0000) 0.0034(0.0000) 0.0034(0.0000)

N = 1,000 0.0023(0.0000) 0.0023(0.0000) 0.0023(0.0000) 0.0023(0.0000) 0.0023(0.0000) 0.0023(0.0000)

N = 2,000 0.0016(0.0000) 0.0016(0.0000) 0.0016(0.0000) 0.0016(0.0000) 0.0016(0.0000) 0.0016(0.0000)

η

VBEM-M VB MCMC-dina MCMC-R2jags EM-GDINA EM-CDM

N = 200 0.2250(–0.0207) 0.2533(0.0010) 0.2456(0.0095) 0.2465(0.0036) 0.3180(0.0351) 0.3181(–0.0351)

N = 500 0.1564(–0.0122) 0.1633(0.0002) 0.1622(0.0047) 0.1625(0.0016) 0.1682(–0.0103) 0.1681(–0.0102)

N = 1,000 0.1113(–0.0042) 0.1136(0.0024) 0.1133(0.0051) 0.1134(0.0036) 0.1150(–0.0027) 0.1150(–0.0027)

N = 2,000 0.0811(–0.0045) 0.0819(–0.0011) 0.0817(0.0000) 0.0818(–0.0005) 0.0824(–0.0039) 0.0824(–0.0039)

λ

HNL VBEM-M VB MCMC-dina MCMC-R2jags EM-GDINA EM-CDM

N = 200 0.4108(0.0928) 0.4754(–0.0237) 0.4617(–0.0591) 0.4686(–0.0897) 0.6678(0.1202) 0.6679(0.1202)

N = 500 0.2874(0.0322) 0.3064(–0.0179) 0.3042(–0.0342) 0.3068(–0.0472) 0.3192(0.0249) 0.3192(0.0249)

N = 1,000 0.2061(0.0211) 0.2118(–0.0047) 0.2112(–0.0138) 0.2116(–0.0199) 0.2165(0.0168) 0.2165(0.0169)

N = 2,000 0.1489(0.0118) 0.1509(–0.0011) 0.1505(–0.0055) 0.1507(–0.0087) 0.1524(0.0094) 0.1524(0.0094)

π

VBEM-M VB MCMC-dina MCMC-R2jags EM-GDINA EM-CDM

N = 200 0.0111(0.0000) 0.0113(0.0000) 0.0107(0.0000) 0.0107(0.0000) 0.0146(0.0000) 0.0146(0.0000)

N = 500 0.0077(0.0000) 0.0077(0.0000) 0.0076(0.0000) 0.0077(0.0000) 0.0088(0.0000) 0.0088(0.0000)

N = 1,000 0.0056(0.0000) 0.0057(0.0000) 0.0057(0.0000) 0.0057(0.0000) 0.0060(0.0000) 0.0060(0.0000)

N = 2,000 0.0041(0.0000) 0.0041(0.0000) 0.0042(0.0000) 0.0042(0.0000) 0.0043(0.0000) 0.0043(0.0000)

Note: The values outside the parentheses represent the RMSE, while the values inside the parentheses indicate the bias. Here, RMSE and Bias
denote the average RMSE and Bias, respectively, for all intercept parameters η, all slope parameters λ and all class membership probability
parameters π.
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Table 5. The accuracy of attribute profile parameters using the VBEM-M, VB, MCMC-dina, MCMC-R2jags, EM-GDINA, and EM-CDM algorithms for the DINA model under the σ = 0.3 condition

in simulation study 2

AAR1 AAR2

VBEM-M VB MCMC-dina MCMC-R2jags EM-GDINA EM-CDM VBEM-M VB MCMC-dina MCMC-R2jags EM-GDINA EM-CDM

N = 200 0.9877 0.9876 0.9876 0.9878 0.9874 0.9874 0.9580 0.9572 0.9579 0.9577 0.9564 0.9564

N = 500 0.9875 0.9875 0.9876 0.9873 0.9875 0.9875 0.9578 0.9576 0.9577 0.9573 0.9576 0.9576

N = 1,000 0.9886 0.9886 0.9887 0.9886 0.9886 0.9886 0.9622 0.9622 0.9621 0.9620 0.9621 0.9621

N = 2,000 0.9884 0.9884 0.9883 0.9883 0.9884 0.9884 0.9614 0.9615 0.9613 0.9614 0.9615 0.9615

AAR3 AAR4

VBEM-M VB MCMC-dina MCMC-R2jags EM-GDINA EM-CDM VBEM-M VB MCMC-dina MCMC-R2jags EM-GDINA EM-CDM

N = 200 0.9832 0.9828 0.9828 0.9829 0.9825 0.9825 0.9820 0.9815 0.9818 0.9815 0.9808 0.9808

LNL N = 500 0.9855 0.9854 0.9853 0.9853 0.9855 0.9855 0.9821 0.9821 0.9820 0.9820 0.9820 0.9820

N = 1,000 0.9856 0.9856 0.9856 0.9856 0.9856 0.9856 0.9824 0.9824 0.9825 0.9825 0.9824 0.9824

N = 2,000 0.9852 0.9852 0.9852 0.9852 0.9852 0.9852 0.9817 0.9817 0.9817 0.9816 0.9817 0.9817

AAR5 PAR

VBEM-M VB MCMC-dina MCMC-R2jags EM-GDINA EM-CDM VBEM-M VB MCMC-dina MCMC-R2jags EM-GDINA EM-CDM

N = 200 0.9699 0.9690 0.9690 0.9690 0.9686 0.9686 0.8916 0.8892 0.8900 0.8902 0.8868 0.8869

N = 500 0.9729 0.9729 0.9727 0.9727 0.9728 0.9728 0.8964 0.8962 0.8960 0.8954 0.8961 0.8961

N = 1,000 0.9726 0.9726 0.9724 0.9723 0.9726 0.9725 0.9002 0.9001 0.9001 0.8999 0.9000 0.9000

N = 2,000 0.9724 0.9724 0.9724 0.9725 0.9724 0.9724 0.8990 0.8990 0.8987 0.8989 0.8990 0.8990

(Continued)
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Table 5. (Continued)

AAR1 AAR2

VBEM-M VB MCMC-dina MCMC-R2jags EM-GDINA EM-CDM VBEM-M VB MCMC-dina MCMC-R2jags EM-GDINA EM-CDM

N = 200 0.9375 0.9366 0.9370 0.9366 0.9354 0.9354 0.8781 0.8746 0.8762 0.8748 0.8702 0.8701

N = 500 0.9389 0.9386 0.9383 0.9385 0.9382 0.9383 0.8830 0.8818 0.8806 0.8809 0.8802 0.8803

N = 1,000 0.9408 0.9408 0.9407 0.9407 0.9406 0.9406 0.8878 0.8877 0.8876 0.8877 0.8873 0.8873

N = 2,000 0.9403 0.9404 0.9402 0.9401 0.9403 0.9404 0.8899 0.8899 0.8900 0.8898 0.8899 0.8899

AAR3 AAR4

VBEM-M VB MCMC-dina MCMC-R2jags EM-GDINA EM-CDM VBEM-M VB MCMC-dina MCMC-R2jags EM-GDINA EM-CDM

N = 200 0.9244 0.9232 0.9238 0.9235 0.9218 0.9218 0.9174 0.9158 0.9169 0.9170 0.9130 0.9130

HNL N = 500 0.9278 0.9276 0.9272 0.9279 0.9264 0.9265 0.9192 0.9188 0.9188 0.9188 0.9176 0.9176

N = 1,000 0.9290 0.9289 0.9287 0.9290 0.9286 0.9286 0.9212 0.9211 0.9209 0.9212 0.9208 0.9209

N = 2,000 0.9304 0.9304 0.9302 0.9303 0.9303 0.9303 0.9209 0.9209 0.9205 0.9208 0.9209 0.9209

AAR5 PAR

VBEM-M VB MCMC-dina MCMC-R2jags EM-GDINA EM-CDM VBEM-M VB MCMC-dina MCMC-R2jags EM-GDINA EM-CDM

N = 200 0.8939 0.8926 0.8938 0.8922 0.8875 0.8876 0.6570 0.6520 0.6550 0.6526 0.6397 0.6397

N = 500 0.9015 0.9006 0.9004 0.9000 0.8996 0.8996 0.6707 0.6686 0.6675 0.6677 0.6646 0.6647

N = 1,000 0.9062 0.9060 0.9057 0.9059 0.9058 0.9058 0.6812 0.6809 0.6800 0.6807 0.6798 0.6798

N = 2,000 0.9064 0.9064 0.9063 0.9063 0.9064 0.9064 0.6838 0.6838 0.6834 0.6833 0.6837 0.6838

Note: AAR1 represents the correct classification rate for the first attribute, AAR2 for the second attribute, AAR3 for the third attribute, AAR4 for the fourth attribute, and AAR5 for the fifth attribute. PAR stands for the
pattern-wise agreement rate.
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Figure 3. The boxplots of bias and RMSE for η, λ and π estimated by the VBEM-M, VB, MCMC-dina, MCMC-R2jags, EM-GDINA and EM-CDM

with σ = 0.3 under the LNL condition in simulaion study 2.

values for item parameters η and λ under all four sample sizes, regardless of LNL or HNL condition.
(2) For the EM algorithm, both EM-GDINA and EM-CDM methods have higher bias and RMSE for
item parameters η and λ than four other methods, especially for a small sample size of N=200, under
both LNL and HNL conditions. (3) With the same sample size and noise level, both MCMC methods
(MCMC-dina and MCMC-R2jags) show similar estimation accuracy, as do the two EM methods (EM-
GDINA and EM-CDM). (4) For parameter π, the estimated bias and RMSE of the six methods are
basically the same under various identical simulation conditions, with no significant differences. (5) In
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Table 6. The computational time (in seconds) for the VBEM-M, VB, MCMC-dina, MCMC-R2jags, EM-GDINA, and EM-CDM

algorithms with the σ = 0.3 condition based on DINA in simulation study 2

VBEM-M VB MCMC-dina MCMC-R2jags EM-GDINA EM-CDM

LNL N = 200 0.0721s 0.0483s 9.7123s 163.2525s 0.0847s 0.0428s

N = 500 0.1220s 0.1092s 23.6093s 467.2393s 0.0887s 0.0668s

N = 1,000 0.2061s 0.2415s 46.5265s 998.5244s 0.1208s 0.1126s

N = 2,000 0.3686s 0.5136s 93.5255s 2061.8450s 0.1949s 0.2097s

HNL N = 200 0.0783s 0.1012s 9.7794s 170.3141s 0.1618s 0.0606s

N = 500 0.1524s 0.2613s 23.8735s 463.9300s 0.1624s 0.0886s

N = 1,000 0.2617s 0.5403s 47.2185s 994.7302s 0.2078s 0.1376s

N = 2,000 0.4890s 1.0802s 94.3035s 2190.041s 0.2986s 0.2667s

terms of the accuracy of attribute profile recovery, the results of the six methods are essentially the same
under each simulation condition.

From Table 6, we can see that the VBEM-M algorithm is highly efficient in terms of computation
time. It performs faster than the VB method across most simulation conditions, and this speed
advantage is more noticeable as sample sizes increase. Overall, the computation speed of the VBEM-
M algorithm is second only to the two EM algorithms, i.e., EM-GDINA and EM-CDM. The two
Bayesian methods, MCMC-dina and MCMC-R2jags, have longer computation time than the other
four methods. Additionally, MCMC-dina is faster than MCMC-R2jags due to its use of the “Rcpp” and
“RcppArmadillo” packages, which are built on C++ programming language.

4.8. Simulation study 3
This simulation study aims to evaluate the effectiveness of the VBEM-M algorithm on the saturated
LCDM by comparing it with Yamaguchi and Okada’s (2020a) VB method, the MCMC sampling
algorithms, and the EM algorithm. Specifically, the R package “variationalDCM” was used to implement
Yamaguchi and Okada’s (2020a) VB method, the R package “R2jags” was used to implement the MCMC
sampling algorithms, and the EM algorithm was implemented using the R package “GDINA”.

This simulation was designed with an attribute number of K = 3 and a test length of J = 18. In the
saturated LCDM, each item’s λ∗j is an 8-dimensional vector (23 = 8). The true values of λ∗ are shown
in Table 7. We conducted simulations across different sample sizes (N=1,000, 2,000) and attribute
correlations (σ = 0,0.3,0.7), resulting in six different conditions. Each condition was replicated 100
times. Notably, an additional calculation procedure was needed for Yamaguchi and Okada’s (2020a) VB
method, as the R package “variationalDCM” only reports the correct response probabilities for different
attribute mastery patterns. We transformed these probabilities into LCDM parameters by solving a
linear system of equations (Liu & Johnson, 2019; Yamaguchi & Templin, 2022). The parameter recovery
results for the σ = 0.3 condition are displayed in Tables 8 and 9. The estimation results for σ = 0 and 0.7
are available in the Supplementary Material.

For a more detailed analysis, we split the parameter λ into two parts: λmain (i.e., λ1,λ2,λ3) and λinter
(i.e., λ12,λ13,λ23,λ123), which represent the main effects and interactions, respectively. From the results,
we can draw the following conclusions: (1) As the number of examinees increases, the RMSE for item
parameters of all algorithms decreases. (2) The proposed VBEM-M algorithm performs better than
other algorithms on all item parameters across all conditions, especially on the interactions. Specifically,
in terms of the parameters η and π, VBEM-M has a slight advantage over the other algorithms, whereas
it shows a significant advantage in estimating λmain and λinter , particularly for the parameter λinter . On
the other hand, the EM algorithm performs poorly with small sample sizes. For the λinter parameter, its
RMSE exceeds 2 when N = 200. (3) Compared to other algorithms, VBEM-M performs significantly
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Table 7. True values of λ∗ for the saturated LCDM in simulation study 3

η λmain λinter

Item η λ1 λ2 λ3 λ12 λ13 λ23 λ123

1 –1.5 3.5 0 0 0 0 0 0

2 –1.5 0 3.5 0 0 0 0 0

3 –1.5 0 0 3.5 0 0 0 0

4 –1.5 3.5 0 0 0 0 0 0

5 –1.5 0 3.5 0 0 0 0 0

6 –1.5 0 0 3.5 0 0 0 0

7 –1.5 2 2 0 –0.5 0 0 0

8 –1.5 2 0 2 0 –0.5 0 0

9 –1.5 0 2 2 0 0 –0.5 0

10 –1.5 1.5 1.5 1.5 –0.5 –0.5 –0.5 1

11 –1.5 2 2 0 –0.5 0 0 0

12 –1.5 2 0 2 0 –0.5 0 0

13 –1.5 0 2 2 0 0 –0.5 0

14 –1.5 1.5 1.5 1.5 –0.5 –0.5 –0.5 1

15 –1.5 2 2 0 –0.5 0 0 0

16 –1.5 2 0 2 0 –0.5 0 0

17 –1.5 0 2 2 0 0 –0.5 0

18 –1.5 1.5 1.5 1.5 –0.5 –0.5 –0.5 1

better with small sample sizes (N = 200,500), with noticeably lower RMSE. (4) It is worth noting
that the results from all algorithms indicate that, although the interaction terms have smaller true
values compared to the main effects, their estimation accuracy is worse. This suggests that estimating
interaction effects is the most challenging aspect of the saturated LCDM model. (5) As for the accuracy
of attribute profiles, there is no obvious difference among these algorithms, but VBEM-M still shows
slightly higher accuracy than the others.

Table 10 shows the average computation time across 100 replications for the four algorithms under
the σ = 0.3 condition. The results indicate that our algorithm performs better than the other algorithms
in terms of computational efficiency. Additionally, an interesting observation is that the EM algorithm
takes the longest time when the sample size is small (N = 200). This suggests that the EM algorithm
converges more slowly with smaller sample sizes.

5. Empirical example

5.1. Empirical Example 1
In this example, a fraction subtraction test dataset (de la Torre & Douglas, 2004; Tatsuoka, 1990, 2002)
was investigated using the DINA model. The VBEM-M algorithm, VB algorithm (implemented in the
“variationalDCM” package), MCMC sampling technique (implemented in the “dina” package), and EM
algorithm (implemented in the “GDINA” package) were used for the parameter estimation of the DINA
model. This test involves 2144 middle school students responding to 15 fraction subtraction items,
including five measured attributes: subtract basic fractions, reduce and simplify, separate whole from
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Table 8. The accuracy of item parameters and class membership probability parameters using the VBEM-M, VB, MCMC-R2jags, and EM-GDINA algorithms for the LCDM model under the

σ = 0.3 condition in simulation study 3

η λmain

VBEM-M VB MCMC-R2jags EM-GDINA VBEM-M VB MCMC-R2jags EM-GDINA

N = 200 0.3044(–0.0454) 0.3929(–0.0562) 0.3312(0.1008) 0.4784(–0.0602) 0.4075(0.0720) 0.5998(–0.0909) 0.4922(–0.1235) 0.8472(0.0909)

N = 500 0.2128(–0.0238 0.2431(–0.0297) 0.2263(0.0419) 0.2492(–0.0248) 0.2944(0.0293) 0.3701(–0.0272) 0.3469(–0.0708) 0.3883(0.0362)

N = 1,000 0.1489(0.0009) 0.1642(–0.0036) 0.1600(0.0348) 0.1661(–0.0002) 0.2244(0.0051 ) 0.2627(–0.0161) 0.2543(–0.0461) 0.2689(0.0146)

N = 2,000 0.1115(0.0030) 0.1177(0.0001) 0.1162(0.0208) 0.1183(0.0016) 0.1695(–0.0030) 0.1866(–0.0106) 0.1834(–0.0298) 0.1884(0.0044)

σ = 0.3 λinter π

VBEM-M VB MCMC-R2jags EM-GDINA VBEM-M VB MCMC-R2jags EM-GDINA

N = 200 0.5798(–0.0653) 1.0939(0.0215) 0.9812(0.3198) 2.3665( 0.1440) 0.0177(0.0000) 0.0302(0.0000) 0.0187(0.0000) 0.0290(0.0000)

N = 500 0.4880(–0.0253) 0.7015(0.0007) 0.6916(0.1476) 0.7824( 0.0034) 0.0109(0.0000) 0.0179(0.0000) 0.0110(0.0000) 0.0173(0.0000)

N = 1,000 0.3960(–0.0014) 0.5032(0.0042) 0.5030(0.0855) 0.5311(0.0060) 0.0077(0.0000) 0.0122(0.0000) 0.0078(0.0000) 0.0119(0.0000)

N = 2,000 0.3140(0.0023) 0.3683(0.0019) 0.3665( 0.0455) 0.3770( 0.0020) 0.0054(0.0000) 0.0086(0.0000) 0.0054(0.0000) 0.0085(0.0000)

Note: The values outside the parentheses represent the RMSE, while the values inside the parentheses indicate the bias. Here, RMSE and Bias denote the average RMSE and Bias, respectively, for all intercept parameters
η, all main effect slope parameters λmain , all interaction slope parameters λinter and all class membership probability parameters π.
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Table 9. Evaluation of the accuracy of attribute profile parameters using the VBEM-M, VB, MCMC-R2jags and EM-GDINA

Algorithms for the saturated LCDM under the σ = 0.3 condition in simulation study 3

AAR1 AAR2

VBEM-M VB MCMC-R2jags EM-GDINA VBEM-M VB MCMC-R2jags EM-GDINA

N = 200 0.9361 0.9306 0.9315 0.9284 0.9400 0.9334 0.9370 0.9334

N = 500 0.9428 0.9425 0.9418 0.9421 0.9410 0.9404 0.9403 0.9400

N = 1,000 0.9427 0.9423 0.9420 0.9418 0.9441 0.9442 0.9440 0.9438

N = 2,000 0.9434 0.9434 0.9433 0.9431 0.9438 0.9438 0.9437 0.9436

σ = 0.3 AAR3 PAR

VBEM-M VB MCMC-R2jags EM-GDINA VBEM-M VB MCMC-R2jags EM-GDINA

N = 200 0.9355 0.9310 0.9324 0.9304 0.8296 0.8126 0.8204 0.8120

N = 500 0.9392 0.9391 0.9392 0.9384 0.8401 0.8387 0.8389 0.8380

N = 1,000 0.9434 0.9432 0.9431 0.9429 0.8468 0.8462 0.8459 0.8456

N = 2,000 0.9429 0.9430 0.9429 0.9428 0.8465 0.8464 0.8464 0.8461

Note: AAR1 represents the correct classification rate for the first attribute, AAR2 for the second attribute, AAR3 for the third attribute. PAR stands
for the pattern-wise agreement rate.

Table 10. The computational time (in seconds) for the VBEM-M, VB, MCMC-R2jags

and EM-GDINA algorithms based on LCDM with the σ = 0.3 condition in simulation

study 3

VBEM-M VB MCMC-R2jags EM-GDINA

N = 200 0.0564s 0.0816s 170.1357s 1.4199s

N = 500 0.0705s 0.1061s 478.8929s 0.6961sσ = 0.3

N = 1,000 0.0978s 0.1827s 1072.0754s 0.6939s

N = 2,000 0.1680s 0.3605s 3162.5147s 0.7485s

fraction, borrow from whole, and convert whole to fraction; 536 of 2144 students were chosen for this
study (Zhang et al., 2020). The corresponding Q-matrix, parameter estimates, and SDs are shown in
Table 11.

To facilitate the following item analysis, we transformed the estimates of the intercept and interaction
parameters into the traditional estimates of slipping and guessing parameters, as shown in Table 11.
Additionally, the comparison of the parameter estimates among the four algorithms can be found in the
Supplementary Material. Based on Table 11, we found that the estimates of the five items with the lowest
slipping are items 3, 8, 9, 10, and 7, in that order. The estimated values of the slipping parameters for
the five items are 0.0395, 0.0480, 0.0652, 0.0664, and 0.0773, respectively. This demonstrates that the five
items are less likely to slip than the other ten items. Furthermore, the five items with the highest guessing
are items 2, 10, 8, 5, and 13, in that order. For these five items, the estimated guessing parameters are
0.2035, 0.1658, 0.1417, 0.1307, and 0.1293, respectively. Moreover, items 3, 8, and 10 have low slipping
parameters and high guessing parameters, indicating that these items are more likely to be correctly
guessed. It is worth noting that there is an interesting observation regarding the results for item 1: since
g1 is very small and s1 is very large, it is difficult for students who do not master the first attribute to get
a correct response by guessing (the probability of a correct response is lower than 0.0200), and even if
they do master the first attribute, the probability of a correct response is still only about 0.7000 due to
the possibility of slipping.
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Table 11. The Q-matrix and the estimation results of the parameters η and λ using the VBEM-M algorithm in the

empirical example 1

Q-matrix Estimate

Item 1 2 3 4 5 η̂ λ̂ ĝ ŝ

1 1 0 0 0 0 –3.9286(0.2585) 4.8606(0.2746) 0.0193 0.2825

2 1 1 1 1 0 –1.3649(0.1225) 3.4358(0.1893) 0.2035 0.1120

3 1 0 0 0 0 –1.9954(0.2123) 5.1863(0.2440) 0.1197 0.0395

4 1 1 1 1 1 –1.9774(0.1223) 3.9219(0.1998) 0.1216 0.1252

5 0 0 1 0 0 –1.8950(0.2203) 3.0390(0.2398) 0.1307 0.2416

6 1 1 1 1 0 –3.3033(0.1546) 4.5416(0.2015) 0.0355 0.2247

7 1 1 1 1 0 –2.5221(0.1417) 5.0019(0.2047) 0.0743 0.0773

8 1 1 0 0 0 –1.8014(0.1785) 4.7880(0.2181) 0.1417 0.0480

9 1 0 1 0 0 –2.3739(0.1983) 5.0362(0.2306) 0.0835 0.0652

10 1 0 1 1 1 –1.6155(0.1180) 4.2588(0.2073) 0.1658 0.0664

11 1 0 1 0 0 –2.2268(0.1952) 4.3746(0.2246) 0.0974 0.1045

12 1 0 1 1 0 –3.2651(0.1552) 5.1252(0.2064) 0.0368 0.1347

13 1 1 1 1 0 –1.9080(0.1324) 3.6173(0.1889) 0.1293 0.1533

14 1 1 1 1 1 –3.5572(0.1459) 4.9477(0.2081) 0.0277 0.1993

15 1 1 1 1 0 –3.9134(0.1649) 5.3988(0.2111) 0.0196 0.1846

Note: The values outside the parentheses represent the posterior means of the parameters, while the values inside the parenthe-
ses indicate the standard deviation.

Based on the results in Table S11 in the Supplementary Material, we investigated the relationship
between the VBEM-M algorithm and the other three algorithms in parameter estimation by analyzing
the correlations of parameters s and g across these algorithms. The correlations between s estimates from
the VBEM-M and VB algorithms are 0.9984, between VBEM-M and MCMC algorithms is 0.9979, and
between VBEM-M and EM algorithms is 0.9989. The correlations between the estimators of g calculated
using the VBEM-M algorithm and those obtained from the VB, MCMC, and EM algorithms are
0.9488, 0.9552, and 0.8632, respectively. These findings suggest that the VBEM-M algorithm’s parameter
estimates align more closely with those from VB and MCMC algorithms, as indicated by the high
correlations. In addition, the estimators of the mixing proportions of attribute-mastery patterns, π̂l for
l = 1, ⋯ , 25 = 32, are presented in Figure S2 in the Supplementary Material. Notably, these estimates
are highly consistent across the VBEM-M algorithm, VB algorithm, MCMC sampling technique, and
EM algorithm. A total of 67% of the examinees were classified into the following four attribute profiles:
(1,1,1,0,0), (1,1,1,1,0), (1,1,1,0,1), and (1,1,1,1,1). This suggests that a majority of students have mastered
the first three attributes. The computation time for the VBEM-M, VB, MCMC, and EM algorithms were
0.1651 s, 0.1661 s, 11.3820 s, and 0.2870 s, respectively.

5.2. Empirical Example 2
In this section, we analyze the Examination for the Certificate of Proficiency in English (ECPE) dataset
based on the LCDM. The ECPE has been widely used in previous research based on the LCDM (e.g.,
Liu & Johnson, 2019; Templin & Bradshaw, 2014; Templin & Hoffman, 2013; von Davier, 2014b),
and it includes 0-1 response data from 2,922 examinees on 28 items. Three attributes are measured:
morphosyntactic rules, cohesive rules, and lexical rules. Nine of the 28 items measure two attributes, and
the others measure one. The VBEM-M algorithm, VB algorithm (implemented in the “variationalDCM”
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Table 12. The estimation results of the parameters η and λ using the VBEM-M algorithm in the empirical example 2

Item η̂ λ̂1 λ̂2 λ̂3 λ̂12 λ̂13 λ̂23

1 0.8043(0.0576) 0.6103(0.2493) 0.7109(0.1066) – 0.4428(0.2724) – –

2 1.0281(0.0572) – 1.2528(0.0821) – – – –

3 –0.3492(0.0659) 0.9689(0.2787) – 0.3714(0.0929) – 0.3094(0.2915) –

4 –0.1438(0.0642) – – 1.6936(0.0808) – – –

5 1.0740(0.0671) – – 2.0166(0.0890) – – –

6 0.8621(0.0661) – – 1.6847(0.0859) – – –

7 –0.0809(0.0656) 1.7865(0.2990) – 0.9441(0.0941) – 0.1457(0.3131) –

8 1.4738(0.0594) – 1.9063(0.0895) – – – –

9 0.1172(0.0642) – – 1.1930(0.0801) – – –

10 0.0708(0.0467) 2.0545(0.0841) – – – – –

11 –0.0525(0.0655) 1.3287(0.2892) – 0.9845(0.0943) – 0.2637(0.3035) –

12 –1.7782(0.0731) 0.5863(0.2888) – 1.3152(0.0985) – 0.9094(0.3008) –

13 0.6723(0.0476) 1.6258(0.0857) – – – – –

14 0.1837(0.0468) 1.3824(0.0807) – – – – –

15 0.9875(0.0666) – – 2.1183(0.0887) – – –

16 –0.0791(0.0656) 1.4896(0.2920) – 0.8778(0.0939) – 0.0136(0.3057) –

17 1.3267(0.0708) – 1.0508(0.2745) 0.6181(0.1291) – – –0.1952(0.2980)

18 0.9132(0.0663) – – 1.4051(0.0851) – – –

19 –0.1952(0.0642) – – 1.8412(0.0812) – – –

20 –1.4189(0.0706) 1.0231(0.2775) – 0.9529(0.0966) – 0.6143(0.2903) –

21 0.1639(0.0656) 1.0841(0.2886) – 1.1344(0.0958) – 0.0312(0.3032) –

22 –0.8644(0.0661) – – 2.2256(0.0818) – – –

23 0.6594(0.0558) – 2.0529(0.0834) – – – –

24 –0.6815(0.0559) – 1.5284(0.0758) – – – –

25 0.0953(0.0467) 1.1596(0.0792) – – – – –

26 0.1574(0.0642) – – 1.1265(0.0801) – – –

27 –0.8658(0.0481) 1.7058(0.0784) – – – – –

28 0.5622(0.0650) – – 1.7455(0.0841) – – –

Note: The values outside the parentheses represent the posterior means of the parameters, while the values inside the parentheses indicate the
standard deviation.

package), MCMC algotithm (implemented in the “R2jags” package), and EM algorithm (implemented
in the “GDINA” package) were used for the parameter estimation of the LCDM model. However, due to
space limitations, we only present the estimation results of the VBEM-M method in Tables 12 and 13.
The results of the other algorithms can be found in the Supplementary Material.

The outcomes of the VBEM-M algorithm were more similar to those of the VB algorithm and the
MCMC algorithm. Please refer to the Supplementary Material for more details. From Table 12, we found
that the estimates of the interaction terms are relatively smaller compared to the main effects, indicating
that the main effects have a greater influence on the probability of a correct response. Additionally,
most of the interaction effects are positive, suggesting that the interactions between skills are more
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Table 13. The estimation results of the class membership parameters π using the VBEM-M

algorithm in the empirical example 2

(0,0,0) (1,0,0) (0,1,0) (0,0,1) (1,1,0) (1,0,1) (0,1,1) (1,1,1)

π 0.2966 0.0098 0.0170 0.1318 0.0071 0.0145 0.1793 0.3439

likely to positively affect the probability of a correct response. Furthermore, from the estimates of π
in Table 13, we can observe that the most prevalent attribute mastery patterns are (0, 0, 0), (0, 0, 1),
(0, 1, 1), and (1, 1, 1). This suggests a possible linear hierarchy structure among the skills. Specifically,
mastering lexical rules requires mastering cohesive rules first, and mastering morphosyntactic rules is a
prerequisite for mastering cohesive rules. This finding is consistent with previous research conclusions
(Gierl, Cui, et al., 2007; Gierl, Leighton, et al., 2007).

6. Discussion

In this paper, we propose the novel VBEM-M algorithm for estimating the parameters of the LCDM,
which offers fast execution and excellent estimation accuracy. While Yamaguchi and Okada (2020a)
introduced a VB method for estimating LCDM parameters, their approach primarily focuses on
estimating the probability of correct item responses for specific attribute-mastery patterns, without
directly estimating the item parameters. In contrast, our VBEM-M algorithm can simultaneously and
directly estimate both attribute-mastery patterns and item parameters.

Since the posterior distributions of the item parameters in the LCDM do not have closed forms, it is
difficult to execute parameter estimation using the classic VBEM algorithm. To get around this problem,
in our approach, the likelihood function for the LCDM is replaced with a tight lower bound obtained
by Taylor expansion, and inference is then performed. The item parameters based on the tight lower
bound take on an exponential form, allowing us to use a Gaussian distribution as its conjugate prior.
Additionally, a new location parameter ξ is introduced in implementing the Taylor expansion, and an
extra maximizing step is added to the typical VBEM algorithm to seek the optimal local point ξ. Three
simulation studies were carried out in this study: the first two focused on DINA model as the special
case of the LCDM, while the third simulation study considered the saturated LCDM. The parameter
recovery results from the VBEM-M algorithm were analyzed under simulated conditions. The VBEM-
M algorithm was shown to be effective in terms of parameter recovery, execution time, and convergence
rate. In addition, the estimation accuracy and computation time of the VB, MCMC, and EM algorithms
were investigated in depth.

To begin with, it was found that the VBEM-M algorithm produces favorable results in terms of
parameter recovery, providing three main benefits. First, the VBEM-M algorithm can be implemented
under various sample sizes, and its accuracy improves as the sample size increases. Based on the DINA
model, we found that higher attribute correlation does not affect η estimates but improves λ estimation
accuracy. In addition, the convergence rate of the VBEM-M algorithm is fast, and it is not sensitive to
the choice of initial values. It brings considerable efficiency gains, converging to the true values in only
approximately ten iterations for different simulation conditions.

The second benefit is that the VBEM-M algorithm has a considerable accuracy advantage over other
algorithms, especially when the sample size is small. For instance, in the DINA model with N = 200,
K = 5, and σ = 0.3, under the LNL condition, the RMSEs of λ using VBEM-M, VB, MCMC-dina,
MCMC-R2jags, EM-GDINA, and EM-CDM are 0.4500, 0.5507, 0.5470, 0.5554, 1.0239, and 1.0238,
respectively. It is evident that our method shows significant advantages, particularly outperforming EM
algorithms. However, this benefit diminishes as the sample size increases. This makes the VBEM-M
algorithm more reliable in situations with smaller sample sizes, which are often occurs in real-world
applications.
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Finally, the VBEM-M algorithm stands out for its computational efficiency. While not as fast as the
EM algorithms, it still holds an advantage over other algorithms. For example, based on the DINA model
with N = 2,000, J = 30, K = 5, and σ = 0.3, it takes an average of 0.3686s, 0.5136s, 93.5225s, 2061.8450s,
0.1949s, and 0.2097s for VBEM-M, VB, MCMC-dina, MCMC-R2jags, EM-GDINA, and EM-CDM,
respectively, across 100 replications. Compared to the two EM algorithms, our algorithm showed the
time differences of only 0.1737s and 0.1589s, respectively, and it outperformed the other algorithms.
This suggests that the VBEM-M algorithm performs well in terms of computational efficiency.

While the VBEM-M algorithm has its advantages, it also has some limitations. For instance, as
mentioned above, the VBEM-M algorithm could not perform as fast as EM algorithm. In addition, the
VBEM-M algorithm is essentially an approximation of the posterior distribution of parameters, which
works well for the DINA model and some LCDM submodels, as showed in the Supplementary Material.
However, its performance in complex LCDMs with high attribute dimensions (like a 32-dimensional
λ∗ for K = 5) still needs to be investigated.

In future studies, first, we will consider to explore whether the VBEM-M algorithm can be general-
ized to other types of CDMs, such as polytomous CDMs and longitudinal CDMs. Second, in this study,
the Q-matrix was calibrated in advance; however, in practice, there is a potential for mis-specification
(Rupp & Templin, 2008a). Therefore, we will modify the VBEM-M algorithm to simultaneously estimate
the Q-matrix and model parameters. Third, while the VBEM-M algorithm converges quickly, it still
operates slower than the EM algorithm in terms of computation time. We plan to further optimize the
code associated with C++ or Fortran to increase its speed.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.1017/psy.2024.7.
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