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The Kármán–Howarth equation (KHEq) is solved using a closure model to obtain
solutions of the second-order moment of the velocity increment, S2, in homogeneous
isotropic turbulence (HIT). The results are in good agreement with experimental
data for decaying turbulence and are also consistent with calculations based on the
three-dimensional energy spectrum for decaying HIT. They differ, however, from those for
forced HIT, the difference occurring mainly at large scales. This difference is attributed
to the fact that the forcing generates large-scale motions which are not compatible with
the KHEq. As the Reynolds number increases, the impact of forcing on the small scales
decreases, thus allowing the KHEq and spectrally based solutions to agree well in the
range of scales unaffected by forcing. Finally, the results show that the two-thirds law is
compatible with the KHEq solutions as the Reynolds number increases to very large, if
not infinite, values.
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1. Introduction

In 1941 Kolmogorov (1941a) used dimensional arguments to derive the two-thirds law,
S2 = (u(x, t) − u(x + r, t))2 = CK(ε̄r)2/3 (u is the velocity fluctuation, ε̄ and r are the
mean kinetic energy dissipation rate and spatial increment, respectively, t is time and
the overbar represents spatial averaging). In the same year, Kolmogorov (1941b) derived
the four-fifths law, S3 = (u(x, t) − u(x + r, t))3 = −(4/5)ε̄r, from the Kármán–Howarth
equation (Von Kármán & Howarth 1938) (hereafter denoted KHEq) expressed in terms of
S2 and S3 (e.g. Saffman 1968; Danaila et al. 1999; Hill 2001):

S3 − 6ν
∂S2

∂r
+ 3

r4

∫ r

0
r′4 ∂S2

∂t
dr′ = −4

5
ε̄r, (1.1)
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where the second and third terms (the latter hereafter denoted −Zr for convenience) on the
left-hand side account for the effects of the viscosity (mainly dominant in the dissipative
range) and the large-scale variations or inhomogeneities, i.e. the integral term. Assuming
that both terms are negligibly small in a range of scales excluding both dissipative and
large scales when the Reynolds number is infinitely large, Kolmogorov (1941b) dropped
these terms to obtain the four-fifths law. Further, in 1962 Kolmogorov (1962) attempted
to correct his 1941 theory or K41 in order to account for a remark made by Landau (see
Landau & Lifshitz 1987) who stated that the slow large-scale variations of the energy
dissipation ε prevent the universality of small-scale turbulence. Kolmogorov proposed in
the 1962 theory, commonly referred to as K62, the following relation for S2:

S2 = C2(x, t)(ε̄r)2/3
( r

L

)α

, (1.2)

where C2(x, t) is a constant which may depend on the macrostructure of the flow, L is
an integral length scale representative of the large-scale structures of the flow and α is a
universal positive constant (i.e. independent of Reynolds number and flow). Interestingly,
he assumed that the four-fifths law remains valid without any demonstration. Following
K62, (1.2) has been generalised as

Sn = Cn(x, t)(ε̄r)n/3
( r

L

)αn
, (1.3)

which is often written as

Sn = An(x, t)
( r

L

)ζn
, (1.4)

where αn and ζn = n/3 + αn are positive real numbers; αn /= 0 and ζn /= n/3, except for
n = 3 for which α3 = 0 and ζ3 = 1. There is no doubt that K62 has shaped the current
dominant view of the behaviour of small-scale turbulence. This view is strongly supported
by direct numerical simulations (DNS) of forced stationary three-dimensional periodic
box turbulence. The support, however, is mostly based on the empirical determination of
the power-law exponents ζn in finite-Reynolds-number turbulent flows where one cannot
ignore the large-scale contribution in the KHEq (1.1). In this context, it is pertinent to
revisit our view of the small-scale turbulence behaviour, particularly when the Reynolds
number is not infinitely large.

In the present work we assess the behaviour of S2 based on the solutions of the KHEq
when the Reynolds number is finite, and in particular the main objective is to ascertain the
possible influence of the large-scale motion on S2. In that respect, the aim is similar to that
in a recent paper (Meldi, Djenidi & Antonia 2021) which assessed the effect of forcing
on S2 and S3 in the spectral domain by solving the Lin equation using an eddy-damped
quasi-normal model (EDQNM). It also extends the scope of a previous paper by the
present authors (Djenidi & Antonia 2020). To solve the equation, a closure model for
S3 (Djenidi & Antonia 2020, 2021) is used. Results based on the KHEq not only comply
with the Navier–Stokes equations, from which the KHEq is derived, but are well suited
to assess the impact of the large-scale motion on S2, thus at the same time addressing
Landau’s remark; indeed, the large-scale variations imposed by the large-scale motion are
explicitly accounted for by the third term on the left-hand side of (1.1). The present paper
is organised as follows. In § 2, the KHEq solutions are presented and compared with DNS
data of forced homogeneous isotropic turbulence (HIT) in a three-dimensional periodic
box. It is shown that this comparison reveals a paradox concerning the behaviour of S2
even though both the KHEq and DNS use the same external forcing; in § 3, a resolution to
that paradox is offered. Finally a concluding discussion is given in § 4.
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2. Kármán–Howarth solutions for S2

To solve (1.1) as in Djenidi & Antonia (2021, 2020), we use a gradient-type closure with
an eddy viscosity formulation:

S3 = −νT
∂S2

∂r
= −CS3

(S2)
2

ε̄

∂S2

∂r
, (2.1)

where CS3 = (6/5C3
K) and CK is a constant. The use of an eddy viscosity approximation is

not new and its suitability in relation to (1.1) has already been tested (e.g. Domaradzki &
Mellor 1984; Oberlack & Peters 1993; Baev & Chernykh 2010; Thiesset et al. 2013). The
expression of the eddy viscosity, νT , in (2.1) differs from those reported in the literature.
Djenidi & Antonia (2021) showed that the present expression of νT , which does not
make any assumption regarding the behaviour of S2, is valid regardless of whether or
not the model takes into account the intermittency of ε. This is in line with the commonly
accepted fact that S3 should not be affected by the phenomenon of the intermittency of ε,
often denoted internal intermittency. After dropping the viscous term (second term on the
left-hand side of (1.1)), substituting (2.1) in (1.1) and integrating, we obtain

S2 = CK (ε̄r)2/3 (1 − Br)
1/3 , (2.2)

with Br = −(5/2ε̄r2)
∫ r Zr′ dr′. We can rewrite (2.2) as

S2 = CK(ε̃r,2r)2/3, (2.3)

where ε̃r,2 = ε̄(1 − Br)
1/2. Interestingly, (1.1) can be written as follows when the

dissipative range is ignored:

S3 = 4
5 ε̄r (1 − Tr) , (2.4)

where Tr = (5/4ε̄r)Zr. Similarly to S2 we can write (2.4) as

S3 = 4
5 ε̃r,3r, (2.5)

where ε̃r,3 = ε̄(1 − Tr). It is important to remember that (2.4) is simply equivalent to
(1.1) in the range of scales beyond the dissipative range; i.e. no modelling is involved in
(2.4), conversely to (2.2) whose derivation involves a closure model for S3. If there is a
range of scales over which Zr → 0, the two-thirds and four-fifths laws of K41 are restored.
Expressions (2.2) and (2.4) describe the behaviour of S2 and S3 in the range of scales
beyond the dissipative range and show that the energy-containing large-scale structures
impact on these quantities. Since the form of Zr is not universal (the large-scale motion
varies from flow to flow), S2, as remarked by Landau, but also S3 will not be universal.
Expressions (2.2) and (2.4) can be easily tested against DNS data of three-dimensional
periodic forced HIT. In this case, we follow Gotoh, Fukayama & Nakano (2002) and
replace the integral term of (1.1) by a new term to mimic steady-state forcing which has
the following expression (Gotoh et al. 2002):

Zr = 12r
∫ ∞

0

(
1
15

+ sin kr
(kr)3 + 3

cos kr
(kr)4 − 3

sin kr
(kr)5

)
F(k) dk, (2.6)

where F(k) is a constant external force applied in the spectral domain such as∫ ∞
0 F(k) dk = ε̄ and is localised in a narrow range of low wavenumbers, kf ,1 � k � kf ,2;

thus, F(k) = ε̄/(kf ,2 − kf ,1). Figure 1 shows distributions of (4/5 − Zr)/(ε̄r), which is
equal to S3/(ε̄r), for different values of the Taylor microscale Reynolds number, Reλ,
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(ε̄
r)
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0.7

0.8

DNS, Reλ = 335, McComb et al. (2014)
DNS, Reλ = 2250, Ishihara et al. (2020)
DNS, Reλ = 1131, Ishihara et al. (2020)
DNS, Reλ = 1300, Iyer et al. (2020)
(4/5 – Z(r)/ε̄r); Reλ = 1300, 0.5 < kf ≤ 1.85
(4/5 – Z(r)/ε̄r); Reλ = 2250, 1.1 ≤ kf ≤ 2.75
(4/5 – Z(r)/ε̄r); Reλ = 335, 0.75 ≤ kf ≤ 2.10
(4/5 – Z(r)/ε̄r); Reλ = 1131, 1.1 ≤ kf ≤ 2.75

Figure 1. Distributions of −S3 based on (2.4). Symbols: forced HIT DNS data for −S3/(ε̄r).

ranging from 335 to 2250. To calculate F(k), ε̄ is obtained from DNS data (McComb et al.
2014; Ishihara et al. 2020; Iyer, Sreenivasan & Yeung 2020) whose distributions of S3 are
also shown in the figure. The values of kf ,1 and kf ,2 used to calculate Zr have been selected
to match those of the DNS and to align the calculations of Zr with that from the DNS; the
second criterion is based on the fact that when r/η increases, Zr approaches (4/5)ε̄r.
Ignoring the dissipative region, which is excluded from (2.4), the present calculated
distributions of S3 agree well with the DNS data. Notice the rather unexpected behaviour
of S3 for the DNS data at Reλ = 2250 in the range 1000 � r/η � 8000. Indeed, one
expects the data to lie above those for Reλ = 1300. Overall, the good agreement between
the calculations and DNS data gives confidence in the use of (2.6) to calculate S2 using
(2.2). The results are reported in figure 2; we used CK = 2.075, the same value as used by
Djenidi & Antonia (2021, 2020), which is close to the generally assumed value of 2. The
distribution represented by the cross symbols is the same as that represented by the square
symbols, but with ε̄ adjusted to bring it into line with the rest of the DNS distributions in
the dissipative range; we used the information in table 1 of Yeung, Zhai & Sreenivasan
(2015) which provided the data for Iyer et al. (2020) whose figure 3, from which we
extracted the data, shows S2/2u′2 as function of r/L. The present calculated distributions
follow rather nicely the DNS data for r/η � 60. However, for r/η � 60 (the dissipative
range) the present calculation deviates from the DNS. This is expected since (2.2) ignores
the dissipative range. Since it is believed that in the dissipative range (0 � r/η � 30) S2 is
universal (independent of the Reynolds number), we highlight this region in figure 2 with
a solid black line. Note that the exact upper limit of this range is yet to be determined. For
this reason we used the fact that the DNS data collapse well for 0 � r/η � 100 and drew
the black line up to r/η = 100; for convenience, we denote the range 0 � r/η � 100 as
the universal dissipative range.

In order to determine whether a better agreement can be obtained between the
calculation and DNS, we solved (1.1) using the model (2.1) in the following manner:

S2(r + �r) = S2(r) +
{4

5 ε̄r − Zr
}
�r

6ν + CS3S2(r)2/ε̄
, (2.7)
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DNS HIT, Reλ = 1300

Universal dissipation range

‘Adjusted’ (ε̄ = 1.09) DNS HIT, Reλ = 1300

DNS HIT, Reλ = 335
DNS HIT, Reλ = 1131
DNS HIT, Reλ = 2250

Model, Reλ = 335
Model, Reλ = 1131
Model, Reλ = 2250
Model, Reλ = 1300

10–1

100

101

102

103

Figure 2. Distributions of S2 based on (2.2). Solid lines and symbols are as in figure 1.

100 101 102 103 104
10–1

100

101

102

103

(δu)2 = C2(ε̄r)2/3

r/η

S 2/
v

k2

Figure 3. Distributions of S2 based on the solutions of (1.1). Solid lines and symbols are as in figure 2.

with the boundary condition S2 = 0 at r = 0. The results are reported in figure 3 which
shows that the agreement between the DNS data and the numerical solution of (1.1) based
on (2.7) is extended down to the region r/η � 10 as compared to r/η � 60 when using
(2.2). The good agreement between solutions of (1.1) and DNS is also illustrated in figure 4
which shows distributions of 6ν(∂S2/∂r) (obtained after solving the KHEq using (2.7))
and Zr from the present calculations and DNS data at Reλ = 1300. The Zr distribution of
the DNS data is obtained through a balance of (1.1). There is good agreement between
the DNS and the present calculation, although we observe the expected difference in the
distributions of 6ν(∂S2/∂r) for r/η � 10 since the present solution of S2 deviates from the
DNS in that region. Note that difficulties associated with digitising the DNS data result in
a large scatter in Zr as r/η approaches zero; further, the values of Zr are sufficiently small
in this region so as not to affect the calculations.
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101 102 103 104 105
10–6

10–4

10–2

100

r/η

Z(r)/ε̄r), (4.7), Reλ = 1300

Z(r)/ε̄r), DNS (from balance) Reλ = 1300
6ν(dS2/dr)/(ε̄r), KHEq

6ν(dS2/dr)/(ε̄r), DNS Reλ = 1300

6ν(dS2/dr)/(ε̄r) Z(r)/(ε̄r)

Figure 4. Distributions of Zr and 6ν(∂S2/∂r) normalised by ε̄r.

100 101 102 103 104
0

0.5

1.0

1.5

2.0

2.5

r/η

S 2/
(ε̄

r)
2/

3

Reλ = 1131

K–H solution, Reλ = 2250
K–H solution, Reλ = 1300
K–H solution, Reλ = 335

‘Adjusted’ (ε̄ = 1.09) DNS, Reλ = 1300
Grid turb. Reλ = 1450 (ε̄ = 0.027 m3 s–1), Kaminsky et al. (2020)

DNS, Reλ = 335
DNS, Reλ = 2250

Figure 5. Distributions of S2/(ε̄r)2/3. Solid lines and symbols are as in figure 2. Black crosses: grid
turbulence data at Reλ = 1450 (Kaminsky et al. 2020). Red dash-dotted line: EDQNM, Reλ = 1131.

While the comparison between the present calculation and DNS data suggests good
agreement, one can nevertheless notice that the DNS data for Reλ = 1100, 1300 and 2250
lie slightly above the calculations for r/η � 200 before S2 reaches its constant value at
large r/η where it must be 2u′2. This difference is more emphatically illustrated in figure 5
which shows the distributions of S2 of figure 3 normalised by (ε̄r)2/3. The decaying
grid turbulence data of Kaminsky et al. (2020) at Reλ = 1450 are added. The value of
ε̄ reported by Kaminsky et al. (2020) has been adjusted so that S2 (before normalising by
(ε̄r)2/3) aligns with the other DNS data in the region 10 � r/η � 100. The deviation of
the present calculated distributions from the DNS data in the region r/η � 10 is expected,
as explained earlier. The calculations show that, as r/η increases, S2/(ε̄r)2/3 approaches
a region over which it varies very slowly before decreasing again. The extent of this
region increases with the Reynolds number. While the DNS data at Reλ = 335 and the
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grid turbulence data behave similarly, the DNS data at Reλ = 1300 and 2250 exhibit an
‘overshoot’ when compared to the calculated distributions. A similar behaviour is seen
for the data of Ishihara et al. (2020) even when Reλ is as small as 675. Interestingly, the
numerical simulations of HIT up to Reλ = 106 based on an EDQNM (Meldi et al. 2021)
show the existence of a similar overshoot when HIT is forced (an example is shown in the
figure); the overshoot is not observed for decaying HIT.

The above comparison between the present calculations and the DNS data raises a
paradox which, for convenience, is hereafter referred to as the S2 paradox. Indeed, even
though the calculations and the DNS (and EDQNM) use the same forcing, there is no
overshoot in the former. This is disconcerting since both the calculations and DNS have
similar S3 and Zr distributions in the region beyond the dissipative range, as seen in
figures 1 and 4. This paradox and its resolution are considered in the next section.

3. The S2 paradox

In the present calculations, the closed form of the KHEq is solved to obtain S2. However, S2
can also be calculated, as done in EDQNM and DNS, from the three-dimensional energy
spectrum, E(k), as follows:

S2 = 4
∫ ∞

0
E(k)

(
1
3

− sin kr − kr cos kr
(kr)3

)
dk, (3.1)

where k is the wavenumber. For the purpose of the analysis, a theoretical spectrum with
and without forcing is considered. The unforced spectrum is that of Pope (2000):

E(k) = Cε̄2/3k−5/3fL(kL)fη(kη), (3.2)

where C = 1.5,

fL(kL) =
(

kL
[(kL)1.5 + cL]1/1.5

)2/3

k5/3+p (3.3)

and
fη(kη) = exp(−β([(kη)4 + c4

η]1/4 − cη)), (3.4)

with p = 2, cL = 6.78, β = 5.3 and cη = 0.4. To emulate a forced spectrum we simply
use

Ef (k) =
(

1 + γ

k

)
E(k), (3.5)

where γ can take any positive value to change the forcing intensity. This is simple but,
as will be seen, sufficient to illustrate the effect of a low-wavenumber forcing on the
calculation of S2 via (3.1). Figure 6 shows the unforced and forced spectra for two largely
different kinematic viscosity values that lead to a significant Reynolds number difference.
The figure (inset) also reports the DNS data for forced HIT of Ishihara et al. (2016). We
have used their data of ε̄ and L; for Reλ = 2297 we used their value of ν = 4.1 × 10−6;
for Reλ = 7.264 × 104 we simply reduced the viscosity to ν = 4.1 × 10−9, while ε̄ and
L are unchanged. When forcing is applied, the forced spectra differ from the unforced
spectra in the low-wavenumber region. This indicates that (3.5) emulates relatively well a
spectrum of forced HIT (seen in the inset), and can represent the spectra obtained in the
DNS and EDQNM simulations of forced HIT. Thus, both forced and unforced spectra can
now be used to compute S2 using (3.1) and the results are reported in figure 7 showing
the distributions S2/(ε̄r)2/3 for different values of γ . We also show the EDQNM data for
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10–5 10–4 10–3 10–2 10–1 100

Unforced, γ = 0
Forced, γ = 2
Forced, γ = 5
Forced, γ = 10

100

105

10–4 10–2 100

100

105

kη

kη

E
(k

)/
(ε̄

v
5 )

1/
4

E
(k

)/
(ε̄

v
5 )

1/
4

Figure 6. Unforced (γ = 0) and forced (γ = 2, 5 and 10) three-dimensional energy spectra for Reλ = 2297
(thick lines) and 7.264 × 104 (thin lines). Inset: DNS data of Ishihara et al. (2016). Red circles, Reλ = 675;
blue triangles, Reλ = 2297; black lines, unforced spectra for Reλ = 675 and 2297.

Reλ = 104 of Meldi et al. (2021). In (3.2), C is supposed to be equal to the Kolmogorov
constant CK . However, the value of 1.5 used in (3.2) is lower than the assumed value of
CK � 2. Here, we also use C = 1.5 since, in combination with the other (fitting) constants
p, cL, β and cη, it yields good agreement with DNS spectra as shown in figure 6. The actual
value of C is not important as it does not alter the shapes of the S2 curves calculated with
(3.1), which are the focus here, and as illustrated in figures 7(a) and 7(b) where we used
C = 1.5 and 1.63, respectively. The results of figure 7 illustrate the impact of forcing on S2.
Forcing increases the magnitude of S2/(ε̄r)2/3 when compared to the unforced spectra and
can lead to a significant overshoot. Note though that the impact of forcing is practically
negligible in the region r/η � 10. The effect of forcing becomes important for r � 10η

and r � 1000η at lower and larger Reynolds numbers, respectively. The plots of figure 7
indicate that the larger the forcing intensity the deeper into the small scales its effect will
be felt. It also indicates that the larger the Reynolds number the weaker this effect is on the
small scales. Taking these considerations into account, one can argue that the DNS data
shown in figure 5 present a trend towards S2/(ε̄r)2/3 and that higher-Reynolds-number
DNS may confirm this trend.

The message of figure 7 is clear: the external spectral forcing applied at lower
wavenumbers can lead to an overshoot in the S2/(ε̄r)2/3 distributions when compared to
the no forcing case. This nevertheless does not yet explain the S2 paradox. But it should be
recalled that the KHEq has been developed in the context of a decaying turbulence which
is isotropic at all scales of motion. In this context, not only should the large-scale motion
be isotropic, but its energy should decay in time. Thus, its contribution, i.e. the third term
on the left-hand side of (1.1), also decays in time. Replacing this term by another one to
emulate a steady-state isotropic turbulence thus changes the nature of the equation. For
example, the integral term, which is a cumulative term, depends on S2, while the replacing
term (2.6) is neither cumulative nor S2-dependent. This reminds us that the extra term
commonly added to the Navier–Stokes equations (from which, we should recall, (1.1) is
derived) to emulate external forcing at large scales is unnatural (Lamorgese, Caughey &
Pope 2005). It is worth remembering that its use is justified on the basis that it has little
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Figure 7. Distributions of S2/(ε̄r)2/3 computed with unforced and forced spectra. Lines are the same as in
figure 6. Triangles, DNS data of Ishihara et al. (2020), Reλ = 2297; pink dash-dotted line, EDQNM data of
Meldi et al. (2021), Reλ = 104. The arrow indicates the direction of increasing γ . (a) Parameter C in (3.2) is
equal to 1.5; (b) C = 1.63 and only the cases for γ = 0 and 10 are shown with the DNS and EDQNM data.

effect on the small-scale statistics. Clearly, the results of figure 7 contradict this view,
particularly when the Reynolds number is not large enough. The change in the nature of
the KHEq when the forcing term is added can be illustrated by considering the following
equation in the region beyond the dissipative range, where the viscous term in (1.1) can be
dropped:

S3 − Zr = −4
5 ε̄r. (3.6)

For decaying isotropic turbulence, Zr is given by the integral term in (1.1) and (3.6) is the
transport equation of S2 with S3 unknown. On the other hand, if Zr is given by (2.6), then
(3.6) is not a transport equation for S2 since S2 does not appear in the equation. In fact, (3.6)
can be used to obtain S3, as done in § 2, irrespective of S2 which, as far as this equation
is concerned, is undetermined and thus can have any value. This remark concerning the
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Figure 8. Distributions of Zr/(ε̄r) computed via (3.7) (linear forcing, blue line) and (2.6) (spectral forcing,
red line).

change in the nature of the KHEq echoes Pope’s (2000) reminder that the large-scale
energy-containing motions generated in the spectral domain by low-wavenumber forcing
are unnatural and not governed by the Navier–Stokes equations. In that context, it is
not surprising that the KHEq solutions do not agree with numerical simulations where
a turbulence field is generated by an external forcing such as in DNS and EDQNM
calculations. Only if the Reynolds number is large enough can the KHEq, DNS and
EDQNM solutions be in agreement in the dissipative and scaling ranges, as indeed
figures 5 and 7 would suggest.

We complete this section by solving the KHEq where Zr is given by the linear isotropic
forcing used by Lundgren (2003):

Zr = 2ε̄

u′2
1
r4

∫ r

0
s4S2 ds. (3.7)

Lundgren suggests that this forcing is equivalent to a uniform spectral forcing at all
wavenumbers and can allow comparison with decaying HIT. Notice the cumulative aspect
of this expression, mimicking the integral term in (1.1). Figure 8 shows Zr for both linear
and spectral forcing. Both types of forcing lead to the correct limit, Zr = (4/5)(ε̄r), as they
should, at large r/η but they result in significantly different behaviours as r/η decreases.
They decrease at different rates with decreasing r/η. For example, as r/η decreases, Zr
remains larger for the spectral than for the linear forcing until r/η � 0.6 × 104. Below
this value, Zr is smaller with the linear forcing. One can expect that this behaviour should
be reflected in the distributions of S2. This is indeed observed in figure 9 which shows
distributions of S2 normalised by vK . As the large scales are approached, the calculations
based on the spectral forcing yield systematically higher values of S2 than when the linear
forcing is used. This was also observed by Lundgren (2003), although the observation was
made with regard to the approach to the four-fifths law. Notice that in an attempt to improve
the calculation in the dissipative range, we used the boundary condition S2 = (1/15ν)ε̄r2

at r = η, which is the correct solution of the KHEq in the dissipative range where the
first and third terms on the left-hand side of (1.1) are negligibly small. A comparison with
figure 3 indicates that this simple change of boundary condition improves the calculation in
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Figure 9. Distributions of S2 computed via (1.1) with spectral forcing (red lines) and linear forcing (blue
lines). Symbols are experimental data of grid turbulence and round jet.

the dissipative range. Also reported in figure 9 are the experimental data of grid turbulence
(Djenidi, Kamruzzaman & Antonia 2015; Kaminsky et al. 2020) and round jet centreline
(Djenidi et al. 2016). Adding a forcing term to the Navier–Stokes equations is equivalent
to introducing energy. This energy is then distributed among all scales of motion. But, as
illustrated by Zr, this distribution is not uniform among the scales of motion; the larger the
scales the more energy they receive. This is well reflected in the distributions of S2/v

2
K .

The calculated (forced) distributions exhibit higher values of S2/v
2
K than the measured

(decaying) distributions in the range of scales delimited by the dissipative range and
the very large scales where S2 becomes constant. Interestingly, the agreement between
calculation and measurement is better for the jet flow than grid turbulence, suggesting that
the large-scale contribution is stronger in the former flow.

4. Concluding discussion

A closed form of the KHEq is solved to investigate the behaviour of the second-order
velocity structure function, S2, in HIT at finite Reynolds numbers. The closure model
is based on a gradient type with an eddy viscosity formulation proposed by Djenidi &
Antonia (2021). The results are in good agreement with experimental data (figure 9).
Further, they indicate that when the Reynolds number is large, S2 behaves like (ε̄r)2/3

in a range of scales beyond the dissipative range and well before the scale range where S2
becomes constant, thus supporting the existence of a two-thirds law when the Reynolds
number is very, if not infinitely, large. However, comparison with the DNS data for forced
HIT reveals a paradox: while both the KHEq and DNS use the same isotropic spectral
forcing, the DNS data exhibit larger values of S2 than the KHEq solutions in the region
where S3/(ε̄r) starts to decrease with increasing r (figure 1), which is illustrated by an
overshoot in S2/(ε̄r)2/3 (figure 5). Calculations of S2 via the energy spectrum (3.1) reveal
similar overshoots in S2/(ε̄r)2/3 when forced spectra are used (figure 7); also, the stronger
the forcing intensity the larger the magnitude of the overshoot. These results strongly
suggest that the overshoot exhibited by the DNS data is associated with the forced energy
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spectrum. As the Reynolds number increases, and for a given spectral forcing applied
at the same low wavenumbers, the overshoot shifts to larger values of r/η allowing S2
to approach its infinite-Reynolds-number behaviour, i.e. (ε̄r)2/3, in the scaling range. This
discussion about the overshoot in the distributions of S2/(ε̄r)2/3 raises a pertinent question:
why do the DNS data for S3/(ε̄r) not show an overshoot when forcing is applied? Moment
S3 is associated with the transfer of energy, not with the energy itself, so that the actual
mechanism of energy transfer among scales is the same regardless of whether the energy
spectrum is forced or not; there is simply more energy to transfer when forcing is used.

An interesting point that stems from the present study concerns the two-thirds law. The
KHEq solutions clearly show that as long as turbulence is isotropic at all scales of motion,
this law can be well approximated at large Reynolds numbers; it is better approximated
in forced than in decaying turbulence, as seen in figure 9. Also, the presence of the
large-scale anisotropy disrupts this. Indeed, the effect of this anisotropy can penetrate deep
into the small scales, particularly if the Reynolds number is not large. This unfortunately
complicates the interpretation of comparisons between the (isotropic) Kármán–Howarth
predictions and the actual results in anisotropic flows.

Finally, the present results, and in particular the calculations of S2 based on the forced
three-dimensional energy spectrum, suggest that the current DNS data are not inconsistent
with a trend towards the two-thirds law. It is possible that the current DNS Reynolds
numbers are not large enough to avoid the effect of forcing on the small scales beyond the
dissipative range and thus disrupting the behaviour of S2 in the so-called scaling range;
this effect increases as the size of the scale increases. DNS data at much larger Reynolds
numbers than the current ones will certainly help clarify the issue of how forcing affects
the scaling range.
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