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We propose a method for approximating equivalent local volatility functions of stochastic
volatility models. Enlightened by the theory of generalized Wiener functionals proposed by
Watanabe and Yoshida (1987, 1992), our key technique is to propose a closed-form expan-
sion of conditional expectations involving marginal distributions generated by stochastic
differential equations. A numerical test and an illustration of application are provided to
demonstrate the efficiency of our approach.

1. INTRODUCTION

Since the debut in Hull and White [25], Scott [39] and Heston [24] among others, stochastic
volatility has become an important feature for modeling the real world dynamics of asset
prices. Even after carefully trading off between empirical features and mathematical con-
venience in model design, efficient calibration poses significant challenges. Among many
other approaches, the Markovian projection approach proposed by Piterbarg [37] hinges on
equivalent local volatility functions; see, for example, Dupire [10], Derman and Kani [8] and
a comprehensive survey in Gatheral [14]. Based on the theoretical result from Gyöngy [20],
the equivalent local volatility function can be constructed by a conditional expectation of
the spot variance given the underlying asset price; see, for example, Dupire [11] and Piter-
barg [34–36,38]. Consequently, the stochastic volatility model can be calibrated to market
via the calibration of local volatility function using European option trading data; see, for
example, Dupire [10].

In spite of the convenience of the framework proposed in Piterbarg [37], the central
and most challenging issue amounts to the valuation of the aforementioned conditional
expectation form of equivalent local volatility functions. A most commonly-used method
is the Gaussian approximations discussed in Piterbarg [37], Antonov and Misirpashaev [2]
and Antonov, Misirpashaev, and Piterbarg [3]; related applications can be seen in Dupire
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[11], Piterbarg [34–36,38], Xu and Zheng [45,46], Antonov and Misirpashaev [1], and Kienitz
and Wittke [28]. Another method is to employ heat-kernel approximation; see, for example,
Avellaneda et al. [4] and Henry-Labordere [22]. Motivated by a broader range of important
applications in applied probability and stochastic modeling, the valuation of conditional
expectations involving marginal distributions generated by stochastic differential equations
(SDE hereafter) attracts attentions owing to the significant challenge even from Monte
Carlo simulation based methods; see, for example, Fournie et al. [12,13], Benhamou [5] and
Bouchard, Ekeland, and Touzi [7].

In this paper, we will proposed a widely applicable and efficient closed-form expansion
approach, which serves as a complementary choice of other methods. Once the expansion
formulas are calculated and shortened using a symbolic computation platform, for example,
Mathematica, the computing time in the calibration can be significantly saved from heavy
and repeated numerical procedures. From a technical perspective, our expansion approach
roots in the method for analyzing generalized random variables initiated by Watanabe [44]
and Yoshida [47] as well as its substantial development for statistical inference and option
valuation in, for example, Yoshida [47], Takahashi [40,41], Kunitomo and Takahashi [29,30],
Uchida and Yoshida [43], Gobet, Benhamou, and Miri [18] and Li [31,33].

The rest of this paper is organized as follows. In Section 2, we discussed about our
motivation and introduce the model with basic setup. In Section 3, we propose our method of
closed-form expansion approximation. In Section 4, we test the performance of our expansion
and illustrate its applications. In Section 5, we conclude the paper. The proofs are included
in Appendices 5.

2. MOTIVATION AND THE MODEL

To articulate our motivation, we start from the following local stochastic volatility model
with a general specification of the volatility process, that is,

dS(t)
S(t)

= rdt + v(t, S(t))
√

V (t)
(
ρdW1(t) +

√
1 − ρ2dW2(t)

)
, S(0) = s0, (2.1a)

dV (t) = a(V (t))dt + b(V (t))dW1(t), V (0) = v0, (2.1b)

for some functions v, a and b, where (W1,W2) is a standard two-dimensional Brownian
motion.

An application of Theorem 4.6 in Gyöngy [20] leads to the following distributional
equivalence:

{S(t); t ≥ 0} in law= {Ŝ(t) + s0; t ≥ 0},
where Ŝ is governed by the following local volatility model

dŜ(t)

Ŝ(t)
= rdt + v(t, Ŝ(t))

√
u(t, Ŝ(t))dW (t), Ŝ(0) = 0,

with the volatility function

u(t, s) := E(V (t)|S(t) = s). (2.2)

According to Piterbarg [37], this observation provides a convenient method for calibrating
stochastic volatility models through the local volatility functions, which can be directly
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implied by cross-sectional data of option prices; see, for example, Gatheral et al. [16].
However, given the complex structure of the underlying model, efficient valuation of the
conditional expectation (2.2) poses a challenge to the practice of this method. We will
propose a flexible approximation method via closed-form expansion.

For illustration purpose and without loss of generality, we consider the conditional
expectation E(X2(T )|X1(T ) = x1) for some T > 0, where the bivariate process X =
(X1,X2) is governed by the following two-dimensional SDE

dX(t) = μ(X(t))dt + σ(X(t))dW (t),X(0) = x0 = (x10, x20). (2.3)

Here, W = (W1,W2) is a two-dimensional standard Brownian Motion; μ = (μ1, μ2) : R
2 →

R
2 is the drift function and σ = (σij)2×2 : R

2 → R
2×2 is the diffusion matrix. Under

some standard conditions on μ and σ, we assume that (2.3) admits a unique solution in
distribution.

Our approximation hinges on the following expression of the conditional expectation
E(X2(T )|X1(T ) = x1):

E(X2(T )|X1(T ) = x1) =
E [X2(T )δ(X1(T ) − x1)]

E [δ(X1(T ) − x1)]
. (2.4)

From a theoretical perspective, the random variable δ(X1(T ) − x1) and the expectations
E [δ(X1(T ) − x1)] and E [X2(T )δ(X1(T ) − x1)] can be interpreted in a generalized sense as
studied in Watanabe [44]. More detailed explanations can be found in Section 7.2 of Li [32]
and references therein. Formula (2.4) can be obtained from the definition of Dirac Delta
function; see, for example, p. 4 in Kanwal [26]. Indeed, denote by p1(x) the probability
density function of X1(T ). By conditioning on X1(T ), it follows that

E [δ(X1(T ) − x1)] =
∫ ∞

−∞
E [δ(X1(T ) − x1)|X1(T ) = x] P (X1(T ) ∈ dx)

=
∫ ∞

−∞
δ(x − x1)p1(x)dx = p1(x1).

Similarly, we have

E [X2(T )δ(X1(T ) − x1)] =
∫ ∞

−∞
E [X2(T )δ(X1(T ) − x1)|X1(T ) = x] P (X1(T ) ∈ dx)

=
∫ ∞

−∞
δ(x − x1)E [X2(T )|X1(T ) = x] p1(x)dx

= E [X2(T )|X1(T ) = x1] p1(x1),

which results in (2.4). Using Malliavin calculus, Monte Carlo simulation methods for approx-
imating (2.4) are discussed in, for example, Fournie et al. [12,13], Benhamou [5] and
Bouchard et al. [7]. In what follows, we will propose a closed-form expansion based on
the expression (2.4).
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3. A CLOSED-FORM EXPANSION

To apply the method proposed in Li [31,33], we introduce the following parameterized model
Xε(t) governed by the following SDE:

dXε(t) = ε
[
μT (Xε(t))dt + σT (Xε(t))dWT (t)

]
, Xε(0) = x0, (3.1)

with the functions

μT (x) = Tμ(x) and σT (x) =
√

Tσ(x), (3.2)

where {WT (t)} is a standard two-dimensional Brownian motion constructed by

WT (t) =
1√
T

W (Tt) (3.3)

via the Brownian scaling property. We note that Xε(1)|ε=1 and X(T ) are equivalent in
distribution. To verify this useful property, we first notice that {Xε(t/T )|ε=1} solves the
SDE (2.3). Indeed, by change-of-variable and the definitions of (3.2) and (3.3), we have

Xε

(
t

T

)∣∣∣∣
ε=1

= x0 +
∫ t

T

0

μT (Xε(s)|ε=1)ds +
∫ t

T

0

σT (Xε(s)|ε=1)dWT (s)

= x0 +
∫ t

0

μT
(

Xε
( s

T

)∣∣∣
ε=1

)
d
( s

T

)
+
∫ t

0

σT
(

Xε
( s

T

)∣∣∣
ε=1

)
dWT

( s

T

)
= x0 +

∫ t

0

μ
(

Xε
( s

T

)∣∣∣
ε=1

)
ds +

∫ t

0

σ
(

Xε
( s

T

)∣∣∣
ε=1

)
dW (s).

Hence, {Xε(t/T )|ε=1} is a solution to SDE (2.3). Thus, our assumption on the unique-
ness of the solution to SDE (2.3) guarantees that Xε(1)|ε=1 ≡ Xε (T/T ) |ε=1 and X(T ) are
equivalent in distribution. In the following expositions, we will abbreviate WT (t) as W (t).

Thus, we obtain a parameterized version of (2.4) as

E(X2(T )|X1(T ) = x1) =
E [Xε

2(1)δ(Xε
1(1) − x1)]

E [δ(Xε
1(1) − x1)]

∣∣∣∣
ε=1

,

which will serve as a starting point for our expansion. Denote by pε = E [δ(Xε
1(1) − x1)]

and qε = E [Xε
2(1)δ(Xε

1(1) − x1)] . We will expand pε and qε as

pε := E [δ(Xε
1(1) − x1)] =

D1(x0)
ε

J∑
k=0

Ωk

[
D1(x0)

(
x1 − x10

ε
− μT

1 (x0)
)]

εk + O(εJ+1),

(3.4)
and

qε : = E [Xε
2(1)δ(Xε

1(1) − x1)]

=
D1(x0)

ε

J∑
k=0

Ψk

[
D1(x0)

(
x1 − x10

ε
− μT

1 (x0)
)]

εk + O(εJ+1), (3.5)

for some functions D1(x0), Ωk and Ψk to be determined in closed-form, respectively. Then,
by plugging in ε = 1, we define a Jth order approximation to the conditional expectation
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E(X2(T )|X1(T ) = x1) as

CE(J) :=
q(J)

p(J)
, (3.6)

where

p(J) =
J∑

k=0

Ωk

[
D1(x0)

(
x1 − x10 − μT

1 (x0)
)]

and

q(J) =
J∑

k=0

Ψk

[
D1(x0)

(
x1 − x10 − μT

1 (x0)
)]

.

3.1. Pathwise Expansions

Similar to Lemma 1 in Li [31], we begin by introducing a pathwise expansion of Xε(t) as a
Taylor-like power series of the variable ε with closed-form random coefficients. For such a
purpose, we define, for i = 1, 2,

bT
i (x) = −1

2

2∑
k=1

2∑
j=1

σT
kj(x)

∂

∂xk
σT

ij(x), (3.7)

and introduce the following differential operators:

A0 :=
2∑

i=1

bT
i (x0)

∂

∂xi
, Aj :=

2∑
i=1

σT
ij(x0)

∂

∂xi
, for j = 1, 2, A3 :=

2∑
i=1

μT
i (x0)

∂

∂xi
,

which map R
2-valued functions to R

2-valued functions. More precisely, for any integer ν and
a ν-dimensional vector-valued function ϕ(x) = (ϕ1(x), ϕ2(x), . . . , ϕν(x))� with � denoting
vector/matrix transpose, we have

(Ak (ϕ)) (x) = ((Ak (ϕ1)) (x), (Ak (ϕ2)) (x), . . . , (Ak (ϕν)) (x))� , for k = 0, 1, 2, 3.

For an index i = (i1, . . . , in) ∈ {0, 1, 2, 3}n and a right-continuous stochastic process
{f(t)}, we define an iterated Stratonovich integral with integrand f as

Ji[f ](t) :=
∫ t

0

∫ t1

0

· · ·
∫ tn−1

0

f(tn) ◦ dWin
(tn) · · · ◦ dWi2(t2) ◦ dWi1(t1). (3.8)

To lighten the notation, for f ≡ 1, the integral Ji[1](t) is abbreviated as Ji(t). By convention,
we assume W0(t) := t and W3(t) := t. We define

‖i‖ :=
n∑

k=1

[
2 · 1{ik=0} + 1{ik �=0}

]
(3.9)

as the norm of index i, in which the occurrence of 0 is counted twice in this norm.
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Lemma 1: Xε(1) admits the following pathwise expansion:

Xε(1) =
J∑

k=0

Fkεk + O(εJ+1), for i = 1, 2, (3.10)

with F0 = x0 and higher order correction terms represented by linear combinations of
iterated Stratonovich integrals (3.8), that is,

Fk =
∑

i=(i1,...,in),‖i‖=k

Ci(x0)Ji(1), for k = 1, 2, 3, . . . . (3.11)

Here, the coefficients are given by

Ci(x0) = Ain

(· · · (Ai3

(Ai2

(
σT
·i1
))) · · · ) (x0). (3.12)

For i1 ∈ {1, 2}, the vector σT
·i1(x) denotes the i1th column vector of the dispersion matrix

σT (x), that is, σT
·i1(x) = (σT

1i1
(x), σT

2i1
(x))�; for i1 = 0, the vector σT

·0(x) refers to the vector
bT (x); for i1 = 3, the vector σT

·3(x) refers to the vector μT (x).

Proof: See Appendix 5. �

Under some standard sufficient conditions, the validity of this expansion can be justified
in the sense of Malliavin calculus; see Theorem 3.3 in Watanabe [44] for a similar case. In
the subsequent subsections, all the expansions of generalized random variables and their
expectations can be guaranteed by Theorems 2.2 and 2.3 of Watanabe [44]. A survey of these
theoretical issues can be found in Sections 7.2 and 7.3 of Li [32]. To focus on computational
issues and applications in this paper, we omit similar discussions.

In particular, for an arbitrary r = 1, 2, we have an elementwise representation of
Xε(1) as Xε

r(1) =
∑∞

k=0 Fk,rε
k, where Fk,r =

∑
i=(i1,...,in),‖i‖=k Ci,r(x0)Ji(1) for any k =

1, 2, 3, . . . , and Ci,r(x0) = Ain

(· · · (Ai3

(Ai2

(
σT

ri1

))) · · · ) (x0). For example, the first two
terms can be calculated explicitly as

F1,r = μT
r (x0) +

2∑
j=1

σT
rj(x0)Wj(1),

F2,r = bT
r (x0) +

2∑
i1,i2=1

Ai2

(
σT

ri1

)
(x0)J(i1,i2)(1) +

2∑
i2=1

A3

(
σT

ri1

)
(x0)J(i1,3)(1)

+
2∑

i2=1

Ai2

(
σT

r3

)
(x0)J(3,i2)(1) + A3

(
σT

r3

)
(x0)J(3,3)(1).

For ease of exposition, we introduce a two-dimensional correlated Brownian motion
B(t) = (B1(t), B2(t)), where B(t) = D(x0)σT (x0)W (t) with the diagonal matrix D(x)
defined by

D(x) := diag (D1(x),D2(x)) and Di(x) =

⎛⎝ 2∑
j=1

σT
ij(x)2

⎞⎠−1/2

, for i = 1, 2. (3.13)

So, the covariance matrix of B(1) can be written as Σ(x0) = D(x0)σT (x0)σT (x0)�D(x0).
Employing these notations, we have, for example, F1 = μT (x0) + D(x0)−1B(1).
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3.2. Expansion for the Denominator pε = E
[
δ(Xε

1(1) − x1)
]

In this subsection, we derive a closed-form expansion for denominator pε = E [δ(Xε
1(1) − x1)]

in the form of (3.4). To guarantee the convergence based on Watanabe [44], we standardize
Xε(1) into Y ε(1)

Y ε(1) := D(x0)
(

Xε(1) − x0

ε
− μT (x0)

)
, (3.14)

which converges to the bivariate normal variable (B1(1), B2(1)) as ε → 0. Similar setup can
be found in Yoshida [47,48], Kunitomo and Takahashi [29,30], Takahashi, Takehara, and
Toda [40], Takahashi, Takehara, and Toda [42], and Li [31,33]. Assume that we have an
asymptotic expansion for Y ε(1) as

Y ε(1) =
J∑

k=0

Ykεk + O(εJ+1). (3.15)

According to (3.10) and (3.14), it is easy to find the coefficients as Yi = D(x0)Fi+1, for
i = 1, 2, . . . .

Now, we observe that

pε = E [δ(Xε
1(1) − x1)] =

D1(x0)
ε

E [δ(Y ε
1 (1) − y1)|X(0) = x0] ,

where

y1 = D1(x0)
(

x1 − x10

ε
− μT

1 (x0)
)

, (3.16)

and x01 is the first element of x0. By regarding D1(x0)/ε as a constant, our expansion will be
carried out with E [δ(Y ε

1 (1) − y1)|X(0) = x0]. Without any confusion, the initial condition
X(0) = x0 will be omitted in what follows.

Based on the expansion (3.15) and the classical rule for Taylor expansion, we obtain an
expansion of δ(Y ε

1 (1) − y1) as

δ(Y ε
1 (1) − y1) =

J∑
k=0

Φk(y1)εk + O(εJ+1), (3.17)

where Φk(y1) represents the kth order expansion term. Taking expectations, we obtain that

E [δ(Y ε
1 (1) − y1)] :=

J∑
k=0

Ωk(y1)εk + O(εJ+1),

where Ωk(y1) := EΦk(y1) can be explicitly calculated. Thus, the Jth order expansion
approximation of pε can be defined as

pε,(J) :=
D1(x0)

ε

J∑
k=0

Ωk

(
D1(x0)

(
x1 − x10

ε
− μT

1 (x0)
))

εk.

By plugging in ε = 1, we obtain the following Jth order approximation of the marginal
density of X1(T ):

p(J) := D1(x0)
J∑

k=0

Ωk

(
D1(x0)

(
x1 − x10 − μT

1 (x0)
))

. (3.18)
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To give a closed-form formula for Ωk(y) with k ≥ 1, we define the following differential
operator D via

D(f)(x) : =
∂f(x)

∂x
− xf(x), for any differentiable function f(x). (3.19)

Denote by φ(·) the probability density function of a standard normal variable. Note that,
for any function g(x) and φ(x), the derivative of the multiplication g(x)φ(x) can be simply
expressed using (3.19) as follows:

∂

∂x
[g(x)φ(x)] =

[
∂

∂x
g(x) − xg(x)

]
φ(x) = D(g)(x)φ(x).

Denote by

P(i1,i2,...,il)(z) := E

(
l∏

v=1

Jiv (1)|B1(1) = z

)
, (3.20)

for some indices i1, i2, . . . , il.
In the following proposition, we give a closed-form formula for the correction term Ωk.

Proposition 1: For any k ∈ N, the correction term Ωk(y1) in (3.18) admits the following
explicit expression:

Ωk(y1) =
∑

1≤l≤k

(−1)l D11(x0)l

l!

∑
(j1,j2,...,jl)∈S(k,l)

N(j1, j2, . . . , jl)
∑

{(i1,i2,...,il)|‖iv‖=jv+1,v=1,2,...,l}
(3.21)(

l∏
v=1

Civ,1(x0)

)
D(l)

(
P(i1,i2,...,il)

)
(y1)φ(y1),

where the index set S(k, l) is defined as

S(k, l) := {(j1, j2, . . . , jl)|1 ≤ j1 ≤ j2 ≤ · · · ≤ jl, j1 + j2 + · · · + jl = k}. (3.22)

And N(j1, j2, . . . , jl) denotes the total number of different permutations for j1, j2, . . . , jl. For
example, if (j1, j2, . . . , j8) = (2, 2, 2, 3, 3, 6, 6, 6), we have N(j1, j2, . . . , j8) = (8!/(3!2!3!)) =
560. And Civ,1, D11(x0), D, P(i1,i2,...,il) are defined in (3.12), (3.13), (3.19) and (3.20),
respectively.

Proof: See Appendix 5. �

The conditional expectation (3.20) plays an important role in expressing expansion
terms. An efficient algorithm for calculating (3.20) as a closed-form polynomial in z can be
found in Section 4 of Li [33].

https://doi.org/10.1017/S0269964815000182 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964815000182


A CLOSED-FORM EXPANSION OF LOCAL VOLATILITY FUNCTIONS 555

3.3. Expansion for the Numerator qε = E
[
Xε

2(1)δ(Xε
1(1) − x1)

]
To obtain the expansion (3.5) for numerator qε = E [Xε

2(1)δ(Xε
1(1) − x1)], we note that it

involves a multiplication of a classical random variable Xε
2(1) and a generalized random

variable δ(Xε
1(1) − x1). For δ(Xε

1(1) − x1), as in the previous section, we standardize Xε
1(1)

into Y ε
1 (1) by (3.14), and deduce that

E [Xε
2(1)δ(Xε

1(1) − x1)] =
D1(x0)

ε
E [Xε

2(1)δ (Y ε
1 (1) − y1)] ,

where y1 is given by (3.16).
By multiplying the expansions (3.10) and (3.17), we obtain the expansion of the product

Xε
2(1)δ (Y ε

1 (1) − y1) as

Xε
2(1)δ (Y ε

1 (1) − y1) =
J∑

k=0

Θk(y1)εk + O(εJ+1), (3.23)

where

Θk(y1) :=
k∑

r=0

Fr,2Φk−r(y1), with Fk,2 =
∑

i=(i1,...,in),‖i‖=k

Ci,2(x0)Ji(1). (3.24)

Taking expectation on the both sides of (3.23), we obtain that

E [Xε
2(1)δ (Y ε

1 (1) − y1)] =
J∑

k=0

Ψk(y1)εk + O(εJ+1),

where the correction term Ψk(y1) follows from

Ψk(y1) = EΘk(y1) =
k∑

r=0

E [Fr,2Φk−r(y1)] . (3.25)

Thus, the Jth order expansion approximation of E [Xε
2(1)δ(Xε

1(1) − x1)] can be defined as

qε,(J) :=
D1(x0)

ε

J∑
k=0

Ψk

[
D1(x0)

(
x1 − x10

ε
− μT

1 (x0)
)]

εk.

By plugging in ε = 1, we obtain the following Jth order approximation of
E [X2(T )δ(X1(T ) − x1)] as

q(J) := D1(x0)
J∑

k=0

Ψk

[
D1(x0)

(
x1 − x10 − μT

1 (x0)
)]

. (3.26)

Similar to Proposition 1, we give a closed-form formula for Ψk(y1) in the following
proposition.
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Proposition 2: For any k ∈ N, the correction term Ψk(y1) in (3.25) admits the following
explicit expression:

Ψk(y1) =
k∑

r=0

∑
i=(i1,...,in),‖i‖=r

Ci,2(x0)
∑

l≤k−r

1
l!

D11(x0)l
∑

(j1,j2,...,jl)∈S(k−r,l)

N(j1, j2, . . . , jl)

(3.27)∑
{(i1,i2,...,il)|‖iv‖=jv+1,v=1,2,...,l}

(
l∏

v=1

Civ,1(x0)

)
D(l)

(
P(i1,i2,...,il,i)

)
(y1)φ(y1),

with Civ,1, D11(x0), D, P(i1,i2,...,il), S(k, l) defined in (3.12), (3.13), (3.19), (3.20) and
(3.22), respectively, as well as N(j1, j2, . . . , jl) defined in Proposition 1.

Proof: See Appendix 5. �

4. COMPUTATIONAL RESULTS

In this section, we will test the performance of our expansion and provide an application
following the motivating example discussed in Section 2. We will first test our expansion
method by approximating a conditional expectation involving a two-dimensional geometric
Brownian motion, which renders analytical tractability for explicitly exhibiting the approx-
imation errors. Next, for illustration of application, we will employ our expansion method in
approximating local volatility functions of the celebrated SABR local-stochastic volatility
model (see, e.g., Hagan et al. [21]).

4.1. A Test of Performance

We consider the following two-dimensional geometric Brownian motion model.

Model 1: Two-dimensional geometric Brownian motion (GBM):

dX1(t) = σ1X1(t)dW1(t), X1(0) = x10,

dX2(t) = σ2X2(t)dW2(t), X2(0) = x20.

for some x10 > 0, x20 > 0, σ1 > 0, σ2 > 0, where (W1,W2) is a correlated two-dimensional
Brownian motion with dW1(t)dW2(t) = ρdt with −1 ≤ ρ ≤ 1.

Because of

Xi(t) = xi0 exp
(

σiWi(t) − 1
2
σ2

i t

)
for i = 1, 2,

it is straightforward to obtain the following closed-form formula for the conditional expec-
tation, which will serve as a benchmark for testing the performance of our expansion
method:

E(X2(T )|X1(T ) = x1) = x20

(
x1

x10

)(ρσ2/σ1)

exp
(

1
2
Tρσ2(σ1 − ρσ2)

)
. (4.1)

We compare the third order and sixth order (CE(3) and CE(6) as defined in (3.6))
approximations of E(X2(T )|X1(T ) = x1) with the benchmark values calculated from
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(4.1) for different time horizons (T = 1/2, 1, 3, 10) and different conditioning values (x1 =
70, 80, 90, 100, 110, 120, 130). In Table 1, True value corresponds to the benchmark values
E(X2(T )|X1(T ) = x1); Asymptotic value corresponds to the values calculated from our
expansions, say, the Jth order expansion CE(J); Error refers to the relative error calculated
via

RE(J)(x1, T ) =
CE(J) − E(X2(T )|X1(T ) = x1)

E(X2(T )|X1(T ) = x1)
. (4.2)

From Table 1, it is obvious that the performance of our expansion is systematically enhanced
as the order is increased.

In Figure 1, we further illustrate the efficiency of our algorithm by plotting the
relationship between expansion orders and uniform relative error for different maturities
T = 1/2, 1, 3, 10. For each maturity, we define the uniform relative error as the maximum
of the absolute relative errors across all conditioning values of x1 in a certain region, that

Table 1. Numerical results for the performance test in Section 4.1

Parameters Benchmark Third-order expansion Sixth-order expansion

T x1 True value Asymptotic Error Asymptotic Error

0.5 70 69.00496527 68.50524690 −7.2418 × 10−3 69.02096103 2.3181 × 10−4

80 76.27361000 76.23893890 −4.5456 × 10−4 76.27312958 −6.2986 × 10−6

90 83.31797262 83.32496958 8.3979 × 10−5 83.31797148 −1.3637 × 10−8

100 90.16890830 90.16917293 2.9348 × 10−6 90.16890509 −3.5616 × 10−8

110 96.85037920 96.85903796 8.9403 × 10−5 96.85036290 −1.6829 × 10−7

120 103.38148022 103.33924103 −4.0858 × 10−4 103.38197502 4.7861 × 10−6

130 109.77775014 109.52183464 −2.3312 × 10−3 109.76899208 −7.9780 × 10−5

1 70 69.13447095 68.87098550 −3.8112 × 10−3 69.12696300 −1.0860 × 10−4

80 76.41675717 76.47256098 7.3026 × 10−4 76.41669262 −8.4472 × 10−7

90 83.47434036 83.48140138 8.4589 × 10−5 83.47430935 −3.7156 × 10−7

100 90.33813360 90.33919598 1.1760 × 10−5 90.33810785 −2.8510 × 10−7

110 97.03214401 97.04118886 9.3215 × 10−5 97.03208242 −6.3475 × 10−7

120 103.57550234 103.65030364 7.2219 × 10−4 103.57537520 −1.2274 × 10−6

130 109.98377651 109.67287138 −2.8268 × 10−3 109.99142705 6.9561 × 10−5

3 70 69.65492876 70.02561944 5.3218 × 10−3 69.65850846 5.1392 × 10−5

80 76.99203746 77.09768717 1.3722 × 10−3 76.99187144 −2.1562 × 10−6

90 84.10275151 84.10586834 3.7060 × 10−5 84.10200083 −8.9258 × 10−6

100 91.01821673 91.02791878 1.0659 × 10−4 91.01751449 −7.7154 × 10−6

110 97.76262096 97.76634832 3.8127 × 10−5 97.76160868 −1.0354 × 10−5

120 104.35523896 104.52509708 1.6277 × 10−3 104.35204925 −3.0566 × 10−5

130 110.81175588 111.45461822 5.8014 × 10−3 110.80027165 −1.0364 × 10−4

10 70 71.50758031 71.95153547 6.2085 × 10−3 71.49378585 −1.9291 × 10−4

80 79.03983824 79.09443042 6.9069 × 10−4 79.01495140 −3.1486 × 10−4

90 86.33967998 86.38669494 5.4453 × 10−4 86.31481091 −2.8804 × 10−4

100 93.43907974 93.55263158 1.2152 × 10−3 93.41216203 −2.8808 × 10−4

110 100.36286870 100.41303853 4.9988 × 10−4 100.32967244 −3.3076 × 10−4

120 107.13083429 107.21821509 8.1565 × 10−4 107.08434540 −4.3394 × 10−4

130 113.75907885 114.72103904 8.4561 × 10−3 113.66448109 −8.3156 × 10−4

Note: Parameters: x10 = 100, x20 = 90, σ1 = 0.2, σ2 = 0.3 and ρ = 0.5.
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Figure 1. Uniform relative errors.
Note: Parameters: x10 = 100, x20 = 90, σ1 = 0.2, σ2 = 0.3 and ρ = 0.5.

is, the Jth order uniform relative error is calculated as

e(J) := max
x1∈{70,71,...,129,130}

|RE(J)(x1, T )|,

where RE(J)(x1, T ) is the relative error defined via (4.2). It is evident from Figure 1 that
the uniform relative error decreases rapidly as the expansion order increases. This suggests
that our method is relatively robust to wide range of parameters.

4.2. An Application in Approximating Local Volatility Functions

In this section, we will apply our asymptotic expansion method to approximate local volatil-
ity functions of the celebrated SABR local-stochastic volatility model, which is famous for
its extensive applications in derivatives pricing; see, for example, Hagan et al. [21].

Model 2: The SABR model:

dS(t) = σ(t)S(t)βdW1(t), S(0) = s0,

dσ(t) = ασ(t)[ρdW1(t) +
√

1 − ρ2dW2(t)], σ(0) = σ0,

where (W1,W2) is standard two-dimensional Brownian motion. Here, we assume −1 ≤ ρ ≤
1, 0 ≤ β ≤ 1 and α ≥ 0.

We denote by V (t) = σ2(t) the stochastic variance. Thus, an application of the Itô
formula yields that

dS(t) =
√

V (t)S(t)βdW1(t), S(0) = s0,

dV (t) = α2V (t)dt + 2αV (t)[ρdW1(t) +
√

1 − ρ2dW2(t)], V (0) = σ2
0 .

We let (X1(t),X2(t)) = (S(t), V (t)) and directly apply our expansion proposed in
Section 3 to approximate the local volatility function (2.2). Taking a set of typi-
cal market parameters, we plot the sixth order approximation of the local variance
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Figure 2. Local variance surface of SABR model.
Note: Parameters: s0 = 0.1, σ0 = 0.05, α = 0.2, β = 0.5 and ρ = 0.1.

surface {(T,K,CE(6)(T,K))} over the grids of maturity T = {0.2, 0.4, . . . , 1.8, 2.0} and
strike K = {0.07, 0.075, . . . , 0.125, 0.13} in Figure 2, where CE(6)(T,K) is the sixth order
approximation of the local volatility function

u(T,K) := E(V (T )|S(T ) = K) ≡ E(X2(T )|X1(T ) = K).

5. CONCLUDING REMARKS

In this paper, we proposed a method for approximating local volatility functions of stochastic
volatility models via a closed-form expansion for conditional expectations involving marginal
distributions generated by SDEs. A numerical test and an illustration of application are
provided to demonstrate the efficiency of our approach. In spite of our exposition on a
two-dimensional model, our method is flexible and can be generalized to various multidi-
mensional diffusion models and further applied to various multi-factor stochastic volatility
models; see, for example, Duffie, Pan, and Singleton [9] and Gatheral [15]. This and its
subsequent applications can be set as a future research direction. Among many others, one
can also employ our expansion of local volatility functions as input to obtain expansions of
implied volatility following, for example, Berestycki et al. [6], Henry-Labordère [23], Guyon
and Henry-Labord‘ere Gatheral et al. [19], Gatheral et al. [16] and Gatheral and Wang [17].
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APPENDIX

PROOFS

Proof of Lemma 1

Proof: Based on the following equivalent Stratonovich form (see, e.g., Section 3.3 in Karatzas and
Shreve [27]) of the SDE (3.1)

dXε(t) = εμT (Xε(t))dt + ε2bT (Xε(t))dt + εσT (Xε(t)) ◦ dW (t),

where bT (x) = (bT
1 (x), bT

2 (x))� defined in (3.7), the proof follows from successive applications of
the Itô–Stratonovich formula; see, for example, Section 3.3 in Karatzas and Shreve [27]. Thus, we
omit the details. �

Proof of Proposition 1

Proof: The kth order correction term for the pathwise expansion (3.17) follows from the chain
rule, that is,

Φ0(y1) = δ(B1(1) − y1),

and, for k ≥ 1,

Φk(y1) =
∑

(l,j)∈R(k)

1

l!
∂(l)δ(B1(1) − y)Yj1,1Yj2,1 · · ·Yjl,1

=
∑

(l,j)∈R(k)

D11(x0)
l

l!
∂(l)δ(B1(1) − y1)

(
l∏

v=1

Fjv+1,1

)
, (A.1)
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where the index set R(k) is defined as

R(k) := {(l, (j1, j2, . . . , jl)) |j1, j2, . . . , jl ≥ 1, j1 + j2 + · · · + jl = k}. (A.2)

By plugging in the closed-form expansion (3.11), we deduce that

Φk(y1) =
∑

(l,j)∈R(k)

1

l!
D11(x0)

l∂(l)δ(B1(1) − y1)

⎛⎝ l∏
v=1

∑
‖i‖=jv+1

Ci,1(x0)Ji(1)

⎞⎠ ,

where we note that

l∏
v=1

∑
‖i‖=jv+1

Ci,1(x0)Ji(1) =
∑

{(i1,i2,...,il)|‖iv‖=jv+1,v=1,2,...,l}

(
l∏

v=1

Civ,1(x0)

)(
l∏

v=1

Jiv (1)

)
.

By changing the order of summation and collecting same terms, we obtain that

Φk(y1) =
∑

1≤l≤k

D11(x0)
l

l!

∑
(j1,j2,...,jl)∈S(k,l)

N(j1, j2, . . . , jl)

∑
{(i1,i2,...,il)|‖iv‖=jv+1,v=1,2,...,l}

(
l∏

v=1

Civ,1(x0)

)
∂(l)δ(B1(1) − y1)

(
l∏

v=1

Jiv (1)

)
,

(A.3)

with the index set S(k, l) defined in (3.22) and N(j1, j2, . . . , jl) defined in Proposition 1. By taking
expectation, the calculation of EΦk(y1) boils down to

E

[
∂(l)δ(B1(1) − y1)

(
l∏

v=1

Jiv (1)

)]

=

∫
b1∈R

∂(l)δ(b1 − y1)

(
E

[(
l∏

v=1

Jiv (1)

)
|B1(1) = b1

]
φ(b1)

)
db1

= (−1)l
∂(l)

∂y
(l)
1

(
E

[(
l∏

v=1

Jiv (1)

)
|B1(1) = y1

]
φ(y1)

)
,

where we used the integration-by-parts formula of Dirac Delta function (see, e.g., section 2.6 of
Kanwal [26]). Hence, the formula follows from the definition of the differential operator (3.19). �

Proof of Proposition 2

Proof: By plugging in (3.24) and (A.1) and collecting similar terms, we obtain that

Fr,2Φk−r(y1)

=

⎛⎝ ∑
i=(i1,...,in),‖i‖=r

Ci,2(x0)Ji(1)

⎞⎠⎛⎝ ∑
l≤k−r

1

l!
D11(x0)

l
∑

(j1,j2,...,jl)∈S(k−r,l)

N(j1, j2, . . . , jl)
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∑
{(i1,i2,...,il)|‖iv‖=jv+1,v=1,2,...,l}

(
l∏

v=1

Civ,1(x0)

)
∂(l)δ(B1(1) − y1)

(
l∏

v=1

Jiv (1)

)⎞⎠
=

∑
i=(i1,...,in),‖i‖=r

Ci,2(x0)
∑

l≤k−r

1

l!
D11(x0)

l
∑

(j1,j2,...,jl)∈S(k−r,l)

N(j1, j2, . . . , jl)

∑
{(i1,i2,...,il)|‖iv‖=jv+1,v=1,2,...,l}

(
l∏

v=1

Civ,1(x0)

)
∂(l)δ(B1(1) − y1)

(
l∏

v=1

Jiv (1)

)
Ji(1).

Thus, by taking expectation, we have

E
[
Fr,2Φk−r(y1)

]
=

∑
i=(i1,...,in),‖i‖=r

Ci,2(x0)
∑

l≤k−r

1

l!
D11(x0)

l
∑

(j1,j2,...,jl)∈S(k−r,l)

N(j1, j2, . . . , jl)

∑
{(i1,i2,...,il)|‖iv‖=jv+1,v=1,2,...,l}

(
l∏

v=1

Civ,1(x0)

)
E

[
∂(l)δ(B1(1) − y1)

(
l∏

v=1

Jiv (1)

)
Ji(1)

]
.

Similar to the proof of Proposition 1, we obtain that

E

[
∂(l)δ(B1(1) − y1)

(
l∏

v=1

Jiv (1)

)
Ji(1)

]
= D(l)

(
P(i1,i2,...,il,i)

)
(y1)φ(y1).

�
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