
Artificial Intelligence for
Engineering Design, Analysis
and Manufacturing

cambridge.org/aie

Research Article

Cite this article: Shekhawat K, Jain RN, Bisht
S, Kondaveeti A, Goswami D (2021). Graph-
based approach for enumerating floorplans
based on users specifications. Artificial
Intelligence for Engineering Design, Analysis
and Manufacturing 35, 438–459. https://
doi.org/10.1017/S0890060421000275

Received: 2 September 2021
Accepted: 8 September 2021

Key words:
Algorithm; circulation; floorplans; graph
theory; layouts; symmetry

Author for correspondence:
Krishnendra Shekhawat,
E-mail: krishnendra.iitd@gmail.com

© The Author(s), 2022. Published by
Cambridge University Press

Graph-based approach for enumerating
floorplans based on users specifications

Krishnendra Shekhawat , Rahil N. Jain, Sumit Bisht, Aishwarya Kondaveeti

and Dipam Goswami

Department of Mathematics, BITS Pilani, Pilani Campus 333031, India

Abstract

This paper aims at automatically generating dimensioned floorplans while considering con-
straints given by the users in the form of adjacency and connectivity graph. The obtained
floorplans also satisfy boundary constraints where users will be asked to choose their preferred
location based on cardinal and inter-cardinal directions. Further, spanning circulations are
inserted within the generated floorplans. The larger aim of this research is to provide alterna-
tive architecturally feasible layouts to users which can be further refined by architects.

Introduction

The floorplanning automation has been well studied in the literature where different
approaches, such as artificial intelligence, graph theory, shape grammar, and optimization,
have been widely used. In this paper, we present a graph-theoretic approach for the automated
generation of multiple floorplans.

A floorplan is a polygon, which is the plan boundary, divided by straight lines into com-
ponent polygons called rooms. Corresponding to a floorplan, there associates a graph called
dual graph, which is obtained by replacing each room by a vertex and any two vertices are
adjacent, that is, joined by an edge, if the corresponding rooms share a wall or a section of
a wall. For example, in Figure 1, the dual graph (Fig. 1b) of a floorplan (Fig. 1a) is shown.
Constructing the dual graph of a floorplan is easy but deriving a floorplan from the dual
graph (in this case, we call the dual graph as an adjacency graph) is not obvious. For example,
Figure 1c represents an adjacency graph for which constructing a floorplan manually is a dif-
ficult task. Also, it is interesting to observe that the adjacency graph represents the geometrical
and topological constraints of a floorplan. For example, the shape of the room is not provided
explicitly by the user but from the graph in Figure 1b; it can be observed that at least one of the
rooms needs to be non-rectangular (room 1 is non-rectangular in Fig. 1a) because of the pre-
sence of separating triangle △135 (refer to Definition 4). Further, the position of a vertex (in
the given embedding of a graph) as internal or external vertex guides the position of the cor-
responding room. In Figure 1a, room 5 is internal while room 2 is external as suggested by the
given graph.

Two rooms are adjacent if they share a wall among themselves where sharing a wall may
not imply that the corresponding rooms are connected, mainly via a door. The connectivity
of rooms is given by the connectivity graph which must be a sub-graph of the adjacency
graph. For example, Figure 1e,f represents adjacency and connectivity graphs, respectively,
and the corresponding floorplan is shown in Figure 1g. In this paper, we present
graph-theoretic algorithms for generating a set of floorplans corresponding to a given adja-
cency graph and connectivity graph while satisfying dimensional constraints given in the
form of width, height, and aspect ratio of each room. Further, we give an algorithm for insert-
ing circulation in the obtained floorplan.

Literature review

The generation of floorplans using graph-theoretic tools has been well studied in the literature.
It started in the 1960s (Levin, 1964) and then in the subsequent years, a lot of research has
been done which is focused on enumeration and construction of floorplans corresponding
to a given graph (Steadman, 1973; Mitchell et al., 1976). Koźmiński and Kinnen (1985)
gave a necessary and sufficient condition for the existence of rectangular floorplans (RFPs)
corresponding to 1-connected and 2-connected planar triangulated graphs (PTGs). Bhasker
and Sahni (1988) gave a linear time algorithm for the construction of a RFP corresponding
to 2-connected PTGs. At the same time, Rinsma (1987) discussed the existence of RFPs for
given adjacencies and dimensions.

Yeap and Sarrafzadeh (1993) realized that there are graphs for which RFPs do not exist.
Liao et al. (2003) gave a linear time algorithm for constructing orthogonal floorplans

https://doi.org/10.1017/S0890060421000275 Published online by Cambridge University Press

https://www.cambridge.org/aie
https://doi.org/10.1017/S0890060421000275
https://doi.org/10.1017/S0890060421000275
mailto:krishnendra.iitd@gmail.com
https://orcid.org/0000-0002-3408-7912
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0890060421000275&domain=pdf
https://doi.org/10.1017/S0890060421000275

(OFPs) for maximal planar graphs. Marson and Musse (2010)
generated sliceable floorplans having aspect ratios close to one,
without considering the adjacency constraints. Eppstein et al.
(2012) gave a necessary and sufficient condition for an RFP to

be area universal.1 They also proposed the construction of area-

Fig. 1. Adjacency and connectivity graph and corresponding floorplans.

1An RFP is area universal if any assignment of areas to rectangles can be realized by a
rectangular room.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 439

https://doi.org/10.1017/S0890060421000275 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060421000275

universal RFPs. Alam et al. (2013) gave the construction of area-
universal OFPs for maximal planar graphs. Wang et al. (2018)
introduced prototype GADG (graph approach to floor plan gen-
eration) for regenerating an existing RFP by considering the
underlying graph of the existing floorplan. In the same year,
Shekhawat and Duarte (2018) introduced generic RFPs and
Shekhawat (2018) proposed an algorithm for their enumeration.
Upasani et al. (2020) developed a prototype which transforms a
drawn rectangular arrangement into a dimensioned RFP while
satisfying adjacency and symmetric requirements. In the same
year, Wang and Zhang (2020) extended GADG (Wang et al.,
2018) for generating dimensioned floorplans corresponding to
user-specified design requirements. Shi et al. (2020) used reinfor-
cement learning-based heuristic search technique (Monte Carlo
Tree Search) to produce a closest RFP corresponding to any
given adjacency graph.

There also exist other methodologies for generating floorplans.
Shape grammar is an efficient approach for automation where the
idea is to generate designs through the execution of shape rules
(Mitchel, 1990; Duarte, 2005; Müller et al., 2007; Wu et al.,
2014). Evolutionary approaches are also well studied for this pur-
pose (Rodrigues et al., 2013). Wu et al. (2018) presented a hierar-
chical framework and used mixed-integer quadratic programing
for the dimensioning of layouts with fixed exterior boundaries.
In recent times, many new approaches have evolved for super-
vised floorplan automation (Merrell et al., 2010; Wu et al.,
2019). Hu et al. (2020) presented the generation of floorplans
using a graph neural network while considering room adjacencies
in the form of layout graphs. Laignel et al. (2021) used a genetic
optimization approach for the automated generation of apartment
layouts where the area of rooms and boundary layout have been
considered as input.

In this paper, we present a prototype based on graph-theoretic
algorithms and optimization tools for generating multiple floor-
plans while satisfying given adjacency, boundary, and size
constraints.

Gaps in the existing literature and proposed work

The gaps in the existing literature can be listed as follows:

(i) Floorplans for 1-connected PTGs
It can be easily seen in the literature that graph-theoretic

algorithms for generating floorplans are restricted to 2-con-
nected PTGs (Bhasker and Sahni, 1988; Kant and He, 1993;
Yeap and Sarrafzadeh, 1993; Liao et al., 2003; Alam et al.,
2013; Shekhawat et al., 2021). In this paper, we propose a
graph-theoretic algorithm for the construction of a floorplan
corresponding to any given graph.

(ii) Dimensioned floorplans
In the 1980s, authors proposed the dimensioning of

RFPs. Roth et al. (1982) suggested the use of PERT technique
which often resulted in non-rectangular rooms. More
recently, Wang and Zhang (2020) generate dimensioned
floorplans with fixed aspect ratio constraints; however, a gen-
eralized optimization technique for producing feasible floor-
plans for any given room dimensions is still not available. In
this paper, we consider minimum and maximum width, as
well as area for each room as dimensional constraints, and
using graph-theoretic and optimization tools, we construct
a floorplan satisfying the given constraints.

(iii) Boundary constraints
Recently, Wang and Zhang (2020) considered boundary

constraints for the generation of floorplans. In this paper,
we propose a graph-based algorithm for generating multiple
floorplans satisfying boundary constraints where users can
choose the preferred location for each room based on cardi-
nal and inter-cardinal directions.

(iv) Circulations
Baybars (1982) presented a graph-theoretical approach

for inserting circulations within a floorplan. Recently, Egor
et al. (2020) gave an evolutionary algorithm for inserting cir-
culations. In this paper, we present an algorithm for gener-
ating floorplans along with spanning circulations.

(v) Time complexity
Many existing works can produce residential building lay-

outs for a small number of rooms (Merrell et al., 2010; Wu
et al., 2018; Nisztuk and Myszkowski, 2019), but for the
complex building structures with a large number of rooms,
we need efficient algorithms. The proposed prototype takes
O(N2) space for generating floorplans for any given number
of rooms N .

Preliminaries

In this section, we present a few important terminologies which
are used frequently in literature and also throughout this paper.

Definition 1 (Floorplans) Floorplans can be categorized on the
basis of the shape of rooms and the boundary of a layout. If the
boundary and all the rooms of a plan are rectangular, we call it
rectangular floorplan, denoted as RFP. If the boundary is rectan-
gular and at least one of the rooms is orthogonal, we call it ortho-
gonal floorplan, denoted as OFP. Floorplans other than RFPs and
OFPs are termed as non-rectangular floorplans (NRFPs). For
example, the floorplan in Figure 1a is an OFP, in Figure 1d is
an RFP, and in Figure 10e is an NRFP. Unless specified, a floor-
plan refers to a dimensionless floorplan. In the literature, floor-
plans are generally without empty spaces but we show that for
non-triangulated graphs, floorplans have empty spaces (Fig. 11b).

Two rooms in a floor plan are adjacent if they share a wall or a
section of it, where a wall of a room refers to the edges forming its
perimeter.

Definition 2 (Graphs) A graph G is a finite nonempty set V(G)
of vertices and a (possibly empty) set E(G) of 2-element subsets of
V(G) called edges. G is said to be planar if it can be embedded in
the plane without crossing of edges; otherwise, it is a non-planar
graph (the graph in Fig. 2a is non-planar while the graph in
Fig. 2b is planar whose planar embedding is shown in Fig. 2c).
A plane graph is a planar graph with an embedding dividing
the plane into connected components called faces/regions (the
graph in Fig. 2c has five internal faces and one exterior face).

A floorplan itself is a planar-connected graph where each
room is the face of the floorplan. Therefore, we are considering
planar-connected graphs only and in the paper, a graph shall
mean a connected planar graph. In architectural terms, when
the given graph provides a specific neighborhood of each room,
we call it an adjacency graph, denoted as GA. A connectivity
graph, denoted as GC , is a sub-graph of the adjacency graph rep-
resenting the connectivity of rooms (via a door). Figure 1e,f repre-
sents adjacency and connectivity graphs, respectively.

440 Krishnendra Shekhawat et al.

https://doi.org/10.1017/S0890060421000275 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060421000275

Definition 3 (Graph connectivity) A graph G is said to be con-
nected if there is a path from each vertex to any other vertex. It is
obvious that the adjacency graph is always planar and connected.
A connected graph G is said to be 1-connected if it has a cut-
vertex. A vertex v is said to be a cut-vertex if its removal discon-
nects the graph. G is said to be bi-connected or 2-connected if it
has no cut-vertices. The graph in Figure 2d is 1-connected having
vertex 2 as a cut-vertex while the graph in Figure 2e is 2-con-
nected with no cut-vertices.

Definition 4 (Triangulation) A connected planar graph is trian-
gulated if all of its faces (except the exterior) are triangular; the
exterior face may or may not be a triangle. This graph is known
as inner PTG (the graphs in Figure 2d–f are PTGs).

A separating triangle △abc is a cycle of length three in a graph
G such that G−△abc is a disconnected graph. It is denoted as
ST. △234 in Figure 2e is a separating triangle.

A PTG with no separating triangle and with the exterior face
of the length at least 4 is called properly triangular planar
graph (PTPG) (Bhasker and Sahni, 1987). The graph shown in
Figure 2f is a PTPG, whereas the graphs shown in Figure 2d,e
are not PTPGs because of the presence of STs.

Definition 5 (Corner implying path (CIP) (Bhasker and Sahni,
1987)) A shortcut in a planar bi-connected graph G is an edge
that is incident to two vertices on the outer boundary of G but
is not a part of the outer boundary. The edge (2, 4) in Figure 2f
is a shortcut. A CIP in a planar bi-connected graph G is a path
u1, u2, . . . , un on the outer boundary of G with the property
that (u1, un) is a shortcut and u2, u3, . . . , un−1 are not the end-
points of any shortcut. 2–3–4 in Figure 2f is a CIP.

Definition 6 (Regular edge labeling (REL) (Kant and He,
1993)) An REL of a bi-connected PTPG G is a partition of the

interior edges of G into two subsets T1, T2 of directed edges
such that for each interior vertex u, the edges incident to u appear
in a counterclockwise order around u as follows: a set of edges in
T1 leaving u, a set of edges in T2 entering u, a set of edges in T1

entering u, and a set of edges in T2 leaving u.
Let N , E, S, W be the four exterior vertices in clockwise order.

All interior edges incident to N are in T1 and entering N . All
interior edges incident to E are in T2 and entering E. All interior
edges incident to S are in T1 and leaving S. All interior edges inci-
dent to W are in T2 and leaving W. An REL for the PTPG in
Figure 4a is shown in Figure 4c.

Methodology

In this section, we present the construction of floorplans with cir-
culations for any given adjacency and connectivity graphs while
satisfying boundary and dimensional constraints.

Floorplans for 1-connected and non-triangulated graphs

In the literature, the construction of floorplans is restricted to
2-connected PTGs only. Koźmiński and Kinnen (1985) proved
that there exists an RFP for a 2-connected PTPG if and only if
it has at most four CIPs. Recently, Shekhawat et al. (2021) pre-
sented a prototype GPLAN which is capable of generating RFPs
for any 2-connected PTPG with at most four CIPs and it gener-
ates OFPs for 2-connected PTGs having separating triangles or
more than four CIPs (refer to Fig. 3). The steps of the algorithm
for constructing a floorplan corresponding to a given PTPG are
illustrated in Figure 4, which are briefly explained as follows:

(i) 4-completion: This step identifies rooms, which form the
boundary of a floorplan based on cardinal directions

Fig. 2. Illustration for different terminologies.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 441

https://doi.org/10.1017/S0890060421000275 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060421000275

north, west, south, and east. Kant and He (1993) proposes
the addition of four new vertices n, w, s, e representing
north, west, south, and east, respectively, to a given
bi-connected PTPG. This process requires 4 corner vertices
on the outer boundary which are obtained by using the con-
cept of CIPs (see Definition 5).

For the graph in Figure 4a, 4-completion is illustrated in
Figure 4b where rooms 6 and 7 form north boundary and other
exterior rooms form remaining boundaries.
(ii) REL: Constructing an REL of a given graph helps us in iden-

tifying horizontal and vertical adjacencies within a floorplan.
Kant and He (1993) proposed an algorithm for transforming
a bi-connected PTPG obtained by 4-completion into a REL.
This algorithm first removes all the vertices in a described
order and then adds the label T1 and T2 to the edges while
adding the vertices. For a better understanding, refer to
Figures 5–7 where a good vertex in a PTPG is an inner vertex
with the following properties:
(a) has degree 4 and (has at most 1 heavy neighbor or has 2

non-adjacent heavy neighbors)
(b) has degree 5 and has at most 1 heavy neighbor

The contractible neighbor (of a good vertex) is defined as fol-
lows:

Let u be a neighboring vertex of a good vertex v, and y and z
be their two common neighbors. If x (= y, z) is any other
neighbor of v, then only mutual neighbor(s) of u and x must
be v (or either of y or z) for u to be a contractible neighbor
of v.

Based on the REL in Figure 4c, the horizontal and vertical
adjacencies are shown in Figure 4d,e, respectively.

(iii) Floorplan: Using the horizontal and vertical adjacencies, next
is to construct two separate floorplans satisfying these adja-
cencies as shown in Figure 4f,g, respectively, and then mer-
ging these floorplans gives us the required floorplan as given
in Figure 4h. The merging of horizontal and vertical floor-
plans are illustrated in Figure 8.

In case of a non-triangulated (bi-connected) graph G, we first
triangulate G by adding new edges to have a triangulated
bi-connected graph G′ (refer to Fig. 9a,b). For triangulation, the
algorithm given by Berry et al. (2004) has been used. Each of
the added edges is subdivided by introducing new vertices as
shown in Figure 9c. The obtained graph is further triangulated
to have a bi-connected triangulated graph (Fig. 9d) for which a
floorplan is constructed (Fig. 9e). In the obtained floorplan,
rooms corresponding to added vertices are removed to have a floor-
plan corresponding to the input graph as shown in Figure 9f. It is
interesting to note here that any cycle C of length greater than 3
represents an empty space (can be seen as an atrium) in the corre-
sponding floorplan surrounded by the rooms corresponding to the
cycle C. For example, refer to the graph in Figure 9a having two
cycles of length greater than 3 and corresponding floorplan is
shown in Figure 9f having two atria.

In case of a 1-connected PTG G, we first biconnect it by add-
ing new edges (refer to Fig. 10a,b). Then new vertices are intro-
duced for sub-dividing the new added edges, which are followed
by triangulation (see Fig. 10c). For the obtained graph, a floorplan
is constructed from which rooms corresponding to added vertices
are removed to have a required floorplan as shown in Figure 10d,e,
respectively. 1-connected graphs are very useful in representing

Fig. 3. Floorplans corresponding to bi-connected PTGs.

442 Krishnendra Shekhawat et al.

https://doi.org/10.1017/S0890060421000275 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060421000275

different blocks of a building connected through cut-vertices. For
example, in Figure 11a, two blocks made up of rooms
{R1, R2, R3, R4} and {R5, R6, R7, R8} are connected through
room R0.

When the adjacency graph is 1-connected and non-
triangulated, we first biconnect it and then triangulate it by add-
ing new edges. Using the proposed methodology, GPLAN is capa-
ble of generating floorplans for any given adjacency graphs (refer

to Fig. 11b where using GPLAN, we obtained a floorplan corre-
sponding to a 1-connected non-triangulated adjacency graph
shown in Fig. 11a).

Connectivity graph

The information given by an adjacency graph explains a floorplan
in terms of how rooms share a wall (full or partial) with each

Fig. 4. Constructing a floorplan corresponding to a given bi-connected PTPG.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 443

https://doi.org/10.1017/S0890060421000275 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060421000275

Fig. 5. Edge contractions.

444 Krishnendra Shekhawat et al.

https://doi.org/10.1017/S0890060421000275 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060421000275

other. It represents the architectural program in terms of the set of
rooms composing the plan and their relative position in terms of
which spaces share walls with others. This is more informative of
compositional concepts rather than the spatial relations between
rooms (connections between rooms, which could be represented
with a connectivity graph). In GPLAN, the user can give adja-
cency graph and connectivity graph simultaneously. For example,
Figure 11c represents an adjacency graph (the complete graph
with red and black edges) and a connectivity graph (graph
induced by red edges) and Figure 11d represents the required
floorplan where doors are corresponding to the edges of the con-
nectivity graph.

Multiple floorplans

For a given adjacency graph, we aim to construct all possible
floorplans. This can be done in two ways as follows:

(i) by considering each room adjacency in two ways as horizon-
tal and vertical adjacency.

For example, refer to Figure 12 where floorplans correspond-
ing to a given graph are topologically distinct because there exists
at least a pair of rooms in these floorplans having different adja-
cency orientation (horizontal and vertical), that is, rooms 3 and
12 are horizontally adjacent in Figure 12b but they are vertically
adjacent in Figure 12c. By looking at all possible combinations,
GPLAN generates all topologically distinct floorplans. Eppstein
et al. (2012) propose the concept of flippable edges and vertices
to define a partial ordering on the family of all regular edge label-
ing of a given graph. A flippable edge is an edge e which is not
adjacent to a degree-4 vertex, and the 4-cycle surrounding e is
alternately labeled in the REL (edge (6, 9) is flippable in the
REL in Fig. 13a). A flippable vertex v is a four-degree vertex
such that the four-cycle surrounding v is alternately labeled in
the REL (Fig. 13a has no flippable vertex). A new REL can always
be obtained using a flippable edge or a flippable vertex (Eppstein
et al., 2012) (the REL in Fig. 13b is obtained from the REL in
Fig. 13a by flipping the edge (6, 9) and corresponding floorplans
are illustrated in Fig. 13c,d, respectively).

(ii) by considering different boundary constraints.
The vertices which lie on the exterior face of a graph (with a

fixed embedding) correspond to the exterior rooms in a floorplan.
Thus, the exterior vertices and corresponding rooms can be adja-
cent to the exterior through north, east, west, or south side. For
example, rooms 3 and 12 are adjacent to the north in
Figure 12b while in Figure 12c, rooms 4, 11, and 7 are adjacent
to the north. Thus, GPLAN iterates through all possible bound-
aries to enumerate floorplans with different boundaries.

To generate all possible floorplans, we consider all possible
boundary conditions and all combinations of horizontal and ver-
tical room adjacencies. For example, for the graph in Figure 12a,
GPLAN produces 6928 floorplans while considering 424 different
boundaries as shown in Figure 12d. Similarly, for the graph in
Figure 14, GPLAN constructs 101 different floorplans, a few of
them are illustrated in Figure 15.

Time complexity

For a single floorplan generation, GPLAN first transforms the
graph into a bi-connected triangulated graph (Berry et al.,
2004) which is an O(N2) algorithm where N refers to the number
of rooms in the floorplan. GPLAN then performs 4-completion of
the transformed graph, which takes linear time. The single floor-
plan is then generated using REL and merging horizontal and ver-
tical floorplans using the algorithm proposed in Kant and He
(1993). This algorithm runs in O(N) time using an adjacency
list as the data structure for the input graph. Combining these
steps, GPLAN generates a floorplan in O(N2) time.

For multiple floorplans, GPLAN generates a family of all pos-
sible RELs for the graph. The algorithm proposed for the same by
Eppstein et al. (2012) runs in polynomial time. These RELs are
then transformed into floorplans by merging them using O(N)
algorithm proposed in Kant and He (1993). Combining these
steps, GPLAN generates all possible topologically distinct floor-
plans in polynomial time.

GPLAN uses an adjacency list to store the input graph, which
takes O(N +M) space where M is the number of adjacencies in
the floorplan. The output floorplan is stored in a list of tuples
where each tuple contains the coordinates of the corner of each
room. Eppstein et al. (2012) prove that the number of different
RELs for a given graph is O(N). For a single floorplan, the
space complexity of GPLAN is O(N +M). For multiple floor-
plans, GPLAN takes O(N2) space.

Dimensioned and symmetric floorplans

In Shekhawat et al. (2021), authors have presented a linear opti-
mization model for producing dimensioned layouts correspond-
ing to a given bi-connected PTG where dimensions are given in
the form of minimum and maximum width, as well as the height
of each room. In this paper, we have modified this model for
1-connected non-triangulated planar graphs. Further, in the pre-
vious model, the aspect ratio constraints for each room were not
considered which may have led to very thin rooms which are not
architectural acceptable. Hence, we have introduced aspect ratio
constraints for each room. Refer to Figure 16, where for the
given graph and dimensional constraints, a dimensioned floor-
plan is shown. Similarly, a dimensioned floorplan for the 1-con-
nected graph in Figure 16d is shown in Figure 16e. Also, if the
dimensional constraints are not feasible, GPLAN generates an
error as shown in Figure 17d where dimensional constraints in
Figure 17c are not feasible. The linear optimization model corre-
sponding to horizontal and vertical st-graphs is given as follows:

Minimize :
∑

w(e j,i)− dmax
i

suchthat :
∑

w(e ji) =
∑

w(eik) ∀i [V(G)

min (di) ≤
∑

w(e ji) ≤ max (di) ∀i [V(G)

,

(1)

Fig. 6. Trivial regular edge labeling.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 445

https://doi.org/10.1017/S0890060421000275 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060421000275

Fig. 7. Edge expansions.

446 Krishnendra Shekhawat et al.

https://doi.org/10.1017/S0890060421000275 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060421000275

Fig. 8. The steps of construction of an RFP from the obtained
REL.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 447

https://doi.org/10.1017/S0890060421000275 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060421000275

where dmax
i is the maximum dimension (width/height) of room i,∑

w(eji) denotes the total inflow, and
∑

w(eik) denotes the total
outflow from vertex i.

Taking these constraints into account, GPLAN optimizes width
and height separately using the dual-simplex method to generate a

feasible dimensioned floorplan. For a better understanding, refer to
Tables 1–4 giving constraints corresponding to the st-graphs in
Figure 16d,e and dimensional constraints in Figure 16b.

In addition to it, we introduce rooms symmetry using the lin-
ear optimization model where either we can make two rooms

Fig. 9. Floorplan corresponding to a non-triangulated bi-connected PTG.

Fig. 10. Floorplan corresponding to a 1-connected PTG.

448 Krishnendra Shekhawat et al.

https://doi.org/10.1017/S0890060421000275 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060421000275

symmetric to each other or we can make the combination of two
adjacent rooms symmetric to a third room. Refer to the floorplan in
Figure 16c where rooms 0 and 2 have the same dimensions as asked
by the user. The concept of rooms symmetry can be very helpful in
generating symmetric floorplans corresponding to symmetric graphs.
The graph in Figure 17a is symmetric and if we ask rooms (0, 1), (2,
3), and (4, 5) to be symmetric, GPLAN produces a floorplan sym-
metric about x-axis and y-axis as shown in Figure 17b. In future,
we try to develop an algorithm to identify symmetric graphs and to
generate symmetric floorplans automatically.

Floorplans with boundary constraints

It has already been seen that GPLAN is capable of producing a lot
of distinct layouts which are not easy to handle. To refine the set
of all possible layouts, in this section, we impose boundary and
dimensional constraints on these layouts. For the boundary con-
straints, users will be asked to choose the preferred location of
each room based on cardinal and inter-cardinal directions.
Also, among all possible layouts, we need to look for those layouts
which satisfies dimensional restrictions. For example, for the

Fig. 11. Floorplans corresponding to adjacency graph and connectivity graph.

Fig. 12. Different floorplans corresponding to a given graph.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 449

https://doi.org/10.1017/S0890060421000275 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060421000275

graph in Figure 16a, GPLAN can produce 101 layouts but for the
given boundary and dimensional constraints in Figure 18, there
exist only 40 floorplans, a few of them are shown in Figure 18.

Spanning circulations

A circulation refers to the way people move through and interact
within a building. A spanning circulation space stands for a single
interior courtyard adjacent to each of the rooms of a floorplan.

In this section, we first present an algorithm for enumerating
spanning circulation inside a floorplan assuming that floorplans
have only one entrance.

Let f be the number of interior faces in G(V , E) (dual of the
floorplan), represented as F1, F2, . . . , Ff . Also, consider
E = {e1, e2, . . . , em} and V = {v1, v2, . . . , vn} are the edge set
and vertex set of G, respectively. The steps of the algorithm for
generating circulations are as follows (for understanding the
steps of the algorithm, refer to Figure 19a,b, where a floorplan
and corresponding dual graph are illustrated):

1. Choose a face, say F1, of G having an exterior edge, say e1
(edges adjacent to the exterior are called exterior edges).

For example, corresponding to Figure 19b, we choose face
F1 consisting of vertices v1, v2, v7.

Fig. 13. Flippable edge and REL.

Fig. 14. Computing the number of different floorplans corresponding to a given graph.

450 Krishnendra Shekhawat et al.

https://doi.org/10.1017/S0890060421000275 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060421000275

Fig. 15. Multiple floorplans.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 451

https://doi.org/10.1017/S0890060421000275 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060421000275

Fig. 16. Dimensioned floorplans for given graphs.

452 Krishnendra Shekhawat et al.

https://doi.org/10.1017/S0890060421000275 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060421000275

Fig. 17. A symmetric floorplan for a given graph.

Table 1. Constraints corresponding to vertical st-graph in Figure 4e and dimensional constraints in Figure 16b

Room Equality constraints Inequality constraints Symmetry constraints

0 w4,0 = w0,S 2 ≤ w4,0 ≤ 15

1 w4,1 + w3,1 = w1,S 3 ≤ w4,1 + w3,1 ≤ 35

2 w3,2 = w2,S 4 ≤ w3,2 ≤ 12

3 w5,3 = w3,1 + w3,2 6 ≤ w5,3 ≤ 25

4 w5,4 + w9,4 = w4,0 + w4,1 1 ≤ w5,4 + w9,4 ≤ 50 w4,0 = w3,2

5 w6,5 = w5,4 + w5,3 2 ≤ w6,5 ≤ 16 w6,5 = w6,9 + w8,9

6 wN,6 = w6,9 + w6,5 3 ≤ wN,6 ≤ 46

7 wN,7 = w7,8 9 ≤ wN,7 ≤ 29

8 w7,8 = w8,9 4 ≤ w7,8 ≤ 35

9 w6,9 + w8,9 = w9,4 6 ≤ w6,9 + w8,9 ≤ 55

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 453

https://doi.org/10.1017/S0890060421000275 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060421000275

2. Consider an empty set S. Add all three vertices that form F1 to
S. For example, corresponding to Figure 19c, S = {v1, v2, v7}.

3. Insert a new vertex, say Vn+1, on the exterior edge e1. By
inserting a new edge say Ek, make Vn+1 adjacent to a vertex
of F1 that is not an end-point of e1. For example, V8 and
E15 are shown in Figure 19c (in Fig. 19, inserted vertices

are marked by red color while inserted edges are illustrated
by dotted lines).

4. Insert a rectangular circulation space, say Cn+1, correspond-
ing to Vn+1 in the corresponding floorplan. For example, in
Figure 19d, inserted circulation space C8 is adjacent to
rooms R1, R2, and R7. The conditions for inserting a

Table 2. Constraints corresponding to horizontal st-graph in Figure 4d and dimensional constraints in Figure 16b

Room Equality constraints Inequality constraints Symmetry constraints

0 hW,0 = h0,1 3 ≤ hW,0 ≤ 12

1 h0,1 = h1,2 2 ≤ h0,1 ≤ 10

2 h1,2 = h2,E 2 ≤ h1,2 ≤ 14

3 h4,3 = h3,E 3 ≤ h4,3 ≤ 42 hW,0 = h1,2

4 hW,4 = h4,3 2 ≤ hW,4 ≤ 16 h9,5 = hW,9

5 h9,5 = h5,E 1 ≤ h9,5 ≤ 45 h7,6 + h8,6 = hW,7 + hW,8

6 h7,6 + h8,6 = h6,E 8 ≤ h7,6 + h8,6 ≤ 28

7 hW,7 = h7,6 7 ≤ hW,7 ≤ 34

8 hW,8 = h8,6 9 ≤ hW,8 ≤ 28

9 hW,9 = h9,5 1 ≤ hW,9 ≤ 25

Table 3. Aspect ratio constraints corresponding to dimensional constraints in Figure 16b

Room Intermediate width Minimum AR Minimum AR height Maximum AR Maximum AR height

0 6.79 0.5 3.4 2 13.58

1 13.43 0.2 2.69 2.3 30.89

2 6.79 0.7 4.75 1.6 10.86

3 10.38 0.4 4.15 2.8 29.06

4 16.62 0.8 13.3 2.5 41.56

5 13.5 0.6 8.1 2.3 31.05

6 18.0 0.2 3.6 1.8 32.4

7 9.0 0.1 0.9 1.9 17.1

8 9.0 0.5 4.5 2 18.0

9 13.5 0.4 5.4 3 40.5

Table 4. Modified height constraints due to aspect ratio constraints corresponding to dimensional constraints in Figure 16b

Room Equality constraints Inequality constraints Symmetry constraints

0 hW,0 = h0,1 3.4 ≤ hW,0 ≤ 12

1 h0,1 = h1,2 2.69 ≤ h0,1 ≤ 10

2 h1,2 = h2,E 4.75 ≤ h1,2 ≤ 10.86

3 h4,3 = h3,E 4.15 ≤ h4,3 ≤ 29.06 hW,0 = h1,2

4 hW,4 = h4,3 13.3 ≤ hW,4 ≤ 16 h9,5 = hW,9

5 h9,5 = h5,E 8.1 ≤ h9,5 ≤ 31.05 h7,6 + h8,6 = hW,7 + hW,8

6 h7,6 + h8,6 = h6,E 8 ≤ h7,6 + h8,6 ≤ 28

7 hW,7 = h7,6 7 ≤ hW,7 ≤ 17.1

8 hW,8 = h8,6 9 ≤ hW,8 ≤ 18.0

9 hW,9 = h9,5 5.4 ≤ hW,9 ≤ 25

454 Krishnendra Shekhawat et al.

https://doi.org/10.1017/S0890060421000275 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060421000275

Fig. 18. Dimensioned floorplans with boundary constraints.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 455

https://doi.org/10.1017/S0890060421000275 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060421000275

circulation space are given in Step 9 (the inserted circulation
spaces are demonstrated by gray color).

5. Choose a face, say Fi, 2 ≤ i ≤ f , to which an edge has not
been inserted such that Fi is adjacent to at least one of the
faces to which an edge has already been inserted. Let Fi be

adjacent to Fj, 1 ≤ j ≤ f . For example, in Figure 19e, we
choose a face consisting of vertices v2, v7, v3 and is adjacent
to F1.

6. Pick an edge ej that belongs to both Fi and Fj. Insert a new
vertex, say Vk, k ≥ n+ 2, on ej and make Vk adjacent to a

Fig. 19. Inserting circulation within a floorplan.

456 Krishnendra Shekhawat et al.

https://doi.org/10.1017/S0890060421000275 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060421000275

vertex of Fi that is not an end-point of ej. For example, in
Figure 19e, V9 and E16 have been inserted.

7. Add all three vertices that form Fi to S. Corresponding to
Figure 8e, S = {v1, v2, v7, v3}.

8. Insert a circulation space, say Ck, corresponding to Vk in the
corresponding floorplan such that it preserves the adjacency
relations of Vk, that is, it only satisfies the following adjacency
requirements:
(a) Ck is adjacent to rooms corresponding to the vertices

that are adjacent to Vk (in Fig. 19f, C9 is adjacent to
R2, R3, and R7),

(b) Ck must be adjacent to one of the existing circulation
space (in Fig. 19f, C9 is adjacent to C8),

(c) Let the endpoints of ej be v1j and v2j . Ck is inserted in
such a way that it makes the rooms corresponding to
v1j and v2j non-adjacent (in Fig. 19f, after inserting C9,
rooms R2 and R7 are non-adjacent),

(d) to satisfy adjacency requirements, Ck can be inserted
horizontally or vertically. For example, in Figure 19f,
C9 has been inserted vertically.

9. If S , V , go to Step 6 otherwise stop. For example, corre-
sponding to Figure 19b, a floorplan with all inserted circula-
tion spaces is shown in Figure 19h.

10. Adjoin all inserted circulation spaces to form a spanning cir-
culation. For example, a floorplan with spanning circulation is

shown in Figure 19i. Similarly, floorplans with different posi-
tions of spanning circulations are illustrated in Figure 19j,k.

Floorplans with circulation produced by GPLAN are shown in
Figure 20, where by default the entrance is between rooms 0 and 1
(Fig. 20b), but a user has a choice to change the entrance
(Fig. 20c) to have a new circulation (Fig. 20d). Once we have a
spanning circulation, in the future, we would like to provide an
option to the user to add and remove parts of circulations (in
Fig. 19h, among circulation 8, 9, 10, 11, and 17, the user would
be able to delete any of them).

Conclusion and future work

In this work, we have proposed a graph-theoretic approach with a
solid mathematical foundation which can handle many con-
straints simultaneously and able to generate a large amount of lay-
outs for given adjacencies and dimensions. Also, along with
adjacencies and dimensions, we have considered boundary and
symmetric constraints, which help us to customize floorplans
based on users requirements. At this stage, this work, in general,
proposes floorplan construction, which has applications in housing
design (Hu et al., 2020), game layout design (Ma et al., 2014), VLSI
design (Kahng et al., 2011), etc. In future, we aim to customize this
work for housing design where the user only needs to present his

Fig. 20. A floorplan with spanning circulations.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 457

https://doi.org/10.1017/S0890060421000275 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060421000275

requirements in terms of spaces and GPLAN would automatically
provide a set of layouts. Also, to automate the process, one of the
approaches is to derive data, mainly adjacency and dimensions,
from the existing floorplans and use these data to produce multiple
layouts (Wu et al., 2019), which we aim to do in future. It can also
be noticed that a very small amount of work has been done where
boundary layout has been considered as input (Laignel et al., 2021).
In future, we aim to develop graph-based algorithms for generating
floorplans with given boundary layouts.

We agree that architects can never be replaced by a software, at
the same time, it may not be feasible for them to propose multiple
drawings to the user. Here, we aim to assist architects by provid-
ing them the initial layouts. Also, in developing countries, archi-
tects are out of reach to a large amount of population and
therefore most of the houses are built without getting any assis-
tance from the architects. Hence, there is a need for such a soft-
ware that can generate layouts for the users which are
architecturally feasible (if not optimal and stylish). In future, we
would try to customize GPLAN so that it can address the need
for housing designs for the required population.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0890060421000275

Conflict of interest. The authors report no conflicts of interest.

References

Alam MJ, Biedl T, Felsner S, Kaufmann M, Kobourov S and Ueckerdt T
(2013) Computing cartograms with optimal complexity. Discrete &
Computational Geometry 50, 784–810. doi:10.1007/s00454-013-9521-1

Baybars I (1982) The generation of floor plans with circulation spaces.
Environment and Planning B 9, 445–456. doi:10.1068/b090445

Berry A, Blair JRS, Heggernes P and Peyton BW (2004) Maximum cardin-
ality search for computing minimal triangulations of graphs. Algorithmica
39, 287–298.

Bhasker J and Sahni S (1987) A linear time algorithm to check for the exis-
tence of a rectangular dual of a planar triangulated graph. Networks 17,
307–317. doi:10.1002/net.3230170306

Bhasker J and Sahni S (1988) A linear algorithm to find a rectangular dual of a
planar triangulated graph. Algorithmica 3, 247–278. doi:10.1007/BF01762117

Duarte JP (2005) A discursive grammar for customizing mass housing: the
case of siza’s houses at malagueira. Automation in Construction 14, 265–
275. doi:10.1016/j.autcon.2004.07.013

Egor G, Sven S, Martin D and Reinhard K (2020) Computer-aided approach
to public buildings floor plan generation. Magnetizing floor plan generator.
Procedia Manufacturing 44, 132–139. doi:10.1016/j.promfg.2020.02.214

Eppstein D, Mumford E, Speckmann B and Verbeek K (2012)
Area-universal and constrained rectangular layouts. SIAM Journal on
Computing 41, 537–564. doi:10.1137/110834032

Hu R, Huang Z, Tang Y, Matias O, Kaick V, Zhang H and Huang H (2020)
Graph2plan: learning floorplan generation from layout graphs. ACM
Transactions on Graphics 39, 1–14. doi:10.1145/3386569.3392391

Kahng AB, Lienig J, Markov IL and Hu J (2011) VLSI Physical Design: From
Graph Partitioning to Timing Closure. Dordrecht: Springer Science &
Business Media.

Kant G and He X (1993) Two algorithms for finding rectangular duals of pla-
nar graphs. In van Leeuwen J (ed.), Graph-Theoretic Concepts in Computer
Science. WG 1993. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer, pp. 396–410. doi:10.1007/3-540-57899-4_69

Koźmiński K and Kinnen E (1985) Rectangular duals of planar graphs.
Networks 15, 145–157. doi:10.1002/net.3230150202

Laignel G, Pozin N, Geffrier X, Delevaux L, Brun F and Dolla B (2021)
Floor plan generation through a mixed constraint programming-genetic
optimization approach. Automation in Construction 123, 1–21.
doi:10.1016/j.autcon.2020.103491

Levin PH (1964) Use of graphs to decide the optimum layout of buildings. The
Architects’ Journal 7, 809–815.

Liao CC, Lu HI and Yen HC (2003) Compact floor-planning via orderly
spanning trees. Journal of Algorithms 48, 441–451. 10.1016/S0196-6774
(03)00057-9

Ma C, Vining N, Lefebvre S and Sheffer A (2014) Game level layout from
design specification. EUROGRAPHICS 33, 95–104. doi.org/10.1111/cgf.12314

Marson F and Musse SR (2010) Automatic real-time generation of floor plans
based on squarified treemaps algorithm. International Journal of Computer
Games Technology 2010. doi:10.1155/2010/624817

Merrell P, Schkufza E and Koltun V (2010) Computer-generated residential
building layouts. ACM Transactions on Graphics 29, 1–12. doi:10.1145/
1882261.1866203

Mitchel WJ (1990) The Logic of Architecture (Design Computation and
Cognition). Cambridge, MA: MIT Press.

Mitchell WJ, Steadman P and Liggett RS (1976) Synthesis and optimization
of small rectangular floor plans. Environment and Planning B: Planning and
Design 3, 37–70. doi:10.1068/b030037

Müller P, Zeng G, Wonka P and Van GL (2007) Image-based procedural
modeling of facades. ACM Transactions on Graphics 26, 1–9. doi:10.1145/
1276377.1276484

Nisztuk M and Myszkowski PB (2019) Hybrid evolutionary algorithm
applied to automated floor plan generation. International Journal of
Architectural Computing 17, 260–283. doi:10.1177/1478077119832982

Rinsma I (1987) Nonexistence of a certain rectangular floorplan with specified
areas and adjacency. Environment and Planning B 14, 163–166.
doi:10.1068/b140163

Rodrigues E, Gaspar AR and Gomes Á (2013) An evolutionary strategy
enhanced with a local search technique for the space allocation problem
in architecture, part 2: Validation and performance tests. Computer-Aided
Design 45, 898–910. doi:10.1016/j.cad.2013.01.003

Roth J, Hashimshony R and Wachman A (1982) Turning a graph into a rec-
tangular floor plan. Building and Environment 17, 163–173. doi:10.1016/
0360-1323(82)90037-3

Shekhawat K (2018) Enumerating generic rectangular floor plans. Automation
in Construction 92, 151–165. doi:10.1016/j.autcon.2018.03.037

Shekhawat K and Duarte JP (2018) Introduction to generic rectangular floor
plans. AIEDAM: Artificial Intelligence for Engineering Design, Analysis and
Manufacturing 32, 331–350. doi.org/10.1017/S0890060417000671

Shekhawat K, Upasani N, Bisht S and Jain RN (2021) A tool for computer-
generated dimensioned floorplans based on given adjacencies. Automation
in Construction 127, 1–22. doi.org/10.1016/j.autcon.2021.103718

Shi F, Soman RK, Han J and Whyte JK (2020) Addressing adjacency con-
straints in rectangular floor plans using Monte-Carlo tree search.
Automation in Construction 115, 1–14. doi:10.1016/j.autcon.2020.103187

Steadman P (1973) Graph theoretic representation of architectural arrange-
ment. Architectural Research and Teaching 2, 161–172.

Upasani N, Shekhawat K and Sachdeva G (2020) Automated generation of
dimensioned rectangular floorplans. Automation in Construction 113, 1–
11. doi:10.1016/j.autcon.2020.103149

Wang X-Y and Zhang K (2020) Generating layout designs from high-level
specifications. Automation in Construction 119, 1–12. doi:10.1016/
j.autcon.2020.103288

Wang X-Y, Yang Y and Zhang K (2018) Customization and generation of
floor plans based on graph transformations. Automation in Construction
94, 405–416. doi:10.1016/j.autcon.2018.07.017

Wu F, Yan D-M, Dong W, Zhang X and Wonka P (2014) Inverse procedural
modeling of facade layouts. ACM Transactions on Graphics 33, 1–10.
doi:10.1145/2601097.2601162

Wu W, Fan L, Liu L and Wonka P (2018) Miqp-based layout design for
building interiors. Computer Graphics Forum 37, 511–521. doi:10.1111/
cgf.13380

Wu W, Fu X-M, Tang R, Wang Y, Qi Y-H and Liu L (2019) Data-driven
interior plan generation for residential buildings. ACM Transactions on
Graphics 38, 1–12. doi.org/10.1145/3355089.3356556

Yeap KH and Sarrafzadeh M (1993) Floor-planning by graph dualization:
2-concave rectilinear modules. SIAM Journal on Computing 22, 500–526.
doi:10.1137/0222035

458 Krishnendra Shekhawat et al.

https://doi.org/10.1017/S0890060421000275 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060421000275

Krishnendra Shekhawat is presently working as an Associate Professor at
Department of Mathematics, BITS Pilani, India. He joined BITS Pilani as
an Assistant Professor in 2016. Prior to this joining, he worked as a post-
doctoral fellow in the guidance of Prof. Jose P. Duarte at University of
Lisbon. He has completed his PhD in Mathematics from University of
Geneva in the guidance of Prof. Daniel Coray. He is working in the field
of Geometric Graph Theory and Architectural Design.

Rahil N. Jain is about to complete an Integrated degree of M.Sc. (Hons.)
Mathematics and B.E. (Hons.) Computer Science from BITS Pilani, India.
He has a publication in the journal Automation in Construction. He has a
keen interest in Graph Theory and Machine Learning.

Sumit Bisht is a senior at BITS Pilani, India where he is majoring in
Mathematics and Computer Science. He has been working on solving

architectural design problems using graph theory for the last 3 years
under the guidance of Prof. Krishnendra Shekhawat and has co-authored
a paper in the same. His research interests lie in Computational Graph
Theory and Deep Learning.

Aishwarya Kondaveeti is currently pursuing a dual degree program in M.Sc.
Mathematics and B.E Computer Science at BITS Pilani, India. Her research
interests lie in Computational Graph Theory and Optimization.

Dipam Goswami is a final year undergraduate student currently pursuing a
dual degree, a BE in Computer Science, and an MSc in Mathematics from
BITS Pilani, India. His research interests include Graph-theoretic
Algorithms, Artificial Intelligence, Machine Learning, and Computer
Vision. He has worked on developing graph-theoretic algorithms for gener-
ating rectangular floor plans.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 459

https://doi.org/10.1017/S0890060421000275 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060421000275

	Graph-based approach for enumerating floorplans based on users specifications
	Introduction
	Literature review
	Gaps in the existing literature and proposed work

	Preliminaries
	Methodology
	Floorplans for 1-connected and non-triangulated graphs
	Connectivity graph
	Multiple floorplans
	Time complexity
	Dimensioned and symmetric floorplans
	Floorplans with boundary constraints
	Spanning circulations

	Conclusion and future work
	References

