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Glutamate system as target for development of
novel antidepressants
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Depression is a common psychiatric condition characterized by affective, cognitive, psychomotor, and neurovegetative
symptoms that interfere with a person’s ability to work, study, deal with interpersonal relationships, and enjoy
once-pleasurable activities. After the serendipitous discovery of the first antidepressants, for years the only
pharmacodynamic mechanisms explored in the search of novel antidepressants were those related to the 3 main
monoamines: serotonin, norepinephrine, and dopamine. New-generation monoaminergic antidepressants, such as
selective-serotonin and dual-acting serotonin/norepinephrine reuptake inhibitors, improved treatment and quality of life
of depressed patients. Nevertheless, there are still important clinical limitations: the long latency of onset of the
antidepressant action; side effects, which can lead to early discontinuation; low rate of response; and high rate of relapse/
recurrence. Therefore, in the last several years, the focus of research has moved from monoamines toward other molecular
mechanisms, including glutamatergic (Glu) neurotransmission. This review provides a comprehensive overview of the
current knowledge on the Glu system and on its relationships with mood disorders. Up to now, N-methyl-D-aspartate
(NMDA) receptor antagonists, in particular ketamine, provided the most promising results in preclinical studies and
produced a consistent and rapid, although transient, antidepressant effect with a good tolerability profile in humans.
Although data are encouraging, more double-blind, randomized, placebo-controlled trials are needed to clarify the real
potentiality of ketamine, and of the other Glu modulators, in the treatment of unipolar and bipolar depression.
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FOCUS POINTS

> Current monoaminergic antidepressants have relevant
clinical limitations, such as presence of side effects
which can lead to early discontinuation, persistence of
residual symptoms, low rates of remission, frequent
relapses and long time for the onset of the antide-
pressant effect with increased suicide risk.

> There is preclinical and clinical support for glutamate
involvement in the pathophysiology of depression.

> The high-affinity noncompetitive NMDA receptor
antagonist Ketamine has shown rapid and consistent
antidepressant and anti-suicidal effect.

Introduction

Depression is a common psychiatric condition
characterized by affective, cognitive, psychomotor and
neurovegetative symptoms, which more frequently
include depressed mood; feelings of hopelessness, guilt,
and worthlessness; irritability; restlessness; fatigue and

decreased energy; anxious or empty feelings; difficulty
concentrating and making decisions; alterations of sleep
and appetite; and persistent aches, pains, and head-
aches. These symptoms interfere with a person’s ability
to work, study, deal with interpersonal relationships,
and enjoy once-pleasurable activities.

New-generation antidepressants, and in particular
selective serotonin (5-HT) reuptake inhibitors (SSRIs)
and 5-HT norepinephrine (NE) reuptake inhibitors
(SNRIs), are currently considered the first line pharma-
cological agents for the treatment of depression and
are preferred to the older antidepressants.1,2 Although
the introduction of SSRIs and SNRIs has allowed us to
improve the quality of life of depressed patients,
especially in terms of side effects and tolerability, there
are still relevant clinical limitations. Future-generation
antidepressants should lack the side effects that
more commonly lead to discontinuation, e.g., sexual
dysfunctions and weight gain, and they should also
have a faster onset of action, especially to avoid early
discontinuations due to lack of efficacy and to more
promptly reduce the risk of suicide.3 Further, a subset
of depressed patients does not respond to the available
antidepressants or relapses after the initial response or
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remission, even if the drug is continued. In fact,
although the treatment of depression has consistently
improved during the last three decades, the prognosis
of the disorder is far from being satisfactory, and
depression remains one of the major causes of
morbidity and disability worldwide.4,5

A number of strategies have been proposed recently in
order to treat depressed patients who do not adequately
respond to the standard treatment protocols, including
augmentation or combination with lithium or atypical
antipsychotics, combination of two antidepressants with
different pharmacological actions, electroconvulsive
therapy, transcranial magnetic stimulation, and deep
brain stimulation. However, in some cases the results are
promising, and in others they are disappointing.6

In parallel to the aforementioned novel treatment
strategies, new lines of pharmacological research have
been developed in order to discover novel antidepressant
agents. For years, the only pharmacodynamic mechan-
isms that have been explored in the search of new
antidepressants were those related to the 3 monoamines:
5-HT, NE, and dopamine (DA).7 However, given the
difficulties in finding strong evidence to support the
postulated depression-related monoamine alterations,
the focus of research moved from monoamines toward
other molecular mechanisms, including glutamate
(Glu) and melatonin neurotransmission, neuropeptide
system (substance P, corticotrophin-releasing factor,
neuropeptide Y, vasopressin and oxytocin, galanin, and
melanin-concentrating hormone), glucocorticoids, opioid
and cannabinoid receptors, and inflammatory and
neurodegenerative pathways, as well as the intracellular
processes involved in the signal transduction cascades.8–12

Among these new approaches, research on the Glu
system, which is involved in several central nervous
system (CNS) physiologic functions, including cogni-
tion, memory and learning, and in the modulation of
neurogenesis and neurodegeneration, has led to the
development of novel compounds that have been
evaluated in both preclinical and clinical studies with
different results.13,14 N-Methyl-D-aspartate (NMDA)
antagonists, for example, which are thought to be
neuroprotective through the inhibition of voltage-gated
cation channels and through the subsequent decrease of
neurotransmitter release enhancing astrocyte uptake of
extracellular Glu, seem to be very promising. Unfortu-
nately, although the NMDA receptor antagonists have
shown rapid and consistent antidepressant action, the
presence of relevant psychomimetic side effects limits
their use.15 This narrative review aims to provide a
comprehensive overview of the current knowledge on
the relationships between the Glu system and mood
disorders with a particular focus on preclinical and
clinical implications. MEDLINE and PubMed databases
were searched for English language articles using the

keywords glutamate (Glu), antidepressants, depression,
N-Methyl-D-aspartate (NMDA) antagonists, riluzole,
and ketamine.

Glutamate Synthesis and Localization

The most abundant neurotransmitters in the CNS are
two amino acids: Glu, which is the major excitatory
neurotransmitter in the mammalian brain, and gamma-
aminobutyric acid, which serves as the principle
neurotransmitter for inhibitory transmission.13 In the
human brain, Glu is ubiquitous and is present at levels
of 8–10 mmol/kg of brain tissue. Glu neurons project
within the cortex and to subcortical regions, such as
locus coeruleus, raphe nucleus, and substantia nigra,
where they modulate monoaminergic systems. The Glu
system is involved in several physiologic functions,
including memory, learning and other cognitive tasks,
modulation of neurogenesis/neurodegeneration, and
induction of neuronal plasticity.13

Glu acts through the so-called tripartite glutamatergic
synapse—an integrated neuronal-glial synapse that
allows pre- and postsynaptic neurons and glia to interact
with each other (Figure 1).16 In particular, upon
depolarization of the presynaptic neuron, vesicular Glu
is released in a calcium-dependent manner into the
synaptic cleft where it can bind to its receptors. Glu is
removed from the extracellular space by excitatory
amino acid transmembrane transporters (EAATs),
which are located on glial cells and are responsible for
protecting neurons from the detrimental effects of
excessive synaptic levels of Glu. Within glial cells, Glu
is recycled through a Glu/glutamine (Gln) metabolic
cycle by the enzyme Gln synthetase into Gln, which, in
turn, is transferred to the presynaptic neurons. Here,
Gln is converted back into Glu and packaged into the
presynaptic vesicles. In fact, within neurons, there are
two primary kinds of Glu production: synthesis ex novo
from glucose through transamination of the tricarboxylic
acid cycle intermediate alpha-oxoglutatrate, and the
conversion of Gln into Glu by glutaminase located in
neuronal mitochondria (Figure 1).

Glutamate Receptors

Glu can bind two different kinds of receptors: ionotropic
and metabotropic. Ionotropic receptors, which include
a-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate
(AMPA), NMDA, and kainate receptors, are ligand-
gated, nonselective cation channels that allow the
flow of K1, Na1, and Ca21. The NMDA receptors play
an important role in memory formation and neuro-
protection. In particular, those located in the synapse
modulate synaptic efficacy and promote pro-survival
events, whereas the extrasynaptic NMDA receptors
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are coupled to cell death pathways.17,18 Under
physiological conditions, Glu activates synaptic
NMDA and AMPA receptors, with subsequent
activation of intracellular signal transduction, which
involves trophic downstream effectors, such as cyclic
adenosine monophosphate response element-binding
protein (CREB) and brain-derived neurotrophic factor
(BDNF), and preserves neuronal viability. On the
contrary, when Glu is overproduced, the activation
of extrasynaptic NMDA receptors antagonizes the
activated pathway by the synaptic receptors, and
inhibits CREB and BDNF. The overstimulation of
NMDA receptors leads to neurodegeneration through
a process called excitotoxicity. In fact, in the presence
of excessive levels of Glu, the overactivation of NMDA
receptors, including the extrasynaptic ones, causes
an excessive influx of Ca21 into the postsynaptic
neuron.19 The excessive cytosolic Ca21 concentrations,
in turn, activate a number of cellular degradation
processes, including proteases, lipases, nitric oxide
synthase, and other enzymes that lead to cell
death.20 Excitotoxicity triggered by overstimulation of
glutamate receptors also contributes to intracellular
oxidative and nitrosative stress.21

Metabotropic Glu receptors (mGluR), which belong
to the family of G protein-coupled receptors, are
divided into three groups, with a total of eight
subtypes. These receptors indirectly activate ion
channels on the plasma membrane and can both
increase or decrease the excitability of the postsynaptic
neurons. In particular, group II mGluRs, which are
present in pre- and postsynaptic neurons, are able to
decrease NMDA receptor activity and the risk of
cellular excitotoxicity.

Evidence Linking the Glutamate System to
Mood Disorders

Since its identification as a neurotransmitter in
1959, Glu has been hypothesized to be involved in
the pathophysiology of a number of neurological
disorders, including epilepsy, stroke, Alzheimer’s
disease, amyotrophic lateral sclerosis, and Hunting-
ton’s disease.22 More recently, it has been suggested
that alterations of Glu homeostasis may induce a
generalized brain dysfunction that underlies various
psychiatric conditions, including mood disorders.23

The involvement of Glu in the pathophysiology of
mood disorders was first hypothesized after the early
reports describing the action of antidepressants on Glu
receptors and the presence of elevated Glu concentra-
tions in serum, plasma, and cerebrospinal fluid from
patients with major depressive disorder (MDD).24–28

However, other authors reported decreased Glu levels
in cerebrospinal fluid of MDD subjects, or did not find
alterations in the baseline Glu levels.29–31 Controversial
data have also come from neuroimaging studies,
which have observed complex and regional differences
in Glu neurotransmission. In fact, while increased
Glu levels have been reported in the occipital cortex
of 29 medication-free MDD patients,32 decreased
Glu levels in the anterior cingulate cortex of MDD
patients were reported as well.33–35 It seems that the
MDD-related dysfunctions of Glu neurotransmission
are more complex than the simplistic view of increase
or decrease of the overall activity of the system.

Recent data from postmortem studies have
supported the hypothesis that mood disorders are
characterized by altered Glu receptor expression.36
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Figure 1. Glutamatergic synapse. Glu: Glutamate; Gln: glutamine; mGluR: metabotropic glutamate receptor;
EAAT: excitatory amino acid transporter; NMDA: Nmethyl-D-aspartate; AMPA: a-amino-3-hydroxy-5-methyl-isoxazole-4-propionic
acid; Na1: sodium; Ca21: calcium ion.
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In fact, increased Glu levels and decreased mGluR2 or
mGluR3 receptor levels have been observed in the
prefrontal cortex of MDD patients,37,38 and in the
dorsolateral prefrontal cortex (DLPFC) of bipolar
patients.39 The glycine binding site, measured with
[3H]CGP-39653, was found to be reduced in suicide
victims.40 Similarly, a significant decrease in the
NMDA receptor density was reported in both bipolar
and unipolar depression.41,42 In particular, it seems
that overstimulation with upregulation of the NMDA
NR2A receptor subtype could play a relevant role in
the pathophysiology of MDD.43,44 However, whether
these alterations are primary disturbances, epipheno-
mena, or consequences of the presence of the disorder
remains to be clarified.

Other postmortem studies have shown decreased
expression of Glu transporters EAAT1 and EAAT2
and of Glu synthetase in the frontal areas of MDD
patients.45,46 Similarly, decreased levels of EAAT3,
EAAT4, and mRNA expression have been described in
the striatum of patients with mood disorders.47

Cortical glial cell loss and reduced glial density
have been well-documented in patients with mood
disorders.48 The impairment of glial cell activity
can lead to increased Glu system activation and
neural toxicity, especially at extrasynaptic sites.49 The
excessive levels of extracellular Glu may trigger
excitotoxicity processes and neurodegeneration; under
conditions of Glu spillover, the activation of extra-
synaptic group II mGlu receptors pathologically
dampens the stimulated presynaptic release of Glu.
The decreased synaptic availability of Glu, in turn, will
cause lowered CREB activity and BDNF expression,
with subsequent decrease of neuroplasticity and
cellular resilience.20,50

Glutamate Receptor Ligands in the Treatment of
Unipolar and Bipolar Depression

The involvement of the Glu system in the patho-
physiology of mood disorders is also supported by
preclinical and clinical evidence that has demonstrated
that Glu receptor ligands have consistent and rapid
antidepressant effects.23

Preclinical studies

Compounds that primarily impact Glu receptors
such as NMDA receptor antagonists, mGlu receptor
agonists and antagonists, and positive modulators of
AMPA receptors have demonstrated antidepressant
properties, with a potential common trophic down-
stream mechanism of action.36,51,52

NMDA receptor antagonists are a class of anes-
thetics that bind and inhibit the NMDA receptors, and

that are used as inductors of dissociative anesthesia
for animals and, less commonly, for humans. They
have been classified into four categories: competitive
antagonists, which block the binding site of the
neurotransmitter Glu; glycine antagonists, which block
the glycine site; noncompetitive antagonists, which
inhibit NMDA receptors by binding to allosteric sites;
and uncompetitive antagonists, which block the ion
channel by binding to a site within it. NMDA receptor
antagonists have shown antidepressant-like effects
in animal models of depression, such as chronic
mild stress, learned helplessness, footshock-induced
aggression, and olfactory bulbectomy.51 Although, in
rodents, NMDA receptor antagonists have been found
to cause neurotoxicity and brain damage (Olney
lesions), such damage has never been reported in
primates such as humans.53

In rats exposed to chronic mild stress, memantine, a
low-affinity NMDA receptor antagonist, was reported to
reverse anhedonia and increase adrenal gland weight,
corticosterone levels, and BDNF protein concentrations
in the prefrontal cortex.54 In forced-swimming and open-
field tests, both memantine and imipramine significantly
reduced immobility time of rats, as compared to the
control group, without affecting locomotor activity.55

Other preclinical studies using animal models of
depression involved ketamine, a high-affinity, non-
competitive NMDA receptor antagonist. In rats exposed
to chronic mild stress, treatment with ketamine reversed
anhedonia-like behavior and increased adrenal gland
weight, promoted regain of body weight, and normal-
ized corticosterone and adreno cortico tropic hormone
(ACTH) levels.56 In addition, acute administration of
ketamine and imipramine were compared in forced-
swimming and open-field tests. Both ketamine and
imipramine reduced immobility time, as compared to
the control group, without affecting locomotor activity.57

In another study, the co-administration of imipramine
with ketamine was found to induce a more pronounced
antidepressant effect than treatment with each antide-
pressant alone. In addition, ketamine induced stronger
increases of CREB and BDNF protein levels in the
prefrontal cortex, hippocampus, and amygdala, and a
greater PKA and PKC phosphorylation in the hippo-
campus, amygdala, and prefrontal cortex.58 The acute
administration of ketamine at a high dose, but not
imipramine, was found to increase BDNF levels in the
rat hippocampus, which is considered crucial for the
rapid onset of the antidepressant action induced by
ketamine.57 Other studies seem to show that the effect
of ketamine is dependent on the activation of the
BDNF/TrkB signaling pathway.59 In particular, the fast
antidepressant action of ketamine requires a rapid
protein translation, which is the crucial step preceding
the increase of dendritic BDNF levels. The eukaryotic
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elongation factor 2 kinase (eEF2K), a Ca21/calmodulin–
dependent serine/threonine kinase that phosphorylates
eEF2 and modulates protein translation, has been
proposed as the main molecular substrate involved in
the rapid antidepressant effect of ketamine. In fact, the
inhibition of NMDA receptors induced by ketamine
leads to inhibition of eEF2 kinase and consequent
dephosphorylation of eEF2 and increase of BDNF
synthesis.59

As far as mGlu receptors ligands are concerned,
there is evidence that mGlu receptor agonists have
anxiolytic, antidepressant-like, and neuroprotective
properties in animal models of depression.60,61

Interesting results have also come from the research
on group II mGlu receptor antagonists. In particular,
MGS0039 was effective in the learned helplessness
model of depression and led to enhanced hippocampal
proliferation in mice.62,63 In addition, LY341495,
another group II mGlu receptor antagonist, was found
to have antidepressant-like effects in a rat forced-swim
test and in a mouse tail-suspension test.64 Interestingly,
the antidepressant-like effect of LY341495, as in the
case of ketamine, seems to be related to the activation
of the BDNF/TrkB signaling pathway. In fact, pre-
treatment with K252a, a TrkB tyrosine kinase inhibitor,
was found to block the sustained (more than 24 hours)
antidepressant-like effect of LY341495.65

AMPA receptor-positive modulators are a novel class
of drugs that includes a number of compounds, such
as CX-516, cyclothiazide, piracetam, aniracetam, and
LY392098. They do not activate AMPA receptors
themselves, but decrease the rate of receptor desensitiza-
tion and deactivation in the presence of an agonist.66,67

These compounds have demonstrated antidepressant-
like effects, either in monotherapy or as adjunctive
treatment, in animal models of depression, including
exposure to inescapable stressors, the forced-swim test,
the tail-suspension/induced-immobility test, and learned
helplessness models.68

Clinical studies

In humans, ketamine has shown consistent and rapid,
although transient, antidepressant effect after a single
intravenous injection (0.5 mg/Kg) in two placebo-
controlled studies carried out in MDD patients
(Table 1).69,70 In fact, the antidepressant effect occurred
within 110 minutes after injection and lasted for about
1 week.70 Euphoria and psychotomimetic side effects
were observed acutely, but were temporally distinct
from the improvement of depressive symptoms, which
persisted for 1 week. In another study, carried out
in 10 treatment-resistant MDD patients who received
between 1 and 6 injections of ketamine over a 12-day
period, the response criterion [a decrease of 50% or

more from the baseline total score of the Montgomery-
Asberg Depression Rating Scale (MADRS)] was met by
90% of patients after the first infusion, and it remained
stable up to the end of the treatment.71 The decrease of
MADRS scores after the last ketamine infusion was of
85%. After the end of the treatment, 8 of 9 patients
relapsed after 19 days (mean), ranging between 6 and
45 days, but 1 patient remained antidepressant-free for
.3 months.

In addition, there is evidence that ketamine can
be useful in the treatment of bipolar depression
(Table 1).72–75 In a randomized, placebo-controlled,
double-blind, crossover, add-on study, 18 treatment-
resistant, bipolar depressed patients treated with
mood stabilizers received an intravenous infusion of
either ketamine or placebo; depressive symptoms
significantly improved in subjects who received
ketamine, as compared with placebo, and the improve-
ment of depression, which occurred within 40 minutes
from the intravenous infusion of ketamine, remained
significant up to the third day.72 Ketamine was
generally well tolerated; the most frequent adverse
effect was dissociative symptoms at the 40-minute
point. This result was replicated by subsequent work
of the same group of researchers, which involved
15 bipolar I or II depressed patients treated with
mood stabilizers. A single intravenous infusion of
ketamine led to a rapid (within 40 minutes) and robust
improvement of depressive symptoms, which was also
accompanied by the resolution of suicidal ideation.73

Similarly, in another study, which was carried out in
33 MDD patients, a single ketamine infusion was
able to dramatically reduce suicidal ideation within
40 minutes, and the improvement lasted for up to
4 hours post-infusion.76 In a more recent study,
25 bipolar depressed subjects taking mood stabilizing
drugs were treated with a single ketamine infusion.
More than 50% of subjects responded to treatment, and
about 50% achieved remission after 14 days. These data
support the potential of ketamine infusion as add-on
therapy to mood stabilizers in bipolar depression
resistant to current antidepressants.74 In addition, a
report has recently been conducted on two patients with
bipolar II disorder who responded to intramuscular
(i.m.) ketamine augmentation.75 The first patient was
treated with 50 mg i.m. every 4 days for 5 months until
she relapsed; then, the dose was increased to 70 mg
every 4 days, and she remained asymptomatic for
another 4 months. Similarly, the second patient showed
a long-term good response to i.m. ketamine, which
remained effective for several months and was well
tolerated; the main adverse effects were moderate
anxiety, irritability, dissociative feelings, and headache.

Other data supporting the antidepressant pro-
perties of ketamine come from research regarding
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Table 1. Summary of open-label and randomized-controlled trials on the efficacy of ketamine in the treatment of depression

Author Design of the study Diagnosis Subjects N Ketamine Main findings

Berman et al (2000)69 Double-blind, randomized,
placebo-controlled

MDD 7 Single dose
0.5 mg/kg
i.v.

Significant improvement of depressive symptoms within 72 h after ketamine but
not placebo.

Zarate et al (2006)70 Double-blind, randomized,
crossover, placebo-controlled

Treatment-resistant
MDD

18 Single dose
0.5 mg/kg
i.v.

Significant improvement of depression within 110 min after ketamine, as compared
with placebo.
Of the 17 subjects treated with ketamine, 71% met response and 29% met remission
criteria the day following ketamine infusion.
35% of subjects maintained response for at least 1 week.

Okamoto et al (2010)77 ECT, open-label, vs propofol Treatment-resistant
MDD

31 Single dose
0.8 mg/kg
i.v.

Significantly earlier and greater improvement of depression in patients where
ketamine was used as anesthetic.

aan het Rot et al (2010)71 12 days, open-label Treatment-resistant
MDD

10 Repeated doses
0.5 mg/kg
i.v.

90% of patients responded after the first infusion and remained stable up to the
end of the treatment.
After the end of treatment, 8 of 9 patients relapsed after 19 days (mean), ranging
between 6 and 45 days, but 1 patient remained antidepressant-free for .3 months.

Diazgranados et al
(2010)72

Double-blind, randomized,
crossover, placebo-controlled,
add-on

Bipolar disorder 18 Single dose
0.5 mg/kg
i.v.

Significant improvement of depressive symptoms within 40 min in subjects receiving
ketamine, as compared with placebo.
The improvement of depression remained significant up to the third day. Most
frequent adverse effect was dissociative symptoms at the 40-min point.

DiazGranados et al
(2010)76

Open-label MDD 33 Single dose
0.5 mg/kg
i.v.

Suicidal ideation decreased significantly on the SSI within 40 min; the decrease
remained significant through the first 4 h post-infusion. Depression, anxiety, and
hopelessness were significantly improved at all time points.

Ibrahim et al (2011)91 4-week, double-blind, riluzole
vs placebo after ketamine i.v.

Treatment-resistant
MDD

42 Single dose
0.5 mg/kg
i.v.

Significant improvement of depression from baseline after ketamine infusion.
27% of responders had not relapsed by 4 weeks with an average time to relapse of
13.2 days.
No difference was detected between the riluzole and placebo treatment groups.

Zarate et al (2012)73 Double-blind, randomized,
crossover, placebo-controlled,
add-on

Bipolar I or II disorder 15 Single dose
0.5 mg/kg
i.v.

Significant improvement of depressive symptoms within 40 min in subjects
receiving ketamine as compared with placebo.
The improvement remained significant through day 3.
Rapid improvement of suicidal ideation. The most common side effect was
dissociative symptoms at the 40-min time point.

Wang et al (2012)78 ECT, double-blind,
randomized, vs propofol

Treatment-resistant
MDD

48 Single dose
0.8 mg/kg
i.v.

Patients where ketamine was used as anesthetic, alone or in combination, showed an
earlier and higher improvement of the HDRS total scores, as compared with those
treated with propofol alone

MDD: Major Depressive Disorder; i.v.: intravenous; ECT: electroconvulsive therapy; HDRS: Hamilton Depression Rating Scale; SSI: Scale for Suicide Ideation.
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electroconvulsive therapy (ECT) (Table 1). In one
study, 31 inpatients with treatment-resistant MDD
were assigned to receive propofol or ketamine
as anesthetic and underwent 8 ECT sessions. The
Hamilton Depression Rating Scale (HDRS) scores,
which were evaluated before ECT and after the
second, fourth, sixth, and eighth ECT sessions,
improved significantly earlier in the ketamine group,
which suggests the possible contribution of ketamine
in the resolution of depression.77 In a more recent ECT
study, 48 MDD patients were randomly divided into 3
groups: a propofol group, a ketamine group, and a
propofol plus ketamine group. Patients treated with
ketamine, alone or in combination, showed an earlier
and higher improvement of the HDRS total scores, as
compared with those treated with propofol alone.78

In addition, in 30 patients with treatment-resistant
MDD, a significant positive correlation was found
between the baseline pattern of slow wave activity of
the first two non-REM episodes (as revealed by the
delta sleep ratio) and the improvement of depression
after a single open-label infusion of ketamine.79

Among the other NMDA receptor antagonists, the
low-affinity noncompetitive memantine (oral dose) did
not show any antidepressant effect.80 In fact, it seems
that the extent of the affinity for NMDA receptors, as
well as the method of administration, are fundamental
for the antidepressant action of NMDA antagonists.

Riluzole (2-amino-6-trifluoromethoxy benzothiazole)
is a neuroprotective drug that is the only FDA-approved
medication for amyotrophic lateral sclerosis. In open-
label studies, riluzole has shown antidepressant efficacy
in patients with treatment-resistant MDD81,82 and bipolar
depression.83,84 More recently, among 26 drug-free MDD
patients who received a single ketamine injection,
17 (65%) met the response criteria (50% reduction from
baseline on the MADRS) after 24 hours and 14 patients
(54%) met the response criteria after 72 hours. These
latter patients were enrolled in a 32-day, randomized,
double-blind, placebo-controlled, flexible-dose continua-
tion trial of riluzole (100–200 mg/d). Unfortunately, no
significant differences in the time-to-relapse between
riluzole and placebo groups were detected.85

Conclusion

The pharmacological treatment of MDD is far from being
satisfactory, and its optimization remains one of the
major challenges worldwide for researchers in the field of
psychopharmacology. Current monoaminergic antide-
pressants have relevant clinical limitations, including the
presence of side effects that can lead to early discontinua-
tion, persistence of residual symptoms, low rates of
remission, frequent relapses, and long time for the onset
of the antidepressant effect with increased suicide risk.

Glu is the major excitatory neurotransmitter in the
mammalian brain, where it is involved in several
physiologic functions, including cognition, memory,
and learning, and in the modulation of neurogenesis
and neurodegeneration. While Glu system abnormalities
have been found in mood disorders, a number of
compounds acting at this level, including NMDA
receptor antagonists, mGlu receptor agonists and antago-
nists, and positive modulators of AMPA receptors, have
been produced and tested in animals and in humans.

The high-affinity noncompetitive NMDA receptor
antagonist ketamine, which has shown rapid and
consistent antidepressant action with a good tolerability
profile in both preclinical and clinical studies, is the
compound that showed the most promising results.
The preferential blockade by ketamine of extrasynaptic
NMDA receptors, which promotes excitotoxicity
and decreases cellular resilience, may account for its
neuroprotective and antidepressant action.86 However,
several factors need to be considered in interpreting the
clinical data on the use of NMDA receptor antagonists,
in particular ketamine, in the treatment of unipolar
and bipolar depression. Although there are several
case reports75,87,88 and some open-label studies,71,76,77

the number of double-blind, randomized, placebo-
controlled trials (Table 1) is scarce and presents
several limitations. First, the sample sizes of most of
these studies, which are relatively small, limited the
statistical power of the analyses and the strength of the
results. Second, the transitory dissociative disturbances
developed by patients treated with ketamine may
have compromised the study blinding, potentially
confounding the results. Future studies should take into
account the difficulty in maintaining the study blinding,
and both raters and patients should be evaluated in
order to clarify the strength of the blinding. Another
factor that needs to be considered is that the patients
involved in these studies are usually affected by
treatment-resistant mood disorders, and the results
may not be generalizable to patients with different
forms of depression.

Overall, the clinical data on the effectiveness of
ketamine in the treatment of unipolar and bipolar
depression are promising. A single dose (0.5 mg/Kg i.v.)
of ketamine seems to produce a rapid and consistent
antidepressant and anti-suicidal effect that has not been
reported with the current antidepressant. However, the
length of mood improvement after a single dose of
ketamine remains to be clarified, as well as the efficacy
and tolerability of repeated administrations for the
long-term maintenance of recurrent unipolar and
bipolar depression. Further double-blind, randomized,
placebo-controlled/active comparator studies, involv-
ing larger samples of patients possibly in long-term
treatment, are needed to better understand the real
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clinical potential of ketamine and the other NMDA
receptor antagonists in the treatment of mood disorders.

In addition, given their acute psychotomimetic
side effects, selective subtype NMDA receptor
antagonists, such as those binding the NR2B receptor
subtype, deserve to be investigated.89 The NR2B
receptor antagonist Ro 25-6981, for example, showed
antidepressant-like properties in the forced swim test
with good tolerability.90 From a safety perspective, this
compound has not been associated with brain damage
(vacuolization) in rodents, in contrast to the reversible
vacuolization at high doses observed with other
NMDA receptor antagonists, such as ketamine and
dizocilpine.53

Finally, preclinical neurobiological data demon-
strated that the rapidity of the antidepressant action
of ketamine may be linked to the activation of the
BDNF/TrkB signaling pathway with subsequent
increase of BDNF levels in the hippocampus.59 In
particular, a rapid protein translation, which results in
the increase of hippocampal BDNF levels, seems to be
crucial to having the fast antidepressant action.
The main molecular substrate involved in this
effect is the eEF2K, which phosphorylates eEF2 and
modulates protein translation. This molecule, as
well as other intracellular substrates involved in
the BDNF/TrkB signaling pathway and in the
physiology of the tripartite Glu synapse, may provide
molecular targets for the development of novel
fast-action antidepressants.
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