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Are we failing clinical trials? A case for strong
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Clinical trials in psychiatry inherit methods for design and statistical analysis from evidence-based medicine. However,
trials in other clinical disciplines benefit from a more specific relationship between instruments that measure disease state
(e.g. biomarkers, clinical signs), the underlying pathology and diagnosis such that primary outcomes can be readily
defined. Trials in psychiatry use diagnosis (i.e. a categorical label for a syndrome) as a proxy for the underlying disorder,
and outcomes are defined, for example, as a percentage change in a univariate total score on some clinical instrument. We
label this approach to defining outcomes weak aggregation of disease state. Univariate measures are necessary, because
statistical methodology is both tractable and well-developed for scalar outcomes, but we show that weak aggregate
approaches do not capture disease state sufficiently, potentially leading to loss of information about response to inter-
vention. We demonstrate how multivariate disease state can be captured using geometric concepts of spaces defined
over routine clinical instruments, and show how clinically meaningful disease states (e.g. representing different profiles
of symptoms, recovery or remission) can be defined as prototypes (geometric locations) in these spaces. Then, we show
how to derive univariate (scalar) measures, which capture patient’s relationships to these prototypes and argue these
represent strong aggregates of disease state that may be a better basis for outcome measures. We demonstrate our proposal
using a large publically available dataset. We conclude by discussing the impact of strong aggregates for analyses in trad-
itional and novel trial designs.
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Introduction Figure 1-1 describes a model of the relationship
between trial outcomes and the underlying disorder;
a concrete example being chronic systemic inflamma-
tory disorders such as rheumatoid arthritis, where a

disease process (DP: autoimmune-mediated inflamma-

A clinician from any discipline selects a treatment for a
patient based on evidence from clinical trials. The clin-
ician applies the evidence based on the assumption
that the patient has a given disease and that available
treatments produce an outcome — response, remission
or failure to respond — for that disease. We will argue
that currently, much of the clinical trial evidence in
psychiatry relies on the assumption that diagnosis is
an adequate proxy for a disease or disorder and this
leads us to use an inappropriate model of outcome
(Joyce et al. 2017). This results in evidence that informs
us only of the average response for a group of patients
presumed to be homogenous with respect to their cat-
egorical diagnosis. This may also explain the limited
changes in prescribing practices after the publication
of large trials (Berkowitz et al. 2012).

tion) is reflected in a disease state (S: pain symptoms,
inflammatory changes in joints, biochemical changes)
that can be quantified by instruments (Y: pain and
activity function scales; serological erythrocyte sedi-
mentation rate, rheumatoid factor and anti-cyclic
citrullinated peptide; radiological evidence of joint
changes) and for which outcomes can be defined as
changes in those instruments (Z: differences in pain
and function scales, changes in serological markers
and reduction in joint injury). When a patient is trea-
ted, disease states (S) change, and if the instruments
(Y) are sensitive to these changes, they can be subjected
to statistical methods that establish treatment efficacy
(response, or failure to respond) by e.g. defining
thresholds on Z, and identifying which patient-specific
factors, X, mediate response.

In the idealised model shown in Fig. 1-1, for a given
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disorder or DP, there will be a disease state (S) that cor-
responds with that disorder — but not necessarily in a
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Fig. 1. (left) illustrates the typical model of a clinical trial in medicine. 2 (right) illustrates the typical model as applied to
psychiatry, where there is a lack of a clear link between disease state (S) and disease process (DP) and consequently, they are
usually replaced by a diagnostic category (Dx). Arrows indicate dependence relations between variables — for example,

disease state (S) depends on the DP.

one-one relationship. The discovery of disease states
and instruments that have predictive power to identify
diagnoses is the domain of biomarker and psychomet-
ric research — see for example, (Marquand et al. 2016)
for discussion of statistical methodology. Here, we
require that one or more instruments (Y) quantify vari-
ables of the disease state (S) at a given time and we
take this collection of variables to be a vector identify-
ing a location in a multidimensional space — discussed
below, and see also (Joyce et al. 2017) for a more
detailed discussion. It is, however, common practice
in clinical trials to aggregate the variables in an instru-
ment, Y, to obtain e.g. a total ‘score’ for measuring
the severity of the patient’s disease state at any given
time (i.e. pre- and post-intervention). Finally, an out-
come (Z) must then capture changes measured by
instruments (Y) that are clinically meaningful. We rec-
ognise that the terms ‘disorder’, ‘disease’ and so forth
can be contentious in mental health, but they are herein
paper.
Further, as the analogy above suggests, we adopt a
position consistent with biological realism (Kendler,

adopted for convention throughout this

2016) regarding the nature of psychiatric disorders.

Psychiatry does not benefit from as clear a corres-
pondence between disease state (S) and DP nor are
there instruments (Y) analogous to erythrocyte sedi-
mentation rate, radiological evidence or joint changes
from the example of rheumatoid disease.
Consequently, psychiatry is faced with the model
shown in Fig. 1-2, where a diagnostic category (Dx)
such as schizophrenia or bipolar affective disorder
replaces DP.
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In psychiatry, the instruments (Y) that measure dis-
ease state are multivariate scales that capture the sever-
ity of signs and symptoms — for example, in psychotic
disorders, the positive and negative symptoms scale
(PANSS) or the brief psychiatric rating scale (BPRS)
(Overall & Gorham, 1962; Kay et al. 1987). Psychiatric
diagnoses represent constellations of signs and symp-
toms, but it is possible for these to overlap between
diagnoses: for example psychotic features such as audi-
tory verbal hallucinations are common to both schizo-
phrenia, bipolar and major depressive disorder (Toh
et al. 2015) and borderline personality disorder
(Nishizono-Maher et al. 1993; Barnow et al. 2010;
Glaser et al. 2010; Schroeder et al. 2013). In bipolar dis-
order and schizophrenia, there are similarities in non-
verbal communication (Annen et al. 2012), affective
symptoms (Keshavan et al. 2011) and cognitive deficits
(Green, 2006; Jabben et al. 2009).

There is also consensus, for example, that the diag-
nosis of schizophrenia is not a single DP, but rather a
categorical label for a syndrome with different aetiolo-
gies (Walker ef al. 2002; Jablensky et al. 2006; Demjaha
et al. 2009; Demjaha et al. 2012; Ripke et al. 2014;
Reininghaus et al. 2016) and shared genetic risk factors
(Craddock et al. 2009; Lichtenstein et al. 2009; Purcell
et al. 2009). There is progress in trying to parse diag-
nostic categories along phenotypes, endophenotypes,
biomarkers and underlying cellular and molecular
aetiologies (e.g. Insel et al. 2010; Morris & Cuthbert,
2012; Cuthbert & Insel, 2013; Schumann et al. 2014).

Currently, clinical trials in psychiatry have to con-
tend with a lack of clear relationship between disease
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state and process. Patients are therefore recruited into
trials on the basis of their diagnostic category (Dx)
and treatment efficacy is established based on usually
dichotomous outcomes (Z), defined as threshold
changes in aggregates of instruments (Y). For example,
in mood disorders, remission of symptoms can be
defined as the summed (total) Hamilton depression
scale score of <7 for at least 2 months (Frank et al.
1991), and similarly for schizophrenia, a 50% reduction
in baseline PANSS or BPRS score (Leucht et al. 2009;
Jakubovski et al. 2015). In the language of statistics, dis-
ease state and process (S and DP) are latent (or hidden,
unmeasured) variables that are largely ignored.

We will show that the model exemplified in Fig. 1-2
results in patients being assigned the same outcome (Z)
if we define aggregates on instruments (Y) without
attending to differences in disease states (S). For
example, using the PANSS instrument, patients with
high positive and low negative symptoms severity
risk being equated with patients who have low posi-
tive but high negative symptom severity. Given the
uncertainty in relationships between disease states
and processes, ignoring how disease states differ
between patients means we are effectively failing to
identify groups of patients that may benefit from an
intervention. Just as importantly, we may also be sub-
jecting patients to treatments and side-effects that are
not effective for their specific manifestation of disorder.

Our proposal is that instead of assuming the model
of Fig. 1-2, adopting the model shown in Fig. 1-1
allows the derivation of outcomes (Z) by directly
attending to the concept of differing disease states as
they are measured and represented by instruments
(Y). For example, at a given time, the PANSS instru-
ment measures 30 individual symptoms — a measure
of disease state — which can change over time, for
example, in response to intervention. We note that a
single instrument may not be sufficient to capture dis-
ease state with enough fidelity to have analytical util-
ity, for example, we may augment PANSS with some
measure of affective symptoms or instruments measur-
ing social and occupational functioning. This has the
potential to expose treatments that are effective for
some patients (e.g. those with a certain profile of posi-
tive, negative and general symptoms) and avoids
measuring efficacy as the ‘average’ response for the
homogenous diagnostic category.

Weak aggregate outcomes

To illustrate the inherent problems with current defini-
tions of outcomes, consider the PANSS scale which
measures 30 individual variables that if used to
measure outcome are analytically intractable because

clinical trial statistical methodology requires a
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univariate (one-dimensional or scalar) measure of
change e.g. in response to treatment with respect to
multiple predictors (i.e. patient specific factors, X, in
Fig. 1). Tractability is obtained by ‘collapsing’ these
30 variables into a single aggregate by summation
and then the outcome measure, Z, summarises clinic-
ally meaningful change (e.g. response or remission)
as a threshold change in this sum. We refer to this
approach as weak aggregation. For example, in mood
disorders, remission of symptoms can be defined as
the summed (total) Hamilton depression scale score
of <7 for at least 2 months (Frank ef al. 1991). In
schizophrenia, there are proposals for ways of aggre-
gating variables in a more structured way
(Andreasen ef al. 2005) and these represent thresholds
on selected combinations of variables in scales that are
believed to be clinically meaningful. However, clinical
trials require a single primary outcome across the
whole participant group, and secondary outcomes
are used to measure subtle variation of response in
sub-groups of the study population. Using a number
of secondary outcomes carries the cost of making ana-
lysis vulnerable to criticisms of false positives, or Type
I error. The most common approach to statistical ana-
lysis of this scalar outcome Z, is to use some variant
of generalised linear modelling (GLM) against a set
of predictors X (McCullagh & Nelder, 1989).

One consequence of the relationships described
above, and in Fig. 1, is that defining a primary outcome
(2) by thresholds on a weak aggregates of multiple vari-
ables (Y) ‘collapses” information about patients” disease
state (S) into a single univariate, scalar value that may
obscure important discriminating information that
(optimistically) speaks to the DP being treated by an
intervention (as in the example given above of patients
with opposing patterns of positive and negative symp-
toms). This is especially problematic for psychiatry,
where the correspondence of disease states to pro-
cesses stands in a many-to-many relationship and we
have traditionally used diagnostic category (Dx) as a
proxy for both.

As a more detailed illustrative example, consider dis-
ease state measured by the three domains in the PANSS
instrument: the total positive (P) and negative (N)
symptoms scores range from 7 (no symptoms) to 49
(severe) and the general symptoms domain (G) ranges
from 16 to 122. To derive an outcome Z, we consider
the weak aggregate that is the sum of the total positive
and negative symptoms, Z=P+N. It is obvious that
there are many combinations of P and N (with each
combination representing a discrete disease state) that
could yield the same outcome value for Z. For
example, a patient with P=23 and N=44 has Z=67
whereas another patient with P=38 and N=29 has
the same aggregate outcome Z=67, despite these
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measurements representing quite different disease
states; the first patient having high negative (but
low positive) symptom severity and the second
patient having the opposite pattern. Ignoring these
differences — as the weak aggregate sum Z
does — results in an outcome measure that cannot
differentiate between disease states that may be
clinically distinct and meaningful. Using this example,
there are 32 combinations of values for P and N that
yield the sum 67 and therefore, 32 disease states
which would be assigned the same outcome for the
weak aggregate Z=P+N. This problem becomes
exponentially larger over three variables: defining the
aggregate outcome measure over the positive, negative
and general scales (Z =P+ N + G) results in 741 discrete
combinations of values of P, N and G that yield a total
score of Z=67. Although some combinations assigned
Z=67 will be clinically meaningful — for example,
patients with (P, N, G)=(18, 25, 24) and (18, 26, 23)
are suitably alike — in general, many will not. It is
clear that weak aggregation blindly collapses variables
from instruments such as PANSS to a single scalar
variable, ignoring clear differences in disease state.

Strong aggregate outcomes

There is an additional problem with weak aggregation
in psychiatry illustrated in Fig. 1-2, when DP and dis-
ease state are left un-modelled. In standard analyses
using GLMs, by definition, it is only the mean change
in the aggregate outcome (Z) that is modelled as a
function of the predictors (X). All patients in the
GLM analysis will be assumed to have effectively the
same disorder that responds according to a unimodal,
average response over the whole trial population: we
know that response to an intervention is rarely uni-
form across patients with psychiatric disorders. A rele-
vant analogy in fibromyalgia is given by (Moore et al.
2010; Moore et al. 2013) where response to treatment
with pregabalin demonstrates a bimodal response;
some patients have clinically significant reduction in
pain but others show little or no response at all.

Our proposal for strong aggregates is as follows:
firstly, to retain the strengths and tractability inherent
in current statistical methodology (e.g. GLMs) we
must find univariate measures — but avoid simply ‘col-
lapsing” measurements of disease state into a single
scalar, which may not expose or reflect clinically mean-
ingful differences (e.g. to avoid the problem exposed in
the example above for positive and negative symptoms).
This requires a way of representing difference in disease
state, as measured by instruments Y, so that the outcome
Z will reflect clinically relevant differences in the inevit-
able variation in response between patients i.e. different
‘modes’ of response. An additional (but less essential)
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requirement would be that the outcome can also be
used to index patients who share similar disease states.
This might, for example, be suitable for use in N-of-1
trial designs (Schork, 2015) to collect naturalistic evi-
dence for treatments in the absence of complete under-
standing of DP.

Clinical example

To illustrate our proposal, consider Fig. 2 (equivalent
colour versions can be found in online Supplementary
Information), that shows 1459 individual patient’s dis-
ease states as measured by the PANSS domain scores
(positive, negative and general symptoms) from the
baseline assessment of the Clinical Antipsychotic
Trials of Intervention Effectiveness (CATIE) trial
(Stroup et al. 2003). We use three variables purely to
ease visualisation and exposition of the key concepts,
acknowledging that we have summed the items in
the PANSS to obtain three domains, but the principles
will generalise and do not require summed domains.
Indeed, in practice, it would be prudent to use factor-
analytic decompositions of these domains [see, for
example (Lindenmayer et al. 1995; Wallwork et al.
2012], but to keep our explanation simple and easy to
visualise, we restrict ourselves to the 3 original group-
ings of signs and symptoms in PANSS. In our example,
the PANSS domains form a three-dimensional space,
where each patient is represented by a point located
on orthogonal (perpendicular) axes, representing
low-to-high severity on positive (P), negative (N) and
general (G) domains. Visualising this space is difficult,
so following standard practice in multivariate analysis,
we present three ‘views’ obtained by plotting each
combination of P, N and G in two-dimensional planes:
PxN, GxP and N x G shown in Figs. 2-1, 2-2 and 2-3
respectively.

We then define four prototypes proposed to represent
hypothesised disease states with clinically meaningful
or interesting locations in this space: for example,
prototype A represents disease states that are low
severity across positive, negative and general symp-
toms (i.e. a relatively well patient). Prototype B repre-
sents the opposite extreme — a patient that is globally
unwell with high symptom severity across positive,
negative and general symptoms. Prototype C repre-
sents a patient who has relatively high positive but
low negative and relatively low general symptom
severity. Prototype D represents a disease state where
a patient has relatively low positive but high negative
and general symptom severity. Note that in defining
prototypes, we are specifying structure with respect
to the actual study population that can be exploited
to define an outcome that preserves (rather than col-
lapses) information that has clinical relevance, as
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Fig. 2. 1459 patients represented as positive, negative and general psychopathology scores under a weak aggregation scheme.

required by our definition of strong aggregates.
Patients with disease states near prototype A (rela-
tively well) are clearly very different to those near B
(globally unwell), and similarly for C and D where
these patients are far from ‘well’ but whose disease
states reflect different patterns of disease state.

Measures derived from weak aggregates

Figure 2-4 shows the resulting univariate (i.e. one-
dimensional) scale of the summed weak aggregate
(where Z=P+ N +G), with the location of each patient
and the four prototypes along this scalar measure by
their respective scores Z. Of note, relatively well (A)
and globally unwell (B) prototypes are well demar-
cated (i.e. distant) at each end of the univariate scale,
but C and D less so. This stands in contrast to the rela-
tive positions in the original space where C, D and B
are well separated along the positive and negative
symptoms dimension (Fig. 2-1) as well as C and D
being distinguished along both general and positive
(Fig. 2-2) negative and general dimensions (Fig. 2-3).
The critical point is that a weak aggregate can only dis-
criminate between well and wunwell patients. This is
emphasised in the original three-dimensional space
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where each point (a single patient) in Figs. 2-1, 2-2
and 2-3 are shaded light-to-dark according to their
weak (summed) aggregate score Z (e.g. the greyscale
of the points and scale bar shown in Fig. 2-4). Notice
how the gradient from light-to-dark (reflecting low to
high Z) is broadly uniform in direction (bottom left
to top right) over each of the three views, enabling dis-
tinction between A and B, but less so for C, and poorly
for B and D. This demonstrates graphically how weak
aggregates collapse and obscure meaningful distinc-
tions between potential different disease states unless
they remain well separated on the univariate scale of
Z (Fig. 2-4).

Measures derived from strong aggregates

We now consider how the structure displayed in the
prototypes can be captured in a way that enables a uni-
variate outcome measure to be derived, but preserving
distinctions between them in a meaningful way i.e.
strong aggqregation. The method we used was singular
value decomposition (SVD), which is similar to prin-
ciple components analysis (Strang, 2004), embedding
a high-dimensional space into a lower dimensional
representation and in this case, exposes properties of
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interest (e.g. the separation of clinically relevant proto-
types). We note that SVD is one of many possibilities
for this embedding transformation; the key require-
ments of any chosen method are dimensionality reduc-
tion with distance preservation (isometry) and other
approaches include, for example, multidimensional
scaling (Krzanowski, 2000), isomap embedding
(Tenenbaum et al. 2000), locally linear embedding
(Roweis & Saul, 2000) and self-organising maps
(Kohonen, 1995). Essentially, rather than ‘blindly” sum-
ming, we use a method of combining or mapping each
variable from Y (equivalently, the axes in Fig. 2) such
that clinically relevant regions of that space (proto-
types in Fig. 2) are mapped onto sufficiently different
values in the univariate aggregate Z. After applying
SVD to the same patients and prototypes in Fig. 2,
we are able to find a new, univariate strong aggregate
that preserves the proposed clinically relevant
difference in disease states exemplified by the proto-
types (details are given in online Supplementary
Information).

Figure 3-4 shows the shape of the new strong uni-
variate aggregate Z (using a soft rather than hard
threshold scheme) with the new values of the proto-
types illustrated. This aggregate crucially separates
the clinically relevant prototypes C and D (compared
with the weak aggregate shown in Fig. 2). In Figs.
3-1, 32 and 3-3 (colour versions are reproduced in
online Supplementary Information), the patients in
Fig. 2 are assigned new values according to the strong
aggregate Z (light grey=low Z, dark grey=high Z).
Note the difference in how the gradient of greyscales
compares with Fig. 2, emphasising the score of
patients varying to their proximity along a line divid-
ing C and D.

Discussion and conclusions

In this paper, we have discussed how clinical trials in
psychiatry have to cope with uncertain relationships
between the treatment, disease state and process, and
how this has potentially hindered clinical trial
research. Further, relationships among patients can
be anchored to prototypes of clinical interest, in disease
states as measured by clinical instruments. This may
provide more useful information when defining out-
comes by essentially exploiting geometric structure.
Our example used the PANSS as an exemplar instru-
ment chosen for its general clinical familiarity, but
the principles extend to any other instrument for
other disorder areas (e.g. affective disorders and the
Hamilton Depression Scale).

We suggest increased use of strong aggregates
because they capture important structure between
regions of the measured disease state that weak aggregates
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ignore by blindly summing (or averaging) and that we
have shown cause patients with different disease states
to be mapped onto the same aggregate value. We used
one specific method (SVD) to define a strong aggre-
gate, but any similar method that captures clinically
relevant structure over regions of the space of disease
states and then assigns a single univariate (scalar) vari-
able that preserves the distance between these regions
would be suitable. Importantly, we defined prototypes
only with respect to the actual patient population —
remaining agnostic to the actual unknown DP or classical
diagnostic category, but specifying tentative clinically
relevant disease states. The resulting strong aggregate
is univariate and therefore compatible with current stat-
istical methodology. We now consider specific implica-
tions for trial methodology, design and analysis.

Prototype and response definition

The crux of our proposal is that univariate strong
aggregates expose differences between relevant proto-
types. In the example provided earlier, we chose four
prototypes in the 3-dimensional space of positive,
negative and general symptoms representing globally
well (A), globally unwell (B), as well as dominantly
positive (C) and negative symptoms (D). As a further
example of a priori prototypes, the remission criteria
defined in (Andreasen et al. 2005) can be interpreted
in our framework as follows; one dimension measures
reality distortion (R, the sum of items P1, G9 and P3),
another captures disorganisation (D, sum of P2 and
G5) and another captures negative symptoms (N, the
sum of N1, N4 and N6). This similarly forms a three-
dimensional space with axes R, D and N that can be
visualised similarly to the examples presented earlier.
There are then two relevant prototypes capturing the
two extremes of full (best) and no (worst) remission.
The participants and prototypes are then transformed
into a space V (eg. online Supplementary
Information, Fig. S3; by singular-valued decompos-
ition) which can then be visualised to find the single
univariate dimension, V¥, that best exposes the gradient
between these two extreme prototypes. Prior to the
trial intervention, each participant is then assigned a
value (the strong aggregate) defined as their location
along this dimension V* (as in Fig. 3-4 above) that
defines the participant’s pre-intervention remission
state. At the end of the trial, each participant’s post-
treatment values of R, D and N are transformed into
V, and their positions along the dimension V* are
‘read off’ resulting in the participant’s strong aggregate
measure of remission state after intervention.
Alternatively, a ‘hard’ threshold over V* can be
defined — for example, if seeking to use the strong
aggregate in a binary logistic/probit GLM analysis.
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Fig. 3. 1459 patients represented as positive, negative and general psychopathology scores under a strong aggregation

scheme.

We note that in principle, disease states and prototypes
need not be restricted to measures in three-
dimensional space and is used here only for ease of
exposition. The key is that one identifies the single
dimension (in the transformation, by e.g. SVD) that
exposes the differences between prototypes.

Power and recruitment

In calculating a priori the sample size required for an
adequately powered trial, the distribution of the data,
the expected effect size (means) or response rate, and
measures of variance are required. Therefore, just as
for weak aggregates used as outcomes, if data is
available from previous studies or pilot data, then
the distribution, means/response rates and variance
assumptions should be justified by applying the pro-
posed strong aggregate definition on available pilot
data. Our proposal for strong aggregates is motivated
by the idea that we may be failing to capture meaning-
ful differences using weak aggregates; for this reason,
there is potential to increase the power of a given
study design.

Recruitment to a prospective trial need not differ
when using strong aggregates — however, they offer a
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potential advantage because participants are assigned
a continuous univariate score based on their relation-
ship to prototypes (see Fig. 3). The prototypes can
define not only proposed or desired endpoints (e.g.
defining two prototypes at extremes of positive symp-
toms) but also, ‘landmarks’ of interest (for example, as
we did for prototypes A, B, C and D in the above
examples). Then, participants could be stratified to
treatment by their score in relation to prototypes —
for example, those closer to prototype A may be
assigned one treatment, those closer to prototype B
another. Further, we note a further application in
N-of-1 trials, where diagnostic uncertainty is likely to
be even more problematic and uncontrolled; in such
instances, using SVD, it is straight-forward to index
patients by their similarity to each other and their simi-
larity to prototypes. In practice, a new patient attend-
ing a clinic with a certain disease state (e.g. measured
by PANSS) can be easily compared to patients and pro-
totypes  using SVD model (see
Supplementary Information), assigned a predicted out-
come and stratified to treatment if, historically, there
were treatments that worked for patients similarly
proximal to certain prototypes.

an online
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Trial data re-analysis

One compelling reason to use strong aggregates is that
it mitigates against multiple secondary analyses by (i)
requiring prototypes to be a priori defined to capture
the proposed disease states (e.g. globally well, or dom-
inant negative symptoms) relevant to the intervention
and (ii) providing a univariate measure over these dis-
ease states that reflects a given participant’s symptoms
(or response to a treatment). We suggest this prevents
the scenario where, after failing to find a desired result
using a weak aggregate primary outcome, secondary
analyses are then required on ‘subsets” of participants.
Necessarily, defining prototypes forces us to consider
the clinically meaningful states — rather than looking
for a global change in e.g. ‘total’ PANSS scores — and
provides a way to define a single measure that captures
participants’ disease state relative to these. There is
significant potential for many re-analyses of existing
data using this paradigm. To illustrate, we recently
conducted a systematic review of trials for treating
the cognitive symptoms of schizophrenia registered on
ClinicalTrials.org in the period 20042015 (Joyce et al.
2017). We identified a total of 114 studies, but when
we specifically examined definitions of primary outcome
and available results, only 18 were eligible for inclusion.
We explored the definition of primary outcomes on
instruments (e.g. PANSS), finding only 4 of the 18 stud-
ies considered specific combinations of variables or
domain scores (a necessary first step to define proto-
types for strong aggregates) instead of using weak
aggregates. Unsurprisingly, secondary outcomes were
often used to understand the multi-dimensional (rather
than univariate) measurement of disease state.

In summary, the implications of our proposal are
two-fold; first, given our arguments for the importance
of disease state, we should reorient clinical trials towards
recruiting for the specific symptoms rather than diagno-
ses. Second, clinical trial analyses should explore and
then exploit the heterogeneity of disease states (mea-
sured by familiar clinical instruments) and seek strong
aggregates that focus outcomes on specific, relevant
definitions of treatment response or failure rather than
assuming homogeneity, weak aggregation and settling
for the average response for a diagnostic category.
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