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A new subgrid eddy-viscosity model is proposed in this paper. Full details of the
derivation of the model are given with the assumption of homogeneous turbulence.
The formulation of the model is based on the dynamic equation of the structure
function of resolved scale turbulence. By means of the local volume average, the effect
of the anisotropy is taken into account in the generalized Kolmogorov equation, which
represents the equilibrium energy transfer in the inertial subrange. Since the proposed
model is formulated directly from the filtered Navier–Stokes equation, the resulting
subgrid eddy viscosity has the feature that it can be adopted in various turbulent
flows without any adjustments of model coefficient. The proposed model predicts the
major statistical properties of rotating turbulence perfectly at fairly low-turbulence
Rossby numbers whereas subgrid models, which do not consider anisotropic effects in
turbulence energy transfer, cannot predict this typical anisotropic turbulence correctly.
The model is also tested in plane wall turbulence, i.e. plane Couette flow and channel
flow, and the major statistical properties are in better agreement with those predicted
by DNS results than the predictions by the Smagorinsky, the dynamic Smagorinsky
and the recent Cui–Zhou–Zhang–Shao models.

1. Introduction
Large-eddy simulation is believed to be a potential method for numerical prediction

of complex turbulent flows (Jimenez & Moser 2000; Pope 2004). However, a number
of numerical and physical issues must be resolved before it can be properly used
in practice when the computer resources are available. This paper focuses on the
physics side, i.e. the subgrid stress model of large-eddy simulation. A number of
subgrid stress models are already available, but none of them is fully satisfactory.
For instance, the Smagorinsky model (Smagorinsky 1963) is over-dissipative and the
scale similarity model is under-dissipative (Bardina, Ferziger & Reynolds 1987). The
spectral eddy-viscosity model based on EDQNM theory (Chollet and Lesieur 1981) is
good for homogeneous turbulence, but it cannot be used in complex turbulent flows.
The so-called dynamic subgrid model (Gemano et al. 1991) is now popularly used
in numerical prediction of complex turbulent flows in combination with a reference
model. The dynamic model is essentially a dynamic procedure for determining the
model coefficient and it cannot remove artefacts in the reference model. Nicoud
& Ducros (1999) and Vreman (2004) reformulated subgrid eddy viscosity with
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consideration of the asymptotic behaviour of velocity fluctuations in the near-wall
region and used the velocity gradient tensor in the reconstruction of subgrid eddy
viscosity. These models remove the over-dissipation of the Smagorinsky model in the
near-wall regions. Detailed discussions of the subgrid stresses (SGS) model can be
found in Sagaut (2002) and Guerts (2004).

In this paper, we consider the eddy-viscosity-type model of SGS since it is easily
accessible to Navier–Stokes solver. The essence of eddy viscosity is the energy transfer
between resolved and unresolved scale turbulence. Some authors (e.g. Jimenez 2000;
Pope 2004) emphasize the importance of the energy dissipation property of the
subgrid model rather than the momentum transfer property, and they explain why the
Smagorinsky model is better than the scale similarity model in prediction of turbulent
shear flow, although the former is phenomenological and must tune the model
coefficient, e.g. dynamic Smagorinsky model. Most of the available subgrid eddy-
viscosity models are of the phenomenological type and do not consider the kinetic
energy transfer of anisotropic turbulence explicitly in the formulation of SGS models.
In this paper, we focus on the effect of anisotropy on the subgrid eddy viscosity with
consideration of energy transfer between revolved and unresolved scale turbulence.

It is possible to construct a subgrid eddy-viscosity model with consideration of
turbulent kinetic energy transfer between resolved and unresolved scale turbulence
from the Navier–Stokes equation. For instance, Meneveau (1994) proposed an eddy-
viscosity model by means of the Kolmogorov equation for filtered velocity in isotropic
turbulence. Cui et al. (2004, hereinafter referred to as CZZS) formulated a detailed
eddy-viscosity model with a similar idea to that of Meneveau and used the model
satisfactorily to predict isotropic turbulence and turbulent channel flows. However, the
CZZS model failed to predict strongly anisotropic turbulence, e.g. rotating turbulence
at low turbulent Rossby number, urms/Ωλ, in which urms is the root mean square
of velocity fluctuations, Ω is the rotating rate and λ is the Taylor micro scale. In
this paper, a local volume-averaged Kolmogorov equation is derived for resolved
scale turbulence and used for formulating the subgrid eddy-viscosity model. The eddy
viscosity is assumed to be a scalar; hence, it is an isotropic model. However, the new
model takes into account the anisotropic effects in the energy transfer between resolved
and unresolved scale turbulence by means of the local volume average of the structure
function equation in displacement space. The new model is tested in homogeneous
rotating turbulence, plane turbulent Couette flow and plane turbulent channel flow.
The results show that the new model is able to predict major characteristics of rotating
turbulence at fairly low Rossby number, i.e. high rotation rate. For plane turbulent
Couette flow and channel flow, the new model produces a better prediction than the
Smagorinsky model, dynamic Smagorinsky model and CZZS model.

In this paper, full details of the formulation of the new model are presented in § 2.
In § 3, the predicted results for rotating turbulence will be addressed with analyses
and § 4 shows the computational results of plane turbulent Couette flow and channel
flow. Discussions and concluding remarks are given in § 5.

2. Formulation of the subgrid eddy-viscosity model for homogeneous
anisotropic turbulence

As mentioned in § 1, the new eddy-viscosity model is based on the local volume-
averaged generalized Kolmogorov equation. The previous version of this type of
model is under the assumption of homogeneity and isotropy of turbulence (Meneveau
1994; Cui et al. 2004). In this paper, homogeneity of turbulence is still assumed, but
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turbulence is anisotropic. To take into account anisotropy of homogeneous turbulence
in turbulent kinetic energy transfer, we derived the Kolmogorov equation directly from
the Navier–Stokes equation. Two typical anisotropic turbulent flows are considered,
namely the homogeneous shear turbulence and homogeneous rotating turbulence.
The governing equations for homogeneous shear turbulence are written in the inertial
frame as follows

∂Vi

∂t
+ Vk

∂Vi

∂xk

= − 1

ρ

∂p

∂xi

+ ν
∂2Vi

∂xk∂xk

, (2.1)

∂Vi

∂xi

= 0. (2.2)

In (2.1), (2.2) and hereinafter, the Einstein convention is used for repeated indexes.
To derive the subgrid model in homogeneous turbulence, we decompose the velocity
into a mean and fluctuations

Vi = Uδi1 + ui, (2.3)

in which ui is the fluctuations and U is the ensemble-averaged velocity in the x1-
direction. For homogeneous shear flow, U = γ x2 where γ is the constant mean shear
rate. The equation for the fluctuations can be derived readily from (2.1) and (2.2)
sach that

∂ui

∂t
+ U

∂ui

∂x1

+ uk

∂ui

∂xk

= − 1

ρ

∂p

∂xi

+ ν
∂2ui

∂xk∂xk

+ si, (2.4)

∂ui

∂xi

= 0. (2.5)

In (2.4), a source term, i.e. si = −γ u2δi1, on the right-hand side is added as an external
force term for the fluctuating motion.

For homogeneous rotating turbulence, it is necessary to write the Navier–Stokes
equation in the rotating frame which is naturally used in computing rotating flows,
e.g. in turbo machinery or atmosphere. In homogeneous rotating turbulence, the mean
velocity can be set to zero and the governing equations of velocity fluctuations can
be written as follows

∂ui

∂t
+ uk

∂ui

∂xk

= − 1

ρ

∂p

∂xi

+ ν
∂2ui

∂xk∂xk

+ 2εik3 Ωuk, (2.6)

∂ui

∂xi

= 0. (2.7)

In (2.6), rotation is in the x3-direction and εik3 is a component of the permutation
tensor εikj with j = 3. In (2.6), the source term εik3Ωui is the Coriolis force and the
pressure term is equal to hydrodynamic pressure plus the potential of the centrifugal
force.

The governing equations for both homogeneous rotating turbulence and shear
turbulence can be written in a unified form for convenient derivation of subgrid eddy
viscosity as follows

∂ui

∂t
+ U

∂ui

∂x1

+ uk

∂ui

∂xk

= − 1

ρ

∂p

∂xi

+ ν
∂2ui

∂xk∂xk

+ si, (2.8)

∂ui

∂xi

= 0, (2.9)
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in which U = γ x2, si = −γ u2δi1 for homogeneous shear turbulence, and U = 0, si =
2εik3Ωuk in homogeneous rotating turbulence. It should be emphasized that the
reference frames for rotating turbulence and shear turbulence are different, although
their governing equations are written in same formulae. This indicates that the subgrid
eddy viscosity for rotating turbulence is reconstructed in a rotating frame whereas it
is in an inertial frame for homogeneous shear turbulence.

Filtering (2.8) and (2.9), we can obtain the governing equation for large-eddy
simulation (LES). Note that LES of rotating turbulence should consider the
transformation property (Horiuti 2006) between rotating and inertial frames and
the isotropic filter must be used in physical space such that

ūi(x) =

∫
G(|x − y|)ui(y) dy.

The filtered equation of (2.8) and (2.9) can be written readily as

∂ūi

∂t
+ U

∂ūi

∂x1

+ ūk

∂ūi

∂xk

= − 1

ρ

∂p̄

∂xi

+ ν
∂2ūi

∂xk∂xk

+ s̄i +
∂τ̄ik

∂xk

, (2.10)

∂ūi

∂xi

= 0, (2.11)

in which τ̄ij = ūi ūj − uiuj is the subgrid stress. Note that the source term si is a
linear function of velocity fluctuations; hence, s̄i is a linear function of filtered velocity
fluctuations too, i.e. s̄i = −γ ū2δi1 for homogeneous shear turbulence and s̄i = 2εik3ūkΩ

for homogeneous rotating turbulence. To obtain the Kolmogorov equation of resolved
scale fluctuations, we require the momentum equation at a different spatial point x ′,

∂ū′
i

∂t
+ U ′ ∂ū′

i

∂x ′
1

+ ū′
k

∂ū′
i

∂x ′
k

= − 1

ρ

∂p̄′

∂x ′
i

+ ν
∂2ū′

i

∂x ′
k∂x ′

k

+ s̄ ′
i +

∂τ̄ ′
ik

∂x ′
k

. (2.12)

By subtraction of (2.12)from (2.10), a dynamic equation of velocity increment can be
obtained as follows:

∂δūi

∂t
+ U

∂ūi

∂x1

− U ′ ∂ū′
i

∂x ′
1

+ ūk

∂ūi

∂xk

− ū′
k

∂ū′
i

∂x ′
k

= − 1

ρ

∂p̄

∂xi

+
1

ρ

∂p̄′

∂x ′
i

+ ν
∂2ūi

∂xk∂xk

− ν
∂2ū′

i

∂x ′
k∂x ′

k

+ s̄i − s̄ ′
i +

∂τ̄ik

∂xk

− ∂τ̄ ′
ik

∂x ′
k

.

Note that ui is independent of x ′
i and u′

i is independent of xi , hence ∂ūi/∂x ′
k = 0 and

∂ū′
i/∂xk = 0. The equation of velocity increment can then be rewritten as

∂δūi

∂t
+ U

∂δūi

∂xi

+ U ′ ∂δūi

∂x ′
i

+ ūk

∂δūi

∂xk

+ ū′
k

∂δūi

∂x ′
k

= − 1

ρ

∂p̄

∂xi

+
1

ρ

∂p̄′

∂x ′
i

+ ν
∂2δūi

∂xk∂xk

+ ν
∂2δūi

∂x ′
k∂x ′

k

+ s̄i − s̄ ′
i +

∂τ̄ik

∂xk

− ∂τ̄ ′
ik

∂x ′
k

,

in which the velocity increment is defined as δūi = ūi − ū′
i . Multiplying the above

equation byδūi , it becomes

∂ (δūiδūi)

∂t
+ U

∂ (δūiδūi)

∂xi

+ U ′ ∂ (δūiδūi)

∂x ′
i

+ ūk

∂ (δūiδūi)

∂xk

+ ū′
k

∂ (δūiδūi)

∂x ′
k

= 2

(
−δūi

ρ

∂p̄

∂xi

+
δūi

ρ

∂p̄′

∂x ′
i

+νδūi

∂2δūi

∂xk∂xk

+ νδūi

∂2δūi

∂x ′
k∂x ′

k

+ δūiδs̄i + δūi

∂τ̄ik

∂xk

− δūi

∂τ̄ ′
ik

∂x ′
k

)
.

(2.13)
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The derivative of statistical correlations in respect to x or x ′ can be transferred to
the derivatives in respect to the displacement ξ = x − x ′ in homogeneous turbulence
as follows

∂

∂xi

=
∂

∂ξi

,
∂

∂x ′
i

= − ∂

∂ξi

,
∂2

∂xi∂xi

=
∂2

∂x ′
i∂x ′

i

=
∂2

∂ξi∂ξi

.

Taking an ensemble average on (2.13) and using the above derivation formulae, the
terms in (2.13) can be simplified. The first term of the above equation is simply the
time derivation of structure function Dii = 〈δūiδūi〉, i.e. ∂Dii/∂t .

Since U varies in the x2-direction only, the sum of second and third terms on the
left-hand side of (2.13) is〈

U
∂ (δūiδūi)

∂x1

〉
+

〈
U ′ ∂ (δūiδūi)

∂x ′
1

〉
=

∂

∂ξ1

〈Uδūiδūi〉 − ∂

∂ξ1

〈U ′δūiδūi〉

=
∂

∂ξ1

〈δUδūiδūi〉 = δU
∂Dii

∂ξ1

, (2.14)

in which δU = γ ξ2 in homogeneous shear turbulence and δU = 0 in homogeneous
rotating turbulence. The sum of the fourth and fifth terms on the left-hand side is〈

∂ūkδūiδūi

∂xk

+
∂ū′

kδūiδūi

∂x ′
k

〉
=

∂

∂ξk

〈ūkδūiδūi〉 − ∂

∂ξk

〈ū′
kδūiδūi〉

=
∂

∂ξk

〈(
ūk − ū′

k

)
δūiδūi

〉
=

∂Diik

∂ξk

, (2.15)

in which Diik = 〈δūkδūiδūi〉 is the third-order structure function. The terms involving
pressure on the right-hand side can be simplified as〈

δūi

ρ

∂p̄

∂xi

〉
−

〈
δūi

ρ

∂p̄′

∂x ′
i

〉
=

1

ρ

〈
∂δūiδp̄

∂xi

〉
+

1

ρ

〈
∂δūiδp̄

∂x ′
i

〉
− 1

ρ

〈
p̄

∂δūi

∂xi

〉

+
1

ρ

〈
p̄′ ∂δū′

i

∂x ′
i

〉
=

1

ρ

∂ 〈δūiδp̄〉
∂ξi

− 1

ρ

∂ 〈δūiδp̄〉
∂ξi

= 0. (2.16)

The homogeneity of turbulence and the continuity equation, i.e. ∂ūi/∂xi = 0 and
∂ū′

i/∂x ′
i = 0, are used in the derivation of (2.16). It is not surprising that the

pressure term is eliminated in the dynamic equation of Dii , since pressure fluctuations
contribute nothing to the energy transfer in incompressible homogeneous turbulence.
The viscosity terms can be simplified as diffusive and dissipative terms such that〈

νδūi

∂2δūi

∂xk∂xk

+ νδūi

∂2δūi

∂x ′
k∂x ′

k

〉
=

ν

2

∂2〈(δūi)
2〉

∂ξk∂ξk

−
〈

ν
∂δūi

∂xk

∂δūi

∂xk

〉

+
ν

2

∂2
〈
(δūi)

2
〉

∂ξk∂ξk

−
〈

ν
∂δūi

∂x ′
k

∂δūi

∂x ′
k

〉
= ν

∂2Dii

∂ξk∂ξk

− 2ν

〈
∂ūi

∂xk

∂ūi

∂xk

〉
= ν

∂2Dii

∂ξk∂ξk

− 2ε̄ (2.17)

in which ε̄ is the molecular dissipation of resolved scale of turbulence. The correlation
between the difference of external force and velocity increment will be shown later,
and the ensemble average of last two terms in (2.13) is expressed as follows〈

δui

(
∂τ̄ik

∂xk

− ∂τ̄ ′
ik

∂x ′
k

)〉
=

〈(
∂δūi τ̄ik

∂xk

− ∂δūi τ̄
′
ik

∂x ′
k

)〉
−

〈(
τ̄ik

∂δūi

∂xk

− τ̄ ′
ik

∂δūi

∂x ′
k

)〉
. (2.18)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

07
00

59
9X

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S002211200700599X


382 G. X. Cui, C. X. Xu, L. Fang, L. Shao and Z. S. Zhang

Now an eddy-viscosity assumption is introduced into the subgrid stress such that

τ̄ik = νt

(
∂ūi

∂xk

+
∂ūk

∂xi

)
+ 1

3
τ̄llδik (2.19)

in which νt is the subgrid eddy viscosity and is assumed to be a scalar constant
in homogeneous turbulence. The last term of (2.19) has the same dynamic effect as
pressure; hence, it is usually absorbed into the pressure term. Inserting (2.19) into
(2.18), the simplification of the first two terms on the right-hand side of (2.18) can be
derived as

∂〈τ̄ikδūi〉
∂xk

− ∂〈τ̄ ′
ikδūi〉
∂xk

=
∂〈τ̄ikδūi〉

∂ξk

+
∂〈τ̄ ′

ikδūi〉
∂ξk

= νt

∂

∂ξk

〈(
∂ūi

∂xk

+
∂ūk

∂xi

+
∂ū′

i

∂x ′
k

+
∂ū′

k

∂x ′
i

)
δūi

〉

= νt

∂

∂ξk

〈(
∂ūi

∂xk

+
∂ū′

i

∂x ′
k

)
δūi

〉
+νt

∂

∂ξk

〈(
∂ūk

∂xi

+
∂ū′

k

∂x ′
i

)
δūi

〉

= νt

∂

∂ξk

〈(
∂

(
ūi − ū′

i

)
∂xk

+
∂

(
ū′

i − ūi

)
∂x ′

k

)
δui

〉

+ 2νt

∂2 〈δūkδūi〉
∂ξk∂ξi

= νt

∂2 〈δūiδūi〉
∂ξi∂ξi

+ 2νt

∂2 〈δūkδūi〉
∂ξk∂ξi

.

The last term of the above equation is equal to zero in homogeneous turbulence and
it can be proved as follows

νt

∂2 〈δūkδūi〉
∂ξk∂ξi

= νt

∂2 〈δūkδūi〉
∂xk∂xi

= νt

〈
∂2 (δūkδūi)

∂xk∂xi

〉

= νt

〈
∂δūk

∂xi

∂δūi

∂xk

〉
= νt

〈
∂ūk

∂xi

∂ūi

∂xk

〉
= νt

∂2 〈ūkūi〉
∂xk∂xi

.

Since the turbulence is homogeneous, the derivatives of one-point statistics are equal
to zero, i.e.

∂2〈ūkūi〉
∂xk∂xi

= 0,

and thus

νt

∂2〈δūkδūi〉
∂ξk∂ξi

= νt

∂2〈ūkūi〉
∂xk∂xi

= 0.

The first two terms in (2.18) are then simplified as

∂ 〈τ̄ikδūi〉
∂xk

− ∂ 〈τ̄ ′
ikδūi〉
∂x ′

k

= νt

∂2 〈δūiδūi〉
∂ξi∂ξi

= νt

∂2 〈Dii〉
∂ξi∂ξi

.

The last two terms of (2.18) are manipulated as follows

−
〈(

τ̄ik

∂δūi

∂xk

− τ̄ ′
ik

∂δūi

∂x ′
k

)〉
= −νt

〈(
∂ūi

∂xk

+
∂ūk

∂xi

)
∂δūi

∂xk

〉
+ νt

〈(
∂ū′

i

∂x ′
k

+
∂ū′

k

∂x ′
i

)
∂δūi

∂x ′
k

〉

= −νt

〈(
∂ūi

∂xk

+
∂ūk

∂xi

)
∂ūi

∂xk

〉
− νt

〈(
∂ū′

i

∂x ′
k

+
∂ū′

k

∂x ′
i

)
∂ū′

i

∂x ′
k

〉
= −2νt

〈
∂ūi

∂xk

∂ūi

∂xk

〉
.
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In the above equation, 2νt〈(∂ūi∂xk)(∂ūi∂xk)〉, denoted as ε̄f , is the energy transfer from
resolved scale to unresolved scale turbulence. Inserting those simplified expressions
into the right-hand side of (2.18), it becomes〈

δui

(
∂τ̄ik

∂xk

− ∂τ̄ ′
ik

∂x ′
k

)〉
= νt

∂2
〈
δūiδūi

〉
∂ξi∂ξi

− 2νt

〈
∂ūi

∂xk

∂ūi

∂xk

〉
= νt

∂2Dll

∂ξi∂ξi

+ 2ε̄f .

This shows clearly that subgrid stress in the dynamic equation of structure function
plays the role of diffusion of structure function by eddy viscosity plus the transfer of
turbulent kinetic energy from resolved scale to unresolved scale turbulence.

Take the ensemble average of (2.13) and insert all simplified expressions into it, the
dynamic equation of structure function can be written as

∂Dii

∂t
+

∂Diik

∂ξk

+
∂δUDii

∂ξ1

= 2 (ν + νt )
∂2Dii

∂ξk∂ξk

− 4 (ν + νt )

〈
∂ūi

∂xk

∂ūi

∂xk

〉
+ 2〈δūiδs̄i〉. (2.20)

Equation (2.20) is the generalized Kolmogorov equation of anisotropic resolved scale
turbulence. It is similar to the Kolmogorov equation for full turbulence without the
eddy-viscosity term and the latter has been derived by Hill (2002). Following the classic
theory that the time derivative of Dll and the molecular viscosity diffusion can be
neglected in the dynamic equation of structure function for high-Reynolds-number
flows (Monin & Yaglom 1975), the final formula of the generalized Kolmogorov
equation for anisotropic resolved scale turbulence is then written as

∂Diik

∂ξk

+
∂δUDii

∂ξ1

= 2νt

∂2Dii

∂ξk∂ξk

− 4νt

〈
∂ūi

∂xk

∂ūi

∂xk

〉
+ 2〈δūiδs̄i〉. (2.21a)

In order to obtain the eddy viscosity for homogeneous turbulence, we take the local
volume average in displacement space as Hill (2002) and Casciola et al. (2004) did,
as follows∫

V

(
∂Diik

∂ξk

+
∂δUDii

∂ξ1

)
dv =

∫
V

(
2νt

∂2Dii

∂ξk∂ξk

− 4νt

〈
∂ūi

∂xk

∂ūi

∂xk

〉
+ 2 〈δūiδs̄i〉

)
dv. (2.21b)

The volume integration on the left-hand side can be transferred to surface integration
by the Gauss formula such that∫

V

∂Diik

∂ξk

dv =

∫
S

Diiknk dA,

∫
V

∂δUDii

∂ξ1

dv =

∫
S

δUDiin1 dA.

The first term on right-hand side can also be transferred to surface integration such
that ∫

V

2νt

∂2Dii

∂ξk∂ξk

dv = 2νt

∫
S

∂Dii

∂ξk

nk dA.

The linear size of the integration volume should be within the inertial subrange.
In practice, it is equal to twice the mesh length in the following computational cases.
Define the local volume average and surface average, respectively, as

QV =
1

V

∫
V

Qdv, QS =
1

S

∫
S

QdA.

Equation (2.21b) can be written as

S (Diiknk)
S + S (δUDiin1)

S = Sνt

(
∂Dii

∂ξk

nk

)S

− 4νtV

〈
∂ūi

∂xk

∂ūi

∂xk

〉V

+ 2V 〈δūiδs̄i〉V .
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Finally, the subgrid eddy viscosity is equal to

νt =
(Diiknk)

S + (δUDiin1)
S + 2V /S 〈δūiδs̄i〉V

2

(
∂Dii

∂ξk

nk

)S

− 4V /S

〈
∂ūi

∂xk

∂ūi

∂xk

〉V
. (2.22)

The structure functions Dii = 〈δuiδui〉, Diik = 〈δuiδuiδuk〉 are the ensemble average
of the products of velocity increment in physical space, in practice the ensemble
average can be taken in homogeneous directions; hence, the structure functions are
independent of x and varying with displacement ξ . The local volume average is taken
in displacement space ξ which is independent of physical space x. After local space
averaging, the terms involving structure functions are constants both in physical
and displacement spaces and, finally, the subgrid eddy viscosity is a constant in
homogeneous turbulence. In practice, the local volume-average method is dependent
on the flow geometry so that it can be taken in a sphere for homogeneous rotating
turbulence or in a rectangular box for plane shear flow. The details of the average
formulae will be given § § 3 and 4.

In homogeneous rotating turbulence δU = 0 and 〈δūiδs̄i〉 = 2εik3〈δūiδūkΩ〉 where
εik3 is an antisymmetrical tensor in respect to indices i and k, hence 〈δūiδs̄i〉 = 0. The
subgrid eddy viscosity for homogeneous rotating flow is then equal to

νt =
(Diiknk)

S

2

(
∂Dii

∂ξk

nk

)S

− 4V /S

〈
∂ūi

∂xk

∂ūi

∂xk

〉V
. (2.23)

In homogeneous shear turbulence, δU = γ ξ2 and 〈δūiδs̄i〉 = γ 〈δū1δū2〉. The subgrid
eddy viscosity becomes

νt =
(Diiknk)

S + (γ ξ2Diin1)
S − 2γV /S 〈δū1δū2〉V

2

(
∂Dii

∂ξk

nk

)S

− 4V /S

〈
∂ūi

∂xk

∂ūi

∂xk

〉V
. (2.24)

Now, we would like to interpret the meaning of the subgrid eddy viscosity given
above and make clear how the effect of anisotropy of turbulence is involved. In both
equations (2.23) and (2.24), the numerator represents the transfer of velocity increment
variance in resolved scale turbulence and the denominator represents the diffusion
and dissipation of resolved scale turbulence by an eddy viscosity. In the inertial
subrange, the transfer of turbulent kinetic energy must be equal to diffusion plus
dissipation based on local equilibrium assumption. This is the radical property of our
new model that involves the correct energy transfer between resolved and unresolved
scale turbulence. Note that in spectral space, similar physical consideration leads to
the definition of spectral subgrid eddy viscosity (Kraichnan 1976). In the case of
homogeneous shear flow, the mean shear γ takes part in the energy transfer, i.e.
the second term and last terms in the numerator of (2.23), respectively. It clearly
shows that the effect of mean shear on the eddy viscosity is not as simple as in the
Smagorinsky model, i.e. νt = (Cs
)2|S|, which will produce over-dissipation in the
near-wall region. It will be shown later that the new model has correct asymptotic
behaviour in the near-wall region, i.e.νt ∝ x3

2 with x2 in the normal direction to the
wall.

In homogeneous rotating turbulence, the rotation rate does not appear explicitly
in the formula of eddy viscosity, i.e. (2.24). It is not surprising because the solid

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

07
00

59
9X

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S002211200700599X


New subgrid eddy viscosity-model for large-eddy simulation 385

rotation contributes nothing to the transfer of turbulent kinetic energy; neither does
it to the transfer of velocity increment variance. However, rotation can redistribute
kinetic energy among fluctuating velocity components and the turbulence becomes
anisotropic. Equation (2.24) represents correct transfer of kinetic energy in anisotropic
resolved scale turbulence through the local volume average of transfer and dissipation
terms.

We will show that (2.22) can be simplified to the subgrid eddy viscosity in isotropic
turbulence as derived in CZZS (2004). In isotropic turbulence, the transportation
equation of structure function (2.21a) can be simplified as

∂Diik

∂ξk

= 2νt

∂2Dii

∂ξk∂ξk

− 4νt

〈
∂ūi

∂xk

∂ūi

∂xk

〉
.

Taking the local average in a sphere the in displacement space with radius r in the
inertial subrange, we obtain:

(Diir )
Sr = 2νt

(
∂Dii

∂r

)Sr

− 4νt

3

〈
∂ūi

∂xk

∂ūi

∂xk

〉Vr

r,

in which Sr = 4πr2 and Vr = 4πr3/3 so that Vr/Sr = r/3. Following the derivation
procedure by Hill (2002) it can be readily written as

Dlll = 6νt

(
∂Dll

∂r

)Sr

− 4νt

5

〈
∂ūi

∂xk

∂ūi

∂xk

〉Vr

r, (2.25)

which is the Kolmogorov equation for resolved scale isotropic turbulence at high
Reynolds numbers. From (2.25), the subgrid eddy viscosity for isotropic turbulence
can be written as (CZZS 2004)

νt =
−5Dlll

8〈S̄ij S̄ij 〉r − 30∂Dll/∂r
. (2.26)

It is clear now that the previous subgrid eddy viscosity (CZZS 2004) is a simplified
form of the new subgrid eddy viscosity for general homogeneous turbulence. The
anisotropic effect on turbulent kinetic energy transfer is either revealed explicitly in
homogeneous shear turbulence or included implicitly in homogeneous rotating flow
by the use of the local volume average of the dynamic equation of structure function.
We will show later that the new model improves the prediction of turbulent shear
flows greatly in comparison with previous model (CZZS 2004) and can predict the
major properties of rotating turbulence properly.

3. Application to rotating turbulence
Rotating turbulence is a typical case of anisotropic turbulence with practical

interest in geophysical and astrophysical flows, as well as turbulent flows in turbo-
machinery. Considerable efforts have been made to investigate the behaviour of
rotating turbulence and its structure by numerical simulation (Cambon, Mansour
& Godeferd 1997), experimental measurements (Jacquin et al. 1990) and theoretical
analyses (Cambon, Rubinstein & Godeferd 2004). A number of peculiar properties
of rotating turbulence have been revealed so that the transfer of kinetic energy from
large scales to small ones is reduced; consequently energy dissipation is decreasing
with increasing rotating rates. It has also been found that the energy spectrum
shows a steeper slope than the Kolmogorov −5/3 law so that the spectrum exponent
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approaches −3 asymptotically at infinite Reynolds number and zero Rossby number.
It is obvious that the feature of rotating turbulence results from anisotropic nonlinear
transfer of turbulent kinetic energy among velocity fluctuation components. The
details of the behaviour of rotating turbulence can be found in (Cambon et al. 1997,
2004). In this paper, we are trying to simulate rotating turbulence numerically by
LES. The traditional subgrid models fail to predict rotating turbulence since they do
not consider the anisotropic effect of turbulence in the model. Yang & Domaradski
(2004) used truncated Navier–Stokes (TNS) as a model for large-eddy simulation
of homogeneous rotating turbulence with considerable success; for instance, they
obtained a k−3 energy spectrum at high Reynolds numbers and small Rossby numbers.
The idea of TNS is to try to model the energy transfer from large (non-truncated)
to small-scale (truncated) turbulence by the estimation method. The new model
presented here is different from theirs in that we formulate the eddy-viscosity model
with the correct turbulent energy transfer from the Navier–Stokes equation without
any assumptions on the velocity fluctuations, with the exception of homogeneity.
Moreover, we will give more significant and critical statistical properties of rotating
turbulence, such as the skewness of the velocity derivative, which was not given in
Yang & Domaradski (2004).

The numerical simulation of homogeneous rotating turbulence is performed in a
rotating frame by the pseudo-spectrum method with rotation in the x3-direction. The
initial turbulence field is generated by the method proposed by Rogallo (1981) with
a von Kármán spectrum. The computational domain is a rectangular box which is
four times longer in the rotating direction than in the horizontal direction, since
the turbulence scale is increasing greatly in the rotating direction. The fourth-order
Runge–Kutta integration is used in time advancement. The time step is set to be
small enough to resolve the inertial waves. The flow Reynolds number is assumed to
be infinite by prescribing zero molecular viscosity.

In homogeneous rotating turbulence, the local average is taken in a sphere with
radius r and the subgrid eddy viscosity is derived from (2.25) so that

νt =
3(Diir )

Sr

6(∂Dii/∂r)Sr − 4〈∂ūi/∂xk∂ūi/∂xk〉Vr r
. (3.1)

In practical computation, the local volume average is taken in a sphere circumscribing
a cube with twice the mesh length.

The first test case is a decaying isotropic turbulence without rotation with 643 grids
in order to validate the model and numerical method. The simulation is run for more
than 106 initial turn-over time and the classic decaying law, t−n, is found in a short
time with n ≈ 1.25, which is in agreement with previous numerical and experiment
results. The exponent of the decaying law approaches −2 at the final stage of decay
(figure 1), and this result is consistent with the experimental study by Skrbek & Stalp
(2000).

To perform the large-eddy simulation of decaying rotating turbulence at high
Reynolds number, a purely decaying turbulence without rotation was computed for
sufficient time and a solid-body rotation was then switched on when the time decay
of large-scale kinetic energy k reached a reliable power law in pre-computation.
Figure 2 shows the time variation of the large-scale turbulence kinetic energy for
different rotating rates. The numerical grid is 64 × 64 × 256 in spectral space. As
the rotation reduces the spectral energy transfer, the decay of the turbulent kinetic
energy is becoming slower. This phenomenon is pronounced when the rotating rate
is increasing.
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k

present model
t–1.25

t–2

Figure 1. Decay of turbulent kinetic energy in isotropic turbulence with 643 LES.
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Ω = 80
Ω = 160
t–1.3

Figure 2. Time variation of large-scale kinetic energy for different rotating rates, grids:
64 × 64 × 256.

The critical examination of the feasibility of the new model is to check
the variation of the derivative skewness with time. The derivative skewness,
Sk = 〈(∂ū/∂x1)

3〉/〈(∂ū/∂x1)
2〉3/2, represents the balance between transfer of turbulent

kinetic energy and its dissipation. The direct comparison of the derivative skewness
between DNS and LES results is meaningless, but the variation of Sk/Sk0 with time
under the influence of rotation indicates the capability of the self-adjustment of a
subgrid model to the rotation effect. In decaying turbulence, Cambon et al. (1997)
proposed a scaling law of Sk/Sk0 versus Rossby number, as follows:

Sk(t)

Sk0

=
1{

1 + 2 [Roω (t)]−2
}0.5

, (3.2)

in which Roω = (ε/kΩ)/(k2/νε)0.5 is based on the Taylor micro scale and called
the micro Rossby number. In LES, the turbulent dissipation ε and molecular
viscosity ν are replaced by εf and νt , respectively, and k is the large-scale turbulence
kinetic energy. This replacement is valid so that the governing equation of LES
for homogeneous turbulence with constant eddy viscosity is in a similar form to
DNS with replacement of molecular viscosity by eddy viscosity. Following the same
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Figure 3. Skewness variation versus micro Rossby number at rotating rate Ω = 10.
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Figure 4. Skewness versus micro Rossby number with finer grids 96 × 96 × 384
—, Cambon et al. (1997); �, anisotropic model.

deduction procedure as was performed by Cambon et al. (1997), it is reasonable to
accept the above parameters in scale law (3.2). Comparison of the predicted results
among different subgrid models is presented in figure 3.

The initial micro Rossby number is equal to 1.82 at Ω = 10 and drops to 0.72 at the
end of computation. All models produce a sudden reduction of derivative skewness to
the level predicted by (3.2) at the beginning when rotation is applied and the Rossby
number is relatively high. However, the later development differs greatly between the
new model and the others. The Métais–Lesieur model (Métais & Lesieur 1992) and
the CZZS model cannot predict the reduction of skewness after a sudden reduction.
The Métais–Lesieur mode predicts nearly constant level of skewness, whereas the
CZZS model shows a small reduction of skewness. In contrast, the skewness predicted
by the new model, which involves the anisotropic transfer of kinetic energy, fits the
scaling law (3.2) very well, particularly at Rossby number around 1.

A finer grid with 96 × 96 × 384 nodes was used to check the resolution influence.
The micro Rossby number is nearly 2.0 in the initial state and reaches 0.22 at the end
of computation. The result is shown in figure 4 and is much better than in the lower
resolution run.
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Figure 5. The evolution of energy spectrum with grids 96 × 96 × 384. (a) Ω = 10;
(b) Ω = 100; (c) compensated Ω = 10; (d) compensated Ω = 100.

The energy spectrum E(k) is checked and presented in figure 5 for rotating rates
of 10 and 100. The initial micro Rossby numbers are nearly 2.22 and 0.222 and
approaching to 0.222 and 0.0667 at the end of computation. Once the rotation is
switched on, the spectral slope shifts gradually from −5/3 to −3 as shown in figures
5(a) and (b). In figures 5(c) and 5(d), the compensated spectra for both cases are
plotted at the end of computation time. The plateau is shown clearly in both figures.

4. Application to wall-bounded shear flows
The proposed new model is based on the assumption of homogeneous turbulence.

The homogeneity of turbulence can be accepted approximately in the major part
of the wall-bounded turbulence, with the exception of the near-wall region. The
proposed new model has correct asymptotic behaviour in the near-wall region so
that νt is proportional to y3 in the near-wall region; hence, the molecular viscosity is
dominant there and the computation of wall-bounded turbulence can be performed
by LES properly with fine normal resolution to the wall with the proposed new
model. In fact, the previous CZZS model is capable of predicting turbulent channel
flow in fairly good agreement with DNS results. Here, we will show that the proposed
new model improves the prediction precision considerably.

In plane wall-bounded turbulent flows, the local volume average is taken in
a rectangular element volume. The terms of local volume average, (2.22) can be

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

07
00

59
9X

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S002211200700599X


390 G. X. Cui, C. X. Xu, L. Fang, L. Shao and Z. S. Zhang

manipulated as follows:

(Diiknk)
S =

1

S

(∫∫
S+

23

Dii1 dξ2 dξ3 −
∫∫

S−
23

Dii1 dξ2 dξ3 +

∫∫
S+

13

Dii2 dξ1 dξ3

−
∫∫

S−
13

Dii2 dξ1 dξ3 +

∫∫
S+

12

Dii3 dξ1 dξ2 −
∫∫

S+
12

Dii3 dξ1 dξ2

)
(

∂Dii

∂ξk

nk

)S

=
1

S

(∫∫
S+

23

∂Dii

∂ξ1

dξ2 dξ3 −
∫∫

S−
23

∂Dii

∂ξ1

dξ2 dξ3 +

∫∫
S+

13

∂Dii

∂ξ2

dξ1 dξ3

−
∫∫

S−
13

∂Dii

∂ξ2

dξ1 dξ3+

∫∫
S+

12

∂Dii

∂ξ3

dξ1 dξ2 −
∫∫

S+
12

∂Dii

∂ξ3

dξ1 dξ2

)
,

in which S = 2(
ξ1
ξ2 + 
ξ1
ξ3 + 
ξ3
ξ2). Since the turbulence is homogeneous in
the x1- and x3-directions in plane wall-bounded flows (x2 is assumed to be normal to
the wall), two surface integrals on the element perpendicular to x1, i.e. on S+

23 andS−
23,

cancel each other; the same results are obtained on S+
12 andS−

12. Therefore, (Diiknk)
S

and ((∂Dii/∂ξk)nk)
S can be simplified as

(Diiknk)
S =

1

S

(∫∫
S+

13

Dii2 dξ1 dξ3 −
∫∫

S−
13

Dii2 dξ1 dξ3

)
, (4.1)

(
∂Dii

∂ξk

nk

)S

=
1

S

(∫∫
S+

13

∂Di2i

∂ξ2

dξ1 dξ3 −
∫∫

S−
13

∂Dii

∂ξ2

dξ1 dξ3

)
. (4.2)

The integrals (Diiknk)
S and ((∂Dii/∂ξk)nk)

S will be denoted by [Dii2]
A13 and

[∂Dii/∂ξ2]
A13 , respectively, hereinafter. The ratio of the local volume to its surface

area is equal to

V

S
=


x1
x2
x3

2 (
x1
x2 + 
x2
x3 + 
x1
x3)
=


x2

2
(

x2/
x3 + 
x2/
x1 + 1

) . (4.3)

It can be expressed as V /S = cy
x2 with cy ≈ 0.5 near the wall, and cy ≈ 1/6 at
the central part of channel the when we used the Gauss–Lobatto collocation in the
normal direction. With similar manipulation of the other volume average terms, the
subgrid eddy viscosity can be obtained as

νt =
[Dii2]

A13 + 2γ (D12)
V cy
y

[∂Dii/∂ξ2]A13 − 4 〈∂ui/∂xk∂ui/∂xk〉V
cy
y

, (4.4)

in which 
y = 2
x2 is twice the local normal mesh length and γ = dU/dy is the
local mean strain rate. Since the magnitude of the velocity has asymptotic estimations
at the wall in incompressible flows, as

ū1 ∝ y, ū2 ∝ y2, ū3 ∝ y,

it is easily to show that (4.4) leads to νt ∝ y3 in the near-wall region, and this
is correct asymptotic behaviour for subgrid stress. Note that the third and second
structure functions are Dii2 and D12 in the numerator of (4.4). This means that
the kinetic energy is transferred by normal velocity fluctuations and it is a correct
mechanism in the near-wall region.

The numerical method used in simulating turbulent plane Couette flow and
channel flow is a pseudospectral method with Fourier decomposition in the x1- and
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Figure 6. The mean velocity profile for plane Couette flow with grids 32 × 64 × 32.
(a) Y+ scaled by wall units, (b) Y scaled by H.

x3-directions and Chebychev polynomial in the normal direction since the turbulence
is homogeneous in the x1- and x3-directions. The non-slip condition is posed at the
wall without any modifications of models from wall effects, e.g. damping function
or wall model. The third-order-accuracy scheme is used in time advancement. The
computational domain is 2H between two plates and 2πH and πH in the streamwise
and spanwise direction, respectively. The details of the numerical method can be
found in Xu, Zhang & Nieuwstadt (1997).

4.1. The results of plane Couette flow

The plane Couette flow is a good test case of the subgrid eddy-viscosity model for
the homogeneous shear flow, since it has almost constant shear in the major part
of the flow, apart from the near-wall region, which is a thin layer at high Reynolds
number. The flow Reynolds number is defined as UH/ν in which U is the moving
speed of the upper plate and Re = 3200 is accepted in the numerical simulation
which is equivalent to a Reynolds number of 12 800 in Kawamura, Abe & Matsuo’s
DNS results (1999). The grid points are 32 × 64 × 32 in the streamwise, normal and
spanwise directions, respectively. The predicted mean velocity profile by the proposed
new model is shown in figure 6 together with the results by DNS (Kawamura et al.
1999), the Smagorinsky model, the dynamic Smagroinsky model and the CZZS model
(2004). In the computation with the Smagorinsky model, we use model coefficient
Cs = 0.08 and the van Driest damping function in the near-wall region.

Figure 7 shows the distribution of turbulent kinetic energy and Reynolds stress
between two plates. In the plots, both turbulent kinetic energy and Reynolds stress
include subgrid counterparts with the corrections given by Pope (2000). The results
show that the new model is much better than the others.

4.2. The results of turbulent plane channel

Turbulent channel flow is another case for which to examine the feasibility of the
proposed model. The turbulent channel is inhomogeneous in the direction normal to
the wall; however, the mean shear rate is proportional to 1/y+ in the logarithm layer
which is not so large, and the mean shear rate is much less above the logarithm layer.
Therefore, the local homogeneity would be a good approximation in the major part
of the channel flow. In the near-wall region, the model has the correct asymptotic
behaviour as proved before, and it is expected that the proposed model is feasible in
turbulent channel flows.
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Figure 7. Distribution of turbulent statistics with grids 32 × 64 × 32. (a) Turbulent kinetic
energy (b) Reynolds stress.
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Figure 8. The mean velocity profile with grids (a)32 × 64 × 32 for Re = 7000 and
(b) 32 × 96 × 32 for Re = 10 000.

The flow Reynolds number is defined as UmH/ν, in which Um is the bulk velocity
in the channel and it is unchanged during the computation so that we use the
constant-flow-rate condition in numerical simulation (Xu et al. 1997). Two test cases
are computed at Reynolds numbers of 7000 and 10 000, which are equivalent to
Reτ = 395, 590, respectively, in DNS performed by Moser, Kim & Moin (1999) with
constant pressure gradients. The grid points are 32 × 64 × 32 in the steamwise, normal
and spanwise directions, respectively, for Re = 7000 and 32 × 96 × 32 for Re = 10 000.
Although our previous model (CZZS 2004) predicts fairly good statistics in turbulent
channel flow, the new model gives much better results. This indicates that the inclusion
of anisotropic transfer of turbulent kinetic energy is necessary and, indeed, improves
the prediction.

Figure 8 presents the mean velocity profiles in which the prediction by the present
subgrid model fits the DNS results well at both Reynolds numbers, and is better than
previous model (CZZS 2004). Figure 9 shows the distribution of turbulent kinetic
energy in which the correction of subgrid counterpart is added. The improvement of
the present new model is evident; in particular, the location of the peak is close to
that for the DNS results. Figure 10 shows the distribution of Reynolds stress in which
the correction is also added. All results show that the proposed model is the best.
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Figure 9. The turbulent kinetic energy with (a) grids 32 × 64 × 32 for Re = 7000 and
(b) 32 × 96 × 32 for Re = 10 000.
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Figure 10. Reynolds stress with (a) grids 32 × 64 × 32 for Re = 7000 and (b) 32 × 96 × 32
for Re = 10 000.

5. Discussion and conclusions
The new model has been examined in both homogeneous rotating turbulence and

wall-bounded shear turbulence with satisfactory results. The success of this new type
of subgrid model is attributed to the idea that the model is based on the turbulent
energy transfer, which is derived directly from the Navier–Stokes equation without
any phenomenological assumptions. This indicates that the model is consistent with
the turbulent flow dynamics, and the subgrid eddy viscosity will be automatically
adapted in different parts of a turbulent flow and in different turbulent flows.

The present model is established based on the homogeneity of turbulence, and is
then applied to non-uniform shear turbulence. The extension of the homogeneous
model, i.e. constant subgrid eddy viscosity, to non-uniform shear turbulence is
reasonable when the flow can be considered to be locally homogeneous, and the
eddy viscosity is accepted as locally constant. In a large part of the wall shear layer,
the mean shear rates are small so that in the logarithm layer the mean shear rate is
proportional to 1/y+ and it is much smaller above the logarithm layer. Therefore,
the derivative of the mean shear rate is small and the local homogeneity can be
acceptable. In the near-wall region, the proposed new model has correct asymptotic
behaviour, i.e. νt ∝ y3, and it can be used in the wall shear layer without any damping
functions or wall models. The good predicted results from the present model in plane
Couette and channel flows indicate that local constant subgrid eddy viscosity, which
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Figure 11. Comparison of energy spectrum between DNS (1282 × 512) and LES.

is a function of the normal distance to the wall, is acceptable, at least for the attached
wall shear turbulence.

In rotating turbulence, the transformation property of the subgrid stress model
should be concerned between the inertial frame and the rotating frame (Horiuti 2006).
The present model is established for homogeneous rotating flow in a rotating frame
by use of an isotropic filter and it can be proved that the generalized Kolmogorov
equations for resolved scale turbulence of the homogeneous fluctuating motion are
the same in both inertial and rotational frames. Therefore, the present subgrid-
stress model satisfies the transformation property. In practice, some errors might be
introduced by any slightly non-isotropic operations in numerical computation, but the
errors are expected to be small, at least smaller than the modelling errors. To make
sure that the influence of the practical numerical method on LES results is negligible,
we compare the LES with DNS results at lower Renolds number Reλ = 50 and
rotating rate at 10 rad s−1. The comparison of energy spectrum is shown in figure 11
in which DNS is performed with grid number 1282 × 512 and LES is computed with
coarse grids. The rotation is switched on at t = 2k0/ε0 = 2 and the energy spectra
shown in figure 11 are at time t = 2k0/ε0 = 7 and 14, respectively. The results of the
LES are in good agreement with DNS.

In practical computation, the initial condition of velocity fluctuations is important
in DNS and LES. For the new model, we need approximately correct initial structure
functions, in particular (Diiknk)

S . Numerical computation with an improper initial
fluctuating field is bound to fail. There is no problem for homogeneous turbulence,
since the initial structure function is approximately correct if we use some well-
known spectrum as the initial condition, e.g. Comte-Bellot spectrum or von-Kármán
spectrum. During the time advancement, the spectrum will automatically evolve into
the correct spectrum. For the wall-bounded turbulence, we have already checked from
DNS and LES results that the skewness of the velocity increment, or the third-order
structure function, is negative across the channel (CZZS 2004). Various ways can be
applied to satisfy this condition in practical computation. One possible way is to use
the data bank of lower-Reynolds-number cases as the initial condition for higher-
Reynolds-flows in a channel with a non-dimensional correction. This is what we have
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Figure 12. Comparison of the statistical properties of turbulent plane Couette flow between
the new model and no model, Re = 3200, grid 32 × 64 × 32. (a) Mean velocity profiles.
(b) Reynolds stress profiles.

done in test cases for turbulent plane Couette and channel flows. Another way is to
start the computation by use of an easily accessible subgrid model, for instance the
Smagorinsky model, and the new model will be switched on when the turbulent flow
becomes nearly fully developed. We have tested this method and obtained results as
good as by the first method. There may be other ways in practice, since the initial
condition for LES, also in DNS, is a technical issue.

In numerical computation, the length 
 of the local average volume, equivalent
to the filter length, is equal to twice the mesh lengths h in the test cases. It has
been proved that 
/h = 2 is approximately optimum in numerical errors see (Geurts
2004; Pope 2004). For homogeneous rotating turbulence, the grid resolution depends
on the turbulent Rossby number rather than on the Reynolds number. For instance,
the 64 × 64 × 256 grids are adequate for Roω < 0.5 whereas 98 × 98 × 384 grids are
marginally adequate for Roω ≈ 0.2 (figures 3 and 4). As far as the wall turbulent
shear flows are concerned, higher spatial resolution is required in the wall-normal
direction than in the horizontal directions for adequate simulation of the near-wall
behaviours without wall model. For instance, 64 non-uniform grid points are enough
for channel flow at Re = 7000, whereas at least 96 non-uniform grid points are
required at Re = 10 000. The requirement of resolution in streamwise and spanwise
directions, i.e. in homogeneous directions, is not as serious as in normal direction, 32
uniform gird points are enough in LES, whereas at least 256 grid points are required
in DNS for Re = 7000 to 10 000. To check the effectiveness of the SGS stress in the
computation, the comparison of the the predicted results between the new model and
no model has been made (figures 12 and 13). The deviation of no model results is
obvious from the DNS results in the mean velocity profiles and the deviation is great
in the Reynolds stress.

The method used in derivation of subgrid eddy viscosity can be used to construct
subgrid eddy diffusivity for scalar turbulence. A local volume average Yaglom
equation is derived at first for filtered transportation equation of scalar turbulence,
and the subgrid eddy diffusivity can be obtained as follows

kt =
3(Drθθ )

Sr + 3γ r(n1n2Dθθ )
Sr

6
d(Dθθ )

Sr

dr
− 4

〈
∂θ̄

∂xk

∂θ̄

∂xk

〉Vr

r

, (5.1)
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Figure 13. Comparison of the statistical properties of turbulent channel flow between the new
model and no model, Re = 7000, grid 32 × 64 × 32. (a) Mean velocity profiles. (b) Reynolds
stress profiles.

in which Dθθ is structure function for scalar turbulence, i.e. the variance of scalar
increment, Drθθ = 〈(ur − u′

r )(θ − θ ′)2〉 is the mixed third-order structure function.
The application of new subgrid eddy diffusivity to homogeneous and wall-bounded
turbulent flows is in progress and will be published later.

As far as the computational cost is concerned, the new model a little requires
more computing time than the Smagorinsky model does but it costs much less than
the dynamic Smagorinsky model. In turbulent channel flow, the computation cost
is nearly 1:0.9:1.2 for the proposed new model, Smagorinsky model and dynamic
Smagorinsky model, respectively.

In summary, the inclusion of the correct transfer of turbulent kinetic energy
between resolved and unresolved scale turbulence is important in the construction of
the subgrid stress model for large-eddy simulation. It can be realized in anisotropic
turbulence by means of local volume-averaged generalized Kolmogorov equation for
resolved scale turbulence. The new model has been tested successfully in rotating
turbulence and wall-bounded turbulent flows.
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