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Laboratoire Amiénois de Mathématique Fondamentale et Appliquée,
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We study a one-dimensional non-local variant of Fisher’s equation describing the
spatial spread of a mutant in a given population, and its generalization to the
so-called monostable nonlinearity. The dispersion of the genetic characters is assumed
to follow a non-local diffusion law modelled by a convolution operator. We prove
that, as in the classical (local) problem, there exist travelling-wave solutions of
arbitrary speed beyond a critical value and also characterize the asymptotic
behaviour of such solutions at infinity. Our proofs rely on an appropriate version of
the maximum principle, qualitative properties of solutions and approximation
schemes leading to singular limits.

1. Introduction

In 1930, Fisher [8] suggested modelling the spatial spread of a mutant in a given
population by the reaction–diffusion equation

ut − ∆u = u(1 − u), (1.1)

where u represents the gene fraction of the mutant. Dispersion of the genetic char-
acters is assumed to follow a diffusion law, while the logistic term u(1 − u) takes
into account the saturation of this dispersion process.

Since then, much attention has been drawn to reaction–diffusion equations, as
they have proven to give a robust and accurate description of a wide variety of
phenomena, ranging from combustion to bacterial growth, nerve propagation or
epidemiology. We point the interested reader to [7,10,12] and their many references.

In this work, we consider a variant of (1.1), in which diffusion is modelled by a
convolution operator. Going back to the early work of Kolmogorov, Petrovsky and
Piskounov [11], dispersion of the gene fraction at point y ∈ R

n should affect the
gene fraction at x ∈ R

n by a factor J(x, y)u(y) dy, where J(x, ·) is a probability
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density. Restricting our study to a one-dimensional setting and assuming that such a
diffusion process depends only on the distance between two niches of the population,
we end up with the equation

ut − (J � u − u) = f(u), (1.2)

where J : R → R is a non-negative even function of mass 1 and for x ∈ R,

J � u(x) =
∫

R

J(x − y)u(y) dy.

More precisely, we assume in what follows that

J ∈ C1(R), J � 0, J(x) = J(−x),
∫

R

J = 1. (H1)

We make the additional technical assumption

∃λ > 0,

∫
R

J(x)eλx dx < +∞. (H2)

For example, (H2) is satisfied if J has compact support or if J(x) = (1/2λ)e−λ|x|

for some λ > 0.
The nonlinearity f in (1.2) can be chosen more generally than in equation (1.1).

In the literature, three types of nonlinearities appear, according to the underlying
application: we always assume that f ∈ C1(R), f(0) = f(1) = 0, f ′(1) < 0 and

(i) we say that f is of bistable type if there exists θ ∈ (0, 1) such that

f < 0 ∈ (0, θ), f(θ) = 0 and f > 0 ∈ (θ, 1),

(ii) f is of ignition type if there exists θ ∈ (0, 1) such that

f |[0,θ] ≡ 0, f |(θ,1) > 0 and f(1) = 0,

(iii) f is of monostable type if

f > 0 ∈ (0, 1).

In this paper, we will focus on the monostable nonlinearity. Observe that equa-
tion (1.1) falls in this case.

Equation (1.1) can also be seen as a first-order approximation of (1.2). Indeed if
any given niche of the species is assumed to interact mostly with close-by neigh-
bours, the diffusion term is of the form

Jε(x) :=
1
ε
J

(
1
ε
x

)
,
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where J is compactly supported and ε > 0 is small. We then have

Jε � u − u =
1
ε

∫
J

(
1
ε
y

)
(u(x − y) − u(x)) dy

=
∫

J(z)(u(x − εz) − u(x)) dz

= −ε

∫
J(z)u′(x)z dz + 1

2ε2
∫

z2J(z)u′′(x) dz + o(ε2)

= cε2u′′(x) + o(ε2),

where we have used the fact that J is even in the last equality.
We observe that equation (1.2) can be related to a class of problems studied

in [14, 15]. However, our approach differs in at least two ways. Firstly, from the
technical point of view, inverting the operator u → ut−(J �u−u) in any reasonable
space yields no a priori regularity property on the solution u and the compactness
assumptions made in [14] no longer hold in our case.

Secondly, whereas Weinberger favoured discrete models over continuous ones to
describe the dynamics of certain populations, we remain interested in the latter. In
particular, we have in mind the following application to adaptive dynamics: in [9],
the authors study a probabilistic model describing the microscopic behaviour of
the evolution of genetic traits in a population subject to mutation and selection.
Averaging over a large number of individuals in the initial state, they derive in the
limit a deterministic equation, a special case of which can be written as

∂tu = [J � u − u] + (1 − K � u)u, (1.3)

where J(x) is a kernel taking into account mutation about trait x and K(x) is a
competition kernel, measuring the ‘intensity’ of the interaction between x and y.
Taking K(x) = δ, we recover equation (1.2) as a special case of (1.3).

The aim of this article is the study of so-called travelling-wave solutions of equa-
tion (1.2) i.e. solutions of the form

u(x, t) = U(x + ct),

where c ∈ R is the wave speed and U is the wave profile, which is required to solve
the equation

[J � U − U ] − cU ′ + f(U) = 0 in R,

U(−∞) = 0,

U(+∞) = 1,

⎫⎪⎬
⎪⎭ (1.4)

where U(±∞) denotes the limit of U(x) as x → ±∞.
Such solutions are expected to give the asymptotic behaviour in large time for

solutions of (1.2) with, say, compactly supported initial data: in the Fisher equation,
this is equivalent to saying that the mutant propagates (after some time) at constant
speed and along the profile U . It is therefore of interest to prove the existence of
such solutions.

The first results in this direction are due to Schumacher [13], who considered the
monostable nonlinearity, under the extra assumption that f(r) � h0r −Kr1+α, for
some h0, K, α > 0 and all r ∈ [0, 1]. In this case, his results imply the existence of
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travelling waves with arbitrary speed c � c∗, where c∗ is the smallest c ∈ R such
that ρc : R → R, defined by

ρc(λ) = −λc +
∫

J(z)eλz dz − 1 + f ′(0),

vanishes for some λ > 0. Observe from assumption (H1) that∫
J(z)eλz =

∫
J(z)e−λz.

So finding λ > 0 such that ρc(λ) = 0 amounts to looking for an explicit solution of
the form v(x) = eλx of the equation

J � v − v − cv′ + f ′(0)v = 0,

obtained by linearizing (1.4) near x = −∞. v then yields the expected asymptotic
decay near x = −∞ of solutions of (1.4).

Finally, if c > c∗ and under some extra assumptions on f , Schumacher shows
that the profile U of the associated travelling wave is unique up to translation.

Recently, Carr and Chmaj [3] completed the work of Schumacher. For the ‘KPP’
nonlinearity (i.e. if f is monostable and f(r) � f ′(0)r for all r ∈ [0, 1]) and if J has
compact support, they show that the above uniqueness result can be extended to
c = c∗.

Concerning the bistable nonlinearity, Bates et al . [1] and Chen [4] showed that
there exists an increasing travelling wave U with speed c solving (1.4). Furthermore,
if V is another non-decreasing travelling wave with speed c′, then c = c′ and V (x) =
U(x + τ) for some τ ∈ R.

Coville [5] then looked at the case of ignition nonlinearities and proved again the
existence and uniqueness (up to translation) of an increasing travelling wave (U, c).
Coville also obtained the existence of at least one travelling-wave solution in the
monostable case.

Our first theorem extends some of the aforementioned results of Schumacher to
the general monostable case.

Theorem 1.1. Assume that (H1) and (H2) hold and assume that f is of mono-
stable type. There then exists a constant c∗ > 0 (the minimal speed of the travelling
wave) such that, for all c � c∗, there exists an increasing solution U ∈ C1(R)
of (1.4), while no non-decreasing travelling wave of speed c < c∗ exists.

Our second result extends previous work of Coville [5] regarding the behaviour
of the travelling front U near ±∞.

Proposition 1.2. Assume that (H1) and (H2) hold. Then, given any travelling-
wave solution (U, c) of (1.4) with f monostable, the following assertions hold.

(i) There exist positive constants A, B, M , λ0 and δ0 such that

Be−δ0y � 1 − U(y) � Ae−λ0y for y � M.

(ii) If f ′(0) > 0, then there exist positive constants K, N and λ1 such that

U(y) � Keλ1y for y � −N.
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The first point is an easy consequence of a similar result when f is of bistable or
ignition type, proved in [5].

Regarding theorem 1.1, our proof is based on the study of two auxiliary problems
and the construction of adequate super and subsolutions. We work in three steps.

We start by showing existence and uniqueness of a solution for

Lu + f(u) = −hr(x) in Ω,

u(−r) = θ,

u(+∞) = 1,

⎫⎪⎬
⎪⎭ (1.5)

where, given ε > 0, r ∈ R, c ∈ R and θ ∈ (0, 1),

Ω = (−r, +∞), (1.6)

Lu = L(ε, r, c)u = εu′′ +
[ ∫ +∞

−r

J(x − y)u(y) dy − u

]
− cu′, (1.7)

hr(x) = θ

∫ −r

−∞
J(x − y) dy. (1.8)

The existence is obtained via an iterative scheme using a comparison principle
and appropriate sub- and supersolutions.

In the second step, with a standard limiting procedure (as r → +∞), we prove
theorem 1.1 for the problem

Mu + f(u) = 0 in R,

u(−∞) = 0,

u(+∞) = 1,

⎫⎪⎬
⎪⎭ (1.9)

where, given ε > 0, c ∈ R,

Mu = M(ε, c)u = εu′′ + [J � u − u] − cu′. (1.10)

We stress the fact that, unlike (1.5), (1.9) does not have an (increasing and smooth)
solution u for arbitrary values of c ∈ R.

Finally, in the last step we send ε → 0 and extract converging subsequences.
Though elementary in nature, the proofs require a number of lemmas, which

we list and prove in the appendix. We construct sub- and supersolutions for (1.5)
and (1.9) in § 2. After obtaining some useful a priori estimates in § 3, we prove
existence and uniqueness of solutions of (1.5) in § 4. In § 5, we show the existence of
a speed c∗(ε) > 0 such that (1.9) admits a solution for every c � c∗(ε). We complete
the proof of theorem 1.1 in § 6. Section 7 is devoted to the proof of proposition 1.2.

2. Existence of sub- and supersolutions

We start with the construction of a supersolution of (1.9) for speeds c � κ̄(ε) for
some κ̄(ε) > 0.
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Lemma 2.1. Let ε > 0. There exists a real number κ̄(ε) > 0 and an increasing
function w̄ ∈ C2(R) such that, given any c � κ̄(ε),

Mw̄ + f(w̄) � 0 in R,

w̄(−∞) = 0,

w̄(+∞) = 1,

where M = M(ε, c) is defined by (1.10). Furthermore, w̄(0) = 1
2 .

Proof. Fix positive constants N , λ, δ such that λ > δ and (H2) holds.
Let w̄ ∈ C2(R) be a positive increasing function satisfying

(i) w̄(x) = eλx for x ∈ (−∞,−N ],

(ii) w̄(x) � eλx on R,

(iii) w̄(x) = 1 − e−δx for x ∈ [N, +∞),

(iv) w̄(0) = 1
2 .

Let x0 = e−λN and x1 = 1 − e−δN . We have 0 < x0 < x1 < 1.
We now construct a positive function g defined on (0, 1) which satisfies g(w̄) �

f(w̄). Since f is smooth near 0 and 1, for c large enough, say c � κ0, we have

(c − λ)s � f(s) for s ∈ [0, x0] (2.1)

and

δ(c − δ)(1 − s) � f(s) for s ∈ [x1, 1]. (2.2)

Therefore, we can obtain g(s) � f(s) for s in [0, 1], with g defined by

g(s) =

⎧⎪⎨
⎪⎩

λ(κ0 − λ)s for 0 � s � x0,

l(s) for x0 < s < x1,

δ(κ0 − δ)(1 − s) for x1 � s � 1.

(2.3)

where l is any smooth positive function greater than f on [x0, x1] such that g is of
class C1.

According to (2.3), for x � −N , i.e. for w � e−λN , we have

Mw̄ + g(w̄) = εw̄′′ + J � w̄ − w̄ − cw̄′ + g(w̄)

= ελ2eλx + J � w̄ − eλx − λceλx + λ(κ0 − λ)eλx

� ελ2eλx + J � eλx − eλx − λceλx + λ(κ0 − λ)eλx

� eλx

[ ∫
R

J(z)eλz dz − 1 − λ(c − κ0) − λ2(1 − ε)
]

� 0,

for c large enough, say

c � κ1 =
1
λ

∫
R

J(z)eλz dz − 1 + λκ0 − λ2(1 − ε).
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Furthermore, for w̄ � 1 − e−δN we have

Mw̄ + g(w̄) = εw̄′′ + J � w̄ − w̄ − cw̄′ + g(w̄)

= εδ2e−δx + J � w̄ − (1 − e−δx) − δce−δx + δ(κ0 − δ)e−δx

� εδ2e−δx + 1 − 1 + e−δx − δce−δx + δ(κ0 − δ)e−δx

� e−δx[1 − δ(c − κ0) − δ2(1 − ε)]
� 0,

for c large enough, say

c � κ2 =
1 + δκ0 − δ2(1 − ε)

δ
.

Thus, by taking c � sup{κ0, κ1, κ2}, we obtain

g(w̄) � f(w̄), J � w̄ − w̄ − cw̄′ + g(w̄) � 0 for 0 � w̄ � e−λN , w̄ � 1 − e−δN .

For the remaining values of w̄, i.e. for x ∈ [−N, N ], w̄′ > 0 and we may increase c
further if necessary, to obtain

εw̄′′ + J � w̄ − w̄ − cw̄′ + g(w̄) � 0 in R. (2.4)

The result follows for

κ̄(ε) := sup{κ0, κ1, κ2, κ3},

where

κ3 = sup
x∈[−N,N ]

{
ε|w̄′′| + |J � w̄ − w̄| + g(w̄)

w̄′

}
.

Remark 2.2. κ̄(ε) is a non-decreasing function of ε.

Remark 2.3. Observe that, given any r ∈ R, for c � κ̄(ε), w̄ also satisfies

Lw̄ + f(w̄) � 0 in Ω,

w̄(−r) � 0,

w̄(+∞) = 1,

⎫⎪⎬
⎪⎭ (2.5)

where L = L(ε, c, r) is defined by (1.7).

Next, we construct sub- and supersolutions of (1.5).

Remark 2.4. Let ε � 0, r ∈ R, c ∈ R and θ ∈ (0, 1). Then the constant functions
u
¯

= θ and ū = 1 are respectively a subsolution and a supersolution of problem (1.5),
i.e.

Lu
¯

+ f(u
¯
) � −hr(x) in Ω (respectively Lū + f(ū) � −hr(x) in Ω),

u
¯
(−r) � θ (respectively ū(−r) � θ),

u
¯
(+∞) � 1 (respectively ū(+∞) � 1).
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We now construct a subsolution of (1.5) satisfying stronger conditions on the
boundary of Ω.

Lemma 2.5. Let ε > 0, r ∈ R and θ ∈ (0, 1). There exists κ
¯

(ε) ∈ R and an
increasing function w

¯
∈ C2(R) such that, given any c � κ

¯
(ε),

Lw
¯

+ f(w
¯

) � −hr(x) in Ω,

w
¯

(−r) = θ,

w
¯

(+∞) = 1.

Proof. Let fb be a smooth bistable function (i.e. fb(0) = fb(1) = 0 and ∃θ ∈ (0, 1)
such that fb < 0 ∈ (0, θ), fb(θ) = 0 and fb > 0 ∈ (θ, 1)) such that fb � f and∫ 1

0
fb(s) ds > 0.

Let (ub, cb) denote the unique (up to translation) increasing solution of (1.9) with
fb instead of f . Such a solution exists (see [1] for details). Moreover, cb > 0.
Using the translation invariance of (1.9), one can easily show that, for any c � cb,
uτ

b := ub( · + τ) is a subsolution of (1.5) for some τ ∈ R. Indeed, choose τ such that
uτ

b(−r) = θ.
Since uτ

b is increasing, we have

hr(x) = θ

∫ −r

−∞
J(x − y) dy �

∫ −r

−∞
J(x − y)uτ

b(y) dy.

A simple computation shows that

Luτ
b + hr(x) + f(uτ

b) � Luτ
b +

∫ −r

−∞
J(x − y)uτ

b(y) dy + fb(uτ
b) in Ω

� Muτ
b + fb(uτ

b) = (cb − c)(uτ
b)′ in Ω.

Hence, for c � cb,

Luτ
b + hr(x) + f(uτ

b) � (cb − c)(uτ
b)′ � 0 in Ω,

uτ
b(−r) = θ,

uτ
b(+∞) = 1.

3. L2 estimates

In this section, we obtain L2 estimates for solutions u of the problems (1.5) and
(1.9).

3.1. L2 estimates for solutions of (1.9)

Lemma 3.1. Assume that ε > 0 and c ∈ R and let u be a smooth increasing solution
of (1.9). Then

(i) u′, u′′ ∈ L2(R),

(ii) 1 − u ∈ L2(R+).
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Proof of lemma 3.1. Let u be a smooth increasing solution of (1.9). We start out
by showing that u′ and u′′ vanish at infinity. We restrict our proof to the case when
u′(+∞) = 0, the other cases, u′(−∞) = 0 and u′′(±∞) = 0, being similar.

Assume by contradiction that there exists an increasing sequence (xp)p∈N con-
verging to +∞ and α > 0 such that

u′(xp) � α ∀p ∈ N. (3.1)

Let (up)p∈N be defined by

up(x) := u(x + xp) for x ∈ R.

Clearly, up solves (1.9) and 0 � up � 1. By definition of (up)p∈N, on every compact
set we have

lim
p→+∞

up(x) ≡ 1.

Since up satisfies (1.9), using standard elliptic estimates, up → 1 in C2,β
loc . In par-

ticular, up → 1 in C2,β(−1, 1) and u′
p(0) → 0 as p → +∞. Now, using (3.1), we

have
0 < α � u′(xp) = u′

p(0) → 0,

which is our desired contradiction.
We show next that f(u) ∈ L1(R). Integrating (1.9) over (−r, r) leads to

ε(u′(r) − u′(−r)) +
∫ r

−r

(J � u − u) dx − c(u(r) − u(−r)) = −
∫ +r

−r

f(u).

Assume for the moment that J � u − u ∈ L1(R). Then we can pass to the limit
as r → +∞ in the above expression. So we get∫ +∞

−∞
(J � u − u) dx − c = −

∫ +∞

−∞
f(u).

Therefore, f(u) ∈ L1(R), provided that J � u − u ∈ L1(R).

Claim 3.2. J � u − u ∈ L1(R). Moreover,

‖J � u − u‖L1 �
∫

R

J(z)|z| dz and
∫

R

(J � u − u) = 0.

Proof of claim. Clearly,∫ r

−r

|(J � u − u)| �
∫ r

−r

∫
R

J(x − y)|u(y) − u(x)| dy dx. (3.2)

Using the change of variable in y, z := y − x, (3.2) becomes∫ r

−r

|(J � u − u)| �
∫ r

−r

∫
R

J(z)|u(x + z) − u(x)| dz dx. (3.3)

Since u ∈ C1(R),

|u(x + z) − u(x)| = |z|
∫ 1

0
u′(x + sz) ds.
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Plug this equality into (3.3) to obtain∫ r

−r

∫
R

J(z)|u(x + z) − u(x)| dy dx =
∫ r

−r

∫
R

J(z)|z|
∫ 1

0
u′(x + sz) ds dxdx. (3.4)

Since all terms are positive, using Tonnelli’s theorem, we can permute the order
of integration and obtain∫ r

−r

∫
R

J(z)|z|
∫ 1

0
u′(x + sz) ds dz dx

=
∫

R

J(z)|z|
∫ r

−r

∫ 1

0
u′(x + sz) ds dxdz

=
∫ 1

0

∫
R

J(z)|z|[u(r + sz) − u(−r + sz)] dz ds.

Hence,∫ r

−r

∣∣∣∣
∫

R

J(x − y)(u(y) − u(x)) dy

∣∣∣∣ dx �
∫ 1

0

∫
R

J(z)|z|[u(r + sz) − u(−r + sz)] dz ds.

Now, using Lebesgue dominated convergence, we can pass to the limit in the above
expression to get

‖J � u − u‖L1 �
∫

R

J(z)|z| dz. (3.5)

Let us now compute
∫

R
(J � u − u) dx. Since J is symmetric, we have∫

R

(J � u − u) dx =
∫

R2
J(x − y)(u(y) − u(x)) dy dx

=
∫

R2
J(y − x)(u(y) − u(x)) dy dx

=
∫

R2
J(x − y)(u(x) − u(y)) dy dx.

Hence,

2
∫

R2
J(x − y)(u(y) − u(x)) dy dx = 0.

We now prove (i). Multiplying (1.9) by u and integrating over R yields

ε

∫
R

u′′u +
∫

R

(J � u − u)u − c

∫
R

u′u = −
∫

R

f(u)u.

Integrating the first term by parts yields

−ε

∫
R

(u′)2 +
∫

R

(J � u − u)u − 1
2c = −

∫
R

f(u)u.

Since u is bounded and f(u), J � u − u ∈ L1, we conclude that u′ ∈ L2.
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We obtain u′′ ∈ L2 similarly. Indeed, on multiplying (1.9) by u′′ and integrating
over R we get

ε

∫
R

(u′′)2 +
∫

R

(J � u − u)u′′ − c

∫
R

u′u′′ =
∫

R

f(u)u′′.

Integration by parts and uniform bounds yield

ε

∫
R

(u′′)2 = −
∫

R

(J � u − u)u′′ −
∫

R

f(u)u′′ (3.6)

=
∫

R

(J � u′ − u′)u′ +
∫

R

f ′(u)(u′)2 (3.7)

� C0

∫
R

u′ + C1‖u′‖2
L2(R), (3.8)

where C0 and C1 are positive constants. This ends the proof of (i).
We can now show that 1 − u ∈ L2(R+). Again multiplying (1.9) by 1 − u and

integrating over R yields

ε

∫
R

(u′)2 −
∫

R

(J � u − u)u − c/2 +
∫

R

f(u)(1 − u) = 0.

Now using claim 3.2 and choosing R so large that f(u) � 1
2 |f ′(1)|(1−u) on [R, ∞),

we obtain

1
2 |f ′(1)|

∫ ∞

R

(1 − u)2 �
∫ ∞

−∞
f(u)(1 − u) � C(‖u′‖2

L2(R) + 1) < ∞, (3.9)

which proves (ii).

Remark 3.3. Note that these estimates easily extend to solutions of a bistable
problem.

Finally, we obtain some useful L2 estimates on J � u − u. Namely, we have the
following lemma.

Lemma 3.4.
‖J � u − u‖L2 � C‖u′‖L2 .

Proof. Using the fundamental theorem of calculus, we have∫ +∞

−∞
J(x − y)u(y) dy − u(x) =

∫ +∞

−∞
J(x − y)(u(y) − u(x)) dy

=
∫ +∞

−∞
J(z)z

( ∫ 1

0
u′(x + tz) dt

)
dz.

By the Cauchy–Schwarz inequality, it follows that∣∣∣∣
∫ +∞

−∞
J(x − y)u(y) dy − u(x)

∣∣∣∣
2

=
( ∫ +∞

−∞
J(z)z

( ∫ 1

0
u′(x + tz) dt

)
dz

)2
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� C

[ ∫ +∞

−∞

∫ 1

0
J(z)|z|(u′)2(x + tz) dt dz

∫ +∞

−∞
J(z)|z| dz

]

� C ′
[ ∫ +∞

−∞

∫ 1

0
J(z)|z|(u′)2(x + tz) dt dz

]
.

Hence, using Tonnelli’s theorem and a standard change of variables,∫ +∞

−∞

∣∣∣∣
∫ +∞

−∞
J(x − y)u(y) dy − u(x)

∣∣∣∣
2

dx

� C ′
[ ∫ +∞

−∞

∫ +∞

−∞

∫ 1

0
J(z)|z|(u′)2(x + tz) dt dz dx

]

� C ′′
∫ +∞

−∞
(u′)2(s) ds.

Remark 3.5. Lemmas 3.1 and 3.4 imply that f(u) ∈ L2(R).

3.2. L2 estimates for solutions of (1.5)

Lemma 3.6. Let ε > 0, r ∈ R, c ∈ R and θ ∈ (0, 1). Let u be a smooth non-
decreasing solution of (1.5). Then

(i) u′, u′′ ∈ L2(Ω),

(ii) 1 − u ∈ L2(R+ ∩ Ω).

Proof. By following the lines of the proof of lemma 3.1, one can easily show that
u′(+∞) = u′′(+∞) = 0.

Next we show that f(u) ∈ L1(Ω). Integrating (1.5) over (−r, R) leads to

ε(u′(R) − u′(−r)) +
∫ R

−r

( ∫ +∞

−r

J(x − y)u(y) dy − u(x)
)

dx − c(u(R) − u(−r))

= −
∫ R

−r

(f(u) − hr(x)) dx.

Assume for the moment that∫ +∞

−r

J(x − y)u(y) dy − u

and hr(x) are in L1(Ω). Then, passing to the limit as R → +∞, we deduce that
f(u) ∈ L1(Ω). It remains to prove the following claim.

Claim 3.7. ∫ +∞

−r

J(x − y)u(y) dy − u

and hr(x) are in L1(Ω).
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Proof. Start with hr(x). By definition of hr(x), one has

hr(x) = θ

∫ −r−x

−∞
J(z) dz =: θj(x).

Since J � 0 and satisfies (H2), a simple computation shows that, for some λ > 0,

|j(x)| =
∫ −r−x

−∞
J(z) dz � e−λ(r+x)

∫
R

J(z)e−λz dz � Ke−λ(r+x) ∈ L1(Ω). (3.10)

Now, let us prove that∫ +∞

−r

J(x − y)u(y) dy − u ∈ L1(Ω).

Since u is smooth, using uniform bounds and the fundamental theorem of calcu-
lus, we have∣∣∣∣

∫ +∞

−r

J(x − y)u(y) dy − u(x)
∣∣∣∣

=
∣∣∣∣
∫ +∞

−r

J(x − y)(u(y) − u(x)) dy − u(x)
∫ −r

−∞
J(x − y) dy

∣∣∣∣
�

∣∣∣∣
∫ +∞

−r−x

J(z)(u(x + z) − u(x)) dz

∣∣∣∣ + u(x)
∫ −r−x

−∞
J(z) dz

�
∫ +∞

−r−x

J(z)|z|
( ∫ 1

0
u′(x + tz) dt

)
dz + j(x).

Since j ∈ L1(Ω), we need to prove only that

Γ (x) :=
∫ +∞

−r−x

J(z)|z|
( ∫ 1

0
u′(x + tz) dt

)
dz ∈ L1(Ω).

Integrating Γ over (−r, R) yields∫ R

−r

Γ (x) dx =
∫ R

−r

∫ +∞

−r−x

J(z)|z|
∫ 1

0
u′(x + tz) dt dz dx

=
∫ R

−r

∫ +∞

0
J(z)|z|

∫ 1

0
u′(x + tz) dt dz dx

+
∫ R

−r

∫ 0

−r−x

J(z)|z|
∫ 1

0
u′(x + tz) dt dz dx.

Using Tonnelli’s theorem, we end up with

∫ R

−r

Γ (x) dx =
∫ 1

0

∫ +∞

0
J(z)|z|

( ∫ R

−r

u′(x + tz) dx

)
dz dt

+
∫ 1

0

∫ 0

−r−R

J(z)|z|
( ∫ R

−r−z

u′(x + tz) dx

)
dz dt.
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Hence, we obtain

∫ R

−r

Γ (x) dx =
∫ 1

0

∫ +∞

0
J(z)|z|[u(R + tz) − u(−r + tz)] dz dt

+
∫ 1

0

∫ 0

−r−R

J(z)|z|[u(R + tz) − u(−r + (t − 1)z)] dz dt.

Since 0 � u � 1, we end up with∫ R

−r

Γ (x) dx � 2
∫ +∞

−∞
J(z)|z| dz,

which shows that Γ ∈ L1(Ω).

To obtain (iii) and (iv), we can then follow the proof of lemma 3.1.

Finally, we obtain some useful L2 estimates on∫ +∞

−r

J(x − y)u(y) dy − u.

More precisely we have the following lemma.

Lemma 3.8. ∫ +∞

−r

J(x − y)u(y) dy − u ∈ L2(Ω).

Moreover,∥∥∥∥
∫ +∞

−r

J(x − y)u(y) dy − u

∥∥∥∥
L2(Ω)

� C(‖u′‖L2(Ω) + ‖j‖L2(Ω)),

where

j(x) :=
∫ −r−x

−∞
J(z) dz.

Proof. Again, using the fundamental theorem of calculus, we have∫ +∞

−r

J(x − y)u(y) dy − u(x) =
∫ +∞

−r−x

J(z)z
( ∫ 1

0
u′(x + tz) dt

)
dz − u(x)j(x).

By the Young and the Cauchy–Schwarz inequalities, it follows that∣∣∣∣
∫ +∞

−r

J(x − y)u(y) dy − u(x)
∣∣∣∣
2

� 2
[( ∫ +∞

−r−x

J(z)z
( ∫ 1

0
u′(x + tz) dt

)
dz

)2

+ u2j2
]

� 2
[ ∫ +∞

−r−x

∫ 1

0
J(z)|z|(u′)2(x + tz) dt dz ·

∫ +∞

−r−x

J(z)|z| dz + u2j2
]

� C

[ ∫ +∞

−r−x

∫ 1

0
J(z)|z|(u′)2(x + tz) dt dz + u2j2

]
.
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Define

Γ1(x) :=
∫ +∞

−r−x

∫ 1

0
J(z)|z|(u′)2(x + tz) dt dz.

We then have ∣∣∣∣
∫ +∞

−r

J(x − y)u(y) dy − u(x)
∣∣∣∣
2

� C[Γ1(x) + j2(x)].

By (3.10), j ∈ L2(Ω). Therefore, to complete the proof, it remains to show that
Γ1 is in L1(Ω) and satisfies

‖Γ1‖L1(Ω) � C‖u′‖2
L2(Ω). (3.11)

Using Tonelli’s theorem,

∫ R

−r

Γ1(x) dx =
∫ +∞

0
J(z)|z|

( ∫ R

−r

∫ 1

0
(u′)2(x + tz) dt dx

)
dz

+
∫ 0

−r−R

J(z)|z|
( ∫ R

−r−z

∫ 1

0
(u′)2(x + tz) dt dx

)
dz.

Using a standard change of variables we get

∫ R

−r

Γ1(x) dx =
∫ +∞

0
J(z)|z|

( ∫ 1

0

∫ R+tz

−r+tz

(u′)2(s) ds dt

)
dz

+
∫ 0

−r−R

J(z)|z|
( ∫ 1

0

∫ R+tz

−r+(t−1)z
(u′)2(s) ds dt

)
dz.

Since u′ ∈ L2(Ω), we then have

∫ R

−r

Γ1(x) dx �
∫ +∞

0
J(z)|z|

( ∫ 1

0

∫ +∞

−r

(u′)2(s) ds dt

)
dz

+
∫ 0

−r−R

J(z)|z|
( ∫ 1

0

∫ +∞

−r

(u′)2(s) ds dt

)
dz.

Hence, ∫ +∞

−r

Γ1(x) dx �
( ∫ +∞

−∞
J(z)|z| dz

)
‖u′‖2

L2(Ω),

which is the desired conclusion.

4. Construction of a solution of (1.5)

In this section, we show that for any fixed r > 0, c ∈ R, ε > 0 and for any θ ∈ (0, 1)
there exists a unique increasing solution ur of problem (1.5). More precisely, we
show the following result.

Theorem 4.1. Let ε > 0, r > 0, c ∈ R and θ ∈ (0, 1). There then exists a unique
smooth increasing solution of (1.5).

We prove only the existence; for the proof of uniqueness see [5].
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4.1. Preliminaries

Let G be a smooth non-decreasing function such that G(−r) = θ, LG ∈ L2(Ω)
and 1 − G ∈ L2(Ω). For λ > 0, define

Tλ,r : C0(Ω) ∩ L2(Ω) → C0(Ω) ∩ L2(Ω),
v 	→ z,

where z is the unique solution of

Lz − λz = F (v, x) in Ω,

z(−r) = 0,

z(+∞) = 0,

⎫⎪⎬
⎪⎭ (4.1)

where F (v, x) = −f(v + G) − λv − LG − hr(x). Using lemma A.4, to prove that z
is well-defined, it is sufficient to show that

v ∈ L2(Ω) ∩ C0(Ω) =⇒ F (v, x) ∈ L2(Ω) ∩ C0(Ω).

By definition of G, LG ∈ L2(Ω). By (3.10), hr ∈ L2(Ω). So we are left to prove
that f(v + G) ∈ L2(Ω).

Given v ∈ L2(Ω) ∩ C0(Ω), since f(1) = 0 and 1 − G ∈ L2(Ω),

|f(v + G)| � ‖f ′‖∞|v + G − 1| ∈ L2(Ω) and lim
+∞

f(v + G) = 0.

Hence, f(v + G) ∈ L2(Ω) ∩ C0(Ω).

4.2. Iteration procedure

We claim that there exists a sequence of functions (un)n∈N satisfying

u0 = G and, for n ∈ N \ {0},

Lun+1 − λun+1 = −f(un) − λun − hr(x) in Ω,

un+1(−r) = θ,

un+1(+∞) = 1.

⎫⎪⎬
⎪⎭ (4.2)

We proceed as follows. Using the substitution vn = un − G, (4.2) reduces to

Lvn+1 − λvn+1 = F (vn, x) in Ω,

vn+1(−r) = 0,

vn+1(+∞) = 0,

⎫⎪⎬
⎪⎭ (4.3)

where F (v, x) = −f(v + G) − λv − LG − hr(x). Therefore, we want vn+1 = Tλ,rvn.
Using § 4.1 and induction, the sequence (vn)n∈N is well defined provided that v0 ∈
L2(Ω) ∩ C0(Ω). This is trivial since v0 = 0.

Remark 4.2. Observe that if u0 is a supersolution (respectively, a subsolution)
of (1.5) and if λ is chosen so large that −f − λ is non-increasing, the maximum
principle (theorem A.2) implies that (un)n∈N is non-increasing (respectively, non-
decreasing).
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4.3. Passing to the limit as n → ∞
Assume that u0 is either a supersolution or a subsolution satisfying θ � u0 � 1.

Recall that the constants θ and 1 are respectively a subsolution and a supersolution
of (1.5).

It follows easily by induction and the maximum principle (theorem A.2) that, for
all n ∈ N,

θ � un � 1. (4.4)

Choosing λ > 0 so large that −f − λ is non-increasing, we prove next by induction
that, given n ∈ N,

x → un(x) is a non-decreasing function. (4.5)

First define

ũn(x) :=

{
θ if x ∈ R \ Ω,

un(x) if x ∈ Ω.

We prove that ũn is non-decreasing, which implies (4.5). Observe that ũn+1 solves

Mũn+1 − λũn+1 = −(f + λ)(ũn(x)) in Ω,

ũn+1(−r) = θ,

ũn+1(+∞) = 1.

⎫⎪⎬
⎪⎭ (4.6)

For n = 0, we already know that ũ0 is non-decreasing. Now fix n � 1 and assume
that ũn−1 is non-decreasing. Also, given any positive τ , let w(x) = ũn(x+τ)−ũn(x).
It follows from (4.6) and the assumption that ũn−1 and f + λ are non-decreasing
that

Mw − λw � 0 in Ω, (4.7)
w(x) � 0 for x ∈ R \ Ω, (4.8)

w(+∞) = 0, (4.9)

whence by the maximum principle, w � 0. In particular, ũn(x + τ) − ũn(x) � 0 for
any positive τ . This shows that ũn is non-decreasing.

Using remark 4.2 and the assumption on u0, the sequence (un)n∈N is mono-
tone. Hence, using (4.4), (4.5) and Helly’s lemma, it follows that (un)n∈N converges
pointwise to a non-decreasing function u satisfying

θ � u � 1.

By the dominated convergence theorem, for all x ∈ Ω we have∫ +∞

−r

J(x − y)un(y) dy − un(x) →
∫ +∞

−r

J(x − y)u(y) dy − u(x) as n → ∞.

Rewriting (4.2) as

εu′′
n+1 − cu′

n+1 = un+1 −
∫ +∞

−r

J(x − y)un+1(y) dy − λ(un − un+1) − f(un) − hr(x),

(4.10)
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observing that the right-hand side of the above equation is uniformly bounded
and using elliptic regularity, we conclude that (un)n∈N is bounded e.g. in C1,α(ω),
where α ∈ (0, 1) and ω is an arbitrary bounded open subset of Ω. Bootstrapping
the argument implies that (un)n∈N is bounded in C2,α(ω). Hence, u ∈ C2(Ω) and
we can pass to the limit in the equation to obtain that u solves

Lu + f(u) + hr(x) = 0 in Ω. (4.11)

Observing that un(−r) = θ and that (un)n∈N converges pointwise to u, we easily
conclude that u(−r) = θ.

To complete the construction of the solution, we prove that u(+∞) = 1. Indeed,
since u is uniformly bounded and non-decreasing, u achieves its limit at +∞. Using
lemma 3.6, u′(+∞) = u′′(+∞) = 0. It follows from (4.11) that f(u(+∞)) = 0.
Hence, u(+∞) = 1. We have thus constructed an increasing solution u of (1.5),
provided we have an adequate sub- or supersolution u0 of (1.5).

Remark 4.3. In the case where u0 is a subsolution of (1.5), one has

u0 � u � 1.

Hence, u(+∞) = 1 is a direct consequence of u0(+∞) = 1.

The construction of a non-decreasing solution of (1.5) is now reduced to finding
a good sub- or supersolution u0 satisfying u0(−r) = θ, Lu0 ∈ L2(Ω) and 1 − u0 ∈
L2(Ω) for fixed r > 0, θ ∈ (0, 1), ε > 0 and c ∈ R.

4.4. Construction of a solution of (1.5) for c � κ
¯
(ε)

Assume that r > 0, θ ∈ (0, 1), ε > 0 are fixed and let c � κ
¯
(ε), where κ

¯
(ε) is

given by lemma 2.5. Recall that w
¯

given by lemma 2.5 is a subsolution of (1.5),
with c � κ

¯
(ε).

Using lemmas 3.1–3.4 and remark 3.3 yields

w
¯

′′, w
¯

′, (J � w
¯

− w
¯
) ∈ L2(R) and 1 − w

¯
∈ L2(R+).

Hence,

|Lw
¯
| � ε|w

¯
′′| + |cw

¯
′| +

∣∣∣∣
∫ +∞

−∞
J(x − y)w

¯
(y) dy − w

¯

∣∣∣∣ ∈ L2(Ω).

We then apply the previous subsection with u0 = w
¯

to obtain a non-decreasing
solution of (1.5) for c � κ

¯
(ε).

4.5. Construction of a solution for c > κ
¯
(ε)

To obtain solutions for c > κ
¯
(ε), we argue as follows. Assume, as in the previous

subsection, that r > 0, θ ∈ (0, 1), ε > 0 are fixed and choose c > κ
¯
(ε).

Let us be the smooth non-decreasing solution of (1.5) obtained with c = κ
¯
(ε).

Since c > κ
¯
(ε) and us is increasing, us is a supersolution of (1.5) with speed c. By

construction, we have us � θ and θ is a subsolution of (1.5). Therefore, to obtain
a solution of (1.5), it is sufficient to prove that Lus ∈ L2(Ω) and 1 − us ∈ L2(Ω).
The latter is easily obtained using the L2 estimates (lemmas 3.6–3.8) obtained in
the previous section.

https://doi.org/10.1017/S0308210504000721 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210504000721


On a non-local equation arising in population dynamics 745

5. Construction of solutions of (1.9) for all c � c∗(ε)

In this section, we study problem (1.9) and prove the following theorem.

Theorem 5.1. Let ε > 0. There then exists a positive real number c∗(ε) such that
for all c � c∗(ε) there exists a positive smooth increasing solution uε of (1.9).
Furthermore, if c < c∗(ε), then problem (1.9) has no increasing solution.

The proof of theorem 5.1 will be split in two parts. In the first part, § 5.1, we
construct a solution of problem (1.9) for a specific value of the speed c = κ̄(ε),
using solutions of approximate problems constructed in the previous section and a
standard limiting procedure. Then, in the second part, § 5.2, we define the minimal
speed c∗(ε) and construct solutions of (1.9) for speeds c � c∗(ε).

5.1. Construction of one solution of (1.9) for c = κ̄(ε)

In this section, we consider problem (1.5) with c = κ̄(ε), where κ(ε) is given by
lemma 2.1.

By theorem 4.1, for any real number r and any θ ∈ (0, 1) there exists a unique
solution of (1.5). For fixed r > 0, we claim that the solution of (1.5) satisfies the
following normalization.

Claim 5.2. Fix ε > 0 and r > 0. There exists θ0 ∈ (0, 1) such that the correspond-
ing solution uθ0

r of (1.5) with θ = θ0 satisfies the normalization uθ0
r (0) = 1

2 .

Proof of claim 5.2. Define
Θ = {θ | uθ

r(0) > 1
2}.

Choosing any θ � 1
2 and observing that uθ

r is increasing, we have [ 12 , 1) ⊂ Θ. The
uniqueness of the solution uθ

r and standard a priori estimates imply that θ → uθ
r(0)

is continuous over [0, 1]. By continuity, we can therefore conclude that

(i) either there exists a positive θ0 such that uθ0
r (0) = 1

2

(ii) or (0, 1) ⊂ Θ.

We show that the latter case cannot occur, which proves the claim. For this, we
argue by contradiction. Suppose that (0, 1) ⊂ Θ. Let (θn)n∈N be a sequence such
that θn → 0. Let (un)n∈N be the corresponding sequence of solutions of (1.5) with
θ = θn. Using Helly’s lemma and standard a priori estimates, we can extract a
subsequence, still denoted (un)n∈N, which converges to a non-decreasing function u.
Clearly, u(−r) = 0. Since un(0) > 1

2 , we have u(0) � 1
2 . Hence, u is non-trivial and

satisfies
Lu + f(u) = 0 for x ∈ (−r, +∞),

u(−r) = 0,

u(+∞) = 1.

⎫⎪⎬
⎪⎭ (5.1)

The fact that u(+∞) = 1 is obtained using lemma 3.6 and following the arguments
of § 4.3.

Observe that w̄ given by lemma 2.1 is a supersolution of (5.1).
One can show that w̄ > u (see [5] for details), which provides a contradiction,

since 1
2 � u(0) < w̄(0) = 1

2 .
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With the latter normalization, we are ready for the construction of a solution
of (1.9). Let (rn)n∈N = (n)n∈N and (uθn

n )n∈N be the sequence of solutions of the
corresponding approximate problem (1.5) with r = rn and θ = θn, where (θn)n∈N

is such that uθn
n (0) = 1

2 . Define (hn)n∈N by

hn(x) = θn

∫ −rn

−∞
J(x − y) dy. (5.2)

By theorem 4.1 and claim 5.2 such sequences are well defined.
Clearly, hn → 0 pointwise, as n → ∞. Observe now that (uθn

n )n∈N is a uniformly
bounded sequence of increasing functions. Therefore, using Helly’s lemma, there
exists a subsequence which converges pointwise to a non-decreasing function u.
Since ε > 0, using local C2,α estimates, up to extraction, the subsequence converges
in C2,α

loc . Therefore, u ∈ C2,α and satisfies

Mu + f(u) = 0 in R. (5.3)

From the normalization and the fact that f( 1
2 ) �= 0, u is non-trivial. Since u

is increasing and bounded, u achieves its limits l± at ±∞. A standard argument,
using lemma 3.1, implies that f(l±) = 0. Since l− � 1

2 and l+ � 1
2 , we must have

u(−∞) = 0 and u(+∞) = 1. Therefore, we have constructed a non-trivial solution
of (1.9) for c = κ̄(ε).

Remark 5.3. Observe that the existence of a supersolution w̄ is only needed in the
normalization process. Therefore, the previous construction holds with any other
supersolution ψ of (1.9) such that ψ(0) = 1

2 .

Let us now turn our attention to the second part of the proof.

5.2. Definition of c∗(ε)

Define

c∗(ε) := inf{c > 0 : (1.9) admits an increasing solution}. (5.4)

By the previous section, c∗(ε) is well defined. Obviously, from the definition of
c∗(ε), there is no increasing solution to (1.9) for speeds c < c∗(ε). Our goal in this
subsection is to provide a solution of (1.9) for all c � c∗(ε).

First we observe that (1.9) has a solution for c = c∗(ε). Let (cn)n∈N be a minimiz-
ing sequence for c∗(ε). The corresponding solutions un of (1.9) are increasing (and
uniformly bounded by 1) so that we may apply Helly’s lemma and elliptic regular-
ity as in the previous section to conclude that (un)n∈N converges to an increasing
solution of (1.9) for c = c∗(ε), which we denote by uε. Boundary conditions for uε

are obtained as in § 5.1 using the fact that uε(0) = un(0) = 1
2 .

Now fix c > c∗(ε) and observe that w̄ := uε is a smooth increasing supersolution
of (1.9) with speed c. Since uε(0) = 1

2 , by remark 5.3, the construction of § 5.1
applies. Therefore, we get a solution of (1.9) for all c � c∗(ε), which completes the
proof of theorem 5.1.
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6. Existence of a solution for ε = 0

In the previous section, we were able to prove that, for every positive ε, prob-
lem (1.9) admits a semi-infinite interval of solution, i.e. for c � c∗(ε) there exists a
positive increasing solution of (1.9). We will see that the same holds for (1.4). The
idea is to let ε → 0 in (1.9) and to extract a converging sequence of solutions. The
main problem is to control c∗(ε) when ε → 0. We prove the following lemma.

Lemma 6.1. For every positive ε0, there exists ν0 > 0 such that c∗(ε) � ν0 for all
ε ∈ [0, ε0).

Proof. According to remark 2.2, κ̄(ε) is an non-decreasing function of ε; therefore,
κ̄(ε) � κ̄(ε0). The conclusion easily follows from the definition of c∗(ε), i.e. c∗(ε) �
κ̄(ε).

We now derive existence of a solution of (1.4) for every speed c greater than ν0.
More precisely, we have the following result.

Theorem 6.2. There exists ν0 such that, for every speed c greater than ν0, there
exists a solution u of (1.4) with speed c.

Proof. According to lemma 6.1, for ε small, say ε � ε0, equation (1.9) has a solution
uε for every c > ν0 and ε � ε0. Without loss of generality we assume that for all
ε, uε(0) = 1

2 . From standard a priori estimates, uε is a bounded smooth increasing
function. Let ε → 0 along a sequence. As in the previous section, uniform a priori
estimates and Helly’s theorem applied to uε provide the existence of a monotone
increasing solution u of

[J � u − u] − cu′ + f(u) = 0 in R. (6.1)

The solution cannot be trivial, according to the normalization 1
2 = uε(0) → u(0).

Boundary conditions are obtained as in § 5.

We define another minimal speed

c∗∗ = inf{c | ∀c′ � c (1.4) has a positive increasing solution of speed c′}. (6.2)

This minimal speed is well defined according to theorem 6.2.

Remark 6.3. A quick computation shows that

c∗∗ � lim inf
ε→0

c∗(ε).

Nevertheless, to complete the characterization of the set of solutions of (1.4), we
have to prove that there exist no travelling-wave solutions of speed c < c∗∗. In other
words, if we define

c∗ = inf{c | (1.4) has a positive increasing solution of speed c}, (6.3)

we have to show that c∗ = c∗∗. Clearly, we have c∗∗ � c∗; the main problem is to
prove c∗∗ � c∗. This will be done with the help of the monotony of the speed of
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truncated problems and its continuous behaviour at zero. More precisely, consider
the equation

εu′′ + [J � u − u] − cu′ + (fχθ)(u) = 0 in R,

u(−∞) = 0,

u(+∞) = 1,

⎫⎪⎬
⎪⎭ (6.4)

where ε � 0, θ > 0 and χθ is such that

(i) χθ ∈ C∞
0 (R),

(ii) 0 � χθ � 1,

(iii) χθ(s) ≡ 0 for s � θ and χθ(s) ≡ 1 for s � 2θ.

We have the following existence and uniqueness theorem.

Theorem 6.4. Let ε > 0 and θ > 0. There exists a unique speed c = cθ(ε) and,
up to translation, a unique smooth increasing function uθ such that (6.4) holds.
Moreover, the speed cθ(ε) is positive and satisfies

cθ(ε) < c∗(ε), (6.5)
lim
θ→0

cθ(ε) = c∗(ε). (6.6)

Remark 6.5. Theorem 6.4 still holds for ε = 0, with c∗(0) := c∗ (where c∗ is given
by (6.3)). We then designate the corresponding speed for (6.4) by cθ := cθ(0).

A proof of theorem 6.4 and remark 6.5 can be found in [5,6], so we do not include
it here. A natural corollary of this theorem is the continuity of the speed cθ(ε) with
respect to ε and θ. Namely, we have the following corollary.

Corollary 6.6. Under the assumptions of theorem 6.4, the mapping

(0, 1) × [0, 1] → R
+,

(θ, ε) 	→ cθ(ε)

is continuous.

Assume that corollary 6.6 holds. We then conclude that c∗ = c∗∗. Indeed, assume
by contradiction that c∗ < c∗∗. Then choose c such that c∗ < c < c∗∗. By theo-
rem 6.4 and remark 6.5, since cθ < c∗ for every positive θ, we have cθ < c∗ < c. Fix
θ > 0: since cθ(ε) is a continuous function of ε, one has on the one hand cθ(ε) < c
for ε small, say ε ∈ [0, ε0]. On the other hand, according to remark 6.3, we may
obtain

cθ(ε) < c < c∗(ε) for all ε ∈ [0, ε0]. (6.7)

From the above inequality, and according to (6.6), for each ε ∈ (0, ε0] there exists
a positive θ(ε) � θ such that c = cθ(ε)(ε). Let uθ(ε) be the associated solution,
normalized by uθ(ε)(0) = 1

2 .
Now we take a sequence (θn) converging to 0. From the above construction, for

each n there exists εn � θn and θ(εn) � θn such that c = cθ(εn)(εn) and uθ(εn) is
the corresponding normalized solution. By construction we have

θ(εn) → 0.
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Use now, as usual, uniform a priori estimates and Helly’s theorem to get a solution
ū of (1.4) with speed c.

Since c ∈ (c∗, c∗∗) is arbitrary, there exists a non-trivial solution of (1.4) for any
speed c > c∗, which contradicts the definition of c∗∗. We summarize the above proof
in the following diagram:

cθ
θ→0 �� c∗ < c∗∗ � lim inf

ε→0
c∗∗(ε)

cθ(ε)

ε→0

��

θ→0 �� c∗(ε) = c∗∗(ε)

ε→0

��

We are left with establishing the following proof.

Proof of corollary 6.6. We know from theorem 6.4 and remark 6.5 that for every
ε � 0 and θ > 0 there exists a unique solution (uε

θ, cθ(ε)) of (6.4).
Fix ε0 � 0 and θ0 > 0. We want to show that, for any sequence (εn, θn) → (ε0, θ0),

we have cθn(εn) → cθ0(ε0).
Let uεn

θn
be the normalized associated solution, i.e. uεn

θn
(0) = 1

2 . Since cθ(ε) > 0
and since (6.5) holds, we have (cθn(εn)) bounded as (εn, θn) → (ε0, θ0). We can
extract a sequence of speeds, which converges to some value γ. From the a priori
estimates on (uεn

θn
)n∈N, there also exists a subsequence which converges to a smooth

function u solving the following problem with speed γ:

ε0u
′′ + [J � u − u] − γu′ + fθ0(u) = 0 in R,

u(−∞) = 0,

u(+∞) = 1.

⎫⎪⎬
⎪⎭ (6.8)

According to theorem 6.4, the speed and the profile are unique. Therefore, γ =
cθ0(ε0). Since (cθn

(εn)) is precompact and has a unique accumulation point, the
whole sequence (cθn

(εn)) must converge to cθ0(ε0).

7. Asymptotic behaviour of solutions

In this section we establish the asymptotic behaviour of the solution u near ±∞,
provided J satisfies (H2). The behaviour of the function near +∞ was obtained
in [5], therefore we deal only with the behaviour of u near −∞.

Remark 7.1. The behaviour of u near ±∞ for bistable and ignition-type nonlin-
earities was also obtained in [5].

We use the same strategy as in [2] and start by proving the following lemma.

Lemma 7.2. Assume that (H1) and (H2) hold. Also assume that f is monostable
and that f ′(0) > 0. Let u be an increasing solution of (1.4). There then exists β > 0
such that ∫ ∞

−∞
u(x)e−βx dx < ∞.
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Proof. Let ζ ∈ C∞(R) be a non-negative, non-decreasing function such that ζ ≡ 0
in (−∞,−2] and ζ ≡ 1 in [−1,∞). For N ∈ N, let ζN = ζ(x/N). Multiplying (1.4)
by e−βxζN and integrating over R, we get∫

(J � u − u)(e−βxζN ) −
∫

cu′(e−βxζN ) +
∫

f(u)(e−βxζN ) = 0. (7.1)

Since J is even,∫
(J � u − u)(e−βxζN ) =

∫
(J � (e−βxζN ) − e−βxζN )u

=
∫

u(x)e−βx

( ∫
J(y)eβyζN (x − y) dy − ζN (x)

)
dx

=
∫

u(x)e−βx

( ∫
J(y)e−βyζN (x + y) dy − ζN (x)

)
dx

�
∫

u(x)e−βx

( ∫ ∞

−R

J(y)e−βy dyζN (x − R) − ζN (x)
)

dx,

(7.2)

where we have used the monotone behaviour of ζN in the last inequality and where
R > 0 is chosen as follows: first pick 0 < α < f ′(0) and R > 0 so large that

f(u)(x) � αu(x) for x � −R. (7.3)

Next, one can increase R further if necessary so that∫ ∞

−R

J(y) dy > (1 − 1
2α).

By continuity we obtain, for some β0 > 0 and all 0 < β < β0,∫ ∞

−R

J(y)e−βy dy � (1 − 1
2α)eβR. (7.4)

Combining (7.2) and (7.4), we then obtain∫
(J � u − u)(e−βxζN )

�
∫

u(x)e−βx((1 − 1
2α)eβRζN (x − R) − ζN (x)) dx

� (1 − 1
2α)

∫
u(x + R)e−βxζN (x) dx −

∫
u(x)e−βxζN (x) dx

� − 1
2α

∫
u(x)e−βxζN (x) dx, (7.5)

where we have used the monotone behaviour of u in the last inequality.
We now estimate the second term in (7.1):∫

u′ζNe−βx dx = β

∫
uζNe−βx −

∫
uζ ′

ne−βx dx

� β

∫
uζNe−βx. (7.6)
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Finally, using (7.3), the last term in (7.1) satisfies

∫
f(u)ζNe−βx dx � α

∫ −R

−∞
uζNe−βx dx − C. (7.7)

By (7.1) and (7.5)–(7.7) we then obtain

( 1
2α − cβ)

∫ −R

−∞
uζNe−βx dx � C.

Choosing β < α/2c and letting N → ∞ proves the lemma.

Using lemma 7.2 it is now easy to see that u(x) � Ceβx for all x ∈ R. Suppose
indeed this is not the case and let xn ∈ R be such that u(xn) > neβxn .

Since 0 � u � 1, we may pick a subsequence (xnk
)k∈N such that xnk+1 < xnk

− 1.
But, since u is non-decreasing,∫

u(x)e−βx dx �
∑
k�1

∫ xnk−1

xnk

u(x)e−βx dx

�
∑
k�1

nk

∫ xnk−1

xnk

eβ(xnk
−x) dx

�
∑
k�1

nk

β
(1 − e−β) = ∞.
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Appendix A.

Here we prove some maximum principles and existence results for solutions of linear
problems associated with the operator L defined by (1.7).

Theorem A.1 (strong maximum principle for L). Let ε � 0, r > 0, c ∈ R and let
L be defined by (1.7) on Ω = (−r, +∞). Assume further that Int(suppJ)∩Ω− �= ∅,
where Ω− = (−r, 0).

Let u ∈ C2(Ω) ∩ C0(Ω̄) satisfy

Lu � 0 ∈ Ω (respectively, Lu � 0 ∈ Ω). (A 1)

Then u may not achieve a positive maximum (respectively, negative minimum)
inside Ω without being constant.

Similarly, we introduce the following theorem.
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Theorem A.2 (strong maximum principle for L + hr(x)). Let ε � 0, r > 0, c ∈
R, θ ∈ (0, 1) and L, hr(x) defined by (1.7) on Ω = (−r, +∞).

Assume further that Int(suppJ) ∩ Ω− �= ∅, where Ω− = (−r, 0).
Let u ∈ C2(Ω) ∩ C0(Ω̄) satisfy

Lu � −hr(x) ∈ Ω (respectively, Lu � −hr(x) ∈ Ω),
u(−r) = θ,

u � θ ∈ Ω (respectively, u � θ ∈ Ω).

⎫⎪⎬
⎪⎭ (A 2)

Then u may not achieve a positive maximum (respectively, negative minimum)
inside Ω without being constant.

Proof of theorem A.1. We argue by contradiction. Assume that u is non-constant
and that it achieves a positive maximum at some point x0 ∈ Ω. Since∫

R

J(z) dz = 1,

we can rewrite (1.7) as

Lu = εu′′ +
∫ +∞

−r

J(x − y)[u(y) − u(x)] dy − cu′ − d(x)u, (A 3)

with

d(x) =
∫ −r

−∞
J(x − y) dy.

At the point x0 of (positive) maximum, we have on the one hand

εu′′(x0) � 0,

∫ +∞

−r

J(x0 − y)[u(y) − u(x0)] dy � 0 and − d(x0)u(x0) � 0.

(A 4)
On the other hand, by (A 1),

εu′′(x0) +
∫ +∞

−r

J(x0 − y)[u(y) − u(x0)] dy − d̄(x0)u(x0) � 0. (A 5)

Hence, εu′′(x0) = d(x0)u(x0) = 0 and∫ ∞

−r

J(x0 − y)[u(y) − u(x0)] dy = 0. (A 6)

If J > 0 in R, we conclude directly that u(y) = u(x0) for all y ∈ Ω, contradicting
our original assumption.

In general, J is a continuous non-negative even function with Int(suppJ)∩Ω− �=
∅. In particular, there exist constants 0 < a < b such that [−b, −a]∪ [a, b] ⊂ supp(J)
and [a, b] ⊂ Ω. We deduce from (A 6) that

u(y) = u(x0) for all y ∈ (x0 + [−b, −a] ∪ [a, b]) ∩ Ω.

Let z = x0 + b and observe that u(z) = u(x0). We may thus argue as above and
conclude that u(y) = u(z) for all y ∈ (z + [−b, −a] ∪ [a, b]) ∩ Ω. In particular,

u(y) = u(x0) for all y ∈ (x0 + [0, b − a]) ∩ Ω.
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Repeating the argument with z = x0 + a, we obtain u(y) = u(x0) for all y ∈
(x0 + [−(b − a), 0]) ∩ Ω. Thus,

u(y) = u(x0) for all y ∈ (x0 + [−(b − a), b − a]) ∩ Ω.

Applying the above successively with x0 +b−a and x0 − (b−a) in place of x0, we
find that u(y) = u(x0) for all y ∈ x0 +[−2(b−a), 2(b−a)]∩Ω. Working inductively,
we conclude that u ≡ u(x0) in Ω, which contradicts our original assumption.

Proof of theorem A.2. Define

ũ(x) :=

{
u(x) in Ω,

θ in R \ Ω,

and observe that we can rewrite (A 2) as

Mũ � 0 in Ω,

ũ(x) � θ in Ω,

where Mũ = εũ′′ + [J � ũ − ũ] − cũ′.
We argue by contradiction and assume that ũ achieves a positive maximum at

some point x0 ∈ Ω and is non-constant. Since u(x) � θ in Ω we have u(x0) > θ.
Working as in the proof of theorem A.1 we find that u ≡ u(x0) on Ω̄, which is a
contradiction.

Remark A.3. Theorems A.2 and A.1 remain valid when replacing L by L − d0,
where d0 is any positive constant.

Next, we provide an elementary lemma in order to construct solutions of Dirichlet
problems associated with L.

Lemma A.4. Let d0 > 0, ε > 0, r > 0, c ∈ R and let L be defined by (1.7) on
Ω = (−r, +∞).

Assume further that Int(suppJ) ∩ Ω− �= ∅, where Ω− = (−r, 0). Given f ∈
C0(Ω) ∩ L2(Ω), there exists a unique solution u ∈ C2(Ω) ∩ L2(Ω) of

Lu − d0u = f in Ω,

u(−r) = 0,

u(+∞) = 0.

⎫⎪⎬
⎪⎭ (A 7)

Proof. Uniqueness follows from the maximum principle. Let X = H1
0 (Ω) and define

the bilinear form A(u, v) for u, v ∈ X by

A(u, v) = ε

∫
Ω

u′v′ + 1
2

∫
Ω

∫
Ω

J(x − y)(u(y) − u(x))(v(y) − v(x)) dy dx

− c

∫
Ω

u′v +
∫

Ω

d(x)uv,

where

d(x) =
∫ −r

−∞
J(x − y) dy + d0.
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To solve (A 7), we just need to find u ∈ X such that A(u, v) =
∫

Ω
uv for all v ∈ X.

We will show that A is coercive and continuous in X. Existence will then be given
by the Lax–Milgram lemma. Clearly,

A(u, u) � ε

∫
Ω

(u′)2 − c

∫
Ω

u′u + d0

∫
Ω

u2 = ε

∫
Ω

(u′)2 + d0

∫
Ω

u2.

Thus, A is coercive in X. It remains to prove the continuity of A. Let φ and ψ be
two smooth functions with compact support in Ω:

|A(φ, ψ)| � 1
2

∫
R

∫
R

J(x − y)|φ(y) − φ(x)| |ψ(y) − ψ(x)| dy dx.

By the fundamental theorem of calculus and the Cauchy–Schwarz inequality we
obtain

|A(φ, ψ)| �
∫

R2

∫ 1

0

∫ 1

0
J(z)z2|φ′(x + tz)| |ψ′(x + sz)| dz dxdt ds

�
∫

R

∫
[0,1]2

J(z)z2
∫

R

|φ′(h)| |ψ′(h + (s − t)z)| dh ds dz dt

�
∫

R

∫
[0,1]2

J(z)z2 dz dt ds‖φ′‖L2(R)‖ψ′‖L2(R)

�
( ∫

R

J(z)z2 dz

)
‖φ′‖L2(R)‖ψ′‖L2(R),

which shows the continuity of A.
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