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Abstract

We demonstrate the use of genetic programming in the automatic invention of quantum computing circuits that solve prob-
lems of potential theoretical and practical significance. We outline a developmental genetic programming scheme for such
applications; in this scheme the evolved programs, when executed, build quantum circuits and the resulting quantum cir-
cuits are then tested for “fitness” using a quantum computer simulator. Using the PushGP genetic programming system and
the QGAME quantum computer simulator we demonstrate the invention of a new, better than classical quantum circuit for
the two-oracle AND/OR problem.

Keywords: Artificial Intelligence; Genetic Programming; Machine Invention; Quantum Computing

1. MOTIVATION

The phrase “quantum computing” describes computational
processes that rely for their efficacy on specifically quantum
mechanical properties of information-processing hardware.
Although all computing hardware obeys the laws of quantum
mechanics (as far as we know), so-called “quantum compu-
ters” make use of counterintuitive features of the quantum
world to achieve strikingly novel computational effects.
Many of these features, such as “entanglement,” have in-
trigued physicists since the early days of quantum theory, but
their implications for computer science have become appar-
ent only since the 1980s. Several introductions to quantum
computing are available. These include, listed roughly from
least to most technical, Brown (2000), Milburn (1997),
Brooks (1999), Rieffel and Polak (2000), Steane (1998),
Gruska (1999), and Nielsen and Chuang (2000).

The computational effects enabled by quantum computers
support several novel and potentially significant applications.
For example, the “tamper resistance” of quantum data states
supports new forms of ultrasecure encryption, whereas “quan-
tum parallelism” supports dramatic (and in some cases possibly
exponential) improvements in computational complexity for
problems of widespread applicability such as factoring. Many
researchers in the field expect these applications to transform

computer science and related industries in radical ways when
large-scale quantum computers become widely available.

Unfortunately, however, quantum computers are counter-
intuitive and difficult to program. Many of the most impor-
tant results in the field can be implemented with relatively
simple circuits, but either their existence was not suspected
prior to their discovery or, in some cases, their specific de-
signs proved difficult for humans to devise. Fortunately, we
can use automatic programming technologies, in particular
genetic programming, to help us to search for quantum
circuits. These technologies allow us to leverage computer
power to explore the space of quantum circuits in a mechan-
ical way. They can be applied to the discovery of new
quantum effects and also to the exploitation of known quan-
tum effects. They have already been used in this way to pro-
duce several significant results (Spector et al., 1998, 1999a;
Barnum et al., 2000; Spector & Bernstein, 2002; Massey
et al., 2004; Spector, 2004). A subset of the results in
Spector (2004) was the basis on which a gold medal was
awarded in the Human Competitive Results competition at
the 2004 Genetic and Evolutionary Computation
Conference (the criteria for which are described in Koza
et al., 2000).

In the remainder of this article we first describe the quan-
tum computer simulator (QGAME) that we use for assessing
(“fitness-testing”) candidate quantum circuits during genetic
programming runs. We then describe the developmental ge-
netic programming framework within which our most recent
work in this area has been conducted. This is followed by a
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detailed example in which we demonstrate the evolution of a
new, previously unpublished quantum circuit for a problem of
potential theoretical significance.

2. QUANTUM CIRCUIT SPECIFICATION AND
SIMULATION

This work adopts the “quantum gate array” or “quantum cir-
cuit” model of quantum computing, in which computations
are expressed as sequences of “quantum gates” acting on
“quantum bits” (also called “qubits”). In a true quantum com-
puter the qubits would be embodied as photons, nuclear
spins, trapped atoms, or other two-state physical systems,
and the quantum gates would be implemented as processes
or configurations that transform those systems. Such hard-
ware is currently exotic and expensive, so the work described
here uses a simulator that runs on ordinary classical digital
hardware. Such simulators are necessarily inefficient, in
many cases they are exponentially costly in terms of time
and space resources, but they allow us to determine how a
quantum circuit would perform if it were implemented in
real quantum hardware.

The details of the quantum circuit model and its simulation
are beyond the scope of this article; a full presentation can be
found in Spector (2004). For the purposes of this article it is
only necessary that the reader understand the nature of the in-
puts and outputs to the quantum computer simulator that we
employed, QGAME (Quantum Gate and Measurement
Emulator).1

QGAME provides a syntax for the expression of quantum
circuits and also an interpreter that simulates their perfor-
mance. A QGAME circuit specification consists of a se-
quence of “instruction expressions,” each of which is
surrounded by parentheses. The most typical instruction ex-
pressions consist of the name of a gate type, followed by a
combination of qubit indices (specifying to which qubit or
qubits the gate is to be applied) and other parameters (such
as angles or matrices). For example, an expression of the form

(QNOT q)

where q is a qubit index (a nonnegative integer), applies a
quantum “not” (QNOT) gate to the specified qubit. Similarly,
an expression of the form:

(CNOT qcontrol qtarget)

applies a quantum controlled NOT gate to the specified con-
trol and target qubits. Instruction expressions following the
same pattern for other common quantum gates (described

in detail in Spector, 2004) are as follows:

(SRN q)
(HADAMARD q)

(U-THETA q u Þ
(U2 q f u c a)

(CPHASE qcontrol qtarget a)
(SWAP qcontrol qtarget)

QGAME also provides a way to specify circuits that include
so-called “oracle” gates with any number of inputs and one
output. Each of these gates has one of two possible effects
on its output qubit on any particular invocation, but unlike
classical Boolean logic gates these do not act by setting their
output qubits to 0 or 1 but rather by flipping or not flipping
their output qubits to indicate outputs of 1 or 0, respectively.
During the testing of a circuit that contains an oracle gate one
normally tests the circuit with various instances of the oracle
(implementing different Boolean functions) and collects sta-
tistics over all of the results. This is facilitated in QGAME
with an instruction expression of the form:

(ORACLE V q1 q2 � � � qn qout)

V should be the right-hand column of a Boolean truth table
that specifies the action of the ORACLE gate, listed in paren-
theses and in binary order. The q1 q2 � � � qn parameters
are the indices of the input qubits, and qout is the index of
the output qubit. For example, the following expression:

(ORACLE (0 0 0 1) 2 1 0)

represents a gate that flips qubit 0 when (and only when) the
values of qubits 2 and 1 are both 1 (the bottom line of the truth
table). If V in an ORACLE expression is the symbol ORACLE-
TT then this indicates that the interpreter should substitute a
valid truth table specification in place of the symbol before
execution; this is normally in the context of a call to
TEST-QUANTUM-PROGRAM, which we will use in the fit-
ness function for genetic programming runs (see below). It
is sometimes useful to limit the number of times that an oracle
can be used during a single simulation. For this reason
QGAME also provides an instruction expression of the form:

(LIMITED-ORACLE max V q1 q2 � � � qn qout)

This works just like ORACLE the first max times it is executed
in a simulation; after max executions it has no further effect.

QGAME also provides a way to simulate the effects of sin-
gle-qubit measurements during the execution of a quantum
program, and allows for the outcomes of those measurements
to influence the remainder of the simulation. In an actual run
of a quantum computer such measurements would, in gen-
eral, be probabilistic. However, because we generally wish,
when performing our simulations, to obtain the actual prob-
abilities for various outputs and not just particular

1 Implementations of QGAME in C++ and Lisp are available from http://
hampshire.edu/lspector/qgame.html. Lisp source code for the core compo-
nents of QGAME is also provided in Spector (2004).
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(probabilistically chosen) outputs, QGAME simulates all
possible measurement outcomes. This is done by branching
the entire simulation and proceeding independently for each
possible outcome. In each branch the measured qubit is
forced to the measured value. The probability for taking
each branch is recorded, and output probabilities at the end
of the simulation are calculated on the basis of all possible fi-
nal states and the probabilities of reaching them.

The syntax for a QGAME measurement is as follows:

(MEASURE q) branch1 (END) branch0 (END)

This is actually a sequence of instruction expressions, begin-
ning with the MEASURE expression that specifies the qubit to
measure. Any number of instruction expressions may occur
between the MEASURE expression and the first following
END; all of these will be executed in the branch of the simu-
lation corresponding to a measurement of 1. Similarly, any
number of instruction expressions may occur between the first
following END and a subsequent END; all of these will be exe-
cuted in the branch of the simulation corresponding to a mea-
surement of 0. Instruction expressions following the second
END will be executed in both branches of the simulation, fol-
lowing the execution of the branch-specific instructions. If
there is no END following the MEASURE expression then
the entire remainder of the circuit specification is branch1

and there is no branch0. Similarly, if there is only one subse-
quent END then the entire circuit specification beyond that
END is branch0. Unmatched ENDs are ignored.

Additional instruction expressions, not used in this article,
are described in Spector (2004).

The interface to the QGAME interpreter that we use in our
genetic programming fitness test is TEST-QUANTUM-PRO-
GRAM. This call takes the following inputs:

† PROGRAM: the circuit specification to be tested, in
QGAME syntax.

† NUM-QUBITS: the number of qubits in the quantum
computer to be simulated.

† CASES: a list of “(oracle-truth-table output)” pairs,
where each oracle-truth-table is a sequence of 0s and
1s specifying the right-hand (output) column of the
oracle’s truth table (where the rows are listed in binary
order), and where the output is the correct numerical an-
swer for the given truth table; the test compares this
number to the number read from the final measurement
qubits at the end of the computation.

† FINAL-MEASUREMENT-QUBITS: a parenthesized
list of indices specifying the qubits upon which final
measurements will be performed, with the most signifi-
cant qubit listed first.

† THRESHOLD: the probability of error below which a run
is considered successful for the sake of the “misses”
component of the return value (see below). This is
typically set to something like 0.48, which is usually
far enough from 0.5 to ensure that the “better than

random guessing” performance of the algorithm is not
because of accumulated round-off errors.

TEST-QUANTUM-PROGRAM returns a list containing the
following values:

† The number of “misses”; that is, cases in which the mea-
sured value will, with probability greater than the speci-
fied threshold, fail to equal the desired output.

† The maximum probability of error for any provided
case.

† The average probability of error for all provided cases.
† The maximum number of expected oracle calls across all

cases.
† The number of expected oracle calls averaged across all

cases.

When using genetic programming to evolve quantum circuits
these outputs can be combined in various ways to suit the par-
ticular problem under study. In many of the applications that
we have explored to date (and in the example presented
below) the first and second values have been summed to pro-
duce a fitness value that is zero for a “perfect” algorithm,
prioritizing the number of “misses” (which is always a whole
number) above the maximum probability of error (which is
always between zero and one).

3. APPLICATION OF GENETIC PROGRAMMING

A genetic programming system is a genetic algorithm (Hol-
land, 1992) in which the chromosomes are executable com-
puter programs (Koza, 1992). In these systems one begins
with a population of computer programs, each of which is a
random composition of elements from a problem-specific
set of program elements. Fitness is assessed by running
each program on a specified set of inputs and producing a nu-
merical value that characterizes the quality of the program’s
performance. Programs that perform better are preferentially
selected for reproduction and most reproducing programs
are subject to small random changes (“mutations”) or to re-
combination with one another (“crossover”). As generation
follows generation one usually observes the emergence of
better and better programs. The process terminates when a
sufficiently good program has been found or when a predeter-
mined number of generations has been processed. Genetic
programming often requires large-scale computational
resources in order to find solutions, but fortunately, it is
also easily parallelized across computer clusters. A typical
parallelization scheme involves the loose coupling, through
occasional program “migrations,” of multiple subpopulations
(often called “demes”) that run otherwise independently on
separate processors.

The standard genetic programming technique will not be
described further here; details are available in an earlier paper
in this special issue (Koza, 2008) and from other sources
(Koza, 1992, 1994; Banzhaf et al., 1997; Koza et al., 1999,
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2003). Variations are regularly reported at several interna-
tional conferences with published proceedings, most notably
the Genetic and Evolutionary Computation Conference
(GECCO), in journals such as Genetic Programming and
Evolvable Machines and Evolutionary Computation, and in
edited books (Kinnear, 1994; Angeline & Kinnear, 1996;
Spector et al., 1999c; Riolo & Worzel, 2003; O’Reilly
et al., 2004; Yu et al., 2005; Riolo et al., 2007). A searchable,
online bibliography on genetic programming is also
available.2

The genetic programming system used in the work reported
here is PushGP (Spector, 2001, 2004; Spector & Robinson,
2002; Spector et al., 2005). PushGP differs from most other
genetic programming systems in that it uses the Push pro-
gramming language as the formalism within which evolving
programs are expressed. Most other systems, by contrast, use
Lisp-like expression trees, although a variety of representa-
tions (including both high-level languages and machine
code) have also been used.

The use of the Push programming language has several im-
plications for genetic programming in general, but the work
described in this article is independent of those implications.
To explain both the general principles of our approach and the
specific example presented below we need only note that
Push is a stack-based language that includes a stack for
each data type and uses postfix syntax. This means that an
expression like “1 3.14 2 2.72 INTEGER.+ FLOAT.*”
adds 1 and 2 and also multiplies 3.14 and 2.72 as follows:
it pushes 1 onto the integer stack, then 3.14 onto the float
(floating-point number) stack, then 2 onto the integer stack,
then 2.72 onto the float stack. It then executes INTEGER.+,
which pops two integers, adds them, and pushes the result
back onto the integer stack. It then executes FLOAT.*, which
pops two floats, multiplies them, and pushes the result back
onto the float stack. More details on the Push programming
language, including documents that demonstrate its benefits
and free source code for several implementations, is available
online.3

In our quantum computing applications we use genetic
programming to find structures (quantum circuits) of un-
known topology and parameters. As is traditional in such
cases, we obtain the topology and parameters of each candi-
date solution by means of a developmental approach (Wilson,
1987; Kitano, 1990; Gruau, 1993; Koza et al., 1996; Spector
& Stoffel, 1996; Hornby et al., 2007). In the developmental
approach the execution of a program in the population builds
a structure that is subsequently assessed for fitness. In this ap-
plication we begin each program execution with an “embryo”
that consists of a minimal topology, containing only the final
measurement gates, and the execution of certain instructions
causes additions to be made to that embryo. For example, the
execution of the U-THETA instruction takes an argument
from the integer stack and an argument from the float stack
and adds a U-THETA gate expression to the QGAME circuit
specification under construction.4 As a program runs it builds
a quantum circuit specification, expressed in the QGAME
syntax, and this circuit specification is then submitted to
QGAME for evaluation.5

4. ILLUSTRATION ON A NEW PROBLEM

In previous work we used genetic programming to produce sig-
nificant new results for the AND/OR oracle problem (Spector
et al., 1999b; Barnum et al., 2000; Spector, 2004). In this prob-
lem the task is to determine whether or not a particular given
two-input, one-output oracle flips its output qubit under the
conditions illustrated in Figure 1. That is, we are asked to de-
termine if the cases for which the oracle flips its output qubit
satisfy the logical formula (I00 _ I01) ^ (I10 _ I11), where Iab

Fig. 1. An AND/OR tree describing the nature of the AND/OR oracle problem.

2 http://liinwww.ira.uka.de/bibliography/Ai/genetic.programming.html
3 http://hampshire.edu/lspector/push.html

4 The integer argument is taken modulo the number of qubits in the sys-
tem. For the runs described here no gate is added for multiqubit gate specifi-
cations if the same qubit is specified more than once, and the output qubit for
oracles is chosen as the lowest numbered qubit not already specified for that
gate.

5 In some of our work we use a more complex scheme in which instruc-
tions like QGATE.U-THETA push unitary matrices onto a quantum gate
stack where they may be manipulated and combined with other gates; a sub-
sequent call to QGATE.GATE is then needed to add the resulting gate to the
developing circuit (Spector, 2004). For the present work we used a simpler
scheme in which gate-related instructions add gates directly to the developing
circuit.
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indicates whether or not the output is flipped for the input
(a, b).

Note that the classical version of this problem, of determin-
ing with certainty whether a classical two-input, one-output
gate has the AND/OR property, would require, in the worst
case, four oracle accesses; one might have to check the ora-
cle’s behavior for all four possible inputs. Probabilistically,
however, one can do reasonably well with only a single oracle
access; in fact, it is possible to devise a probabilistic classical
algorithm that accesses the oracle only once, and nonetheless
has a maximum probability of error of only one-third. Pre-
vious application of genetic programming to this problem
produced quantum circuits that perform better than any pos-
sible classical algorithm, giving a maximum probability of er-
ror of only 0.28731 (Barnum et al., 2000; Spector, 2004).
This result filled a gap in the then existing knowledge of these
types of problems6 and contributed to the ongoing theoretical
investigation of quantum computing.

If the quantum advantage in the AND/OR problem can be
generalized to larger oracles or applied to more general oracle
problems, then significant new applications might result; for
example, we noted in Spector (2004) that AND/OR trees have
wide applicability in artificial intelligence and that “one
might therefore speculate that the quantum speedups discov-
ered for the AND/OR problem may support some form of
‘quantum logic machine.’” Unfortunately, nonclassical fea-
tures of quantum circuits foil efforts to extend the results
through simple concatenations of the evolved circuits. It is
therefore useful to apply genetic programming to variants
of the original problem in the hopes that new results will al-
low us to derive general principles.

In the present article we demonstrate the invention, by ge-
netic programming, of circuits for a variant of the AND/OR
problem in which two, rather than one, accesses to the oracle
are permitted. The lowest error probability obtainable by a
probabilistic classical algorithm on this problem is 1/6 ¼
0.1666... , so any quantum circuit that achieves a lower error
probability may be of interest.7

We conducted 23 independent single-CPU runs on our
Linux cluster; although we often use this cluster for paral-
lel deme models we allowed no migration in the runs re-
ported here. Each run used a minimal instruction set which
included none of Push’s code-manipulation or even inte-
ger-manipulation instructions; the full listing of parameters
is shown in Table 1. In these runs we also used a “trivial
geography” tournament scheme in which the program at
location L at generation G is produced only from programs
in locations in the range (L 2 R, L þ R) at generation
(G 2 1), where R is a small “neighborhood radius” and
all locations are taken modulo the population size (Spector
& Klein, 2005).

One of the results produced by these runs was the follow-
ing Push program:

((FLOAT.- FLOAT.% 1 (7) (FLOAT.% (CPHASE 1 (SRN
CPHASE FLOAT.*) 2 (LIMITED-ORACLE)) SRN FLOAT./
(((-6 -10) 7) MEASURE U-THETA -0.26584211533559537
FLOAT.*) (FLOAT.FROMINTEGER U-THETA
LIMITED-ORACLE 0.667472529147 62878)
FLOAT.DUP) 6) 6 (FLOAT.FROMINTEGER (FLOAT.
FROMINTEGER -10 HADAMARD (((-10 (SRN)) SRN
(FLOAT.*) CPHASE U-THETA) 6 LIMITED-ORACLE)
-0.56456115878293323)((HADAMARDCPHASE)-10SRN)
MEASURE LIMITED-ORACLE (FLOAT.-) FLOAT.POP)
((SWAP ((CPHASE END) -10 LIMITED-ORACLE HADAMARD
MEASURE) (((FLOAT.POP) END LIMITED-ORACLE
((FLOAT.POP FLOAT.DUP) -9) (CNOT
-0.31790071337434944 FLOAT.* U-THETA)) -10
HADAMARD (-10 (FLOAT.SWAP)) SRN) (FLOAT.POP)
(FLOAT.DUPCPHASE)HADAMARD-0.31790071337434944)
5) (FLOAT.FROMINTEGER (((CPHASE ((FLOAT.POP) END

Table 1. Parameters for the example run of genetic
programming on the two-oracle AND/OR problem

Objective Design a quantum circuit that achieves better than
classical error probability for the two-oracle
AND/OR problem.

Embryo Three-qubit quantum circuit with a final
measurement on one qubit [index 2 of (0 –2)].

Instructions FLOAT.% FLOAT.* FLOAT.þ FLOAT.-
FLOAT./ FLOAT.DUP FLOAT.POP
FLOAT.SWAP FLOAT.FROMINTEGER
LIMITED-ORACLE HADAMARD U-THETA
MEASURE SRN CNOT U2 CPHASE SWAP END

Ephemeral random
constants

INTEGER FLOAT

Fitness cases All possible two-input, one-output Boolean
oracles, specifically (I00I01I10I11:answer):
0000:0, 0000:0, 0010:0, 0010:0, 0100:0,
0100:1, 0110:1, 0110:1, 1000:0, 1000:1,
1010:1, 1010:1, 1100:0, 1100:1, 1110:1,
1110:1

Fitness function Misses þ MaxError where Misses is the number
of cases for which the probability of error is
greater than 0.48 and MaxError is the
maximum probability of error of any case.

Population size 5000
Generation limit 800
Integer constant range (210, 10)
Float constant range (210.0, 10.0)
Initial program size

limit
50

Child program size
limit

250

Program evaluation
limit

250

Operators and rates Crossover 40%, mutation 40% [size fair
(Crawford-Marks & Spector, 2002) range 0.3],
duplication 20%

Tournament size 7
Tournament

neighborhood radius
5

6 Evidence of this is the publication of the result in the peer-reviewed phy-
sics (not computing) literature (Barnum et al., 2000).

7 Thanks to Howard Barnum and Herbert J. Bernstein for determining the
classical lower bound.
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LIMITED-ORACLE ((FLOAT.POP FLOAT.DUP) -9)
(CNOT -0.31790071337434944 FLOAT.* U-THETA))
((FLOAT.SWAP FLOAT.-) (MEASURE) (((-10 6) FLOAT./)
-9) FLOAT.SWAP HADAMARD FLOAT.DUP)) -10 FLOAT.
SWAP) 7 FLOAT.* -0.56456115878293323 (END)) -6
LIMITED-ORACLE (END -0.33716124234189310
HADAMARD (((-10 (SRN)) -10 ((SRN SRN) MEASURE 0
FLOAT.- (SRN)) -8 (-10 SRN)) (U-THETA -6 SRN 2)
FLOAT./) (-10 SRN)) FLOAT.POP END) HADAMARD)

When run, this Push program produces a QGAME quan-
tum circuit specification that, after the pruning of expressions
that have no effect, is as follows:

(SRN 1) (LIMITED-ORACLE 2 ORACLE-TT 2 1 0) (SRN 1)
(MEASURE 1) (U-THETA 0 -10) (HADAMARD 1) (SRN 1)
(HADAMARD 0) (SRN 1) (END) (HADAMARD 1) (END)
(U-THETA 0 0.084511) (HADAMARD 1) (SRN 1) (U-THETA
0 -0.317901) (HADAMARD 0) (LIMITED-ORACLE 2
ORACLE-TT 0 1 2) (HADAMARD 1) (SRN 1) (SRN 1)
(MEASURE 1) (U-THETA 2 -0.2274) (END) (HADAMARD 2)

This circuit, which is diagrammed in Figure 2, achieves
zero “misses” (i.e., it has a probability of error of less than
0.48 for each fitness case) and has a maximum probability

of error of 0.15177141700934016. Because the best classical
probabilistic algorithm has a maximum probability of error of
1/6 ¼ 0.1666... , this result is better than classical. To our
knowledge no better than classical solution to this problem
has previously been published.

To further explore the evolved circuit’s potential we con-
ducted a second round of 23 runs with the same parameters
(as listed in Table 1) except that we “seeded” each population
with one instance of the Push program produced in the pre-
vious round. One of the runs in the second round produced
the following program:

((END (3.7480855299504672 U-THETA SRN) (-10)
FLOAT./ (CPHASE (U2 -10 (SRN (-10) FLOAT./) 2
(LIMITED-ORACLE)) SRN FLOAT.POP (((U2 -10) 7)
MEASURE FLOAT.+ LIMITED-ORACLE FLOAT./)
(-0.31790071337434944 FLOAT.+ FLOAT.% FLOAT./)
FLOAT.DUP) 6) 6 (6 (-9 -10 (SRN) (((-10 (SRN)) SRN
(2.5552216434281370 CPHASE) CPHASE FLOAT.*) 0
LIMITED-ORACLE) FLOAT.%) ((FLOAT./
-0.31790071337434944 LIMITED-ORACLE U-THETA) -10
6.96903464 77946816) HADAMARD U- THETA MEASURE
FLOAT.SWAP) ((MEASURE ((FLOAT.% END) -10 SRN
HADAMARD FLOAT.%) (END -10 HADAMARD (-10 CPHASE)
SRN) FLOAT.FROMINTEGER U-THETA FLOAT.- -8) CNOT)

Fig. 2. Evolved quantum circuit for the two-query AND/OR problem, diagrammed according to the conventions in Spector (2004). This
circuit has a maximum probability of error of 0.15177141700934016, which is better than that of any classical probabilistic algorithm. The
“f ” gates are the calls to the oracle, only two of which will be used on any particular execution (the one in the initial sequence followed
either by the upper or the lower branch). This diagram shows the circuit specified by the pruned QGAME specification presented in the text,
but further simplifications are possible.
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(U-THETA (((SWAP ((-8 (-10) (-10 CPHASE)) 7)
(HADAMARD (U-THETA -10) -9 FLOAT.DUP HADAMARD
HADAMARD)) (U-THETA -10) U-THETA) U-THETA FLOAT.*
FLOAT.* CPHASE) -6 LIMITED-ORACLE (((SRN (-10)
(-10 -10)) 7) -9.7762992418781618 HADAMARD (((((SRN
(-10) LIMITED-ORACLE) 7) END) -10 ((SRN SRN) MEASURE
-8 -10 -0.31790071337434944) -8 (-10 HADAMARD))
(FLOAT.% U-THETA SRN) FLOAT./) END) (HADAMARD
(U-THETA-10)-9ENDHADAMARDHADAMARD)-10)HADAMARD)

When run, this Push program produces a QGAME quan-
tum circuit specification which, after the pruning of expres-
sions that have no effect, is as follows:

(SRN 1) (LIMITED-ORACLE 2 ORACLE-TT 2 1 0) (SRN 1)
(MEASURE 1) (SRN 1) (SRN 1) (SRN 0) (U-THETA
0 -0.317901) (HADAMARD 1) (END) (SRN 1) (END)
(HADAMARD 1) (SRN 1) (U-THETA 2 0.096896)
(HADAMARD 0) (LIMITED-ORACLE 2 ORACLE-TT 0 1 2)
(SRN 1) (HADAMARD 1) (SRN 1) (SRN 1) (SRN 1)
(MEASURE 1) (U-THETA 2 -0.239278) (END) (HADAMARD 2)

This circuit, which is diagrammed in Figure 3, has a maxi-
mum probabilityof errorof 0.1089010279090783, which we sus-

pect may be nearly minimal; the best we have obtained in any run
to date has a maximum error of 0.10872080849223331.
Notice that most of the structure and many of the parameters
of the solution from the first round of runs are preserved in
this refined solution.

5. CONCLUSIONS AND PROSPECTS

Quantum computing holds great promise, but the design of
quantum circuits is a black art that requires substantial exper-
tise. Even the most skilled theorists can fail to see that certain
quantum efficiencies are possible. This is true even when the
desired quantum efficiencies can be obtained from relatively
simple circuits.

Fortunately, genetic programming systems can automati-
cally invent quantum circuits that solve some of these
problems. In this article we showed how relatively straightfor-
ward genetic programming techniques, based on a
well-established developmental approach that has also been
applied to a range of other applications, can effectively search
the space of quantum circuits to find solutions to previously
unsolved problems. In particular, we demonstrated the evolu-
tion of a new, better than classical quantum circuit for the

Fig. 3. Evolved quantum circuit for the two-query AND/OR problem, produced in a run that was seeded with the solution diagramed in
Figure 2. This circuit has a maximum probability of error of 0.1089010279090783, which is better than that of any classical probabilistic
algorithm. The “f” gates are the calls to the oracle, only two of which will be used on any particular execution (the one in the initial sequence
and then either the one in the upper or the lower branch). This diagram shows the circuit specified by the pruned QGAME specification
presented in the text, but further simplifications are possible.
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two-query AND/OR problem. This problem has potential
theoretical and practical significance, and the result presented
here is, as far as we know, the best that has been published.

The full significance of this new result on the two-oracle
AND/OR problem is not yet known. Our next steps on this
front will be to further simplify and analyze the evolved cir-
cuits and to try to understand and generalize the mechanisms
by which they achieve their performance.

What is clear at this point, however, is that genetic pro-
gramming is capable of inventing quantum circuits that can
help to move the study of quantum computing forward.
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