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Turbulent drag reduction with polymer additive
in rough pipes
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Friction factor of drag-reducing flow with presence of polymers in a rough pipe
has been investigated based on the eddy diffusivity model, which shows that the
ratio of effective viscosity caused by polymers to kinematic viscosity of fluid should
be proportional to the Reynolds number, i.e. u∗R/ν and the proportionality factor
depends on polymer’s type and concentration. A formula of flow resistance covering
all regions from laminar, transitional and fully turbulent flows has been derived, and
it is valid in hydraulically smooth, transitional and fully rough regimes. This new
formula has been tested against Nikuradse and Virk’s experimental data in both
Newtonian and non-Newtonian fluid flows. The agreement between the measured
and predicted friction factors is satisfactory, indicating that the addition of polymer
into Newtonian fluid flow leads to the non-zero effective viscosity and it also thickens
the viscous sublayer, subsequently the drag is reduced. The investigation shows that
the effect of polymer also changes the velocity at the top of roughness elements. Both
experimental data and theoretical predictions indicate that, if same polymer solution
is used, the drag reduction (DR) in roughened pipes becomes smaller relative to
smooth pipe flows at the same Reynolds number.

Key words: general fluid mechanics, pipe flows, polymers

1. Introduction and background
Drag reduction (DR) by polymer additives in turbulent flows was first discovered

by Toms in 1948, i.e. the dilute addition of high-molecular-weight polymers to flowing
liquids can drastically reduce the turbulent friction up to 80 % (Benzi et al. 2004a,b;
L’vov et al. 2004). This provides a potential solution for piping and shipping industries
to save energy. This intriguing phenomenon is by now well known, and intensive
experimental, numerical and analytical works have been documented. Comprehensive
reviews of this research have been done by Lumley (1969), Virk (1975a), McComb
(1990), Sreenivasan & White (2000), White & Mungal (2008) and others.

While experimental data have accumulated over the past 60 years, the fundamental
theory of DR due to polymer remains elusive. Recently, some progress in the model
of DR has been made by Procaccia, L’vov & Benzi (2008) and L’vov et al. (2004).
They successfully provided a quantitative explanation of the maximum drag reduction
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(MDR) asymptote that has the following form:

u+ = 11.7 ln y+ − 17, (1)

where u+ = u/u∗ and y+ = u∗y/ν, and u =time-averaged velocity, u∗ = shear velocity,
y =distance to the wall and ν = kinematic viscosity.

Virk (1971a) discovered that in the turbulent core of a polymer solution the velocity
follows a log law with the same slope as Newtonian fluid flow, but with some velocity
increment �B, i.e.

u+ = 2.5 ln y+ + 5.5 + �B. (2)

Benzi et al. (2004b) found that if the constant 5.5 is replaced with 6.13, then �B can
be expressed by the following equation:

�B = 9.4 ln
(
1 + ξ 3N3

pC
)
, (3)

where ξ is an effective hydrodynamics radius of monomer (depending on the chemical
composition), Np the degree of polymerization and C the polymer concentration by
volume.

Using a different approach, Yang & Dou (2005, 2008) developed another model that
rests on the assumption that the phenomenology of polymer DR can be described by
a modified eddy diffusivity parameter. Starting from the eddy diffusivity model, they
successfully simulated the velocity profiles and turbulent structures in drag-reducing
flows over a smooth boundary. As the DR phenomenon is a near-wall effect, it would
be useful to investigate the DR flows over a rough boundary.

For a rough pipe flow, it is well known that there exist three regions, namely
laminar, transitional and fully turbulent. Experiments (Schlichting 1979, p.452) show
that in the transitional region, turbulence is of intermittent nature, occurring at
one moment and disappearing at another, the turbulent and the laminar states are
interchangeable. Based on this, Dou expressed the velocity from laminar to turbulent
flow with the following equation (Yang & Dou 2005):

u+
t = rlu

+
l + rtu

+, (4)

where u+
t is the relative velocity in the transition region, u+

l the relative velocity in
laminar flow, u+ the relative velocity in fully turbulent flow, rl the probability of
laminar occurrence, rt the probability of turbulent occurrence and

rt + rl = 1. (5)

Dou (1996) obtained the following equation for rl:

rl =

⎧⎪⎨
⎪⎩

1

e

[ ∞∑
n=1

n

n!

(
R+

c

R+

)2n
]

R � Rc,

1 R < Rc,

(6)

where R+ = Reynolds number = u∗R/ν, and R = pipe radius, R+
c = critical Reynolds

number at which the laminar flow transits to turbulent status.
Yang & Dou (2005, 2008) expressed the polymer shear stress or the ‘shear deficit’

in drag-reducing flow in the following form:

τ −
[
μ

du

dy
+ (−ρu′v′)

]
= ρνeff

du

dy
, (7)

where τ = total shear stress = ρu2
∗(1 − y/R), ρ = fluid density, μ =dynamic viscosity,

−ρu′v′ = Reynolds shear stress, νeff = effective viscosity caused by polymer additives.
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Using an analogy with Boussinesq’s expression for the eddy viscosity in turbulence,
they postulated that the effective viscosity can be modelled by

νeff = α∗u∗R, (8)

where α∗ is an elastic factor depending on the polymer type and concentration. Dou
(1981) obtained an empirical equation for α∗

α∗ = A[η]Cαo exp
(

− Bα0.7
o Cw

)
, (9)

in which A is a constant and equal to π2/15; B is equal to 25 500; [η] is the
intrinsic viscosity of polymer; C is the concentration of solution (g cm−13); Cw is
the concentration of solution by weight (g g−1); αo is a coefficient which depends on
polymer’s characteristics for DR.

Different from (8), Procaccia et al. (2008) expressed the effective viscosity in the
following way:

νeff = νξ 3CN3
p. (10)

In the transitional region, the Reynolds shear stress can be expressed by

(−u′v′)t = −(γtu′)(γtv′) = r2
t (−u′v′). (11)

Virk (1971b) observed that DR occurs only when the flow is in turbulent state, or
−u′v′ �= 0, so it is understandable that in the transitional region νeff appears when
turbulence appears. In other words, the effective viscosity should be proportional to
r2
t as the Reynolds shear stress in (11). Therefore, inserting (8) into (7), one obtains

u2
∗

(
1 − y

R

)
= (ν + νeff )

du

dy
− u′v′ = νD∗

du

dy
− u′v′, (12)

where D∗ is the DR parameter and

D∗ = 1 + α∗r
2
t

u∗R

ν
. (13)

If −u′v′ = 0, one can obtain the velocity u+
l in laminar flow from (12), and by

modelling the Reynolds shear stress in (12), Dou obtained the velocity u+ in fully
turbulent flow (Yang & Dou 2008). Inserting the obtained u+

l and u+ into (4), one
obtains the following equation:

u+
t = rl

y+

D∗

(
1 − y+

2R+

)
+ rt

[
1

κ
ln

(
1 +

κy+

2D∗

)

+
1

2

(
u∗δ

νD∗
+

1

κ

)(
κy+

2D∗ + κy+

)2

+
1

κ

κy+

2D∗ + κy+
+ C1

]
, (14)

where κ = 0.4, u∗δ/ν =11.6D3
∗ and C1 is an integration constant.

If R+ <R+
c , (5) and (6) show rl =1 and rt = 0, (14) becomes the velocity profile

of laminar flow. When the Reynolds number is large enough, we have rl = 0 and
rt =1, so (14) expresses the velocity in fully turbulent flow. It can be seen that (14)
is a general formula of velocity distribution for viscoelastic fluid flow in laminar,
transitional and fully turbulent regions.

In a fully turbulent flow, i.e. rl =0 and rt = 1, if κy+ � 2D∗, (14) can be simplified
as (2) and �B has the following form:

�B = 5.8(D2
∗ − 1) − 2.5 lnD∗. (15)

By comparing (15) with (3), one concludes that these two approaches have different
expressions. Equation (3) shows that the velocity increment �B depends on polymer
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parameters only, but (15) demonstrates that �B depends on D∗, a function of polymer
parameters and also Reynolds number.

The eddy diffusivity model in (8) expresses the interactions of the polymers with
turbulence as the shear velocity u∗ represents the turbulent strength, R represents the
size of the largest eddies and the influence of polymer is included in the parameter α∗.
However, Benzi et al. (2004a) model only relates the polymeric viscosity to polymer
concentration and its chemical composition regardless of turbulent strength, and no
flow parameters like u∗ and R are included in their effective viscosity. Because of this
difference, (3) states that �B is independent of Reynolds number and (10) shows
that νeff is proportional to the polymer concentration. But (15) demonstrates that
�B is a function of Reynolds number, and the influence of polymer concentration
on the DR is expressed by (8) and (9). Therefore, it is useful to justify these two
models using experimental data available in the literature. A plausible theory should
be tested against many aspects of DR, such as qualitative and quantitative changes
in the mean velocity profile, alteration of turbulent stresses, polymer concentration
and the friction factor. This study will concentrate on the DR in rough pipes.

Rough pipe flow is very common in practice and also very useful in fundamental
research. A widely accepted view regarding DR due to polymer addition is that
the wall plays an important role for thickening the viscous sublayer (Yang & Dou
2005, 2008) and the buffer layer (Cadot, Bonn & Douady 1998; Massah & Hanratty
1997; Min et al. 2003; White & Mungal 2008) because polymers stretch primarily
in the near-wall region of the flow, and polymers directly interact with and dampen
the quasi-streamwise vortices (Goldshtik, Zametalin & Shtern 1982). Hence, it is
important to know how the polymers interact with ‘rough skin’ and it is needed to
check the validity of (3) and (15) in rough pipes.

In practice, the prediction of pressure drop gradient and the evaluation of the
drag along pipelines are of considerable industrial importance in the transport of
liquids. To apply the technology of DR by polymer additives in pipelines, engineers
need a reliable way to estimate the friction factor in their design, especially in rough
pipes. Unfortunately, no such formula is available in the literature. In fundamental
research, the friction factor in rough pipes is also of particular interest because it offers
the possibility of inferring features of the wall-flow structure from relatively simple
friction factor measurement (Virk 1971a). Thus the rough wall case is important in
both practical applications and fundamental research for the underlying mechanism
of DR in flows.

The friction factor is normally defined as

f = 2

(
u∗

V

)2

, (16)

where f = friction factor and V = overall average velocity.
Nikuradse (1933) systematically measured the friction factor of Newtonian fluid

flow in rough pipes. His experiment shows that the friction factor depends on the
Reynolds number and the relative roughness, R/� where � is Nikuradse’s equivalent
roughness height. If the Reynolds number is very small, the friction factor in rough
pipes behaves as though it was smooth. If the Reynolds number is high enough, the
friction factor is independent of Reynolds number and only relies on the relative
roughness. Between these two extremes, there is a transition region where the friction
factor depends on both Reynolds number and relative roughness.

Although a large number of studies have been experimentally conducted to
investigate the friction factor of pipe flow with polymer additives, most of them
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were carried out over a smooth surface, such as Sibilla & Baron (2002), Warholic
et al. (2001) and Ptasinski et al. (2001), etc. Only a few (Lindgren & Hoot 1968; Virk
1971a; Bewersdorff & Thiel 1993; Wojs 1993; Petrie et al. 2003; Vlachogiannis &
Hanratty 2004) have considered a roughened wall. Based on his experiment, Virk
(1971a) reported that the friction factor of polymer solution in a laminar flow is the
same as that in Newtonian fluid flows. But following onset, the DR induced by a given
polymer solution is a complex function of flow and polymeric parameters and of pipe
roughness. Till now, no equation is available to express the complex interactions.

The objectives of this investigation are (i) to examine the relationship between the
Reynolds number and the effective viscosity, (ii) to develop an equation for friction
factor of DR flow in rough pipes. For the first objective, (8) and (10) will be tested
using experimental data in smooth pipes. For the second objective, we will extend
(14) to rough pipe flows and will establish the relationship between the boundary
parameter C1 and the Reynolds number as well as the relative roughness. For the
purpose of practical application, the simplified forms of these equations will be
proposed and examined.

2. Influence of Reynolds number on effective viscosity
We first consider a simple case, i.e. smooth pipe flow with polymer additives. The

overall averaged velocity V can be obtained from the following integration:√
2

f
=

V

u∗
=

1

πR2

∫ R

0

u+2π(R − y) dy. (17)

Inserting (14) into (17), one has

V

u∗
=

1 − rt

4

R+

D∗
+ rt

[(
2.5 − 23.2D2

∗ + 5

R+/(5D∗)
− 34.8D2

∗ + 10

R+2/(5D∗)2

)
ln

(
1 +

R+

5D∗

)

+ 5.8D2
∗ +

34.8D2
∗ + 10

R+/(5D∗)
+ C1

]
, (18)

where R+ is the Reynolds number = u∗R/ν. Obviously, for smooth pipes, the non-slip
boundary condition gives u = 0 at y = 0, then (14) gives C1 = 0.

Equation (18) may be too cumbersome for an ordinary engineer in their pipeline
design, therefore it would be useful to simplify it. Empirically, (18) can be simplified
as follows:

V

u∗
=

1 − rt

4

R+

D∗
+ rt

(
2.5 ln

R+

D∗
− 66.69

(
R+

D3.5
∗

)−0.72

+ 5.8D2
∗ − 4

)
. (19)

Calculation shows that the relative discrepancy between (18) and (19) is less than
3 %, indicating that (19) is also suitable for practical application.

For Newtonian fluid flow, experiments show that for a circular pipe the critical
Reynolds number Rec =V D/ν is about 2300 (Keefe, Moin & Kim 1992; Matas,
Morris & Guazzelli 2003), where D is the diameter of pipe. Escudier & Smith (1999)
observed that R+

c is affected by the presence of polymer, but Draad, Kuiken & Niu-
euwstadt (1998) reported that the large body of available literature on DR shows
no change in the critical Reynolds number, and the transition to turbulence for
drag-reducing flow occurs at the same value as for Newtonian fluids, i.e. Rec =2300.
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In laminar status, rt = 0, and (13) gives D∗ =1. Inserting these two values into (18),
one obtains

Re

2R+
=

1

4
R+. (20)

Therefore, the critical Reynolds number can be obtained by R+
c = (2Rec)

0.5 = (2 ×
2300)0.5 = 67.82. This critical Reynolds number is valid for both Newtonian fluid and
polymer solution, as well as smooth/rough pipes (Virk 1971a). This study assumes
that R+

c is independent of polymer type and concentration in order to simplify the
expression.

In the transition region, for any given Reynolds number R+ one can calculate
rt based on (5) and (6), then D∗ can be determined using (9) and (13) if polymer
concentration, intrinsic viscosity of polymer and αo are provided. The intrinsic
viscosity (in cm3 g−1) can be assessed using the molecular weight of polymer M
(Mun, Byars & Boger 1998) by

[η] = 1.03 × 10−3M0.78. (21)

If (18) is used to predict the friction factor, there is a single unknown to determine,
i.e. αo that only depends on the type of polymer used and is independent of
polymer concentration. Therefore the first step to apply (18) is to calibrate αo using
experimental data, after the calibration (18) can be used to predict the friction factor
at any Reynolds number (R+) and any concentration (C) of the polymer.

Benzi et al. (2004a) used Virk’s three-layer model (Virk 1971a), namely a viscous
sublayer near the wall, a turbulent core or Newtonian plug (defined in (2)) and a logar-
ithmic elastic sublayer (defined in (1)) between the turbulent core and viscous sublayer.
The overall averaged velocity V can be determined from the following equation:

V

u∗
=

1

πR+2

[
lim
ε→0

∫ y+
v

ε

u+2π(R+ − y+) dy++

∫ R+

y+
v

u+2π(R+ − y+) dy+

]
, (22)

where y+
v is the location at which (1) and (2) intersect each other. Inserting (1) and

(2) into the first and second terms on the right-hand side of (22), one has

V

u∗
=

1 − rt

4
R+ + rt

[
11.7

y+
v

R+
ln y+

v

(
2 − y+

v

R+

)
− 57.4

y+
v

R+
+ 22.85

y+2
v

R+2
+ 2.5 lnR+

+ 2.5 ln y+
v

y+
v

R+

(
y+

v

R+
− 2

)
+ 1.13 + �B − (7.26 + 2�B)

y+
v

R+
+ (6.13 + �B)

y+2
v

R+2

]
,

(23)

where �B is expressed in (3) and

y+
v = 11.7

(
1 + ξ 3N3

pC
)
. (24a)

Substituting (23) and (24a) into (16), one can determine the friction factor also.
Although there are two unknowns to calibrate using experimental data, namely ξ

and Np, they can be treated as a single unknown, i.e.

α1 = (ξ Np)3. (24b)

Therefore, both Benzi et al. (2004b) model (defined in (23)) and the eddy diffusivity
model (defined in (19)) contain one unknown to be calibrated using experimental
data, namely α0 and α1. Once they are determined for a specified polymer solution, the
friction factor of drag-reducing flow at different Reynolds number and concentrations
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21

23

104103102

C = 0

C = 18.7 p.p.m., W-301 

C = 939 p.p.m., N-750 

C = 98.6 p.p.m., N-750 

C = 48.6 p.p.m., N-750 

Equation (19) 

Benzi et al. (2004)   1
/f

0
.5

α* = 33 × 10–4

α* = 8.17 × 10–4 α* = 3.26 × 10–4

α* = 0.000158

α* = 0

2√2R+

Figure 1. Comparison of friction factor between the eddy diffusivity model and Benzi et al.
(2004a) model with Virk’s experimental data in smooth pipes.

of this polymer could be predicted. It would be interesting to check the predictability
of these two approaches.

Herein we use the experimental data by Virk (1971a) who conducted a systematic
experimental measurement of friction factor of viscoelatic flow with polymer additives
in circular pipes. The dilute solution of highly efficient polyethylene oxide (PEO) W-
301 and ordinary PEO N-750 and pure water were used in his experiments. He
reported that the intrinsic viscosity of N-750 and W-301 were 310 and 1850 cm3 g−1,
respectively. He measured friction factor f = 0.00889 in a smooth pipe flow in the
presence of polymer (N-750) at concentration C = 43.6 p.p.m. and Reynolds number
R+ = 1120. He then repeated the measurement by changing the Reynolds number
and polymer concentration, and the measured data are shown in figure 1.

Inserting R+ = 1120 into (6), one obtains rl =0, and rt = 1, indicating the flow is
in fully turbulent region. Using (16), one can calculate V/u∗ =(2/0.00889)0.5 = 15.
From (19), one can determine the DR parameter D∗ = 1.177. Equation (13)
gives α∗ = (1.177 − 1)/1120 = 1.58 × 10−4. Based on the intrinsic viscosity, polymer
concentration and the obtained α∗, one can determine the single unknown in the
eddy diffusivity model α0 using (9) and it gives α0 = 0.019. Then the calibrated α0

can be used to calculate α∗ for the concentrations of C = 98.6 p.p.m. and 939 p.p.m.
for N-750. The results are shown in table 1, in which the value of α0 for W-301 is
obtained in the same way as that of N-750. Therefore, one is able to calculate the
friction factor for the polymer solutions at these concentrations, and the results are
shown in figure 1. It can be seen clearly that (19) agrees with Virk’s experimental
data very well, and for every line from very low Reynolds number to very high
Reynolds number the elastic factor α∗ remains constant, indicating that α∗ depends
on the polymer type and concentration, but is independent of the Reynolds number
(Yang 2009). Figure 1 also demonstrates that the difference between Newtonian fluid
flow and viscoelastic fluid relies on the elastic factor α∗ and (19) is valid to express
the friction factor for both Newtonian and viscoelastic fluid flows in the laminar,
transition and fully turbulent regions.
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Polymers Molecular weight [η] cm3 g−1 C g cm−13 α0 α∗ calculated from (9)

W-301 5.50×104 1850 18.7×10−4 0.166 33.0×10−4

N-750 0.57×104 310 939×10−4 0.019 8.17×10−4

N-750 0.57×104 310 98.9×10−4 0.019 3.26×10−4

N-750 0.57×104 310 43.6×10−4 0.019 1.58×10−4 (calibrated)

Table 1. Characteristic values in Virk’s experiments.

With the information of C, R+, rt and V/u∗ listed above, from (23) and (24) one
can similarly determine the single unknown a1 = 4 in Benzi et al. (2004a) model. It
is expected that (23) can predict the friction factor f at different Reynolds numbers
and polymer concentrations as the eddy diffusivity model does. But the results show
that their model is unable to capture the features of friction factor in drag-reducing
flow, where the dashed line in figure 1 is the typical results of the model’s prediction
for N-750 at C = 43.6 p.p.m. As discussed, the main reason is that in the model of
Benzi et al., it is assumed that the effective viscosity depends on the polymer type
and concentration only, and is independent of the strength of turbulence.

3. Flow separation behind roughness elements
From Nikuradse’s experiments (Nikuradse 1933), researchers find that the friction

factor in a rough pipe is different from that in a smooth pipe, and there are
hydraulically smooth, transition and rough regions. In the hydraulically smooth
region, the friction factor depends on the Reynolds number only; in the transition
region the friction factor depends on both Reynolds number and roughness height;
and in the rough region, the friction factor depends on roughness height only. In
the literature, there is no widely accepted explanation for the observed results. Dou
(1996) attributes the occurrence of these three regions to flow separation behind the
roughness elements.

The flow near a smooth boundary is particularly simple, because the static pressure
remains constant in the whole field of flow, no separation takes place and no backflow
occurs. The most important feature of roughness elements is the flow separation that
has been widely reported (e.g. Dou & Yang 1989; Dou 1996; Yang, Tan & Lim 2005;
Yang & Tan 2008).

The flow separation behind a roughness element is similar to a falling sphere in still
water where if the Reynolds number is less than 1, no separation flow is observed.
As the Reynolds number increases, separation and eddies begin to form, enlarging
into a fully developed wake near a Reynolds number of 1000, the equilibrium of
the standing eddies is maintained when the flow is fully separated (Daughterty et al.
1985, p. 317). Experiments (Street, Watters & Vennard 1996, p. 501) have shown
the separation point to be dependent of the Reynolds number, but if the Reynolds
number is high enough, the separation is independent of the Reynolds number.

Similarly, it is reasonable to assume that there is no flow separation or eddies
behind the roughness elements if the Re is very small, and separation occurs when
the Reynolds number exceeds a certain value, and full separation is formed if the
Reynolds number is high enough as shown in figure 2.

To explain the existence of hydraulically smooth, transitional and fully rough
regions in Nikuradse’s experiment, Dou (1996) proposed the linkage between the
separation flow shown in figure 2 and the flow regions. Similar to the separation flow
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(a) (b)
(c)

(d)

Δ
αΔ

αβΔ

θ

Figure 2. flow separation between roughness elements in different stages (a) hydraulically
smooth, (b) transition, (c) fully rough region and (d ) simplified flow pattern in the separation
zone.

caused by a falling particle, in figure 2(a) if the roughness Reynolds number is very
small (u∗�/ν ≈ 1.25), we assume no eddies behind the roughness elements, or no
separation occurs, in such case the roughness does not affect the turbulent structure,
and rough pipe and smooth pipe perform alike.

It is understandable that if the Reynolds number (u∗�/ν) is higher than a certain
value, say 1.25, separation flow behind roughness elements can be observed as shown
in (figures 2b and 2d ). As the thickness of separation layer increases with the increase
of Reynolds number, one can conclude that the separation layer depends on both the
Reynolds number and the roughness height. Hence, the friction factor in this region
depends on both the Reynolds number and roughness height.

For very high Reynolds number (R∗ = u∗�/ν � 100), the flow behind the roughness
is fully separated or complete separation occurs (figure 2c) and the separation
angle θ =180◦. Any further increase in Reynolds number would not lead to the
further increase in the separation layer, in such case the thickness of separation flow
does not increase with the increase of Reynolds number, but only depends on the
roughness. So the flow resistance is independent of the Reynolds number, and only
dependent on the relative roughness, and consequently the flow falls in the fully rough
region.

In the case of homogeneous roughness, the roughness elements can be considered
approximately as spheres. If the diameter of the sphere is denoted by �, the separation
angle by θ , and the thickness of separation by α�, we can obtain the following relation:

α =
1 − cos θ

2
. (25)

As the separation angle, θ , increases with the increase of Reynolds number and Dou
(1996) assumed that the gradient dθ/dR∗ decreases with the increase of Reynolds
number, the following equation can be assumed:

dθ

dR∗
=

a

R∗
, (26)
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where R∗ is the roughness Reynolds number (R∗ = u∗�/ν), a is a constant propor-
tionality to be determined. Integration of this equation yields

θ

π
=

lnR∗ − ln R1

lnR2 − ln R1

, (27)

where R1 and R2 are Reynolds numbers corresponding to the initial separation
and the complete separation respectively. As discussed, the experimental data by
Nikuradse (1933) reveals R1 = 1.25 and R2 = 100.

It should be stressed that the velocity at the top of separation layer is not equal to
zero, but has a definite value. The point of zero velocity locates below the separation
surface because there is a region of counter current between the roughness elements
as shown in figure 2(d ).

Letting αβ� denote the distance from the top of separation layer to the point of
zero velocity, the following assumption was made by Dou:

dβ

dR∗
= a1

[
dα

dR∗
+

d(θ/π)

dR∗

]
, (28)

where a1 is another constant of proportionality. It is obvious that when θ = 0, then
α = 0 and β = 1, i.e. no counter current exists. When θ = π, then α = 1 and β = β0.
Both conditions can be used to determine the constant of integration and the constant
of proportionality. Integration of (28) yields

β = 1 −
(1 − β0)

(
α + θ

π

)
2

, (29)

where β =0.107, this value is determined from Nikuradse’s data.
Considering all cases mentioned above, (27) can be rewritten as

θ

π
=

⎡
⎢⎢⎢⎢⎢⎢⎣

0
u∗�

ν
� 1.25

ln (R∗/1.25)

ln(100/1.25)
1.25 <

u∗�

ν
� 100

1
u∗�

ν
> 100

⎤
⎥⎥⎥⎥⎥⎥⎦

. (30)

When R∗ � 100, complete separation occurs and the height of the separation layer
does not increase with the increase of roughness Reynolds number, so that the
Reynolds number should be written as follows when R∗ � 100:

u∗y

ν
= R∗

y

�
= 100

y

�
, (31a)

u∗R

ν
= R∗

R

�
= 100

R

�
. (31b)

It has been pointed out that the occurrence of hydraulically smooth, transitional and
rough regions is due to the degree of separation in the flow passing over the roughness
elements. When R∗ > 100, the Reynolds number is determined by (31b), then one can
express the DR parameter D∗ as follows:

D∗0 = 1 + 100α∗r
2
t

R

�
. (32)

Equation (32) is valid in the fully rough region where the flow is very turbulent and
the thickness of the separation layer is equal to the roughness height.
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4. Friction factor in rough pipe
In the case of a smooth wall, the integration constant C1 in (14) is equal to zero.

However, when the wall roughness effect is considered, the boundary condition is more
complicated, and the zero velocity point is no longer at the wall (y = 0), but shifts to a
certain distance above the solid wall due to the existence of eddies behind roughness
elements (see figure 2d ). Therefore, the boundary condition for the determination of
the integration constant C1 becomes u = uα at y = α� where uα is the mean velocity
at the top of the separation layer. From (14) one has

C1 = u+
α − 2.5 ln

(
1 +

αR∗

5D∗

)
− (5.8D2

∗ + 1.25)

(
αR∗

5D∗ + αR∗

)2

− 2.5
αR∗

5D∗ + αR∗
. (33)

In the separation layer, the velocity distribution from the point where u =0 to the
top of the separation layer can be assumed to follow (14), thus the velocity at the
separation layer can be determined using the distance βα�, therefore the value of u+

α

can be determined by

u+
α = 2.5 ln

(
1 + αβ

R∗

5D∗0

)
+ (5.8D2

∗0 + 1.25)

(
αβR∗

5D∗0 + αβR∗

)2

+ 2.5
αβR∗

5D∗0 + αβR∗
.

(34)

Therefore, one can determine C1 as follows:

−C1 = 2.5 ln

⎛
⎜⎝1 +

αR∗

5D∗
1 + αβR∗

5D∗0

⎞
⎟⎠+ (5.8D2

∗ + 1.25)

(
αR∗

5D∗ + αR∗

)2

+ 2.5
αR∗

5D∗ + αR∗

− (5.8D2
∗0 + 1.25)

(
αβR∗

5D∗0 + αβR∗

)2

− 2.5
αβR∗

5D∗0 + αβR∗
. (35)

The values of α and β can be determined by (25) and (29) in which θ can be determined
by (30). It can be seen that the integration constant in (14) can be estimated from
(35). If R∗ = 1.25, one has θ = 0, α = 0 and β = 1, and C1 = 0, which means that the
rough pipe behaves as a smooth pipe, and it is termed as the hydraulically smooth
region. When R∗ > 100, as the separation angle cannot increase further the roughness
Reynolds number R∗ should be set as 100 in (14), (34) and (35). In such case, α = 1 and
β = β0 = 0.107, and C1 and (18) and (19) are independent of the Reynolds number,
so the friction factor is independent of the Reynolds number. For a moderate R∗,
both the Reynolds number and roughness height jointly determine C1, so the friction
factor depends on these two parameters.

Inserting (35) into (18), one can obtain the formula for drag-reducing flow in rough
pipes, but (35) is too complicated for an ordinate engineer, so it is useful to simplify
C1 into the following form:

−C1 =
D1.5

∗
D0.25

∗0

{
ln(R∗) + 0.325 ln

[
1 +

(
R∗

7

)6
]

− 1.2

}
. (36)

In (36), C1 must be negative due to the influence of roughness and polymer.
Calculation shows that D∗0 is not sensitive for the evaluation of C1. Inserting (36)
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)
 

Figure 3. Comparison of friction factors calculated from (35) and (37) with experimental
measurements from laminar to turbulent flows in rough pipes, the data points are plotted
based on tables 2–7 and figure 9 of Nikurads (1933), D∗ = D∗0 = 1 is used in the calculation.

into (19), one has

V

u∗
=

1 − rt

4

R+

D∗
+ rt

(
2.5 ln

R+

D∗
− 66.69

(
R+

D3.5
∗

)−0.72

+ 5.8D2
∗ − 4 − C1

)
. (37)

Therefore, the friction factor in a rough pipe can be obtained by substituting (35) or
its simplified form i.e. (37) into (17) and (18).

In a laminar flow rt = 0, and rl = 1, the friction factor λ[ = 8(u∗/V )2] can be
determined using (20), i.e.

λ =
64

Re
, (38)

where Re = 2V R/ν.
In a fully developed turbulent flow, rl = 1 and rl =0, if C1 = 0, (18) expresses the

smooth pipe flow; and if D∗ = 1, (18) shows the mean velocity of Newtonian fluid
flow. Therefore, (18) is a general expression of mean velocity which can be applied
to laminar, transitional and turbulent Newtonian/viscoelastic flows including the
hydraulically smooth, transitional and rough regions. It indicates that the difference
between laminar/turbulent flow comes from the parameter rt , the difference between
smooth/rough pipes relies on the boundary condition C1, and D∗ expresses the
difference between Newtonian fluid and viscoelastic fluid.

For verification, Nikuradse’s experimental data (Nikuradse 1933) have been used in
this study as shown in figure 3. It is seen that the experimental data have a ‘dip’ in the
friction curves in the intermediate Reynolds number between fully smooth and fully
rough region. To explain this phenomenon, many investigations have been conducted,
but there is no consensus available in the literature to explain and quantify the dip
phenomenon (Bradshaw 2000). It can be seen from figure 3 that the feature of dip
phenomenon is well captured by (35), suggesting that the flow separation behind the
roughness elements shown in figure 2 together with the intermittence factor provides
a reasonable explanation for the observed friction factor.
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Figure 4. Comparison between calculated and measured friction factor in rough pipes based
on Virk’s experimental data

Equation (35) predicts the friction factor from very low Reynolds number (laminar
flow) to very high Reynolds number (fully rough regime). To show the discrepancy
between (35) and its simplified form, i.e. (37), the calculated results from (37) have
also been included in figure 3 for comparison. It can be seen that there is almost no
discernible difference between two of them, suggesting that (37) can be used to assess
the friction factor for Newtonian fluid flow. Figure 3 also includes the prediction of
(19) that gives the lower bound of friction factor in rough pipes. As shown in figure 1,
(19) agrees well with Virk’s experimental data.

Virk’s experimental data (Virk 1971a) in rough pipes are used to verify (35) and
(37) in viscoelastic fluid flows, and the results are shown in figures 4 and 5. After
his experiments in smooth pipes, Virk carried out similar experiments in roughened
pipes using different sizes of roughness. Based on the measured grit sizes, the values
of R/� were 64.3 and 29.3, but Virk calibrated the relative roughness using distilled
water resistance data and he obtained R/�= 35 and 14.6, respectively.

When comparing the measured data in Newtonian fluid flows with (35) and (37),
it is found that, different from Virk’s assessment, the relative roughness R/� should
be 42 and 16, respectively. Figures 4 and 5 show that (35) and (37) can provide
satisfactory agreement with the measured data when D∗ =1 and R/�= 42 and 16
are used.

Following the calibration of roughness using the experimental data in clear water
flows, one can calculate the friction factors of viscoelastic fluid flows in the rough pipe.
Virk measured the friction factor in the rough pipe flows where the polymer type and
concentration remained the same as that used in smooth pipe flows (see figure 1). The
friction factor can be predicted using (35) and (37) when R/� and α∗ are determined,
and the results are shown in figures 4 and 5. It can be seen that the experimental data
cover a wide range of Reynolds numbers and include flows in laminar, transitional and
turbulent states, as well as in hydraulically smooth, transitional and rough regions, the
agreement between these equations and experimental data is reasonably acceptable.
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Figure 5. Comparison between calculated and measured friction factor in rough pipes based
on Virk’s experimental data

From figures 4 and 5, one may conclude that with the increase of roughness height
�, if polymer type, concentration and Reynolds number are kept unchanged, the
largest DR can be achieved in smooth pipe flow, and the efficiency of polymers for
reducing the drag becomes lower in rough pipes.

It can be seen from figures 1, 4 and 5 that good agreement between the measured
and predicted friction factors can be achieved when the constant effective viscosity in
(8) is used, and it is determined using the data reported by Virk. It should be stressed
that as the elastic factor α∗ contains the influence of polymer type, its concentration
or viscosity, it is expected that α∗ may be variable if the polymer concentrations in
the near-wall region and the main flow region are different. This means that α∗ should
be a function of y, which corresponds to the distribution of polymer concentration.
Unfortunately, now in the literature there is no direct measurement to support this
theoretical inference from (8), this leaves an open space for further experimental and
theoretical investigations.

5. Conclusions
The friction factor of drag-reducing flow in the presence of polymers in a rough

pipe has been investigated. A theoretical formula has been developed to describe
the flow resistance in laminar, transitional and turbulent flows in hydraulically
smooth, transitional and fully rough regimes. The obtained equations have been
tested against the experimental data of Nikuradse and Virk, and the agreement
between the measured and predicted friction factors is satisfactory. This investigation
leads to the following conclusions:

(i) The effective viscosity, similar to the eddy viscosity, should be expressed as
νeff =α∗u∗R, because the experimental data shows that the dimensionless parameter
νeff /ν depends on the Reynolds number when the polymer type and concentration
remain unchanged. In other words, when the polymer solution remains unchanged,
the assumption of νeff /ν = constant cannot predict the curves of f ∼ Re as shown
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in figure 1. Furthermore, it can be inferred from the eddy diffusivity model of (13)
that the phenomenon of DR disappears when eddies disappear (or rt = 0). This is
why no DR can be observed in laminar flows.

(ii) The assumption that the hydraulically smooth, transitional and rough regions
are caused by the variation of thickness of separation layer between roughness
elements can yield reasonable results when compared with experimental data. The
‘dip’ phenomenon in Nikuradse’s flow resistance curves can be well represented by
the results derived from this assumption.

(iii) The investigation shows that the elastic factor α∗ is independent of the relative
roughness and Reynolds number. The value of the elastic factor remains constant if
the polymer type and concentration are unchanged. The presence of polymer in a
smooth pipe increases the thickness of the viscous sublayer, resulting in DR. In rough
pipe flows, the polymer solution also increases the near-wall velocity when compared
to Newtonian fluid flows, but the boundary parameter C1 in the polymer solution is
higher than its corresponding value in clear water. This means that the roughness
has a negative effect on DR, or larger roughness elements tend to narrow the gap
between the resistance in viscoelastic fluid flows and that in clear water flows.

(iv) In the flow of dilute macromolecular polymer solutions, from laminar flow to
turbulent flow, the friction factor curves for Newtonian/viscoelastic fluids in smooth
and rough pipes can be expressed by (35) or its simplified form, i.e. (37) after the
turbulence occurrence probability rt , DR parameter D∗ and boundary condition C1

are introduced.
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