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Phase-reduction analysis of periodic
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Calum S. Skene1,†,‡ and Kunihiko Taira1

1Department of Mechanical and Aerospace Engineering, University of California, Los Angeles,
CA 90095, USA

(Received 18 June 2021; revised 11 September 2021; accepted 30 November 2021)

Phase-reduction analysis captures the linear phase dynamics with respect to a limit cycle
subjected to weak external forcing. We apply this technique to study the phase dynamics
of the self-sustained oscillations produced by a Rijke tube undergoing thermoacoustic
instability. Through the phase-reduction formulation, we are able to reduce these
dynamics to a scalar equation for the phase, which allows us to efficiently determine
the synchronisation properties of the system. For the thermoacoustic system, we find the
conditions for which m : n frequency locking occurs, which sheds light on the mechanisms
behind asynchronous and synchronous quenching. We also reveal the optimal placement
of pressure actuators that provide the most efficient route to synchronisation.
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1. Introduction

Owing to heightened environmental regulations, there has been a move towards using lean
premixed combustors (LPCs) for their ability to operate at lower temperatures in a low
NOx regime (Correa 1998). Whilst there are many health and environmental advantages
to avoiding the production of NOx, which is a lung irritant and can cause acid rain and
depletion of the Ozone layer (Mahashabde et al. 2011), LPCs present many practical issues,
including their susceptibility towards thermoacoustic instability (Culick 1996; Lieuwen &
Yang 2005).

Thermoacoustic instability arises owing to a feedback mechanism between acoustic
waves and unsteady heat release. Unsteady heat release produces acoustic fluctuations
which in turn interact with the flame causing more unsteady heat release. If these acoustic
fluctuations are in phase with the unsteady heat release, this causes energy to be added to
the system, which can lead to instability. This mechanism was first described by Rayleigh
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(1878) who summarised it by a simple, but effective, integral criterion. Even though
Rayleigh’s criterion for instability is mathematically simple, the fact that this mechanism
is extremely sensitive to the parameters of the system (Juniper & Sujith 2018) means that
the accurate prediction of thermoacoustic instabilities is a difficult task, which leads to
many combustion systems being built vulnerable to these instabilities.

As these instabilities can cause material fatigue and lifetime reduction for these systems,
it is critical to develop control strategies to either suppress, or remove entirely, these
instabilities (Candel 2002). These control strategies can fall into two categories: active
(McManus, Poinsot & Candel 1993; Zhao et al. 2018) and passive (Zhao & Li 2015).
Examples of passive control include the addition of Helmholtz resonators to provide
acoustic damping (Dupère & Dowling 2005). Alternatively, active control uses actuation
devices such as loudspeakers to provide an additional source of acoustic waves (Dowling
& Morgans 2005). Furthermore, the aforementioned sensitivity of these systems to
parameters has made adjoint methods an attractive tool in designing these controls (Magri
2019), for example, in optimising the shape and placement of Helmholtz resonators (Yang
et al. 2019) or for discovering the optimal feedback mechanism for suppressing the growth
rate of instabilities (Magri & Juniper 2013). Of particular relevance to our study is the
open-loop control via harmonic forcing of the thermoacoustic system and adjoint design
methods based on Floquet theory (Magri 2019).

By introducing harmonic forcing, the phase relationship between the unsteady heat
release and pressure perturbations can be disrupted leading to a decrease in the
self-sustained limit cycle oscillations (Kashinath, Li & Juniper 2018; Mondal, Pawar
& Sujith 2019; Roy et al. 2020). Depending on the value of the forcing frequency in
relation to the natural frequency of the limit cycle, this decrease can be split into two
cases. Synchronous quenching occurs if the forcing is close to the natural frequency
and although the self-excited oscillations are suppressed, the system synchronises to
the forcing frequency, which causes a resonant amplification. However, if the forcing
frequency is farther away from the natural frequency, then a reduction in the self-excited
oscillations can occur without resonant amplification. Therefore, understanding a priori
the synchronisation properties of the system is of upmost importance to determine
good candidate frequencies and forcing shapes that result in synchronisation away
from resonant frequencies. The aim of this study is to apply phase-reduction analysis
to thermoacoustic systems, an adjoint Floquet-based method, which will allow the
synchronisation characteristics of the system to be obtained efficiently from numerical
simulations. Furthermore, we will showcase the usefulness of this information in the
design of open-loop control strategies via harmonic forcing.

Phase-reduction analysis is a technique that has been widely used for studying the
dynamics of synchronisation in biological systems (Kuramoto 1984; Pikovsky, Rosenblum
& Kurths 2003; Ermentrout & Terman 2010; Boccaletti et al. 2018). It is only relatively
recently that phase reduction has been introduced to the fluids community (Kawamura &
Nakao 2015; Taira & Nakao 2018; Iima 2019; Khodkar & Taira 2020; Khodkar, Klamo
& Taira 2021; Loe et al. 2021; Nair et al. 2021). In essence, phase reduction allows the
linear phase dynamics of a stable periodic system to be represented by a simple scalar
ordinary differential equation (ODE) for the phase. This ODE is characterised by the phase
sensitivity function which encodes properties of how external forcing affects the phase.
Obtaining the phase sensitivity function therefore allows for the efficient determination
of the synchronisation properties of the underlying system, which in the present study is
focused on thermoacoustic systems. In what follows, § 2 outlines the Rijke tube model,
§ 3 lays out the mathematics of phase-reduction analysis, the numerics are described
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Figure 1. Rijke tube set-up with example velocity and pressure profiles.

in § 4, the results are presented in § 5 and finally, the conclusions are offered in § 6.
Appendix A contains further mathematical details of the method, as well as solidifying
the link between phase-sensitivity analysis and Floquet theory (Floquet 1883) for delay
differential equations (Simmendinger, Wunderlin & Pelster 1999).

2. The Rijke tube: an example thermoacoustic system

A Rijke tube (Rijke 1859) is a relatively simple set-up that exhibits a rich range of dynamics
with thermoacoustic instability. We show the basic set-up in figure 1 and model the system
as a one-dimensional flow in a pipe. The left side of the pipe is aligned with x = 0, with
the pipe having a non-dimensional unit length. A heat source is placed at x = xf , and is
modelled as a thin wire using a modified version (Heckl 1990) of King’s law (King 1914).

Following the derivation in Sayadi et al. (2014), the non-dimensional governing
equations for this system are provided by

∂u
∂t

+ (γ Ma)−1 ∂p
∂x

= 0, (2.1)

∂p
∂t

+ (γ Ma)
∂u
∂x

+ ξ ∗ p = γ MaQ + εf +
p , (2.2)

for the velocity u and the pressure p, which form our state space y = (u, p)T. Following the
work of Mondal et al. (2019), a weak external pressure forcing f +

p with amplitude ε � 1 is
added to the pressure field. The governing equations hold two non-dimensional parameters
of Mach number Ma and the specific heat ratio γ . The damping for wavenumber j is given
via a convolution ∗ in terms of damping coefficients c1 and c2 as ξj = c1j2 + c2

√
j. We

see that the only nonlinearity that enters the equation is through the heat release rate term,

Q = Qf (t − τ)δ(x − xf ) = K
2

(√
|1/3 + uf (t − τ)| −

√
1/3

)
δ(x − xf ), (2.3)

which is localised to the flame location xf , using a Dirac delta function δ, with a
time-dependent amplitude Qf that depends on the velocity at the flame uf , flame time delay
τ and the heater strength K. This system is a delay partial differential equation (DPDE)
owing to the lag introduced through the heating term. Therefore, the initial condition for
this equation must be specified for t ∈ [t0 − τ, t0]. We apply open boundaries at the pipe
ends, which correspond to homogeneous Dirichlet and Neumann conditions for p and u,
respectively.

For a sufficiently large K, the fixed point (u, p) = (0, 0) is unstable and, for all
parameter regimes considered in this study, nonlinear saturation of this instability yields a
self-sustained limit cycle with period T . As we are dealing with a DPDE whose solution
must be known over [t − τ, t] to propagate the solution forward, the limit cycle is actually
defined up to τ time-units previously. To make this dependence on the history of the system
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clear, we now introduce the following notation (Hale 1977) (see Appendix A for further
details). In what follows, we consider the discretised system and write the state-equation
as the delay differential equation (DDE)

ẏ = f (t, y(t)) + g(t − τ, y(t − τ)) + εh(t), (2.4)

with f , g and h arising from the discretisation of (2.2). We write a solution to this equation
in the form yt(φ) = y(t + φ), where φ ∈ [−τ, 0]. In particular, we can express our limit
cycle, a periodic solution in the absence of forcing (ε = 0), as yLC

t (φ), where yLC
t+T(φ) =

yLC
t (φ).

3. Phase-reduction analysis

For a given limit cycle, we can introduce the concept of phase through a two-part
definition. First, we associate the phase θ with states yLC

t (φ) on the limit cycle via
θ = 2πt/T mod 2π. Hence, the phase θ ∈ [0, 2π] is a scalar variable that represents the
limit cycle. Second, we extend the phase definition to states in the vicinity of our limit
cycle by restricting ourselves to limit cycles that are asymptotically stable. This means
that if yt(φ) is a state not necessarily on the limit cycle, then there exists a state on the
limit cycle yLC

t+α(φ) such that ‖yt(φ) − yLC
t+α(φ))‖ → 0 as t → ∞. We can then say that

the phase of yt(φ) is the same as the point in time it asymptotically tends to and therefore
Θ(yt(φ)) = Θ(yLC

t+α(φ)), where the phase function Θ is defined such that Θ(yt(φ)) = θ .
While the phase is directly related to the time variable in this problem, phase can, in
general, be related to sensor measurements (Nakao 2016; Taira & Nakao 2018). It is also
worth noting that whilst alternative definitions of phase can be introduced, the motivation
behind our definition is that it will allow us to study the synchronisation properties of the
limit cycle using linear theory.

For states on the limit cycle, the phase θ satisfies θ̇ = ωn = 2π/T , where ωn is the
angular frequency of the limit cycle. However, in the presence of a small external forcing,
the phase equation becomes (Kotani et al. 2012; Novičenko & Pyragas 2012)

θ̇ = ωn + εZ(θ)Th(t) + O(ε2). (3.1)

The function Z(θ) is the phase-sensitivity function and allows us to assess the influence of
a perturbation h(t) on the phase dynamics. To determine this phase-sensitivity function,
two main methods can be employed. The first of which is to perturb the equation for a
range of values of θ , building up the function one point at a time (Taira & Nakao 2018). A
second approach, which we consider, finds Z as the solution to an adjoint problem (Kotani
et al. 2012; Novičenko & Pyragas 2012).

For the latter approach, we begin by linearising the unperturbed governing equations
(2.4) about the limit cycle yLC

t (φ) providing the linear DDE

ẏ′ = A1(t)y′(t) + A2(t)y′(t − τ). (3.2)

This equation describes the dynamics of a small perturbation y′ about the limit cycle.
Here, the matrices A1 and A2 are the Jacobians A1(t) = ∇y f (y)|y=yt(0) and A2(t) =
∇yg(y)|y=yt(−τ), respectively. As discussed more extensively in Appendix A, we must
first define a bilinear form to introduce the adjoint for a DDE. For the present DDE, the
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appropriate bilinear form (Kotani et al. 2012; Novičenko & Pyragas 2012) is

〈a(t), b(t)〉 ≡ a(t)Tb(t) +
∫ 0

−τ

a(t + τ + ξ)TA2(t + τ + ξ)b(t + ξ) dξ. (3.3)

Using this bilinear form, the adjoint can be found (see Appendix A) to satisfy the adjoint
equation

ẏ†=−AT
1 (t)y†(t) − AT

2 (t + τ)y†(t + τ). (3.4)

With the linear equation (3.2) and its adjoint (3.4), we can find the phase-sensitivity
function via the link between a phase shift and Floquet theory, which governs the stability
of the limit cycle. As we have assumed that the limit cycle is stable, all the Floquet
exponents are inside the unit circle, except for one which provides the phase shift. Indeed,
for an autonomous system, there is always one neutral Floquet exponent, which has the
eigenvector ẏLC

t (φ).
The Floquet exponents for the adjoint system (3.4) are the negative complex conjugates

of the direct case. This means that by solving equation (3.4) backwards in time, the system
is stable and has one neutral Floquet exponent with the corresponding eigenvector y†

t (φ).
Normalising this eigenvector such that 〈y†

t (φ), ẏLC
t (φ)〉 = ωn yields the phase-sensitivity

function via Z(θ) = y†
t=θ/ωn

(0) (see Appendix A for details). In practice, we can find the
adjoint eigenvector by integrating (3.4) back in time from an arbitrary initial condition to
obtain the ‘adjoint limit-cycle’, which, given a sufficiently long time horizon, converges
to the neutral Floquet solution.

Using the phase-sensitivity function, the phase-coupling function can be determined.
We consider the general case of m : n phase locking, which means that for m periods of
the external forcing, the system completes n cycles. By introducing the phase difference
θ(t) = θ(t) − (n/m)ωf t, and assuming that θ(t) is slowly varying, it can be shown (see
Khodkar & Taira 2020 for example) that synchronisation will occur if

ε min
θ

Γm,n(θ) < (n/m)ωf − ωn < ε max
θ

Γm,n(θ), (3.5)

where

Γm,n(θ) ≡ 1
mTf

∫ t0+mTf

t0
Z(θ(t) + (n/m)ωf s)Th(s) ds, (3.6)

is the phase-coupling function and Tf is the period of the external forcing. This inequality
gives a region of synchronisation over the space of forcing angular frequency ωf and
forcing amplitude ε, known as an Arnold tongue, in which m : n frequency locking is
possible.
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4. Numerical implementation

To numerically solve the governing equations (2.2), we consider the Galerkin projection
approach of Balasubramanian & Sujith (2008). With expansions

u =
N∑

j=1

ηj(t) cos(jπx), (4.1)

p = −
N∑

j=1

(
η̇j(t)γ Ma

jπ

)
sin(jπx), (4.2)

f +
p =

N∑
j=1

f +
pj sin(jπx), (4.3)

we automatically satisfy the boundary conditions and reduce the full DPDE to a DDE for
the coefficients ηj and η̇j. The heat release terms become

uf =
N∑

j=1

ηj(t − τ) cos(jπxf ), (4.4)

q̇j = jπK(
√|1/3 + uf | −

√
1/3) sin(jπxf ), (4.5)

and we can write the system (2.2) as

η̈j + (jπ)2ηj + ξjη̇j = −q̇j − jπε

γ Ma
f +
pj . (4.6)

This equation can be recast to the first-order DDE

d
dt

(
η(t)
η̇(t)

)
=

(
0 I
W D

)(
η(t)
η̇(t)

)
−

(
0

q̇(η(t − τ))

)
− ε

(
0
f +

p

)
, (4.7)

where

η = (η1, . . . , ηN)T, f p = (π/(γ Ma)fp1 . . . , Nπ/(γ Ma)fpN)T, (4.8a,b)

and diagonal matrices W and D have entries W jj = −(jπ)2 and Djj = −ξj, respectively.
It is important to note that the size of ε does not affect the phase-sensitivity function

Z as this is determined through a linear formulation. However, when the phase-sensitivity
function is used to find the bounds of synchronisation via (3.5), we are in effect using a
first-order Taylor expansion in ε in which Z is the linear term. Therefore, the size of ε can
affect the synchronisation region. Indeed, ε is the amplitude of the external forcing and it is
useful to have a physical measure of how large this amplitude is. To this end, we introduce
the total non-dimensional acoustic energy per unit volume of the system (Juniper 2011)

E = 1
2

[
u2 + p2

(γ Ma)2

]
= 1

2

N∑
j=1

η2
j + 1

2

N∑
j=1

(
η̇j

jπ

)2

. (4.9)

This energy measure allows us to quantify the size of ε. In other words, we assess the
magnitude of the added perturbation.
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Figure 2. (a) Neutral curves for the stability of the fixed point (u, p) = (0, 0). Highlighted with a blue cross
are the parameters for our base case. (b) Plot of u versus p at x = 0.2 for the direct solution. The transient
behaviour is displayed in orange, with the limit cycle shown in blue.

To obtain the linearised and adjoint equations, we cast the Galerkin model (4.7) in the
form of a DDE (2.4). Here, we have

A1 =
(

0 I
W D

)
, A2 =

(
0 0
B 0

)
, (4.10a,b)

in our linearised equation (3.2), where

(B)ij(t) = − iπK sin(iπxf ) sgn(1
3 + uf (t − τ)) cos(jπxf )

2
√

|1
3 + uf (t − τ)|

. (4.11)

Our implementation, which is available (Skene & Taira 2021), is based on the sixth-order
DDE solver Vern6 (Verner 2010) contained in the DifferentialEquations.jl package
(Rackauckas & Nie 2017).

5. Results

Using the Galerkin expansion approach introduced above, we are able to systematically
obtain the phase-sensitivity function for a given set of parameters. As our goal is not only
to find the phase-sensitivity function, but also to assess the synchronisation dynamics with
a view to open-loop forcing, we consider a range of values for the flame time delay τ , flame
strength K and flame location xf . For all cases, we fix the number of Galerkin modes to
N = 10, which gives a reasonable compromise between obtaining higher-mode behaviour
and keeping the computational run-time reasonable. We herein set the damping parameters
to c1 = 0.1 and c2 = 0.06 and fix Ma = 0.005 and γ = 1.4. The neutral stability curves
for the fixed point (u, p) = (0, 0) in τ − K space for different values of the flame location
are shown in figure 2(a). In what follows, we only consider unstable cases as this will
ensure that a limit cycle solution emerges. However, even in the stable regime, limit cycle
solutions can be found, as in the study by Juniper (2011), and the methods of this paper
also carry over to these limit cycles, provided they are Floquet stable. It is also worth
noting that Juniper (2011) showed that owing to non-normality, a small perturbation can
grow large enough to move the system away from its stable configuration, an effect which
is not accounted for by our current analysis which is valid close to the limit cycle.

We start by examining the case with K = 0.72, xf = 0.25 and τ = 0.2, following
Mondal et al. (2019). This baseline case is highlighted in figure 2(a) and is located just
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Figure 3. (a) Plot of u† versus p† at x = 0.2 for adjoint solution. Again, the transient behaviour is displayed in
orange, with the limit cycle shown in blue. (b) The value of the bilinear form, as well as the breakdown into its
inner product and integral contributions, over one period.

inside the unstable regime. To obtain the limit cycle, we solve (4.7) in the absence of
external forcing and with a small random initial condition. For these parameters, the state
(u, p) = (0, 0) is unstable, the perturbation grows and eventually saturates into a limit
cycle. By starting at t = −400, we obtain a limit cycle (see figure 2b) free of transient
effects by t = 0, which is further integrated to t = 400. This allows us to obtain the
phase-sensitivity function by solving the adjoint equation backwards in time, starting
from a random initial condition, from t = 400 to 0 (see figure 3a). We compute the
phase-sensitivity function using the adjoint solution for t ∈ [0, T] with T = 1.93, scaling
with the normalisation specified in § 3. Whilst enabling us to fix the amplitude of the
phase-sensitivity function, the inner product (3.3) also provides a good check of our
adjoint solution. The inner product must be constant in time and consists of two parts;
a dot product and an integral. Figure 3(b) confirms the value of the inner product being
constant over one period, which verifies our adjoint solution.

With the phase-sensitivity function determined, we can compute the phase-coupling
function using (3.6). The forcing term is specified to be f +

pj = −γ Ma/(jπ)c cos(ωf t)
following Mondal et al. (2019), with c chosen such that the forcing has a unit acoustic
energy norm. The resulting Arnold tongue obtained from (3.5) is shown in figure 4(a). We
have shown on the y-axis both the amplitude ε as well as Af , which matches the amplitude
displayed by Mondal et al. (2019) owing to the different normalisations used. The ‘V’
shape shows the minimum amplitude of the forcing needed to obtain synchronisation at
the different values of the frequency f = ωf /(2π), with synchronisation being possible
inside the V-shaped region. We see that for frequencies equal to the natural frequency of
the system fn, synchronisation is always possible. However, as this frequency is increased
or decreased, a greater forcing amplitude is needed.

Figure 4(a) shows that there is a good agreement between our obtained Arnold
tongue and the one computed by Mondal et al. (2019), which holds true even for large
forcing amplitudes ε. The Arnold tongue calculated by Mondal et al. (2019) required
performing a series of nonlinear simulations at different forcing amplitudes to obtain, on a
point-by-point basis, the resulting synchronisation behaviour. This means that the Arnold
tongue they obtained includes nonlinear behaviour, such as phase trapping. In our case,
we consider a linear analysis, which enables us to efficiently calculate the entire Arnold
tongue with a single adjoint simulation. The differences can therefore be attributed to
nonlinear effects. We also see that our Arnold tongue is symmetric. This symmetry has to
occur when using a Galerkin model because both u and p have zero means. However, the
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Figure 4. (a) The Arnold tongue showing the regions where synchronisation is possible (blue line). Also
displayed are the boundaries between phase trapping and phase drifting (orange circles), as well as phase
locking and phase trapping (green squares) from Mondal et al. (2019). (b) The Arnold tongues for the general
cases of 1 : 2 (orange), 1 : 1 (blue), 2 : 1 (green) and 3 : 1 (red) synchronisation.

experimentally obtained Arnold tongue (Mondal et al. 2019) has an asymmetry showing
that synchronisation was easier for frequencies below the natural frequency. This is a direct
consequence of their experimental set-up, which has a mean flow.

In addition to 1 : 1 synchronisation, figure 4(b) reveals the general case of m : n phase
locking predicted by the present analysis. The figure shows that 1 : 1 synchronisation is the
easiest to achieve, with 3 : 1 frequency locking also being feasible, albeit over a narrower
region. Perhaps most importantly, we see that for our system, 1 : 2 synchronisation is
impractical to attain. In the study of Mondal et al. (2019), asynchronous quenching was
achieved for frequencies lower than the natural frequency, a region in which 1 : 2-type
phase locking could occur. By obtaining figure 4(b), we can directly observe a priori
the phase-locking behaviour in this region. This further emphasises the importance of
obtaining the Arnold tongues in designing open-loop control strategies and highlights
the capabilities of the phase-sensitivity method to efficiently find the synchronisation
conditions.

The fact that the phase-sensitivity function is independent of the forcing function
means that we can efficiently consider the optimal placement of the pressure forcing for
the purpose of synchronisation. Identifying the optimal placement allows for designing
effective open-loop control strategies to move the frequency of the limit cycle to a
desired one for a particular system via synchronisation. This is similar to the approach
of Khodkar & Taira (2020), where the optimal placement of actuators for synchronisation
was considered in the case of vortex shedding behind a cylinder. To assess the ease (or
difficulty) of achieving synchronisation, we consider synchronisability S ≡ max(Γ ) −
min(Γ ), which essentially represents the width of the Arnold tongue (Khodkar & Taira
2020). Instead of a global pressure forcing, we now consider a pointwise placement
of pressure actuation given by f +

p = γ Maδ(x − xp) cos(ωf t), where xp is the actuator
location along the Rijke tube. In terms of our Galerkin model, this corresponds to setting
f +
pj = 2γ Ma sin(jπxp) cos(ωf t). We seek the synchronisability for a range of parameters,

each requiring us to obtain a new phase-sensitivity function using the method described
for our base case.

The synchronisability for varied xp along the tube is shown in figure 5 for a wide range
of parameters. In all cases, the maximum value of synchronisability occurs at xp = 0.5, i.e.
half-way along the Rijke tube. The fact that the optimal location is at the tube mid-point
could be attributed to the natural acoustic mode-shapes which all have a maximum at
the midpoint. It also aligns with what was discovered for passive control via an adjoint
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Figure 5. The synchronisability as the pressure actuation location is varied along the tube: (a) K = 0.72,
τ = 0.2 and xf ∈ [0.25, 0.33]; (b) K = 0.72, τ ∈ [0.2, 0.29] and xf = 0.25; (c) K ∈ [0.72, 0.99], τ = 0.2 and
xf = 0.25.

analysis of the eigenvalue sensitivities (Magri & Juniper 2013), where a pressure based
feedback forcing of the pressure equation was found to be maximal near the tube centre
(approximately xp = 0.58). The difference between their location and ours could arise
from the choice of linearisation. Namely, the fact that ours is around the limit cycle
whereas theirs is around a fixed point. This is an important consideration because Juniper
(2011) shows that there are multiple stable limit cycles for a given set of parameters.
As these come from the same fixed-point, they will share the same eigenvalue-based
conclusions. However, linearising about the limit cycle enables the form of the periodic
orbit to influence the resulting adjoint solution and may lead to different conclusions.

Interestingly, in all cases, the flame location induces an inflection point, with figure 5(a)
showing that this inflection moves with the flame location causing a new local maximum
to occur to the left of the flame. While this may suggest that the flame locally inhibits
synchronisation for pressure-based actuation, we should be careful in interpreting the
behaviour at the flame owing to the Galerkin method used to solve the equations. The
Galerkin projection does not capture the jump conditions that should be present at the
flame, which could be explicitly treated by using a higher fidelity numerical scheme
(Sayadi et al. 2014). By comparing figures 5(b) and 5(c), we see that the synchronisation
dynamics are more sensitive to the flame time delay than the flame strength with
synchronisation becoming harder as these parameters are increased. We note that the
increased sensitivity with respect to the time delay agrees with the work of Aguilar,
Magri & Juniper (2017) who showed this variable also gives the largest sensitivity in their
thermoacoustic system using an adjoint-based analysis of the eigenvalues.
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Figure 6. (a) Eigenvalues for the one frequency (blue crosses) and two frequency (orange circles) systems.
(b) Neutral curve for xf = 0.2.
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Figure 7. (a) Limit cycle for the multiple frequency system. (b) Arnold tongues for 1 : 2 (orange), 1 : 1
(blue), 2 : 1 (green) and 3 : 1 (red) synchronisation for our multiple frequency system.

Now that many aspects of the phase-sensitivity analysis have been presented, we
consider one more parameter regime. For the baseline case considered so far, the steady
state (u, p) = (0, 0) has one pair of unstable eigenvalues around the primary pure-acoustic
angular frequency of ω = π, as shown in figure 6(a). This figure also shows stable
eigenvalues at the first harmonic of this mode with an angular frequency of approximately
ω = 2π. The result is a limit cycle that is primarily dominated by one frequency. To
consider a limit cycle with two dominant frequencies, we can consider the neutral curve
presented by Sayadi et al. (2014). For the flame location xf = 0.2, the neutral curve
shown in figure 6(b) is obtained. We can see that around a flame strength of K ≈ 3, a
‘kink’ develops in the neutral curve. As discussed by Sayadi et al. (2014), this ‘kink’
occurs because the secondary eigenvalue with ω ≈ 2π becomes more unstable than the
fundamental mode. Therefore, to consider the effect of two frequencies, we now consider
the case of xf = 0.2, K = 3.5 and τ = 0.05, which is shown in figure 6(b) to be located
near the ‘kink.’ We note that for the parameter regime of this two frequency case, Sayadi
et al. (2014) show that the mode shapes from a Galerkin approach show less agreement
with a high fidelity approach that properly discretises the discontinuity at the flame.
Therefore, as in our parametric study showcased in figure 5, we proceed with caution
when interpreting the results. For these parameters, figure 6(a) shows that now both the
fundamental and first harmonic are unstable, with the first harmonic being more unstable
than the fundamental mode. As in the baseline case, this instability saturates into a limit
cycle (see figure 7a), where the presence of a second frequency is evident in its ‘loop.’
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Figure 7(b) shows the Arnold tongues for 1 : 2, 1 : 1, 2 : 1 and 3 : 1 synchronisation
for the same forcing used to produce figure 4(b). We see that 1 : 1 phase locking is
easier in this system than the baseline. The reason for this could be attributed to the
fact that figure 5(b) suggests that synchronisation becomes easier as the flame time delay
is decreased. However, it is also evident that 2 : 1 phase locking is now more easily
achievable than 3 : 1 phase locking which cannot arise from the smaller flame time delay
alone. The reason for the increased 2 : 1 synchronisability for this double frequency case
can be viewed as a direct consequence of having a more dominant first harmonic in the
nonlinear solution. This translates into an adjoint solution that contains more content at
this frequency, which in turn leads to higher synchronisability via the phase-coupling
function.

We conclude our study by considering the potential speedups available over using fully
non-simulations to find the Arnold tongues. For both methods, a limit-cycle solution
must first be found. Once this is found, we can estimate the subsequent cost of each
analysis as follows. For both the phase sensitivity and fully nonlinear methods, the
main cost involved is from solving either the nonlinear or adjoint equations, with any
post processing, such as obtaining the phase coupling function, being negligible. If we
assume that the nonlinear and adjoint equations take the same amount of time tsolve to
be solved, then the total time of the phase-sensitivity method is Cp.s. = 2tsolve. For the
nonlinear approach, if nf frequencies and nA amplitudes are used, then the total time
will be Cn.l. = nf nAtsolve. Therefore, the speedup using the phase-sensitivity approach
is Sp = Cn.l./Cp.s. = nf nA/2. For example, if nf = nA = 10, then the phase-sensitivity
function approach will be approximately 50 times faster; a substantial speedup.

It is worth mentioning that the argument above does not take into account the fact
that the nonlinear approach will have only yielded the Arnold tongue for one particular
forcing function and one choice of n : m phase locking. If additional forcing functions
or n : m phase lockings are to be examined, then each case will call for another Cn.l.
time-units. However, the phase-sensitivity function does not depend on the exact form
of the forcing function or phase-locking type considered, and therefore all subsequent
analysis will be essentially free compared with the initial cost. These considerations
further make the phase-sensitivity function an efficient choice for determining the phase
properties of a Floquet-stable system close to its limit cycle. Whilst adjoint approaches can
be expensive in terms of memory, the fact that the phase-sensitivity function is the adjoint
neutral-Floquet mode means that it can be obtained using simulations over just one period
of the limit cycle using an algorithm such as that presented by Barkley & Henderson
(1996). Even though we do not take this approach here, using such a method could
be critically important in rendering this analysis feasible for larger, memory-intensive
systems.

6. Conclusion

We have performed phase-reduction analysis to study the phase-synchronisation properties
of the thermoacoustic system in a Rijke tube with respect to the limit cycle produced by its
instability. By reducing the phase dynamics to a scalar equation for the phase, we are able
to reveal the effects of weak external forcing on the phase through the phase-sensitivity
function. The fact that this phase-sensitivity function can be found through integration of
the adjoint equation, and does not depend on the exact form of the external forcing, makes
this analysis particularly efficient and generalisable. We used the phase description to map
out the regions where m : n phase locking can occur and identify the optimal positions
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along the Rijke tube where pressure actuation can result in synchronisation. The current
study highlights the usefulness of phase-sensitivity analysis for thermoacoustic problems,
especially as an additional tool for designing open-loop control strategies via harmonic
forcing.

Whilst keeping in mind that this method is not directly applicable to turbulent systems,
unstable limit cycles or for determining synchronisation behaviour far from a limit cycle,
the present phase-reduction analysis for a Rijke tube can be extended to suitable, more
complex thermoacoustic simulations without major change. For future work, it would
be interesting to first extend the analysis to a higher fidelity model of a Rijke tube
(Sayadi et al. 2014) that explicitly treats the jump conditions at the flame, allowing for
the phase dynamics near the flame, and for higher flame strengths, to be accurately
quantified. Further to this, including the effects of a mean-flow in the Rijke tube
model, and introducing velocity-based forcing, would also be beneficial in matching the
synchronisation characteristics of some experimental set-ups. Applying phase techniques
to more complex models including flame chemistry and more complex geometries would
allow phase-sensitivity analysis to play a role in the control of instabilities arising from
more realistic combustion systems.
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Appendix A. Mathematical details

For a DDE in the form (2.4), we see that the initial condition (initial history) must be
specified over −τ ≤ t ≤ 0 for the subsequent solution to be uniquely defined. In general,
to propagate a state at time t0 forward, we need the solution to the DDE over −τ ≤ t −
t0 ≤ 0. Therefore, it is helpful to think of the state as a function of the time-delay φ ∈
[−τ, 0], i.e. for each time t, we write a solution to the equation as yt(φ) = y(t + φ) (Hale
1977). In this manner, the solution to the DDE is a function and we can formally write
yt ∈ C([−τ, 0]). An evolution equation can be found directly for the function yt(φ) and is
defined piecewise as

dyt(φ)

dt
=

⎧⎨
⎩

dyt(φ)

dφ
if φ ∈ [−τ, 0),

f (t, yt(0)) + g(t − τ, yt(−τ)) + εh(t) if φ = 0.

(A1)

Similarly, the linearised equations (with ε = 0) can be written as dyt(φ)/dt = Ayt(φ)

where the linear operator

Ayt(φ) =
⎧⎨
⎩

dyt(φ)

dφ
if φ ∈ [−τ, 0),

A1(t)yt(0) + A2(t)yt(−τ) if φ = 0.

(A2)
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As we are using an infinite-dimensional description for solutions to our DDE, care
is needed when defining the adjoint. For finite-dimensional systems the adjoint is
defined via an inner product because the direct and adjoint variables are defined in
the same space, e.g. RN . However, for a DDE, the direct variable yt(φ) ∈ C([−τ, 0]),
whereas the adjoint y†

t (φ) ∈ C([0, τ ]). Hence, to define the adjoint, a bilinear form
V(C([0, τ ]), C([−τ, 0])) → R is needed (see Wischert et al. 1994; Simmendinger et al.
1999; Kotani et al. 2012; Novičenko & Pyragas 2012). In terms of our functional notation,
the bilinear form (3.3) can be written as

〈at(φ), bt(φ)〉 = at(0)Tbt(0) +
∫ 0

−τ

at(ξ + τ)TA2(t + τ + ξ)bt(ξ) dξ. (A3)

The main steps of how to find the adjoint operator are now given and mainly follows the
derivation available in Rand (2012).

To define the adjoint, we require that the bilinear form between a direct state and its
adjoint (dual) state is constant in time (Simmendinger et al. 1999). Formally, this means
that

d
dt

〈at(φ), bt(φ)〉 = 0. (A4)

Using definition (A3), along with the fact that dyt(φ)/dt = Ayt(φ) and the definition
−dy†

t (φ)/dt = A†y†
t (φ), where A† is the yet to be found adjoint operator, we have

d
dt

〈at(φ), bt(φ)〉 = 〈at(φ),Abt(φ)〉 − 〈A†at(φ), bt(φ)〉

+
∫ 0

−τ

at(ξ + τ)T dA2(t + τ + ξ)

dξ
bt(ξ) dξ. (A5)

We see that for no-time delay, setting this expression to zero gives the classic adjoint
condition that 〈at(φ),Abt(φ)〉 = 〈A†at(φ), bt(φ)〉. However, for a time-delayed system,
the infinite-dimensional nature gives an extra term owing to the memory of the system.
Again using the inner product (A3), we have that

〈at(φ),Abt(φ)〉 = at(0)TAbt(0)

+
∫ 0

−τ

at(ξ + τ)TA2(t + τ + ξ)Abt(ξ) dξ, (A6)

which upon using the definition of A (A2) becomes

〈at(φ),Abt(φ)〉 = at(0)T(A1(t)bt(0) + A2(t)bt(−τ))

+
∫ 0

−τ

at(ξ + τ)TA2(t + τ + ξ)
dbt(ξ)

dξ
dξ︸ ︷︷ ︸

I

. (A7)
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The integral term I in (A7) can be rearranged using integration by parts to give

I = [at(ξ + τ)TA2(t + τ + ξ)bt(ξ)]0
−τ

−
∫ 0

−τ

[
dat(ξ + τ)

dξ

]T

A2(t + τ + ξ)bt(ξ) dξ

−
∫ 0

−τ

at(ξ + τ)T dA2(t + τ + ξ)

dξ
bt(ξ) dξ. (A8)

Combining all the terms in (A7), using the integral term in this form gives

〈at(φ),Abt(φ)〉 = [A1(t)Tat(0) + A2(t + τ)at(τ )]Tbt(0)

+
∫ 0

−τ

[
−dat(ξ + τ)

dξ

]T

A2(t + τ + ξ)bt(ξ) dξ

−
∫ 0

−τ

at(ξ + τ)T dA2(t + τ + ξ)

dξ
bt(ξ) dξ, (A9)

which we recognise as

〈at(φ),Abt(φ)〉 = 〈A†at(φ), bt(φ)〉

−
∫ 0

−τ

aT
t (ξ + τ)

dA2(t + τ + ξ)

dξ
bt(ξ) dξ, (A10)

where the adjoint operator A† is now defined as

A†y†
t (φ) =

⎧⎨
⎩−dy†

t (φ)

dφ
if φ ∈ (0, τ ],

AT
1 (t)y†

t (0) + AT
2 (t + τ)y†

t (τ ) if φ = 0.

(A11)

Substituting (A10) into (A5) then shows that the bilinear form between a direct state and
its dual remains constant in time.

For a T-periodic system close to the limit cycle yLC
t (φ), a state can be written as

yt(φ) = yLC
t (φ) + εy′

t(φ). By the Floquet theorem (Floquet 1883), which carries over to
delay differential equations (Simmendinger et al. 1999), the perturbation y′

t(φ) can be
written as

y′
t(φ) =

∑
i

ci exp(λit)yi
t(φ), (A12)

where the Floquet modes yi
t(φ) are T-periodic functions, ci are coefficients and λi ∈ C are

the Floquet multipliers. This allows the idea of stability to be carried forward to periodic
systems. If real(λi) ≤ 0 for all i, then the limit cycle is stable and all perturbed states
eventually return to the limit cycle (but generally with a phase shift), which is a necessary
condition for our phase definition. For an autonomous system, there is always one neutral
Floquet mode (i = 0) with λ0 = 0. Moreover, the neutral mode shape can be found
directly from the limit cycle solution via y0

t (φ) = ẏLC
t (φ) (Simmendinger et al. 1999).

It can be seen that this mode represents the phase shift because a Taylor expansion gives
yLC

t+α(φ) ≈ yLC
t + αẏLC

t (φ). Therefore, it is natural to use Floquet theory to understand the
phase-sensitivity function. We now demonstrate this using a similar approach to that of
Novičenko & Pyragas (2012).
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Consider the perturbed equation (2.4). Because the forcing term is small, we can seek
the solution in the form yt(φ) = yLC

t (φ) + εy′
t(φ). By linearising (2.4), we have that this

perturbation is governed by the equation ẏ′
t(φ) = Ay′

t(φ) + Ahy′
t(φ), where

Ahyt(φ) =
{

0 if φ ∈ [−τ, 0),

h(t) if φ = 0,
(A13)

and A is defined as (A2) from before. Now, because the perturbation is small and remains
close to the limit cycle, we can use the Floquet theorem to express the perturbation in the
form

y′
t(φ) = ε

∑
i

ci(t)yi
t(φ). (A14)

From our previous discussion, we know that only the i = 0 Floquet mode has the ability
to change the phase of the system. Therefore, using a similar argument as before for each
time t, the phase for the perturbed system must be θ = ωnt + εωnc0(t), giving its evolution
equation as θ̇ = ωn + εωnċ0(t).

Now that we have found the phase equation in terms of the time-dependent coefficients
of the Floquet expansion, we can use the adjoint to relate ċ0(t) to the forcing term h(t).
To do this, we first recognise that even though the Floquet modes are not orthogonal,
the direct and adjoint Floquet modes form a bi-orthogonal set under our bilinear
form (Simmendinger et al. 1999). In other words, with an appropriate normalisation
of the adjoint, 〈yi,†

t (φ), y j
t (φ)〉 = di,jδi,j, where di,j are coefficients that depend on the

normalisation and δi,j is the Kronecker delta. Note that for i = j = 0, this implies that
〈y0,†

t (φ), ẏLC
t (φ)〉 = ωn, where we have chosen the normalisation d0,0 = ωn. Using this

biorthogonality, we can take the bilinear form of (A14) with y0,†
t (φ) to find c0(t) as

〈y0,†
t (φ), y′

t(φ)〉 = εωnc0(t). To find ċ0(t), we differentiate this expression with respect
to time. Using the already shown result that the time derivative of the contribution to this
bilinear form from the unperturbed dynamics is zero, we obtain

εωnċ0(t) = 〈y0,†
t (φ),Ahy′

t(φ)〉, (A15)

which, from the definition (A13), becomes ωnċ0(t) = y0,†
t (0)Th(t). Hence, dropping the

i = 0 superscript, the phase equation is (3.1) with Z(θ) = y†
t=θ/ωn

(0).
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