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ABSTRACT

In recent years, the determination of premium principle under various non-
expected utility frameworks has become popular, such as the pioneer works by
Tsanakas and Desli (2003) and Kaluszka and Krzeszowiec (2012). We here re-
visit the problem under another prevalent behavioral economic theory, namely
theDisappointment Aversion (DA) Theory proposed byGul (1991). In this arti-
cle, we define and study the properties of theDA premium principle, which builds
on the equivalent utility premium principle. We derive various properties of this
premium principle, such as non-negative and no unjustified risk loading, trans-
lation invariance, monotonicity, convexity, positive (non-)homogeneity, inde-
pendent (non-)additivity, comonotonic (non-)additivity and monotonicity with
respect to the extent of disappointment. A generalized Arrow–Pratt approxi-
mation is also established. Explicit representations of the premium principle
are obtained for linear and exponential utilities, and they reveal that the pre-
mium principle proposed echoes the capital reserve regulatory requirement in
practice.

KEYWORDS
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1. INTRODUCTION

In their celebrated work, von Neumann and Morgenstern (2007) were the first
to develop the Expected Utility Theory (EUT). The theory stated that if de-
cision makers behave in accordance with the four axioms of (1) completeness,
(2) transitivity, (3) independence, and (4) continuity on the preference ordering,
they will essentially make a choice that gives the “maximum” possible expected
utility. Despite its elegance, their theory has constantly been challenged against
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its failure to explain the actual behavior of decision makers. For example, the
Allais Paradox byAllais (1953) could be one of themost illuminating. Therefore,
it is crucial to revisit some fundamental problems such as the determination of
insurance pricing principle under the non-EUT framework.

Under an insurance agreement, the insured pays a premium in advance for
a protection I(·) from the insurer against an insurable risk X. The premium set
by the insurer is used to fund the cost of economic capital to compensate the
future contingent liabilities. This plays the same role of the recently popular risk
measure1, being a functional of loss variables, in finance. As depicted by Young
(2006), three methods were employed by actuaries to establish the premium
principle, namely: (I) the ad-hoc approach; (II) the characterization method;
and (III) the economic method. For the ad-hoc approach, it assumes firstly that
the premium principle takes a particular functional form, for example, net pre-
mium principle, expected value premium principle, variance premium principle,
and exponential premium principle. The principles are then examined through
their properties, for instance, no unjustified risk loading, translation invariance,
monotonicity, and (sub-)additivity. Also see Gerber (1979) and Goovaerts et al.
(1984) for comprehensive studies on various existing premium principles includ-
ing thosementioned above. For the characterizationmethod, it is the converse of
the ad-hoc approach. In other words, this method identifies premium principles
that satisfy certain reasonable axioms. For example, Wang et al. (1997) proved
that if the premium principle satisfies properties, such as comonotonic additiv-
ity, the premium takes the form, now known as distortion premium principle,
similar to the net premium principle but with a concave distortion on the sur-
vival function. For the economic method, which was originated by Bühlmann
(1970), the premium is priced not only according to the nature of the loss, but
also with the consideration on the risk aversion and surplus of the insurer or
insured; in particular, Bühlmann (1970) proposed the zero-utility premiumprin-
ciple HS (resp. HB) for the insurer (resp. insured) which is defined as the unique
solution of the following equation. For insurer:

u(wS) = E[u(wS + HS(I(X)) − I(X))]; (1)

and respectively, for insured:

E
[
v(wB − X)

] = E[v(wB − HB(I(X)) − X+ I(X))], (2)

where u, v are the respective utility functions of the insurer and insured; wS, wB

are the respective initial wealths.
Due to the deficiencies of the EUT, Bühlmann (1970)’s model has recently

been revisited, via the concept of indifference pricing (see Carmona (2009), De-
nuit et al. (2006) and Tsanakas and Desli (2003) for an overview), through the
following indifference pricing equations. For insurer:

US(wS) = US (
wS + HS(I(X)) − I(X)

) ; (3)
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and respectively, for insured:

UB (
wB − X

) = UB (
wB − HB(I(X)) − X+ I(X)

)
, (4)

whereUS andUB are the respective general preference operators of the insurer
and insured. The premiumprinciple determined by (3) or (4) is also named as the
equivalent utility premiumprinciple, in which the “utility” stands for the general
decisionmaking criterion instead of themeasurement of individual satisfaction.

In our present work, we revisit the insurance pricing problem, by using the
thirdmethod via the equivalent utility premium principle, under one of themost
popular non-EUT models. The advantage of using economic method is to pro-
vide a convenient link with the contemporary prevalent theory of risk measures
through suitable choices of preference operators. For example, the linear and ex-
ponential utilities in zero-utility premium principle give rise to the net premium
principle and the exponential premium principle, or entropic risk measure, re-
spectively. Furthermore, with a small enough variance of the loss, the exponen-
tial premium principle can be connected to the variance premium principle as a
reasonably good approximation. This perspective has been echoed in the works
such as Denuit et al. (2006): setting of risk measures in practice should take
into account the utility concepts in order to avoid any deficiencies. Besides, the
economic method can result in a direct connection with behavioral economics;
indeed, the premium should be calibrated not only by the nature of the loss
itself, but also by the risk aversion and other potential behavioral preference of
the insurers. For example, with the choice of preference functionals as specified
by the Dual Theory by Yaari (1987), the distortion premium principle can be
obtained. Tsanakas andDesli (2003) derived a premiumprinciple called the gen-
eralized expected utility premium principle based on the rank-dependent EUT
developed by Quiggin (1993); in particular, their proposed premium principle is
a combination of the utility function of X and the distortion on the loss survival
distribution. Besides, Kaluszka and Krzeszowiec (2012) studied the equivalent
utility premium principle based on the Cumulative Prospect Theory developed
by Kahneman and Tversky (1992).

A popular and representative non-EUT is theDisappointment Theory, which
was originated byBell (1985) and further studied byLoomes and Sugden (1986).
This theory deploys that decision makers experience disappointment if, prior to
resolving of the lottery, they took a certain level of expectation on the value
of the lottery, which eventually turned out to be greater than the actual out-
come. The theory further asserts that the decision maker takes his/her potential
disappointment feeling into account for ordering the preference. The models
proposed by Bell (1985) and Loomes and Sugden (1986) regard the mathemat-
ical expectation as the reference point. As an alternative to their models, DA
Theory as developed by Gul (1991) provides an intuitive explanation of the Al-
lais Paradox by introducing the weaker independence axiom; in particular, he
decomposed lotteries into elation and disappointment parts with respect to a
certainty equivalent instead of the mathematical expectation as considered by
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Bell (1985) and Loomes and Sugden (1986). Gul (1991) also showed that, under
his newly proposed axiom, the preference ordering of a decision maker can be
induced by the corresponding DA utility (see Section 2 for details).

There are a number of recent advances implementing the psychological dis-
appointment factor into a variety of applied problems in economics and finance.
Gollier and Muermann (2010) considered the portfolio choice and insurance
problem using the Loomes and Sugden disappointment theory. Under the DA
theory, treatments on the optimal portfolio selection problem are provided in
the literature. See applications in Ang et al. (2005) to explain Equity Premium
Puzzle and the analytical solution for small risks in Saltari andTravaglini (2010).
Recently, Cheung et al. (2015) solved classical optimal insurance problems un-
der various disappointment theories. Nevertheless, to the best of our knowledge,
a comprehensive study of the determination of the insurance pricing principle
under the disappointment framework is still absent in the literature.

In this article, we first introduce theDApremium principle from the insurer’s
perspective under the DA Theory by Gul (1991). A comprehensive study on its
properties and explicit representations with linear and exponential utilities will
be discussed. We observe that our proposed premium principle H can capture
the important behavioral factor: the DA coefficient of the insurer. Generaliza-
tion of the Arrow–Pratt approximation under the present DA framework will
also be provided. Our results demonstrate that equivalent utility premium prin-
ciple under the DA model is more realistic than that under the EUT, in the
sense that the premium principle representations under the linear and exponen-
tial utilities unveil an interesting connection with the capital reserve regulatory
requirement in practice. Our work complements Tsanakas and Desli (2003) and
Kaluszka and Krzeszowiec (2012), who are the first laying down the zero-utility
premium principle under behavioral frameworks.

The organization of our article is as follows. In Section 2, the DA utility
under the framework in Gul (1991) together with its existence and elementary
properties will be introduced. Under this DA setting, the corresponding pre-
mium principle H for the insurer, together with its equivalent formulations,
properties, Arrow–Pratt type approximation, and convex riskmeasure represen-
tation, will be established in Section 3. When the underlying utility u is either
linear or exponential, the explicit representations of H, with a concrete iden-
tification of the underlying family of probability measures, will be provided in
Sections 4.1 and 4.2. Finally, further numerical examples will be illustrated.

2. DISAPPOINTMENT AVERSION UTILITY

In this section, we recall a particular preference operator, namely, the DA utility
proposed by Gul (1991), which will be used to define our premium principle in
Section 3. We shall also study some basic properties of the DA utility in this
section.
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Let (�,F, P) be a probability space and L∞(�,F, P) be the convex space
of all essentially boundedF-measurable random variables. Let u : R → R be an
underlying utility function which is strictly increasing, concave (not necessarily
strictly concave), and vanishing at 0, i.e. u(0) = 0.

Definition 2.1. Given the underlying utility function u and a constant D ∈ [0, 1],
theDA utility of the payoff Y ∈ L∞(�,F, P) is the real number U(Y) such that:

i. for D = 0,
U(Y) := essinf u (Y) ;

ii. for D ∈ (0, 1], U(Y) is implicitly defined through the equation:

U(Y) = EP

[
u(Y) +

(
1
D

− 1
)

(u(Y) − U(Y))1{u(Y)<U(Y)}

]
. (5)

In fact, theDA utility is the composite function u◦μ of the underlying utility
function u and the DA certainty equivalent μ introduced by Gul (1991). When
D = 1, which corresponds to the scenario that the disappointment effect does
not affect the insurer’s decision, Equation (5) reduces to

u(μ(Y)) = EP [u(Y)] .

This is used to define the usual certainty equivalent under the EUT. Note that
Equation (5) can be written as

U(Y) = EP

[
u(Y) −

(
1
D

− 1
)

(U(Y) − u(Y))+

]
, (6)

from which we interpret the DA utility U(Y) as the expected penalized utility
of the payoff Y, where the penalization is imposed on the downside risk with
respect to U(Y) itself through the scaling factor 1

D − 1. We also remark that
when D decreases, the insurer is more disappointment averse, and vice versa.
Therefore, the parameter D captures the degree of DA of the insurer and thus
it is called the DA coefficient.

Proposition 2.2. For any Y ∈ L∞(�,F, P), U(Y) has the following properties:

i. U(Y) uniquely exists in [essinf u (Y) , esssupu (Y)].
ii. If Y = c where c ∈ R, U(Y) = u(c).
iii. U(Y) preserves stochastic order2.

Proof. Statement (i) follows from a simple application of the Intermediate
Value Theorem. Statement (ii) follows from the definition. For statement (iii),
assume Y �st Z but U(Y) > U(Z). Since

f (y) := u(y) −
(
1
D

− 1
)

(U(Y) − u(y))+
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is increasing in y, Y �st Z implies that

U(Y) = EP [ f (Y)] ≤ EP [ f (Z)] < EP

[
u(Z) −

(
1
D

− 1
)

(U(Z) − u(Z))+

]
= U(Z).

which leads to a contradiction.

3. DISAPPOINTMENT AVERSION PREMIUM PRINCIPLE

From now on, we fix a non-negative bounded random variable X ∈
L∞

+ (�,F, P), which models the insurable loss of the insured. Its distribution
and survival functions are denoted by FX and SX respectively. Let I(X) ∈
L∞

+ (�,F, P) be the insurance indemnity chosen by the insured or offered by the
insurer. We now formally recall the definition of the equivalent utility premium
principle for the insurer.

Definition 3.1. Let w ≥ 0 be the initial wealth and U : L∞(�,F, P) → R be a
general preference functional of the insurer. The equivalent utility premium H :
L∞

+ (�,F, P) → R, to be charged by the insurer for the indemnity I is defined as
the solution of

U(w) = U (w + H(I(X)) − I(X)) . (7)

Without loss of generality, we take X in place of I(X) in the study of the
properties of H in the rest of the article.

Remark 3.2. The functional H defined in Definition 3.1 bears different terminolo-
gies. In the insurance and actuarial science context, H is coined as the principle
of equivalent utility; while, in the finance literature, H is referred as the indiffer-
ence price or ask-price. The underlying philosophy of Equation (7) is that H is
the minimal possible price to be charged so that the pricing agent with an initial
wealth w is not worse off by undertaking the financial obligation. This actuarial
indifference determination for the insurance premium has been thoroughly studied
in the recent decades, see, for instance, Denuit et al. (2006), Heilpern (2003),
Kaluszka and Krzeszowiec (2012), Laeven and Goovaerts (2008), Tsanakas and
Desli (2003, 2005) and Tsanakas (2008). In the field of finance, the indifference
price is defined through a more general equation, which allows the pricing agent to
invest the initial fortune and the reward arising from transaction if any, in order to
fulfill the future financial obligation. For studies of indifference pricing in financial
markets, see Henderson and Hobson (2009) in Carmona (2009), Elliott and Van
Der Hoek (2004) and Elliott and Siu (2010, 2011).

Definition 3.3. Given the underlying utility function u, the DA coefficient D ∈
[0, 1], and the initial wealth w of the insurer, the DA premium principle H is
defined through Equation (7) with the decision criterion U replaced by the DA
utility U in Definition 2.1. More precisely, given X ∈ L∞

+ (�,F, P), H(X) is the
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real number that satisfies the following equation:

U(w) = U (w + H(X) − X) . (8)

Notice that H(X) = esssupX when D = 0. In the following, we focus only
on the nontrivial case of D ∈ (0, 1] when considering properties of H. The next
proposition gives two equivalent formulations for the DA premium principle.
Both formulations will be useful in the discussion afterwards.

Proposition 3.4. For any X ∈ L∞
+ (�,F, P), the DA premium principle H(X) is

implicitly defined by:

i.
vu,D,w(w) = EP

[
vu,D,w(w + H(X) − X)

]
, (9)

where vu,D,w(x) := u(x) − ( 1
D − 1

)
(u(w) − u(x))+; or equivalently,

ii.
u(w) = EQD [u (w + H(X) − X)] , (10)

where QD is the P-equivalent probability measure on (�,F) defined by

dQD

dP
:= D1{X≤H(X)} + 1{X>H(X)}

DP(X ≤ H(X)) + P(X > H(X))
. (11)

Proof. Replace Y by w +H(X)− X in Equations (5) or (6) and apply Equa-
tion (8) and Property 2 in Proposition 2.2. Notice that vu,D,w(w) = u(w) for any
D ∈ (0, 1].

In Equation (9), given the underlying utility function u, D ∈ (0, 1] and ini-
tial wealth w, the function vu,D,w behaves like a utility function as it is strictly
increasing and concave. The function vu,D,w is obtained from the underlying
utility function u where the portion to the left of the initial wealth w is distorted
downwards, resulting in a non-differentiable point atw. Figure 1 shows the com-
parison of the underlying utility u and the function vu,D,w when u is linear or
exponential. Proposition 3.4 depicts that the DA premium principle is indeed a
zero-utility premium principle with either replacing

i. the utility function u by the new utility function vu,D,w; or,
ii. the real-world probability measure P by the P-equivalent probability mea-

sure QD.

Hence, properties of theDApremium can be derived from that of the zero-utility
premium principle. In the sequel, for any X ∈ L∞

+ (�,F, P), if the dependence
of H(X) on D is emphasized, H(X) will be written as HD(X).

Theorem 3.5. For any X ∈ L∞
+ (�,F, P),

i. (Unique existence) H(X) uniquely exists;
ii. (Law invariance) H(X) is law-invariant;
iii. (No unjustified risk loading) if X = c where c ∈ R+, H(c) = c;
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(a) u(x) = αx (in black) with α = 1
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(b) u(x) = 1
γ (1 − e−γx) (in black) with γ = 0.5
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FIGURE 1: Distorted utility function vu,D,w(x) with (i) w = 0 and (ii) D = 1, 3
4 , 1

2 , 1
4 , 1

20 . (a) u(x) = αx (in
black) with α = 1. (b) u(x) = 1

γ

(
1 − e−γ x

)
(in black) with γ = 0.5. (Color online)

iv. (Risk loading and no rip-off) EP[X] ≤ H(X) ≤ esssupX;
v. H(X) is convex, increasing and translation invariant, i.e.

a. (Translation invariance) for any c ∈ R+, H(X+ c) = H(X) + c;
b. (Monotonicity in stochastic order sense) X �st Y ⇒ H(X) ≤ H(Y);
c. (Convexity) for any λ ∈ [0, 1], H (λX+ (1 − λ)Y) ≤ λH(X) + (1 −

λ)H(Y);
vi. (Fatou property) for any Xn ∈ L∞

+ (�,F, P) such that supn ‖Xn‖∞ < ∞ and
Xn → X in probability, H(X) ≤ lim inf H(Xn).

Proof. The arguments are straightforward by (I) using the definition, (II) ap-
plying Proposition 2.2, and (III) using the standard argument commonly found
in the literature, for instance, Gerber (1979), Goovaerts et al. (1984) and Jouini
et al. (2006).
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Theorem 3.6. For any X ∈ L∞
+ (�,F, P),

i. (Positive (non-)homogeneity) H(X) is positively homogeneous if and only if
u is (I) linear, or (II) piecewise linear with only one non-differentiable point
at x = w.

ii. (Independent (non-)additivity) H(X) is independent additive if and only if
(I) D = 1, and (II) u is linear or exponential.

iii. (Comonotonic (non-)additivity) H(X) is comonotonic additive if and only if
(I) D = 1, and (II) u is linear.

iv. (Monotonicity with respect to DA coefficient) If 0 ≤ D1 ≤ D2 ≤ 1,
HD1(X) ≥ HD2(X).

Proof.

i. By Theorem A.1 and the fact that v is concave, H(X) is positively homoge-
neous if and only if

vu,D,w(x) =
{
u(w) + β(x− w), if x ≥ w

u(w) + γ (x− w), if x < w

for some 0 < β ≤ γ depending on D. When u is linear or piecewise linear
with only one non-differentiable point at x = w, it is readily checked that
vu,D,w is sufficiently and necessarily in this form.

ii. By the statement 4e in Section 5.4 in Gerber (1979), H(X) is independent
additive if and only if vu,D,w is linear or exponential. However, the latter
statement is clearly impossible if D < 1. Therefore, the characterization
requires further that D = 1.

iii. The comonotonic additivity of H(X) implies that H(X) is positively homo-
geneous. Indeed, if H(X) is comonotonic additive,

H(r X) = rH(X) for any r ∈ Q+.

Since any risk measure H is Lipschitz continuous with respect to the supre-
mum norm of X ∈ L∞

+ (�,F, P) (see Lemma 4.3 in Föllmer and Schied
(2011)),

H(αX) = αH(X) for any α ≥ 0.

Therefore, by comonotonic additivity, positive homogeneity and the con-
cavity of vu,D,w, if X,Y are comonotonic and α ∈ [0, 1],

vu,D,w(w) = EP
[
vu,D,w (w + H(αX+ (1 − α)Y) − (αX+ (1 − α)Y))

]
= EP

[
vu,D,w (w + αH(X) + (1 − α)H(Y) − (αX+ (1 − α)Y))

]
≥ αEP

[
vu,D,w(w+H(X)−X)

]+(1−α)EP
[
vu,D,w(w + H(Y)−Y)

]
= vu,D,w(w).
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Since (X,Y) is an arbitrary comonotonic pair, the inequality above is in fact
an equality which holds true only when vu,D,w is linear. Finally, vu,D,w being
linear is equivalent to that D = 1 and u is linear.

iv. Consider D1, D2 ∈ (0, 1] first. Assume, to the contrary, that HD1(X) <

HD2(X). Since D1 ≤ D2, we have vu,D1,w (·) ≤ vu,D2,w (·) and thus

u(w) = vu,D1,w(w)

= EP
[
vu,D1,w

(
w + HD1(X) − X

)]
≤ EP

[
vu,D2,w

(
w + HD1(X) − X

)]
< EP

[
vu,D2,w

(
w + HD2(X) − X

)]
= vu,D2,w(w)

= u(w),

which leads to a contradiction. Finally, by Property (iv) in Theorem 3.5,
H0(X) ≥ HD(X) for any D ∈ [0, 1].

Notice that as the DA premium principle H is defined through indifference
arguments, it possesses nice properties, for instance, Properties (iii)–(vi) in Theo-
rem 3.5. However, it is not independent nor comonotonic additive unless D = 1
and the underlying utility u takes some specific forms. The monotonicity struc-
ture of Hwith respect to D depicts that as the insurer feels more disappointment
averse, a greater premium H(X) is charged to compensate the feeling of any
potential disappointment.

Next, we generalize the classical Arrow–Pratt approximation from the EUT
framework to the DA framework. In other words, we establish the first and
second-order approximations of the DA premium for small-deviated and ab-
solutely continuous loss X.

Proposition 3.7. Assume that u is twice differentiable and ε is a bounded con-
tinuous random variable with zero mean and variance σ 2

ε . Suppose that X =
EP [X] + kε, where k is a positive constant such that X is positive. Let h(k) be
its associated DA premium which is also twice differentiable at 0. Then, when k is
close to 0,

h(k) ≈ EP [X] + h′(0)k+ 1
2
h′′(0)k2,

where h′(0) and h′′(0) are determined by the following equations:

h′(0) =
(
1
D

− 1
)

EP
[(

ε − h′(0)
)
+
]
, (12)
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h′′(0) = −u′′(w)

u′(w)

h′(0)2 + σ 2
ε + ( 1

D − 1
)
EP

[(
ε − h′(0)

)2
+
]

1 + ( 1
D − 1

)
P (ε > h′(0))

. (13)

Proof. Let v′
± be the right hand and left hand derivatives of v respectively.

The right-hand side of (9) can be approximated, throughTaylor series expansion
on vu,D,w, by

EP

[(
v(w) + v′

−(w)
(
h(k) − EP [X] − kε

)
+ 1

2
v′′
−(w)

(
h(k) − EP [X] − kε

)2)
1{h(k)−EP [X]<kε}

]

+ EP

[(
v(w) + v′

+(w)
(
h(k) − EP [X] − kε

)
+ 1

2
v′′
+(w)

(
h(k) − EP [X] − kε

)2)
1{h(k)−EP [X]>kε}

]

= EP

[(
u(w) + 1

D
u′(w)

(
h(k) − EP [X] − kε

)
+ 1
2D

u′′(w)
(
h(k) − EP [X] − kε

)2)
1{h(k)−EP [X]<kε}

]

+ EP

[(
u(w) + u′(w)

(
h(k) − EP [X] − kε

)
+ 1

2
u′′(w)

(
h(k) − EP [X] − kε

)2)
1{h(k)−EP[X]>kε}

]

= u(w) + u′(w)
(
h(k) − EP [X]

)
− u′(w)

(
1
D

− 1
)

EP

[(
kε + EP [X] − h(k)

)
+

]

+ 1
2
u′′(w)

[(
h(k) − EP [X]

)2 + k2σ 2
ε

]
+ 1

2
u′′(w)

(
1
D

− 1
)

EP

[(
kε + EP [X] − h(k)

)2
+

]
.

Therefore, by (9), the DA premium satisfies an approximated equation

u′(w)
(
h(k) − EP [X]

) − u′(w)

(
1
D

− 1
)

EP
[(
kε + EP [X] − h(k)

)
+
]

+ 1
2
u′′(w)

[(
h(k) − EP [X]

)2 + k2σ 2
ε

]

+ 1
2
u′′(w)

(
1
D

− 1
)

EP
[(
kε + EP [X] − h(k)

)2
+
]

= 0.

Substituting EP [X] + h′(0)k+ 1
2h

′′(0)k2 in place of h(k) and neglecting O(k3)
terms yield[

u′(w)h′(0) − u′(w)

(
1
D

− 1
)

EP
[(

ε − h′(0)
)
+
]]
k

+ 1
2

[
u′(w)h′′(0)

(
1 +

(
1
D

− 1
)

P
(
ε > h′(0)

))

+ u′′(w)

(
h′(0)2 + σ 2

ε +
(
1
D

− 1
)

EP
[(

ε − h′(0)
)2
+
])]

k2 = 0.

By comparing the coefficients of k and k2, we obtain Equations (12) and (13).
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Note that h′(0) in (12) exists by Intermediate Value Theorem. Once h′(0) is
determined, h′′(0) can then be obtained from (13). In addition, h′(0) is indepen-
dent of the underlying utility, or in other words, the risk aversion of the insurer.
On the other hand, h′(0) decreases in D, which means that as the insurer is more
disappointment averse, the first-order term of the DA premium increases. For
h′′(0), it is influenced by the DA coefficient via the factor in (13). Using the
integration by-parts and standard limiting arguments, one can show that h′′(0)
tends to zero as D approaches zero. Therefore, if the insurer is extremely disap-
pointment averse, the second-order term vanishes. Note also that when D = 1,
we have h′(0) = 0 and

h′′(0) = −u′′(w)

u′(w)
σ 2

ε =: h′′
EUT(0),

which is the classical Arrow–Pratt coefficient under the EUT.

Example 3.8. Suppose that ε is uniformly distributed on [−δ, δ], for some δ > 0
close to 0, one readily obtains:

h′(0) = δ × 1 − √
D

1 + √
D

,

and

h′′(0) = −u′′(w)

u′(w)
σ 2

ε × 4
√
D(

1 + √
D

)2 = h′′
EUT(0) × 4

√
D(

1 + √
D

)2 .

Finally, we remark that, for any given u, D and w, since the DA premium
principle is a convex risk measure satisfying the Fatou property, by Föllmer and
Schied (2011), Theorem 4.33, H(X) can be represented as

H(X) = sup
Q∈M(P)

(
EQ[X] − αmin(Q)

)
, (14)

where M(P) is the class of all probability measures on (�,F) which are ab-
solutely continuous with respect to P, and αmin is the minimal penalty function
defined onM(P). In addition, since H(X) is law-invariant, H(X) can be further
represented as

H(X) = sup
μ∈M((0,1])

(∫
(0,1]

AV@Rλ(X)μ(dλ) − βmin(μ)

)
3 (15)
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where M((0, 1]) is the family of all probability measures defined on (0, 1], and
the minimal penalty function βmin defined onM((0, 1]) satisfies

βmin(μ) = sup
X∈AH

∫
(0,1]

AV@Rλ(X)μ(dλ)

= sup
X∈L∞+ (�,F ,P)

∫
(0,1]

(AV@Rλ(X)μ(dλ) − H(X)),

for any μ ∈ M((0, 1]), where AH is an acceptable class of losses induced by H:

{X ∈ L∞
+ (�,F, P)|H(X) ≤ 0}.

Although the maximizers in (14) and (15) should depend on the utility, dis-
appointment extent, and initial fortune, the representations are too general and
they give no clue on how they are connectedwith u, D andw. In the next section,
further properties and more meaningful representations will be demonstrated
when u is linear (Section 4.1) and when u is exponential (Section 4.2). In par-
ticular, the representations justify our earlier claim that the equivalent utility
premium principle under the DA model is more realistic than that under the
EUT.

4. EXPLICIT EXAMPLES OF THE DA PREMIUM PRINCIPLE H

In this section, we focus on two commonly used utilities, namely, linear and
exponential. Our goals are to derive general explicit representation for the cor-
responding DA premium principle, and study other pertinent qualitative prop-
erties with respect to the disappointment coefficient D.

4.1. When u is linear

By exploiting the linearity of the underlying utility function, the family of
Radon–Nikodym derivatives in (14) can be identified concisely and parameter-
ized by the DA coefficient. We shall see that the DA premium principle adopted
by a risk-neutral insurer depends solely on his/her degree of aversion toward
disappointment but not the marginal utility. For simplicity, we let u(x) = Ax
for some A> 0.

Theorem 4.1. For any X ∈ L∞
+ (�,F, P),

H(X) = sup
Qθ∈Q1

EQθ [X] = sup
θ∈suppX

DEP
[
X1{X≤θ}

] + EP
[
X1{X>θ}

]
DP(X ≤ θ) + P(X > θ)

, (16)
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where

Q1 : =
{
Qθ : F → [0, 1]

∣∣∣∣Qθ � P and ∃θ ∈ suppX such that
dQθ

dP

= D1{X≤θ} + 1{X>θ}
DP(X ≤ θ) + P(X > θ)

}
.

Proof. By Equation (10),

H(X) = EQ[X], (17)

where Q : F → [0, 1] is defined by

dQ

dP
= D1{X≤H(X)} + 1{X>H(X)}

DP(X ≤ H(X)) + P(X > H(X))
.

Note that Q defined here is absolutely continuous with respect to P, i.e. Q ∈
M(P). Also, Equation (23) coincides with representation (14). Therefore, we
obtain representation (16).

The P-equivalent probability measure Qθ above partitions the sample space
� into the elation part {X ≤ θ} and the disappointment part {X > θ}. Theorem
4.1 depicts that when the insurer is risk neutral, H can be written as the maxi-
mum of the expectation of X among all such scenarios Qθ . Most importantly,
by denoting

βD,θ := D
D+ (1 − D)SX(θ)

,

the DA premium (16) can be rewritten as

sup
θ∈suppX

βD,θE
P [X] + (1 − βD,θ )AV@RSX(θ)(X). (18)

Therefore, the DA premium principle is indeed a weighted average of the expec-
tation under the real-world measure P and the Average Value-at-Risk (AV@R)
of X, where both the weighting and the risk level for the AV@R depend on
the value of D. Alternatively, the DA premium principle (16) can be further
rewritten into a risk-loading form:

(1 + �D) EP [X] , (19)

where the risk loading �D is given by

�D := sup
θ∈suppX

(1 − βD,θ )
AV@RSX(θ)(X) − EP [X]

EP [X]
. (20)

This generalizes the classical expected value premium principle with a constant
risk loading. The risk loading �D here naturally takes into account the tail risk
exposure of the loss and the DA of the insurer. Note that for any θ ∈ suppX,

https://doi.org/10.1017/asb.2015.12 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2015.12


DISAPPOINTMENT AVERSION PREMIUM PRINCIPLE 693

1 − βD,θ is decreasing in D, and hence, the risk loading �D is also decreasing
in D. Therefore, the more disappointment averse the insurer is, the larger the
risk loading and hence the premium will be because the premium leans toward
the tail risk measure AV@Rmore. In particular, when D = 0, the DA premium
becomes esssupX, which coincides with the one in Section 3. We also remark
that the maximizer in (20) is not necessarily unique, and based on the proof
above, H(X) is indeed a maximizer.

Recall that with the zero-utility premium principle, which is D = 1 in our
setting, the premium charged by a risk-neutral insurer is simply the net premium
EP [X]. However, this will lead to a definite ruin in the long run. Therefore, a risk
loading is justifiable in practice, and it is natural that it takes the tail risk expo-
sure into consideration. On the other hand, the DA premium principle derived
from the DA framework, even when the insurer is risk neutral, automatically
calibrates the risk loading in accordance with the tail risk exposure as measured
by AV@R and the extent of the DA of the insurer. The idea is that the DA
behavior toward huge loss that could be potentially incurred is similar to the
central idea of the capital reserve in the insurance regulation. Under the disap-
pointment framework, the risk level of AV@R used depends on the DA of the
insurer rather than being specified by regulators.

Corollary 4.2. Let n ≥ 2 and 0 ≤ a1 < · · · < an. Suppose that P(X = a1) =
p1, . . . , P(X = an) = pn, where 0 < p1, . . . , pn < 1 and p1 + · · ·+ pn = 1. Then

H(X) = max
i=1,...,n−1

D
∑i

r=1 ar pr + ∑n
r=i+1 ar pr

D
∑i

k=1 pr + ∑n
k=i+1 pr

= EQ∗
[X], (21)

where Q∗ : σ {X} → [0, 1] is defined via

Q∗(X = ar ) :=
⎧⎨
⎩

Dpr∑i∗
k=1(Dpk)+

∑n
k=i∗+1 pk

for r = 1, . . . , i∗,
pr∑i∗

k=1(Dpk)+
∑n

k=i∗+1 pk
for r = i∗ + 1, . . . , n,

where i∗ ∈ {1, . . . , n − 1} is the unique index such that g(i∗ + 1) < D ≤ g(i∗).
Here g(1) := 1, g(i) :=

∑n
k=i+1(ak−ai )pk∑i−1
k=1(ai−ak)pk

for i = 2, . . . , n − 1, and g(n) := 0.

Proof. By the expression (16),

H(X) = sup
θ∈suppX

DEP
[
X1{X≤θ}

] + EP
[
X1{X>θ}

]
DP(X ≤ θ) + P(X > θ)

= max
i=1,...,n−1

D
∑i

r=1 ar pr + ∑n
r=i+1 ar pr

D
∑i

k=1 pr + ∑n
k=i+1 pr

. (22)

Denote by i∗ the maximizer of the rightmost expression of (22). It is readily
checked that it satisfies ai∗ ≤ H(X) < ai∗+1. Then substituting the right-hand
side of (22) into the inequality yields g(i∗ + 1) < D ≤ g(i∗).
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In fact, the expression of H in Corollary 4.2 can be obtained from Equation
(10) directly by considering the cases when H lies in different portions between
a1 and an. Expression (21) provides a numerical method for calculating the DA
premium, see Example 4.4 below.

Corollary 4.3. For any X ∈ L∞
+ (�,F, P), the DA premium HD(X) for linear

utility u is convex in D.

Proof. For any θ ∈ suppX,

DEP
[
X1{X≤θ}

] + EP
[
X1{X>θ}

]
DP(X ≤ θ) + P(X > θ)

,

is convex in D; indeed, its derivative with respect to D equals

EP
[
X1{X≤θ}

]
P(X > θ) − EP

[
X1{X>θ}

]
P(X ≤ θ)

(DP(X ≤ θ) + P(X > θ))
2 ,

in which the numerator is negative because

EP
[
X1{X≤θ}

]
P(X > θ) − EP

[
X1{X>θ}

]
P(X ≤ θ)

≤ θP(X ≤ θ)P(X > θ) − θP(X > θ)P(X ≤ θ) = 0.

Therefore, its derivative is an increasing function in D. Finally, we use the fact
that the supremum of convex functions is also convex.

This corollary suggests that the marginal premium charged by the insurer in-
creases with his/her degree of DA.

As opposed to the EUT where H reduces to the net premium principle
when the underlying utility u is linear, the DA premium principle H can-
not be solved explicitly unless X is discrete because vu,D,w, being distorted
from the linear u, is now nonlinear instead. In the following, we demonstrate
how H(X) can be approximated through discretization arguments when X is
continuous.

Example 4.4. To approximate the DA premium for a bounded absolutely contin-
uous loss X, we bound its distribution function FX from above and below respec-
tively by stepwise distribution functions Fn and Fn with constant jump sizes 1/n.
Define Xn and Xn to be discrete random variables corresponding to distribution
functions Fn and Fn respectively, so that Xn ≤st X ≤st Xn. In general, for any un-
bounded absolutely continuous loss X, we replace FX(·) by FX(·)∧α

α
for some α close

to 1.
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FIGURE 2: DA premium versus DA coefficient with exponential loss, mean λ = 2, and α = 0.95, with various
discretization steps n.

Let X be exponentially distributed withmean 2. Assume that theDA coefficient
D is 0.4. The following table shows the values of H(Xn) and H(Xn) for α = 0.95
corrected up to 4 decimal places.

n H(Xn) H(Xn)

10 1.8954 2.7022
100 2.2146 2.2955
1, 000 2.2506 2.2587
10, 000 2.2542 2.2550
100, 000 2.2546 2.2546

Therefore, the DA premium H(X) approximately equals 2.2546. Figure 2 shows
the relation between the DA premium HD(X) and D.

4.2. When u is exponential: H as an entropic risk measure

In this section, we assume that the insurer is risk aversemodeled by the exponen-
tial utility: u(x) = 1

A(1−e−Ax) for some A> 0. The results could be established
in a similar manner as in Section 4.1, and hence we briefly outline and omit the
details of the proofs in this section.
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Theorem 4.5. For any X ∈ L∞
+ (�,F, P),

H(X) = sup
Qθ∈Q2

1
A
ln

(
EQθ

[
eAX

]) = sup
θ∈suppX

1
A
ln

(
EQθ

[
eAX

])

= sup
Qθ∈Q2

sup
S∈M(Qθ )

(
ES[X] − 1

A
J (S|Qθ )

)

= sup
θ∈suppX

sup
S∈M(Qθ )

(
ES[X] − 1

A
J (S|Qθ )

)
,

where

Q2 : =
{
Qθ : F → [0, 1]

∣∣∣∣Qθ � P and ∃θ ∈ R such that
dQθ

dP

= D1{X≤θ} + 1{X>θ}
DP(X ≤ θ) + P(X > θ)

}
,

M(Qθ ) :=
{
S : F → [0, 1]

∣∣∣∣S � Qθ

}
,

and

J (S|Qθ ) :=
{

EQθ

[
dS

dQθ
ln

(
dS

dQθ

)]
, if S � Qθ ,

+∞, otherwise,

where J (S|Qθ ) is the relative entropy of S with respect to Qθ .

Corollary 4.6. Let n ≥ 2 and 0 ≤ a1 < · · · < an. Suppose that P(X = a1) =
p1, . . . , P(X = an) = pn, where 0 < p1, . . . , pn < 1 and p1 + · · ·+ pn = 1. Then

H(X) = max
i=1,...,n−1

1
A
ln

(
D

∑i
r=1 e

Aar pr + ∑n
r=i+1 e

Aar pr

D
∑i

k=1 pr + ∑n
k=i+1 pr

)
= 1

A
ln

(
EQ∗ [

eAX
])

,

where Q∗ : σ {X} → [0, 1] is defined via

Q∗(X = ar ) :=
⎧⎨
⎩

Dpr∑i∗
k=1(Dpk)+

∑n
k=i∗+1 pk

for r = 1, . . . , i∗,
pr∑i∗

k=1(Dpk)+
∑n

k=i∗+1 pk
for r = i∗ + 1, . . . , n,

where i∗ ∈ {1, . . . , n − 1} is the unique index such that h(i∗ + 1) < D ≤ h(i∗);
here h(1) := 1, h(i) :=

∑n
k=i+1(e

Aak−eAai )pk∑i−1
k=1(e

Aai −eAak )pk for i = 2, . . . , n − 1, and h(n) := 0.

The expression in Corollary 4.6 will be exploited as a numerical method
for finding the DA premium in Example 4.8 below. We remark that although
the expression in Theorem 4.5 and Corollary 4.6 are similar to the distortion-
exponential premium principle proposed in Tsanakas and Desli (2003), the
probability measures in the family of the DA premium principle have different
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distortion functions depending on θ while the probability distortion in Tsanakas
and Desli (2003) is fixed a prior. The expressions in Theorem 4.5 and Corollary
4.6 can also be rewritten into the form:

1
A
ln

{[
1 + sup

θ∈suppX
(1 − βD,θ )

AV@RSX(θ)

(
eAX

) − EP
[
eAX

]
EP

[
eAX

]
]

EP
[
eAX

]}
.

Using the expression in Theorem 4.5 or Corollary 4.6, we can also prove

Corollary 4.7. For any X ∈ L∞
+ (�,F, P), the DA premium HD(X) for exponen-

tial utility u is convex in D.

Proof. For any θ ∈ suppX, the derivative of HD(X) with respect to D is

1
A

EP
[
X1{X≤θ}

]
P(X > θ) − EP

[
X1{X>θ}

]
P(X ≤ θ)(

DEP
[
X1{X≤θ}

] + EP
[
X1{X>θ}

])
(DP(X ≤ θ) + P(X > θ))

(≤ 0)

which is an increasing function in D.

Example 4.8. Consider the same setting as in Example 4.4.We take the risk aver-
sion parameter A= 0.5.

n H(Xn) H(Xn)

10 2.3082 3.7311
100 2.8570 3.0095
1, 000 2.9244 2.9396
10, 000 2.9312 2.9327
100, 000 2.9319 2.9321

Therefore, the DA premium H(X) approximately equals 2.9320. The joint effect
of D and A on H(X) is demonstrated in Figure 3. When the insurer is more risk
averse, the disappointment effect on the DA premium H(X) diminishes.

5. CONCLUSION

In our present article, we presented a generalized zero-utility pricing principle,
the DA premium principle, for an insurance policy under the DA Theory de-
veloped by Gul (1991). We established its properties, such as translation invari-
ance, monotonicity, convexity, positive (non-)homogeneity, comonotonic (non-
)additivity, independent (non-)additivity andwe further came upwith its convex
risk measure representation. We also generalized the Arrow–Pratt approxima-
tion under theDATheory. Explicit representations and discrete approximations
of the premium principle for common modeling examples were also obtained.
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FIGURE 3: DA premium versus DA coefficient and risk aversion level with exponential loss, mean λ = 2, and
α = 0.95. (Color online)
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NOTES

1. In finance, a risk measure is usually defined in terms of the gain of a portfolio; while in this
article, risk measures are considered from the loss perspective.

2. For any random variables Y and Z, Y is said to be stochastically smaller than Z, denoted as
Y �st Z, if for all increasing functions g : R → R,E[g(Y)] ≤ E[g(Z)] provided that the expectations
exist.

3. Since the α-level Value-at-Risk V@Rα(X) of any random variable X is defined as
V@Rα(X) := inf{x : S(x) ≤ α} = q−

X (1 − α) where q−
X (·) is the lower quantile function of X,

the α-level Average Value-at-Risk AV@Rα(X) is defined by AV@Rα(X) := 1
α

∫ α

0 V@Rγ (X)dγ .
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APPENDIX

A. THEOREM FOR POSITIVE HOMOGENEITY

We modify Theorem 4 in Section 3.5.7 in Goovaerts et al. (1984) and provide a proof as
follows.
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Theorem A.1. Let u be a function which is continuous, strictly increasing and u(0) = 0. Let
H(X) be the solution by

E [u(H(X) − X)] = 0.

Then H(X) is positively homogeneous if and only if

u(x) =
{

βxr for x ≥ 0

−γ (−x)r for x < 0

for some r, β, γ > 0.

Proof. It is easy to check that the given form of u(x) yields the positive homogeneity of
H(X).

Assume that H(X) is positively homogeneous, i.e. H(kX) = kH(X) for k ≥ 0. Consider
a two-point random variable Xt such that P(Xt = 0) = t and P(Xt = 2x) = 1 − t, where
x > 0 and t ∈ (0, 1). Then,

tu(H(Xt)) + (1 − t)u(H(Xt) − 2x) = 0.

By Lemma 1 in Section 2.10 in Goovaerts et al. (1984), we can choose t ∈ (0, 1), denoted as
t0, such that H(Xt0) = x. Therefore

t0u(x) + (1 − t0)u(−x) = 0. (23)

Consider another two-point random variable kXt0 , for k ≥ 0. By positive homogeneity,

t0u(kx) + (1 − t0)u(−kx) = 0. (24)

Hence, (23) and (24) imply
u(−x)
u(x)

= −t0
1 − t0

= u(−kx)
u(kx)

.

Since k ≥ 0 is arbitrary,

u(−x) = −Cu(x) for any x ≥ 0, (25)

whereC is independent of x. Consider a three-point random variableY such that P(Y = 0) =
t1, P(Y = x− 1) = t2 and P(Y = x+ 1) = 1 − t1 − t2, where x ≥ 0 and t1, t2 ∈ (0, 1). Then

t1u(H(Y)) + t2u(H(Y) − (x− 1)) + (1 − t1 − t2)u(H(Y) − (x+ 1)) = 0.

Using the similar argument, we can choose t1, t2 ∈ (0, 1) such that H(Y) = x. Hence

t1u(x) + t2u(1) + (1 − t1 − t2)u(−1) = 0.

By positive homogeneity and (25), since k ≥ 0,

t1u(kx) + t2u(k) + (1 − t1 − t2) (−Cu(k)) = 0,

or

u(kx) =
(
C(1 − t1 − t2) − t2

t1

)
u(k). (26)

https://doi.org/10.1017/asb.2015.12 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2015.12


702 K.C. CHEUNG, W.F. CHONG, R.J. ELLIOTT AND S.C.P. YAM

Substituting k = 1 gives

u(x) =
(
C(1 − t1 − t2) − t2

t1

)
u(1)

which combines with (26) yields

u(kx) = u(k)u(x)
u(1)

for any k ≥ 0 and x ≥ 0.

Finally, with this relation between k and x, it is easy to deduce, together with (25), that

u(x) =
{

βxr for x ≥ 0

−γ (−x)r for x < 0

for some r, β, γ > 0.
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