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Abstract

In this paper we study the numerical approximation of the optimal long-run average cost
of a continuous-time Markov decision process, with Borel state and action spaces, and
with bounded transition and reward rates. Our approach uses a suitable discretization of
the state and action spaces to approximate the original control model. The approximation
error for the optimal average reward is then bounded by a linear combination of
coefficients related to the discretization of the state and action spaces, namely, the
Wasserstein distance between an underlying probability measure μ and a measure with
finite support, and the Hausdorff distance between the original and the discretized
actions sets. When approximating μ with its empirical probability measure we obtain
convergence in probability at an exponential rate. An application to a queueing system
is presented.
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1. Introduction

In this paper we are concerned with numerical methods for approximating the solution
of continuous-time Markov decision processes (CTMDPs). Namely, we are interested in
approximating numerically the value function of a general Markov decision process (MDP) with
Borel state and action spaces, under the expected long-run average cost optimality criterion.

From a theoretical point of view, CTMDPs have been extensively studied. There exist
two main techniques to analyze such optimization problems: the dynamic programming and
the linear programming approaches. While these two methods are known to be very efficient
for establishing different mathematical properties (such as the existence of optimal policies,
smoothness of the value function, sufficiency of subclasses of particular policies, and so on),
the problem of solving explicitly or numerically a CTMDP remains a critical issue. Indeed,
except for a very few specific models, the determination of an optimal policy and the value
function is an extremely difficult problem to tackle. In this context, the standard approach
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for solving an MDP is to develop numerical methods to obtain quasi-optimal solutions. This
topic is, therefore, of crucial importance to demonstrate the practical interest of CTMDP as a
powerful modeling tool.

In the discrete-time framework, several techniques have been proposed to solve numerically
an MDP, and these can be classified into two groups. The first class is dedicated to the study of
MDPs with discrete (large finite or countable) state and action spaces. These approaches are
mainly related to stochastic approximation techniques such as reinforcement learning, neuro-
dynamic programming, approximate dynamic programs, and simulation-based methods; see,
e.g. the survey [20] and the books [2], [4], [15], and [19]. The second category is focused on
general MDPs with uncountable Borel state and action spaces. For such models, the traditional
approach is to approximate the original control problem by means of an MDP with finite state
and action spaces whose optimal cost and policies approximate those of the primary control
model; see [5]–[8], and [18] and the references therein.

In the continuous-time context, there exist very few results on this topic. In [11], [16],
and [17], the authors studied an approximation procedure in which a control model with a
denumerable state space and possibly unbounded transition rates was approximated by a se-
quence of auxiliary control models. Conditions were provided on the sequence of approximating
control models ensuring that the corresponding optimal value and optimal policies converged
to the value function and the optimal policies of the original model. Such an approach can be
found in [16] for unconstrained infinite-horizon discounted CTMDPs in [11] for constrained
CTMDPs and in [17] for average reward CTMDPs.

Our objective in this paper is to propose a method for approximating the value function of
a continuous-time control model M with Borel state space X and Borel action space A under
the expected long-run average cost optimality criterion. Our approach consists in discretizing
the state and action spaces of M by introducing a new model Mk,δ as follows.

• Discretization of the state space. We assume that the positive part q+(dy | x, a) of the
transition rate q(dy | x, a) governing the dynamics of the control model M is absolutely
continuous with respect to some reference probability measure μ on X. We will then
replace the state space X with the finite support of a probability measure μk (typically,
supported on k points) which is an approximation of μ.

• Discretization of the action sets. We will replace the action sets A(x) with some finite
Aδ(x) parametrized by δ > 0. The sets A(x) and Aδ(x) become ‘closer’ as δ ↓ 0.

In this context, and after a suitable definition of the control model Mk,δ , we show in Section 3
that the difference between the optimal values J∗ and J∗

k,δ (of M and Mk,δ) can be controlled
through the Wasserstein distance W(μ,μk) between μ and μk and the Hausdorff distance
between A(x) and Aδ(x), which is of order δ; namely,

|J∗ − J∗
k,δ| = O(W(μ,μk))+O(δ).

The interesting feature of the discretization procedure that we propose here is that we are able to
control explicitly the approximation error and that we obtain nonasymptotic bounds depending
on W(μ,μk) and δ for every k ≥ 1 and δ > 0. In particular, it is important to mention that
we manage to discretize a continuous (not necessarily compact) state space X into a finite set,
and that the corresponding discretization error is measured in terms of Wasserstein distance of
measures.

Regarding the construction of a probability measureμk with finite support that approximates
the reference measure μ in the Wasserstein metric, two main approaches exist. One consists in
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derivingμk starting from a covering of X with small radius. This deterministic approach allows
the distance W(μ,μk) to be tightly controlled but it may pose an additional computational
challenge. Another possibility is to use a random approximation by considering the empirical
probability measure μk obtained from k independent and identically distributed draws with
distribution μ. The approximation error W(μ,μk) (which is a random variable) is then
measured with a concentration inequality for the nonasymptotic deviation. In this case, the
approximation errors converge in probability to 0 at an exponential rate in the sample size k.
We will discuss both approaches.

Finally, we would like to mention that the approaches developed in [6]–[8] for the approxi-
mation of MDPs in discrete time cannot be used to approximate the value function of the control
model M. Indeed, the discrete-time control model obtained when applying the well-known
uniformization technique to M does not satisfy—in general—the absolute continuity condition
of [6]–[8]. Further details on this issue are discussed at the end of Section 4.

The rest of the paper is organized as follows. After introducing some notation, we define
the control model M and state our assumptions in Section 2. We show how to approximate
the model M with a finite state and action control model Mk,δ in Section 3. In Section 4 we
study the particular approximations of the reference probability measure μ (both empirical and
deterministic). Finally, we present a numerical application in Section 5.

Notation. The set of nonnegative integers is N = {0, 1, 2, . . .}, while the set of real numbers
is R. The subscript ‘∗’ and the superscript ‘+’ will refer to the nonzero and nonnegative
elements in the corresponding set, respectively. By R we will denote the set of extended real
numbers. Combinations of these indices will yield the corresponding sets. The symbols ‘∧’
and ‘∨’ denote ‘minimum’ and ‘maximum’, respectively.

Given a Borel space Y with metric dY , its Borel σ -algebra will be denoted by B(Y ). In this
paper, measurability is always referred to the Borel σ -algebra. We say that a function v : Y →
Z, where Y and Z are Borel spaces, is Lipschitz continuous if there exists L ≥ 0 with

dZ(v(x), v(y)) ≤ LdY (x, y) for all x, y ∈ Y . (1)

In this case, we will say that v is L-Lipschitz continuous.
Let B(Y ), C(Y ), and L(Y ) denote the families of real-valued functions on Y which are

bounded and measurable, bounded and continuous, and Lipschitz continuous, respectively.
The supremum norm of v ∈ B(Y ) is ‖v‖. Given a measurable function h : Y → [1,∞), the
family of measurable functions v : Y → R such that

‖v‖h = sup
x∈Y

{ |v(x)|
h(x)

}
< ∞

will be denoted by Bh(X). If, in addition, v is Lipschitz continuous, we will write v ∈ Lh(X).
We say that Q : B(Y ) × Z → R

+
is a transition measure on the Borel space Y given the

Borel space Z if B �→ Q(B | z) is a (nonnegative) measure on (Y ,B(Y )) for all z ∈ Z and
z �→ Q(B | z) is measurable for every B ∈ B(Y ). For measurable v : Y → R, we will denote
by Qv the function on Z defined as

Qv(z) =
∫

Y

v(y)Q(dy | z) for z ∈ Z,

whenever the integral is well defined. The indicator function of a set B will be denoted by 1B .
On the product Y × Z of Borel spaces, we will consider the taxicab metric.
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On the family of nonempty closed subsets of a Borel space Z, we will consider the Hausdorff
metric defined as

dH(C1, C2) = sup
z1∈C1

inf
z2∈C2

{dZ(z1, z2)} ∨ sup
z2∈C2

inf
z1∈C1

{dZ(z1, z2)}.

It is known that dH is a metric except that it might not be finite. Lipschitz continuity of a
closed-valued multifunction ψ from Y to Z is defined as in (1) for the metric dH.

The family of probability measures on (Y ,B(Y )) is denoted by P (Y ). Given y ∈ Y , the
Dirac probability measure at y will be denoted by δy . The family of probability measures
μ ∈ P (Y ) with finite first moment (that is,

∫
Y dY (y, y0)μ(dy) < ∞ for some, and then for

all, y0 ∈ Y ) is denoted by P1(Y ). We say that the probability measure μ ∈ P (Y ) has a finite
exponential moment if there exists γ > 0 such that∫

Y

exp{γ dY (y, y0)}μ(dy) < ∞ for some, and then for all, y0 ∈ Y .

Let Pexp(Y ) be the family of such probability measures with, clearly, Pexp(Y ) ⊆ P1(Y ) ⊆
P (Y ).

The Wasserstein distance between μ and ν in P1(Y ) (also referred to as the Kantorovich–
Rubinstein metric) is defined as

W(μ, ν) = sup

{∫
Y

f dμ−
∫

Y

f dν

}
,

where the supremum ranges over all functions f : Y → R which are 1-Lipschitz continuous
(note that the above integrals are finite due to μ, ν ∈ P1(Y )).

2. The control model M: definition and assumptions

The main goal of this section is to introduce the notation, the parameters defining the model,
and to present the construction of the controlled process. In particular, we construct a canonical
measurable space (�,F ) which describes the sample paths of the dynamic system. It is
important to mention that, throughout this paper, we will deal with a controlled Markov process
with bounded cost and transition rates; see the definition of M below.

2.1. Elements of the control model M

We deal with a control model M = {X,A, {A(x)}x∈X, q, c} with the following elements.

• The state space X is a Borel space with metric dX.

• The action space A is a Borel space with metric dA. The set of feasible actions in state
x ∈ X is A(x), which is a nonempty measurable subset of A. The set of admissible
state-action pairs is

K = {(x, a) ∈ X × A : a ∈ A(x)} ∈ B(X × A).

It is assumed that K contains the graph of a measurable function from X to A. The
multifunction from X to A given by x �→ A(x) will be denoted by �.

• The transition rate q is a signed kernel on X given K . This means that B �→ q(B | x, a)
is a signed measure on (X,B(X)) for all (x, a) ∈ K , and that (x, a) �→ q(B | x, a) is
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measurable for all B ∈ B(X). It satisfies q(B | x, a) ≥ 0 for all B ∈ B(X) such that
x /∈ B. We assume that the transition kernel q is conservative, that is,

q(X | x, a) = 0 for any (x, a) ∈ K,

and that the transition rates are bounded: that is, for some constant q̂

sup
(x,a)∈K

{−q({x} | x, a)} = q̂ > 0. (2)

• The cost rate function is bounded and measurable: c ∈ B(K).

2.2. Construction of the process

Let X∞ = X ∪ {x∞}, where x∞ is an isolated point. We let

�n = X × (R∗+ × X)n × ({∞} × {x∞})∞.
The canonical space, denoted by �, is defined as

� = (X × (R∗+ × X)∞) ∪
∞⋃
n=1

�n

and it is endowed with its Borel σ -algebra, denoted by F . For notational convenience, ω ∈ �
will be written as

ω = (x0, θ1, x1, θ2, x2, . . .).

The canonical space � is given the following interpretation. Let x0 ∈ X be the initial state of
the dynamic system. Given n ≥ 0, if xn ∈ X then

• either 0 < θn+1 < ∞, and we interpret θn+1 as the sojourn time in state xn ∈ X, while
xn+1 ∈ X is the post-jump location of the process;

• or θn+1 = ∞; this means that the dynamic system has been absorbed by xn. In this case,
we let xm = x∞ and θm = ∞ for all m > n. Such sample paths belong to �n.

For every n ∈ N and ω ∈ �, let

hn = (x0, θ1, x1, θ2, x2, . . . , θn, xn)

be the path up to n (we do not make ω explicit in the notation), and denote the collection of all
such paths by Hn.

For n ∈ N, define the mappingXn : � → X∞ asXn(ω) = xn. For n ≥ 1, define�n and Tn
from � to R

∗
+ as

�n(ω) = θn and Tn(ω) = θ1 + · · · + θn.

We make the convention that �0(ω) = T0(ω) = 0 for all ω ∈ �. Define T∞(ω) =
limn→∞ Tn(ω). The random variable T∞ is referred to as the explosion time of the process.
We denote byHn = (X0,�1, X1, . . . , �n,Xn) the n-term history process, which takes values
in Hn for n ∈ N.

The random measure ν associated with (�n,Xn)n∈N is a measure defined on R
∗+ × X by

ν(ω; dt, dx) =
∑
n≥1

1{Tn(ω)<∞} δ(Tn(ω),Xn(ω))(dt, dx).
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Informally, we can say that ν(ω; dt, dx) puts a mass equal to 1 in each pair (θ1 + · · · + θn, xn)
provided that all θ1, . . . , θn are finite. For notational convenience, the dependence on ω will be
suppressed and we will simply write ν(dt, dx). Define

Ft = σ {H0} ∨ σ {ν((0, s] × B) : s ≤ t, B ∈ B(X)} for t ≥ 0.

Finally, the continuous-time process {ξt }t≥0 with values in X∞ is given by

ξt (ω) =
{
Xn(ω) if Tn(ω) ≤ t < Tn+1(ω) for n ∈ N,

x∞ if t ≥ T∞(ω).

So, the process {ξt }t≥0 can be equivalently described by the sequence (�n,Xn)n∈N.

2.3. Admissible policies and distribution of the controlled process

Define A∞ = A∪{a∞}, where a∞ is an isolated action associated to the cemetery state x∞,
and let A(x∞) = {a∞}. We can extend the transition rate q to be a signed kernel on X∞, given
K ∪ {(x∞, a∞)}, by letting q({x∞} | x, a) = 0 for all (x, a) ∈ K and q(· | x∞, a∞) ≡ 0.
We define q+ as in (8).

An admissible control policy is a sequence u = (πn)n∈N where, for any n ∈ N, πn is a
stochastic kernel (or transition probability measure) on A∞, given Hn × R

∗+, satisfying

πn(A(xn) | hn, t) = 1 for any hn = (x0, θ1, x1, . . . , θn, xn) ∈ Hn, t ∈ R
∗+.

The set of admissible control policies is denoted by U.
Given an admissible control policy u = (πn)n∈N, we denote by π the random process with

values in P (A∞) as

π(da | t) =
∑
n∈N

1{Tn<t≤Tn+1} πn(da | Hn, t − Tn)+ 1{t≥T∞} δa∞(da) for t > 0. (3)

It follows that π is an {Ft }t∈R+ -predictable random process with values in P (A∞).
Suppose that a control policy u = (πn)n∈N ∈ U is fixed. We introduce the intensity of the

jumps

λn(�, hn, t) =
∫

A∞
q+(� | xn, a)πn(da | hn, t),

and the rate of the jumps

�n(�, hn, t) =
∫ t

0
λn(�, hn, s) ds

for any n ∈ N, � ∈ B(X∞), hn = (x0, θ1, x1, . . . , θn, xn) ∈ Hn, and t ∈ R
∗
+. Now, for any

n ∈ N, the stochastic kernel Gn on R
∗
+ × X∞, given Hn, is defined by

Gn(� | hn) = δ(∞,x∞)(�)[δxn({x∞})+ δxn(X)e
−�n(X,hn,∞)]

+ δxn(X)

∫
�∩(R∗+×X)

λn(dx, hn, t)e
−�n(X,hn,t) dt

for any � ∈ B(R
∗
+ × X∞) and hn = (x0, θ1, x1, . . . , θn, xn) ∈ Hn.
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Consider an admissible policy u ∈ U and an initial state x ∈ X. From [13, Remark 3.43],
there exists a probability P

x,u on (�,F ) such that

P
x,u{X0 = x} = 1

and such that, for � ∈ B(R
∗
+ × X∞) and n ≥ 0,

P
x,u{(�n+1, Xn+1) ∈ � | Hn} = Gn(� | Hn) almost surely.

We denote by E
x,u the expectation operator associated to P

x,u.

Remark 1. Under the hypothesis that the transition kernel q is bounded (recall (2)), the
continuous-time process {ξt }t≥0 is nonexplosive under P

x,u, which means that

P
x,u{T∞ = ∞} = 1 for any x ∈ X, u ∈ U;

see, e.g. [14, Theorem 1].

2.4. Optimality criterion

Now we introduce the infinite-horizon performance criteria we are concerned with. Let
0 < α < 1 be a given discount factor. The total expected α-discounted cost of an admissible
control policy u ∈ U for the initial state x ∈ X is defined as

Vα(u, x) = E
x,u

[∫ ∞

0
e−αs

∫
A(ξs )

c(ξs, a)π(da | s) ds

]
(4)

with π as in (3), and the long-run expected average cost of the control policy u ∈ U for the
initial state x ∈ X is given by

J(u, x) := lim sup
t→∞

1

t
E
x,u

[∫ t

0

∫
A(ξs )

c(ξs, a)π(da | s) ds

]
. (5)

Our assumptions below will ensure that (4) and (5) are well defined and finite. The value
function of the α-discounted control problem is

V∗
α(x) := inf

u∈U
Vα(x, u) for x ∈ X.

Similarly, the value function of the average cost control problem is

J∗(x) := inf
u∈U

J(x, u) for x ∈ X,

and a policy u∗ ∈ U is average cost optimal if J(x, u∗) = J∗(x) for every x ∈ X.
A control policy u ∈ U is called deterministic stationary if πn(· | hn, t) = δf (xn)(·), where

f : X∞ → A∞ is a measurable mapping satisfying f (y) ∈ A(y) for any y ∈ X∞. We denote
by F be the family of such measurable functions. By hypothesis, F is nonempty.

2.5. Assumptions and basic results

In this section we state our main assumptions on the control model M, namely,Assumptions 1
and 2 below. These assumptions include the usual Lyapunov conditions and continuity-
compactness requirements (which can be found in various forms in, e.g. [9], [10], [14], and [21])
plus some additional conditions ensuring that the solutions of the optimality equations are
smooth enough.
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Assumption 1 we adopt the following notation. LetQ be the stochastic kernel on X, given K ,
defined as

Q(dy | x, a) = 1

q̂
q(dy | x, a)+ δx(dy) for any (x, a) ∈ K.

Note that (2) implies that Q(B | x, a) ≥ 0 for any B ∈ B(X) and (x, a) ∈ K . In addition,
since q is conservative, we indeed have Q(X | x, a) = 1 for any (x, a) ∈ K .

Assumption 1. (i) The cost function c is Lc-Lipschitz continuous on K .

(ii) The multifunction � : x → A(x) is compact valued and L� -Lipschitz continuous with
respect to the Hausdorff distance.

(iii) For any v ∈ C(X), we have qv ∈ C(K).

(iv) There exists LQ > 0 satisfying (L� + 1)LQ < 1 such that, for every Lv-Lipschitz
continuous function v ∈ L(X), we have Qv ∈ L(K) with Lipschitz constant LQv = LQLv .

The property in (iii) is usually referred to as the kernel q being weakly continuous, whereas
in (iv) is referred to as the stochastic kernel Q being LQ-Lipschitz continuous; see [12].

Assumption 2. There is a function w : X → [1,∞) with the following properties:

(i) w ∈ L(X) and there exist constants ρ > 0 and γ ≥ 0 with qw(x, a) ≤ −ρw(x)+ γ for
any (x, a) ∈ K;

(ii) there exists x0 ∈ X such that the relative difference of the optimal discounted value
function hα(x) := V∗

α(x)− V∗
α(x0) satisfies

sup
α>0

‖hα‖w < ∞.

Note that Assumptions 1(iv) and 2(i) imply that qw is continuous on K .

Remark 2. The requirement inAssumption 2(ii) is a standard technical condition when dealing
with average cost Markov controlled processes. Details can be found in [9, Assumption C],
[10, Assumption C(ii)], and also in a slightly different form in [21, Condition 2]. Several
sufficient (more easily verifiable, based on the primitive data of the control model) conditions
for Assumption 2(ii) have been proposed in the literature. We refer the reader to [9, Lemma 3.3]
where the authors proposed sufficient conditions based on uniform ergodicity properties, and
also on drift and monotonicity conditions. Also, Guo and Ye [10, Theorem 3.3] proposed
weak sufficient conditions based on communication properties and hitting times of the process.
Finally, the discussion in [21, p. 959] yields a sufficient condition for Assumption 2(ii) based
on the existence of a solution to a suitably defined drift inequality which is, in fact, closely
related to the approach of Guo and Ye [10, Theorem 3.3].

Before stating our main result on the average cost optimality inequalities, we prove a
preliminary fact.

Lemma 1. Under Assumptions 1 and 2, there exists a constant LV∗ such that

|V∗
α(x)− V∗

α(y)| ≤ LV∗dX(x, y) for any x, y ∈ X, α > 0.
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Proof. Standard arguments (see, e.g. [14, Theorem 4]) can be used to show that the value
function of the α-discounted control problem V∗

α(x) is equal to limk→∞ Wα,k(x) for any α > 0
and x ∈ X, where

Wα,k+1(x) = inf
a∈A(x)

{
c(x, a)

q̂ + α
+ q̂

q̂ + α
QWα,k(x, a)

}
,

and Wα,0(x) = 0. It can be easily shown by induction that, for any α > 0 and k ∈ N, the
mappings Wα,k are LWα,k

-Lipschitz continuous with

LWα,k+1 =
(
Lc

q̂
+ LQLWα,k

)
(1 + L�).

Combining the previous equation and Assumption 1(iv), it follows that

LWα,k
≤ Lc

q

1 + L�

1 − LQ(1 + L�)
for any α > 0, k ∈ N.

Now recalling that V∗
α(x) = limk→∞ Wα,k(x), we obtain the result with

LV∗ = Lc

q

1 + L�

1 − LQ(1 + L�)

the Lipschitz constant of V∗
α . �

The following result is essentially the same as [9, Theorem 4.2]. It differs by the fact that, on
the one hand, we consider a weakly continuous bounded transition kernel q that does not satisfy
the strong continuity property imposed by [9, Assumption B2]; and, on the other hand, we show
that the functions v1 and v2 involved in the optimality inequalities are Lipschitz continuous by
imposing stronger continuity properties on parameters of the model M. We provide only a
sketch of the proof, which mainly combines Lemma 1 and arguments from [9, Theorem 4.2]
and [21, Theorem 1].

Theorem 1. Suppose that the control model M satisfies Assumptions 1 and 2.

(i) There exist a constant g∗ and functions v1, v2 ∈ Lw(X) that are solutions of the average
optimality inequalities:

g∗ ≥ inf
a∈A(x)

{
c(x, a)+

∫
X

v1(y)q(dy | x, a)
}
, (6)

g∗ ≤ inf
a∈A(x)

{
c(x, a)+

∫
X

v2(y)q(dy | x, a)
}

(7)

for every x ∈ X.

(ii) The optimal average cost of M is constant and g∗ = J∗(x) for all x ∈ X.

(iii) Any f ∈ F attaining the infimum in (6) is average optimal for M, and such an f indeed
exists.

Proof. (i) Under our standing assumptions, it can be shown (see, e.g. [14, Theorem 4]) that
the function hα introduced in Assumption 2(ii) satisfies the following equation:

αV∗
α(x0)

q̂
+ αhα(x)

q̂
+ hα(x) = inf

a∈A(x)

{
c(x, a)

q̂
+Qhα(x, a)

}
.
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Define

g∗ = lim sup
α→0

αV∗
α(x0) and v1(x) = lim inf

(α,y)→(0,x)
hα(y) for any x ∈ X.

Using similar arguments to those of [21, Theorem 1], we see that (6) is satisfied. Clearly,
Assumption 2(ii) implies that v1 ∈ Bw(X). The only point is to show that v1 ∈ Lw(X).
However, recalling from Lemma 1 the fact that

|V∗
α(x)− V∗

α(y)| ≤ LV∗dX(x, y)

for any x, y ∈ X and any α > 0, for a constant LV∗ not depending on α, it follows easily that
v1 ∈ Lw(X). The reasoning to show the existence of a function v2 ∈ Bw(X) satisfying (7) is
basically the same as for the proof of Equation (4.2) of [9, Theorem 4.2], since it does not use
any continuity properties of the transition kernel. Again, an application of Lemma 1 implies
that v2 ∈ Lw(X).

The proof of (ii) and (iii) is identical to statements (b) and (c) of [9, Theorem 4.2]. �

3. Approximation of the optimal value of M

The objective of this section is to address the issue of the approximation of the optimal value
of control model M. It is based on a suitable discretization of the state and action spaces.
To achieve this discretization, we require additional conditions on M, which are contained in
Assumption 3.

Denote by q+ the positive part of the transition kernel q; that is, consider the transition
measure on X, given K , defined for B ∈ B(X) and (x, a) ∈ K as

q+(B | x, a) = q(B − {x} | x, a).
We can write, equivalently,

q(dy | x, a) = q+(dy | x, a)+ q({x} | x, a)δx(dy). (8)

Next we impose the condition that the kernel q+ is absolutely continuous with respect to some
probability measure μ for a sufficiently regular density function. Assumption 3(i)–(iii) will be
useful for the discretization of the state space, while Assumption 3(iv) will be the basis for the
discretization of the action sets.

Assumption 3. There exist a probability measure μ ∈ P1(X) and a nonnegative function p
defined on X × K such that the following hold:

(i) for all B ∈ B(X) and (x, a) ∈ K , we have

q+(B | x, a) =
∫
B

p(y | x, a)μ(dy);

(ii) there exists some Lp > 0 such that the function p(· | x, ·) is Lp-Lipschitz continuous on
X × A(x) for any x ∈ X;

(iii) for some positive constants p̂ and Lwp, we have

p(y | x, a) ≤ p̂w(x) and |w(y)p(y | x, a)−w(z)p(z | x, a)| ≤ Lwpw(x)dX(y, z)

for y, z ∈ X and (x, a) ∈ K , where the function w comes from Assumption 2;
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(iv) for each δ > 0 and every x ∈ X, there is a finite set Aδ(x) ⊆ A(x) such that the
multifunction defined on X by x �→ Aδ(x) is Borel-measurable and

dH (A(x),Aδ(x)) ≤ δw(x).

Before addressing the issue of the approximation of the control model M, we state a technical
result that will be useful in what follows. It deals with a Lipschitz continuity property of the
density function p introduced in Assumption 3.

Lemma 2. Suppose that Assumptions 2 and 3 hold. Given v ∈ Lw(X) and (x, a) ∈ K , the
function y �→ v(y)p(y | x, a) is Lipschitz continuous on X with Lipschitz constant given by
Lvpw(x) with

Lvp := ‖v‖w(Lwp + p̂Lw)+ Lvp̂.

Proof. See [7, Lemma 3.3]. �
3.1. Construction of the approximating model Mk,δ

In order to approximate the control model M, we will introduce a new control model Mk,δ

depending on the parameters of discretizations k and δ. Loosely speaking, the technique to
construct Mk,δ will consist of the following steps.

• Discretizing the state space X by replacing the measure μ in Assumption 3(i) by a
probability measure μk supported on k points in X. The accuracy of the approximation
of μk to μ will be measured in terms of the distance W(μ,μk), which will be assumed
to converge to 0 as k → ∞; see the discussions in Sections 4.1 and 4.2.

• Discretizing the action sets A(x) by considering the finite δ-nets Aδ(x) in Assump-
tion 3(iv). The approximation of the action sets will become more accurate as δ → 0.

We now introduce the model Mk,δ and its associated parameters.

Definition 1. For k ≥ 1 and δ > 0, let μk be a probability measure on X with finite support
and let Aδ(x) a finite subset of A(x) for any x ∈ X. The elements of the control model Mk,δ

are given by {X,A, {Aδ(x)}x∈X, qk, c} with qk defined as

qk(B | x, a) =
∫
B

p(y | x, a)μk(dy)− δx(B)

∫
X

p(y | x, a)μk(dy)

for B ∈ B(X) and (x, a) ∈ Kδ , where

Kδ = {(x, a) ∈ X × A : a ∈ Aδ(x)} ∈ B(K).

We can extend the transition rate qk to be a signed kernel on X∞, given Kδ ∪ {(x∞, a∞)},
by letting qk({x∞} | x, a) = 0 for all (x, a) ∈ Kδ and qk(· | x∞, a∞) ≡ 0. An admissible
control policy for the model Mk,δ is a sequence u = (πn)n∈N, where for any n ∈ N, πn is a
stochastic kernel (or transition probability measure) on A∞, given Hn × R

∗+, satisfying

πn(Aδ(xn) | hn, t) = 1 for any hn = (x0, θ1, x1, . . . , θn, xn) ∈ Hn, t ∈ R
∗+.

The set of admissible control policies for the model Mk,δ is denoted by Uδ . Observe that
Uδ ⊆ U. Consider an admissible policy u = (πn)n∈N ∈ Uδ and an initial state x ∈ X.
Similarly to the construction described in Sections 2.2 and 2.3, there exists a probability measure
P
x,u
k,δ on (�,F ) that models Mk,δ . We write E

x,u
k,δ for the expectation operator associated to P

x,u
k,δ

and denote by Fδ the family of measurable functions ϕ : X∞ → A∞ satisfying ϕ(y) ∈ Aδ(y)

for any y ∈ X∞.
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Note that Mk,δ is essentially a finite state control model because, starting from any initial
state x ∈ X, after the first transition the state of the system belongs to (and remains in) the
support of μk . The long-run expected average cost of the control policy u ∈ Uδ for the initial
state x ∈ X is given by

Jk,δ(x, u) := lim sup
t→∞

1

t
E
x,u
k,δ

[∫ t

0

∫
Aδ(ξs )

c(ξs, a)π(da | s) ds

]

and the value function of the average cost control problem is

J∗
k,δ(x) := inf

u∈Uδ

Jk,δ(x, u) for x ∈ X.

For our next remark, we define q+
k as the positive part of the signed kernel qk; see (8).

Remark 3. Observe that, for any (x, a) ∈ Kδ ,

q+
k (X | x, a) =

∫
X

p(y | x, a)μk(dy)

≤
∫
X

p(y | x, a)μ(dy)+ LpW(μ,μk)

= q+(X | x, a)+ LpW(μ,μk)

≤ q̂ + LpW(μ,μk),

where we make use of (2) and Assumption 3(ii). So, the continuous-time process {ξt }t≥0 has
bounded transition rates and it is, therefore, nonexplosive under P

x,u
k,δ for any x ∈ X and u ∈ Uδ;

see, e.g. [14, Theorem 1]. Hence, J∗
k,δ(x) is well defined and finite.

3.2. Estimation of the value function

Having introduced the model Mk,δ , we now study the problem of approximating the value
function J∗(x) for the original control model M.

In our main result in this section we establish that the difference |g∗ − J∗
k,δ(x)| between the

optimal average costs of M and Mk,δ is bounded by a linear combination of the Wasserstein
distance W(μ,μk) and the parameter δ in Assumption 3(iv). Our results in this section are
presented in a general framework and, for the moment, we do not impose any particular
conditions on the measures {μk}k∈N and the sets {Aδ(x)}x∈X, other than those in Definition 1.

In our next result we compare q with qk , when applied to a Lipschitz continuous function,
and show that the model Mk,δ inherits the Lyapunov condition satisfied by the model M (see
Assumption 2(i)) provided W(μ,μk) is small.

Lemma 3. Suppose that M satisfies Assumptions 1–3, and let k ≥ 1 and δ > 0.

(i) Given (x, a) ∈ Kδ and v ∈ Lw(X), we have∣∣∣∣
∫

X

v(y)q(dy | x, a)−
∫

X

v(y)qk(dy | x, a)
∣∣∣∣ ≤ [Lvp + Lp‖v‖w]w(x)W(μ,μk).

(ii) For all (x, a) ∈ Kδ ,∫
X

w(y)qk(dy | x, a) ≤ −[ρ − (Lwp + Lp)W(μ,μk)]w(x)+ γ.
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Proof. (i) Clearly, from Assumption 3(i),∣∣∣∣
∫

X

v(y)q(dy | x, a)−
∫

X

v(y)qk(dy | x, a)
∣∣∣∣

≤
∣∣∣∣
∫

X

v(y)p(y | x, a)μ(dy)−
∫

X

v(y)p(y | x, a)μk(dy)
∣∣∣∣

+ |v(x)|
∣∣∣∣
∫

X

p(y | x, a)μ(dy)−
∫

X

p(y | x, a)μk(dy)
∣∣∣∣.

The claim is then easy to obtain by using Lemma 2 and Assumptions 3(ii) and 3(iii).

(ii) Similarly, we have∣∣∣∣
∫

X

w(y)q(dy | x, a)−
∫

X

w(y)qk(dy | x, a)
∣∣∣∣ ≤ [Lwp + Lp]w(x)W(μ,μk),

from Assumptions 3(ii) and 3(iii). The result readily follows by using Assumption 2(i). �
In the following two results we see that if the control M model satisfies average optimality

inequalities of the type (6) and (7) then the corresponding constant g∗ can be approximated by
J∗
k,δ(x).

Proposition 1. Suppose that M satisfies Assumptions 1–3. If there is a constant g ∈ R and a
function v ∈ Lw(X) such that

g ≤ c(x, a)+
∫

X

v(y)q(dy | x, a) for every (x, a) ∈ K, (9)

then the average cost for the control model Mk,δ satisfies

g ≤ J∗
k,δ(x)+ [Lvp + Lp‖v‖w]W(μ,μk)

2γ

ρ
for any x ∈ X

provided that W(μ,μk) ≤ ρ/2(Lwp+Lp).

Proof. Consider an admissible policy u = (πδ,n)n∈N ∈ Uδ with δ > 0 and a function
v ∈ Lw(X). From Remark 3, we see that the continuous-time process {ξt }t≥0 is nonexplosive
under P

x,u
k,δ , that is, P

x,u
k,δ {T∞ = ∞} = 1 for any x ∈ X and k ∈ N. For notational convenience,

we denote by πδ the random process with values in P (A∞) as

πδ(da | t) =
∑
n∈N

1{Tn<t≤Tn+1} πδ,n(da | Hn, t − Tn) for any t > 0.

Now observe that ∫
Aδ(ξs )

[
c(ξs, a)+

∫
X

v(y)qk(dy | ξs, a)
]
πδ(da | s)

is well defined. Consequently, from Lemma 3(i),

g ≤
∫

Aδ(ξs )

[
c(ξs, a)+

∫
X

v(y)qk(dy | ξs, a)
]
πδ(da | s)

+ [Lvp + Lp‖v‖w]w(ξs)W(μ,μk) for every s ≥ 0.
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From Remark 3 and Lemma 3(i), we can use Dynkin’s formula (see, e.g. [14, Theorem 2]) to
obtain

E
x,u
k,δ [v(ξt )] − v(x) = E

x,u
k,δ

[∫ t

0

∫
Aδ(ξs )

∫
X

v(y)qk(dy | ξs, a)πδ(da | s) ds

]

≥ gt − E
x,u
k,δ

[∫ t

0

∫
Aδ(ξs )

c(ξs, a)πδ(da | s) ds

]

− [Lvp + Lp‖v‖w]W(μ,μk)E
x,u
k,δ

[∫ t

0
w(ξs) ds

]
. (10)

By Lemma 3(ii) and using [14, Theorem 1(a)], we have

E
x,uδ
k,δ [w(ξs)] ≤ e−ρt/2w(x)+ 2γ

ρ

since W(μ,μk) ≤ ρ/2(Lwp+Lp) and so, dividing by t and taking the lim sup as t → ∞ in (10),
we obtain

Jk,δ(x, uδ) ≥ g − [Lvp + Lp‖v‖w]W(μ,μk)
2γ

ρ
,

yielding the result. �
Proposition 2. Suppose that M satisfies Assumptions 1–3. If there is a constant g ∈ R, a
function v ∈ Lw(X), and f ∗ ∈ F such that

g ≥ c(x, f ∗(x))+
∫

X

v(y)q(dy | x, f ∗(x)) for every x ∈ X, (11)

then there exists f ∗
δ ∈ Fδ such that the corresponding average cost Jk,δ(x, f

∗
δ ) for the control

model Mk,δ satisfies

g ≥ Jk,δ(x, f
∗
δ )− ([Lc + ‖v‖wμ(w)Lp]δ+ [Lvp +Lp‖v‖w]W(μ,μk))

2γ

ρ
for any x ∈ X

provided that W(μ,μk) ≤ ρ/2(Lwp+Lp).

Proof. From Assumption 3(iv), we have mina∈Aδ(x) dA(a, f
∗(x)) = dA(f

∗
δ (x), f

∗(x)) for
some f ∗

δ ∈ Fδ and dA(f
∗
δ (x), f

∗(x)) ≤ δw(x). Therefore,

g ≥ c(x, f ∗
δ (x))+

∫
X

v(y)q(dy | x, f ∗
δ (x))− |c(x, f ∗(x))− c(x, f ∗

δ (x))|

−
∣∣∣∣
∫

X

v(y)[p(y | x, f ∗(x))− p(y | x, f ∗
δ (x))]μ(dy)

∣∣∣∣
≥ c(x, f ∗

δ (x))+
∫

X

v(y)q(dy | x, f ∗
δ (x))− [Lc + ‖v‖wμ(w)Lp]δw(x),

where in the last inequality we used Assumptions 1(i) and 3(ii). Consequently,

g ≥ c(ξs, f
∗
δ (ξs))+

∫
X

v(y)qk(dy | ξs, f ∗
δ (ξs))

− ([Lc + ‖v‖wμ(w)Lp]δ + [Lvp + Lp‖v‖w]W(μ,μk))w(ξs).

Proceeding as in the proof of the previous proposition, we obtain the result. �
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From these two propositions, we can now provide a bound on the approximation error of
the value function.

Theorem 2. Suppose that Assumptions 1–3 hold. For any x ∈ X, δ > 0, and k ≥ 1 such that
W(μ,μk) ≤ ρ/2(Lwp+Lp), we have

sup
x∈X

|g∗ − J∗
k,δ(x)| ≤ Cδ + DW(μ,μk),

where

C = [Lc + ‖v1‖wμ(w)Lp]2γ

ρ
, D = ([Lv1p + Lp‖v1‖w] ∨ [Lv2p + Lp‖v2‖w])2γ

ρ
.

Proof. From Theorem 1, there exist a constant g∗ and a function v2 ∈ Lw(X) satisfying (9).
Therefore, applying Proposition 1, we obtain

g∗ ≤ J∗
k,δ(x)+ [Lv2p + Lp‖v2‖w]W(μ,μk)

2γ

ρ
for any δ > 0

provided that W(μ,μk) ≤ ρ/2(Lwp+Lp). Now from items (i) and (ii) of Theorem 1, there
exist a function v1 ∈ Lw(X) and f ∗ ∈ F satisfying (11) for the constant g∗, and so applying
Proposition 2, we have

g∗ ≥ J∗
k,δ(x)− ([Lc + ‖v1‖wμ(w)Lp]δ + [Lv1p + Lp‖v1‖w]W(μ,μk))

2γ

ρ
for any δ > 0

provided that W(μ,μk) ≤ ρ/2(Lwp+Lp). This establishes the result. �
Therefore, we can indeed bound the approximation error |g∗ − J∗

k,δ(x)| by a linear combi-
nation of δ (the parameter of the discretization of the action space) and W(μ,μk), the distance
between μ and μk . Note that Lv1p and Lv2p can be explicitly computed since they depend on
constants given in our assumptions such as, e.g. LV∗ derived in Lemma 1.

Finally, we make a remark on our approach used here for the approximation of the continuous-
time model M. In both Lemma 1 and Theorem 1 we have used the so-called uniformization
technique to transform M into an equivalent discrete-time model. Namely, as shown in
Lemma 1, the corresponding discounted discrete-time model has

c(x, a)

q̂ + α
,

q̂

q̂ + α
, Q(dy | x, a) = 1

q̂
q(dy | x, a)+ δx(dy)

as its respective cost function, discount factor, and transition probabilities. In Theorem 1 we
used the vanishing discount technique to deal with the average optimality of this discrete-time
model: letting the discount rate α ↓ 0 makes the discount factor q̂/(q̂ + α) ↑ 1.

We would like to stress that it is not possible, in general, to apply the techniques developed
in [8] to approximate the ‘uniformized’discrete-time model in order to obtain the corresponding
approximations for M. The reason is that a key hypothesis of [8] is the existence of a probability
measure ν on X and a density function u(y | x, a) such that

Q(dy | x, a) = 1

q̂
q(dy | x, a)+ δx(dy) = u(y | x, a)ν(dy). (12)

This implies that each x ∈ X such that −q({x} | x, a) < q̂ for some a ∈ A(x) (recall (2)) is
necessarily an atom of ν. As a consequence, (12) entails that for almost all x ∈ X (excluding,
perhaps, the atoms of ν) and all a ∈ A(x), the instantaneous jump rate −q({x} | x, a) is
constant.
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By following the discrete-time approach of [8] for the continuous-time model herein, we
would need to restrict ourselves to a really poor class of continuous-time models: the distribution
of the sojourn times should be the same for almost all states, regardless of the controller’s
action. This is a fairly unnatural hypothesis in continuous-time modeling. This is the reason
why, although our proof techniques use a discrete-time model, we indeed need to follow a
specific approach for the continuous-time model.

4. Empirical and deterministic approximations

In this section we discuss the approximation of the underlying probability measure μ in the
metric W . Actually, two main approaches exist: one uses empirical distribution and the other
one a so-called deterministic approximation.

4.1. The empirical approach

Now we specialize the main result (see Theorem 2) to the case when the measureμk is given
by the empirical probability measure drawn from the measure μ.

First we recall some general results on the convergence in the Wasserstein metric of empirical
probability measures. Let Y be a Borel space and consider the probability space
(Y∞,B(Y )∞,Pμ) which we define next. The elements of the product space Y∞ are written
as ζ = (ζ1, ζ2, . . .). It follows that B(Y )∞ is the product σ -algebra of the B(Y ), that is, the
minimal σ -algebra containing the rectangles

R = {ζ ∈ Y∞ : ζ1 ∈ B1, . . . , ζk ∈ Bk} for all k ≥ 1, B1, . . . , Bk ∈ B(Y ).

The probability measure Pμ is such that, forR ∈ B(Y )∞ as above, Pμ(R) = μ(B1) · · ·μ(Bk).
Given n ≥ 1 and ζ ∈ Y∞, the empirical probability measure μn(ζ ) is the probability measure
on Y defined as

μn(ζ ) = 1

n

n∑
i=1

δζi .

We will also say that μn is a random probability measure. In what follows we will use the
following convergence result which yields the rate of convergence (in probability) of μn to μ
in the Wasserstein metric; it is taken from [3, Corollary 2.5].

Proposition 3. Let Y be a Borel space. Given μ ∈ Pexp(Y ) and ε > 0 there exist positive
constants Cε and Dε such that

Pμ{W(μ,μn(ζ )) > ε} ≤ Cε exp{−Dεn} for all n ≥ 1.

With the empirical approach described above, we know that, for a given precision ε > 0 and
for large enough n, there is a small probability (decaying exponentially in n) that we are not
being ε-precise when approximating μ with the random measure μn, which is supported on at
most n points in Y .

Now we are ready to establish the empirical analogue of Theorem 2. Note that the μk
are random probability measures (depending on the path ζ ∈ X∞), and so the quantities we
will deal with next are, in fact, random variables. Regarding the approximation of the optimal
average value g∗ of M for an initial state x ∈ X, we proceed as in Section 3.2 with the empirical
probability measures μk , so as to obtain the (random) approximation J∗

k,δ(x).
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Theorem 3. Suppose that the control model M satisfies Assumptions 1–3 with μ ∈ Pexp(X).
Fix an initial state x ∈ X and let ε > 0 be some given precision. There exist δ > 0, and
positive constants C(ε) and D(ε) such that

Pμ

{
sup
x∈X

|g∗ − J∗
k,δ(x)| > ε

}
≤ C(ε)e−D(ε)k for all k ≥ 1.

Proof. Consider ε > 0. Recalling Theorem 2, we have

{
sup
x∈X

|J∗(x)− J∗
k,δ(x)| > ε

}
⊆

{
W(μ,μk) >

ε

2D

}

∪
{
W(μ,μk) >

ρ

2(Lwp + Lp)

}
for δ < ε/2C.

By Proposition 3, there exist C(ε) and D(ε) such that

Pμ

{
W(μ,μk) >

[
ε

2D
∨ ρ

2(Lwp + Lp)

]}
≤ C(ε)e−D(ε)k for all k ≥ 1,

yielding the result. �
This theorem states that, given some initial state x ∈ X and some precision ε > 0, we can

find δ > 0 sufficiently small such that when approximating g∗ by J∗
k,δ(x), the probability of

not reaching the precision ε goes to 0 exponentially in the sample size k.

4.2. The deterministic approach

This approach consists in deriving the approximating probability measureμk from a covering
of X with small radius. This allows us to tightly control the distance W(μ,μk) but it may pose
an additional computational challenge. The next result is borrowed from [1, Proposition 1.1].

Proposition 4. Consider the Borel state space X. Given μ ∈ P1(X) and ε > 0, there exists
ν ∈ P1(X) with finite support such that W(μ, ν) ≤ ε.

Proof. Consider a measurable partition {Bn}n≥1 of X such that, for each n ≥ 1, there is
some yn ∈ Bn with ρX(y, yn) ≤ 1

3ε for all y ∈ Bn. Such a construction is possible because X

is separable. The probability measure λ = ∑∞
n=1bnδyn with bn = μ(Bn) verifies λ ∈ P1(X)

and W(λ, μ) ≤ 1
3ε. Choose N such that

∑
r>N

∫
Br

ρX(y, y1)μ(dy) ≤ 1
3ε, (13)

which implies
∑
r>NbrρX(yr , y1) ≤ 2

3ε, and define

ν =
(
b1 +

∑
r>N

br

)
δy1 +

N∑
k=2

bkδyk .

We have W(ν, λ) ≤ 2
3ε and, therefore, W(ν, μ) ≤ ε. �

Consequently, given some precision ε, we can construct a probability measure μk such that
W(μ,μk) ≤ ε, where the number of points k in the support of μk is given by k = Nε needed
to achieve (13).
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5. Numerical example

Consider a queueing system with finite capacity. The state space is X = [0, C] for some
C > 0 and the action space is some interval A = [am, aM ]. We suppose that A(x) = A for all
x ∈ X. The transition kernel is given by

q(B | x, a) =
∫
B∩(x,C]

2(y − x) dx + a 1B(0)− (a + (C − x)2) 1B(x)

for any 0 ≤ x ≤ C, am ≤ a ≤ aM , and B ∈ B(X). The cost rate function c : X × A → is
bounded and Lipschitz continuous.

Proposition 5. Consider the queueing system defined above. If am > (1 + C)(2C + 1) then
all the assumptions in this paper are satisfied.

Proof. In X we suppose that the point 0 is ‘separated’ from the interval (0, C], and we will
suppose that dX is the usual metric on (0, C] with dX(0, x) = 1 + x for 0 < x ≤ C. All the
conditions in Assumptions 1 and 2 are easy to verify except Assumptions 1(iv) and 2(ii).

Regarding Assumption 2(ii) we have the following. Let w ≡ 1 be constant, and [10,
Assumptions A, B, and C(i)] are satisfied. Define B = {0}; see [10, p. 961]. For all x �= 0, we
have x ↪→ B and the condition of [10, Theorem 3.3(c)] holds. Then we use [10, Theorem 3.3(d)
and Equation (5.24)] to deduce that [10, Assumption C] holds with supα>0 ‖hα‖ < ∞ in the
supremum norm. Hence, Assumption 2(ii) indeed holds.

Now we turn to Assumption 1(iv). In our case, we have L� = 0. For the function v in
Assumption 1(iv), assume without loss of generality that v(0) = 0. Then |v(x)| ≤ Lv(1 + C)

for all x ∈ X. We need to find the Lipschitz constant of

1

q̂

∫ C

x

2v(u)(u− x) du+ v(x)

(
1 − (C − x)2 + a

q̂

)
, (14)

and show that there exists some LQ < 1 such that this Lipschitz constant is less than LQLv .
The Lipschitz constant of the first term in (14) isLvp(C)/q̂, where p(C) is some polynomial

in C. It can be made small by choosing large q̂ (for the calculations, bound the derivative of
this term and use ‖v‖ ≤ Lv(1+C); in this way, we obtain some constants multiplied byLv/q̂).
For the second term, note that it is the product of two functions:

• v, which is Lv-Lipschitz continuous and bounded by Lv(1 + C);

• 1 − ((C − x)2 + a)/q̂, which is (2C + 1)/q̂-Lipschitz continuous, and is nonnegative
for large enough q̂ and bounded by 1 − am/q̂.

Therefore, the product is

Lv

(
1 − am

q̂

)
+ Lv(1 + C)

2C + 1

q̂

Lipschitz continuous. The term that multiplies Lv is less than 1 since am > (1 + C)(2C + 1).
In this proof, note that in (14) we must use a sharp bound for the second term because we

need LQ < 1. So we need the term 1 − ((C − x)2 + a)/q̂ to be bounded away from 1.
Now we turn to Assumption 3. Fix arbitrary 0 < η < 1 and define the probability measureμ

on X as

μ = ηδ0 + 1 − η

C
λ,
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where λ is the Lebesgue measure on (0, C]. Then, for any (x, a) ∈ K , we have

p(y | x, a) = 2C

1 − η
(y − x) if 0 < y ≤ C

and p(0 | x, a) = a/η. For 0 < δ < 1, we choose Aδ(x) to be [1/δ]+ 1 equally spaced points
in A, namely,

Aδ =
{
am + j (aM − am)

[1/δ]
}
j=0,1,...,[1/δ]

(15)

with dH(A,Aδ) ≤ δ (we do not make the dependence on x explicit since the action sets Aδ(x)

are the same for all x). It is straightforward to now check that Assumption 3 holds. �
Given k ≥ 1, define the probability measure μk as

μk = ηδ0 + 1 − η

k

k∑
j=1

δxj

with x1, . . . , xk ∈ (0, C].
(a) If we follow the empirical approach described in Section 4.1 then we interpret the {xi}

as a sample of size k of a uniform law on (0, C].
(b) By using the deterministic approach in Section 4.2, we can let xj = jC/k for 1 ≤ j ≤ k,

which yields

W(μ,μk) = (1 − η)C

2k
.

The control model Mk,δ is given by the following transition rates (we specify them only on
the support �k of μk). Given x, y ∈ �k with x �= y, and a ∈ Aδ ,

qk(y | x, a) = 2(y − x)+C
k

and qk(0 | x, a) = a.

The transition rate qk(x | x, a) is equal to −∑
y �=xqk(y | x, a). Note that the transition rates

of Mk,δ do not depend on η. We can solve each Mk,δ by using the policy iteration algorithm,
which converges in a finite number of steps.

5.1. Numerical experimentation

We choose C = 1, A = [7, 8], and c(x, a) = (1 − x)(10 − a). For any k ≥ 1, for the
discretization of the state space, we choose k points in (0, C] (details will be given later), while
for the discretization of the action space we let δ = 1/k (recall (15)). Since the dependence is
only on k, the approximating control model will be denoted by Mk in lieu of Mk,δ .

The empirical approach. Given a value of k ≥ 1, we take 10 000 samples of size k of
the uniform law in (0, C]. For each sample we solve the problem Mk: this yields 10 000
observations of the constant (in x) random optimal cost g∗

k . In Table 1 we present the results
for the mean g∗

k and the standard deviation of the 10 000 optimal costs for several values of k.
The estimations are very stable (the mean is practically the same for all values of k) and

they become more concentrated as k grows (the standard deviation decreases). In Figure 1 we
present the density estimators (based on normal kernels) of the 10 000 optimal costs for these
values of k. We also observe that the estimations become more accurate and concentrated as k
grows.
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Table 1: Estimation of the optimal average cost.

k Mean Standard deviation

30 1.8449 0.0243
60 1.8450 0.0172
90 1.8449 0.0139

120 1.8450 0.0122

k = 30
k = 60
k = 90
k = 120

O
pt

im
al

 a
ve

ra
ge

 c
os

t

1.75 1.80 1.85 1.90 1.95
Mean

Figure 1: Density estimators for the estimation of the optimal average cost.

To check empirically the order of convergence given in Theorem 3, we fix ε > 0.01 and we
estimate P{|g∗ − g∗

k | > ε} by pk , defined as the empirical probability for the 10 000 samples
that |g∗

k − g∗
k | > 0.01. Such calculations are made for k = 10, 20, . . . , 120. We then perform

a linear regression
− logpk ∼ β0 + β1k;

see Figure 2(a). The linear fit is very precise, with anR-squared coefficient of 0.983. We obtain
β̂0 = 0.1955 and β̂1 = 0.006, which yields the empirical approximation

P{|g∗ − g∗
k | > 0.01} � 0.8224 × e−0.006k.

For ε = 0.02, we perform a similar linear regression analysis which exhibits again a very good
linear fit (see Figure 2(b)), this time with anR-squared coefficient of 0.993 and an approximation

P{|g∗ − g∗
k | > 0.02} � 0.682 × e−0.0165k.

From this, we see (empirically) that the nonasymptotic bound given in Theorem 3 is tight (its
order is indeed attained) and we are able to estimate the involved constants. The multiplicative
constant C(ε), in particular, takes a ‘reasonably’ low value.

The deterministic approach. We use now the deterministic approach described in (b) above
for the probability measure μk . The nature of the discretized model Mk means that its optimal
average cost g∗

k is constant, and Theorem 2 ensures that

|g∗ − g∗
k | = O

(
1

k

)
. (16)
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Figure 2: Regression plots of − logpk with (a) error ε = 0.01 and (b) error ε = 0.02.
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Figure 3: Optimal average cost g∗
k of Mk .

For values of k ranging from 50 to 1200 (with a step size of 50), we have solved the approxi-
mating control model Mk . In Figure 3 we display the corresponding optimal average cost g∗

k .
We observe that the approximations g∗

k become very stable as k grows. To study the dependence
of g∗

k on k, and in order to check empirically (16), we perform a linear regression analysis of
the form

g∗
k ∼ β0 + β1

1

k
.

Using our 24 observations for k = 50, 100, . . . , 1200, this yields the estimator β̂0 = 1.8448
for the optimal average cost g∗, and β̂1 = −0.0048 with residuals satisfying

max
k

∣∣∣∣g∗
k − β̂0 − β̂1

k

∣∣∣∣ ≤ 4 × 10−6

with a squared correlation coefficient of R2 = 1. So, the approximations g∗
k and the regression

line β̂0 + β̂1/k almost overlap. We see (empirically, for this example) that the nonasymptotic
bound in (16) is tight (its order is indeed attained). For this example, the constant in the
O(1/k)-term is fairly small, of order 5 × 10−3.
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